EP2550833A1 - Efficient resource utilization in tdd - Google Patents

Efficient resource utilization in tdd

Info

Publication number
EP2550833A1
EP2550833A1 EP11713551A EP11713551A EP2550833A1 EP 2550833 A1 EP2550833 A1 EP 2550833A1 EP 11713551 A EP11713551 A EP 11713551A EP 11713551 A EP11713551 A EP 11713551A EP 2550833 A1 EP2550833 A1 EP 2550833A1
Authority
EP
European Patent Office
Prior art keywords
resource elements
downlink
unused resource
subframe
unused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11713551A
Other languages
German (de)
French (fr)
Inventor
Xiaoxia Zhang
Durga Prasad Malladi
Yongbin Wei
Tao Luo
Wanshi Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of EP2550833A1 publication Critical patent/EP2550833A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • Certain aspects of the present disclosure generally relate to wireless communications and more particularly, to systems and methods for efficient resource utilization in time division duplex.
  • Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
  • UTRAN Universal Terrestrial Radio Access Network
  • the UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS), a third generation (3G) mobile phone technology supported by the 3rd Generation Partnership Project (3 GPP).
  • UMTS Universal Mobile Telecommunications System
  • 3 GPP 3rd Generation Partnership Project
  • multiple- access network formats include Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal FDMA
  • SC-FDMA Single-Carrier FDMA
  • a wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs).
  • a UE may communicate with a base station via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the base station.
  • a base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE.
  • a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters.
  • RF radio frequency
  • a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
  • a method for wireless communications includes identifying resource elements not used in a subframe.
  • the method also includes utilizing the unused resource elements to transmit at least one of additional pilot signals and control signals.
  • An apparatus for wireless communication includes means for identifying resource elements not used in a subframe.
  • the apparatus also includes means for utilizing the unused resource elements to transmit at least one of additional pilot signals and control signals.
  • a computer program product configured for wireless communications in a wireless network.
  • the computer program product includes a computer-readable medium having program code recorded thereon.
  • the program code includes program code to identify resource elements not used in a subframe.
  • the program code also includes program code to utilize the unused resource elements to transmit at least one of additional pilot signals and control signals.
  • An apparatus configured for wireless communication is offered.
  • the apparatus includes a memory and at least one processor(s) coupled to the memory.
  • the processor(s) is configured to identify resource elements not used in a subframe.
  • the processor(s) is also configured to utilize the unused resource elements to transmit at least one of additional pilot signals and control signals.
  • a method for wireless communications includes receiving additional pilot signals and/or control signals on downlink resource elements previously identified by an eNodeB as being available in a subframe.
  • An apparatus configured for wireless communication is offered.
  • the apparatus includes a memory, and at least one processor coupled to the memory.
  • the processor(s) is configured to receive additional pilot signals and/or control signals on downlink resource elements previously identified by an eNodeB as being available in a subframe.
  • a computer program product configured for wireless communications in a wireless network.
  • the computer program product includes a computer-readable medium having program code recorded thereon.
  • the program code includes program code to receive additional pilot signals and/or control signals on downlink resource elements previously identified by an eNodeB as being available in a subframe.
  • An apparatus for wireless communications has means for receiving additional pilot signals and/or control signals on downlink resource elements previously identified by an eNodeB as being available in a subframe.
  • the apparatus also has means for decoding the additional pilot signals and/or control signals.
  • FIGURE 1 is a block diagram conceptually illustrating an example of a mobile communication system.
  • FIGURE 2 is a block diagram conceptually illustrating an example of a downlink frame structure in a mobile communication system.
  • FIGURE 3 is a block diagram conceptually illustrating an exemplary frame structure in uplink communications.
  • FIGURE 4 is a block diagram conceptually illustrating a design of a base station/eNodeB and a UE configured according to one aspect of the present disclosure.
  • FIGURE 5 illustrates an example downlink HARQ timeline for
  • FIGURE 6 illustrates an example UL HARQ timeline, according to the LTE standard.
  • FIGURE 7 is an illustration of efficient resource utilization according to one aspect of the present disclosure.
  • FIGURE 8 illustrates a system that facilitates efficient resource utilization according to one aspect of the present disclosure.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal FDMA
  • SC-FDMA Single-Carrier FDMA
  • a CDMA network may implement a radio technology, such as Universal Terrestrial Radio Access (UTRA), Telecommunications Industry Association's (TIA's) CDMA2000®, and the like.
  • UTRA Universal Terrestrial Radio Access
  • TIA's Telecommunications Industry Association's
  • WCDMA Wideband CDMA
  • the CDMA2000® technology includes the IS-2000, IS-95 and IS-856 standards from the Electronics Industry Alliance (EIA) and TIA.
  • a TDMA network may implement a radio technology, such as Global System for Mobile Communications (GSM).
  • GSM Global System for Mobile Communications
  • An OFDMA network may implement a radio technology, such as Evolved UTRA (E- UTRA), Ultra Mobile Broadband (UMB), IEEE 802.1 1 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM®, and the like.
  • E- UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • Flash-OFDM® Flash-OFDM®
  • the UTRA and E-UTRA technologies are part of Universal Mobile Telecommunication System (UMTS).
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are newer releases of the UMTS that use E
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization called the “3rd Generation Partnership Project” (3 GPP).
  • CDMA2000® and UMB are described in documents from an organization called the “3rd Generation Partnership Project 2" (3GPP2).
  • the techniques described herein may be used for the wireless networks and radio access technologies mentioned above, as well as other wireless networks and radio access technologies. For clarity, certain aspects of the techniques are described for LTE or LTE-A (together referred to in the alternative as "LTE/- A”) and use such LTE/-A terminology in much of the description below.
  • FIGURE 1 shows a wireless communication network 100, which may be an LTE/-A network.
  • the wireless network 100 includes a number of evolved node Bs (eNodeBs) 110 and other network entities.
  • An eNodeB may be a station that communicates with the UEs and may also be referred to as a base station, a node B, an access point, and the like.
  • Each eNodeB 110 may provide communication coverage for a particular geographic area.
  • the term "cell" can refer to this particular geographic coverage area of an eNodeB and/or an eNodeB subsystem serving the coverage area, depending on the context in which the term is used.
  • An eNodeB may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a pico cell would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG), UEs for users in the home, and the like).
  • An eNodeB for a macro cell may be referred to as a macro eNodeB.
  • An eNodeB for a pico cell may be referred to as a pico eNodeB.
  • an eNodeB for a femto cell may be referred to as a femto eNodeB or a home eNodeB.
  • the eNodeBs 110a, 110b and 110c are macro eNodeBs for the macro cells 102a, 102b and 102c, respectively.
  • the eNodeB 11 Ox is a pico eNodeB for a pico cell 102x.
  • the eNodeBs HOy and HOz are femto eNodeBs for the femto cells 102y and 102z, respectively.
  • An eNodeB may support one or multiple (e.g., two, three, four, and the like) cells.
  • the wireless network 100 also includes relay stations.
  • a relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., an eNodeB, a UE, or the like) and sends a transmission of the data and/or other information to a downstream station (e.g., another UE, another eNodeB, or the like).
  • a relay station may also be a UE that relays transmissions for other UEs.
  • a relay station 1 lOr may communicate with the eNodeB 110a and a UE 120r, in which the relay station 11 Or acts as a relay between the two network elements (the eNodeB 110a and the UE 120r) in order to facilitate communication between them.
  • a relay station may also be referred to as a relay eNodeB, a relay, and the like.
  • the wireless network 100 may support synchronous or asynchronous operation.
  • the eNodeBs may have similar frame timing, and transmissions from different eNodeBs may be approximately aligned in time.
  • the eNodeBs may have different frame timing, and transmissions from different eNodeBs may not be aligned in time.
  • the techniques described herein may be used for synchronous or asynchronous operations.
  • the wireless network 100 may support Frequency
  • FDD Fre Division Duplex
  • TDD Time Division Duplex
  • a network controller 130 may couple to a set of eNodeBs 110 and provide coordination and control for these eNodeBs 110.
  • the network controller 130 may communicate with the eNodeBs 110 via a backhaul 132.
  • the eNodeBs 110 may also communicate with one another, e.g., directly or indirectly via a wireless backhaul 134 or a wireline backhaul 136.
  • the UEs 120 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE may be a cellular phone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • a UE may be able to communicate with macro eNodeBs, pico eNodeBs, femto eNodeBs, relays, and the like.
  • a solid line with double arrows indicates desired transmissions between a UE and a serving eNodeB, which is an eNodeB designated to serve the UE on the downlink and/or uplink.
  • a dashed line with double arrows indicates interfering transmissions between a UE and an eNodeB.
  • a UE 120 communicating with a base station 110a hands over to a base station 110b without the base station 110a first preparing the base station 110b for the handover. Such a handover will be referred to as a "forward handover."
  • the network shown in FIGURE 1 may employ efficient resource utilization according to the aspects of the present disclosure.
  • LTE/-A utilizes orthogonal frequency division multiplexing
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency division multiplexing
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the smallest resource allocation (called a 'resource block') may be 12 subcarriers (or 180 kHz).
  • the nominal FFT size may be equal to 128, 256, 512, 1024 or 2048 for a corresponding system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz), respectively.
  • the system bandwidth may also be partitioned into sub-bands. For example, a sub-band may cover 1.08 MHz (i.e., 6 resource blocks), and there may be 1, 2, 4, 8 or 16 sub-bands for a corresponding system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • FIGURE 2 shows a downlink FDD frame structure used in LTE/-
  • the transmission timeline for the downlink may be partitioned into units of radio frames.
  • Each radio frame may have a predetermined duration (e.g., 10 milliseconds (ms)) and may be partitioned into 10 sub frames with indices of 0 through 9.
  • Each subframe may include two slots.
  • Each radio frame may thus include 20 slots with indices of 0 through 19.
  • Each slot may include L symbol periods, e.g., 7 symbol periods for a normal cyclic prefix (as shown in FIGURE 2) or 14 symbol periods for an extended cyclic prefix.
  • the 2L symbol periods in each subframe may be assigned indices of 0 through 2L-1.
  • the available time frequency resources may be partitioned into resource blocks.
  • Each resource block may cover N subcarriers (e.g., 12 subcarriers) in one slot.
  • the frame structure shown in FIGURE 2 may employ efficient resource utilization according to the aspects of the present disclosure.
  • an eNodeB may send a primary synchronization signal (PSC or PSS) and a secondary synchronization signal (SSC or SSS) for each cell in the eNodeB.
  • PSC primary synchronization signal
  • SSC secondary synchronization signal
  • the primary and secondary synchronization signals may be sent in symbol periods 6 and 5, respectively, in each of subframes 0 and 5 of each radio frame with the normal cyclic prefix, as shown in FIGURE 2.
  • the synchronization signals may be used by UEs for cell detection and acquisition.
  • the eNodeB may send a Physical Broadcast Channel (PBCH) in symbol periods 0 to 3 in slot 1 of subframe 0.
  • PBCH Physical Broadcast Channel
  • the eNodeB may send a Physical Control Format Indicator
  • the eNodeB may send a Physical HARQ Indicator Channel (PHICH) and a Physical Downlink Control Channel (PDCCH) in the first M symbol periods of each subframe.
  • PHICH Physical HARQ Indicator Channel
  • PDCH Physical Downlink Control Channel
  • the PDCCH and PHICH are also included in the first three symbol periods in the example shown in FIGURE 2.
  • the PHICH may carry information to support hybrid automatic retransmission (HARQ).
  • HARQ hybrid automatic retransmission
  • the PDCCH may carry information on uplink and downlink resource allocation for UEs and power control information for uplink channels.
  • the eNodeB may send a Physical Downlink Shared Channel (PDSCH) in the remaining symbol periods of each subframe.
  • the PDSCH may carry data for UEs scheduled for data transmission on the downlink.
  • the eNodeB may send the PSC, SSC and PBCH in the center
  • the eNodeB may send the PCFICH and PHICH across the entire system bandwidth in each symbol period in which these channels are sent.
  • the eNodeB may send the PDCCH to groups of UEs in certain portions of the system bandwidth.
  • the eNodeB may send the PDSCH to specific UEs in specific portions of the system bandwidth.
  • the eNodeB may send the PSC, SSC, PBCH, PCFICH and PHICH in a broadcast manner to all UEs, may send the PDCCH in a unicast manner to specific UEs, and may also send the PDSCH in a unicast manner to specific UEs.
  • a number of resource elements may be available in each symbol period. Each resource element may cover one subcarrier in one symbol period and may be used to send one modulation symbol, which may be a real or complex value.
  • the resource elements not used for a reference signal in each symbol period may be arranged into resource element groups (REGs). Each REG may include four resource elements in one symbol period.
  • the PCFICH may occupy four REGs, which may be spaced approximately equally across frequency, in symbol period 0.
  • the PHICH may occupy three REGs, which may be spread across frequency, in one or more configurable symbol periods. For example, the three REGs for the PHICH may all belong in symbol period 0 or may be spread in symbol periods 0, 1 and 2.
  • the PDCCH may occupy 9, 18, 36 or 72 REGs, which may be selected from the available REGs, in the first M symbol periods. Only certain combinations of REGs may be allowed for the PDCCH.
  • a UE may know the specific REGs used for the PHICH and the
  • the UE may search different combinations of REGs for the PDCCH.
  • the number of combinations to search is typically less than the number of allowed combinations for the PDCCH.
  • An eNodeB may send the PDCCH to the UE in any of the combinations that the UE will search.
  • a UE may be within the coverage of multiple eNodeBs.
  • One of these eNodeBs may be selected to serve the UE.
  • the serving eNodeB may be selected based on various criteria such as received power, path loss, signal-to-noise ratio (SNR), etc.
  • FIGURE 3 is a block diagram conceptually illustrating an exemplary FDD and TDD (non-special subframe only) subframe structure in uplink long term evolution (LTE) communications.
  • the available resource blocks (RBs) for the uplink may be partitioned into a data section and a control section.
  • the control section may be formed at the two edges of the system bandwidth and may have a configurable size.
  • the resource blocks in the control section may be assigned to UEs for transmission of control information.
  • the data section may include all resource blocks not included in the control section.
  • the design in FIGURE 3 results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section.
  • the subframe structure shown in FIGURE 3 may employ efficient resource utilization according to the aspects of the present disclosure.
  • a UE may be assigned resource blocks in the control section to transmit control information to an eNodeB.
  • the UE may also be assigned resource blocks in the data section to transmit data to the eNode B.
  • the UE may transmit control information in a Physical Uplink Control Channel (PUCCH) on the assigned resource blocks in the control section.
  • the UE may transmit only data or both data and control information in a Physical Uplink Shared Channel (PUSCH) on the assigned resource blocks in the data section.
  • An uplink transmission may span both slots of a subframe and may hop across frequency as shown in FIGURE 3.
  • parallel channels may be transmitted on the UL resources. For example, a control and a data channel, parallel control channels, and parallel data channels may be transmitted by a UE.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • FIGURE 4 shows a block diagram of a design of a base station/eNodeB 110 and a UE 120, which may be one of the base stations/eNodeBs and one of the UEs in FIGURE 1.
  • the eNodeB and UE structures shown in FIGURE 4 may employ efficient resource utilization according to the aspects of the present disclosure.
  • the base station 110 may be the macro eNodeB 110c in FIGURE 1, and the UE 120 may be the UE 120y.
  • the base station 110 may also be a base station of some other type.
  • the base station 110 may be equipped with antennas 434a through 434t, and the UE 120 may be equipped with antennas 452a through 452r.
  • a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440.
  • the control information may be for the PBCH, PCFICH, PHICH, PDCCH, etc.
  • the data may be for the PDSCH, etc.
  • the processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the processor 420 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal.
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t.
  • Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc.) to obtain an output sample stream.
  • Each modulator 432 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
  • the antennas 452a through 452r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) 454a through 454r, respectively.
  • Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 454 may further process the input samples (e.g., for OFDM, etc.) to obtain received symbols.
  • a MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
  • a transmit processor 464 may receive and process data (e.g., for the PUSCH) from a data source 462 and control information (e.g., for the PUCCH) from the controller/processor 480.
  • the processor 464 may also generate reference symbols for a reference signal.
  • the symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the modulators 454a through 454r (e.g., for SC-FDM, etc.), and transmitted to the base station 110.
  • the uplink signals from the UE 120 may be received by the antennas 434, processed by the demodulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
  • the base station 110 can send forward handover control messages to other base stations, for example, over an X2 interface.
  • the controllers/processors 440 and 480 may direct the operation at the base station 110 and the UE 120, respectively.
  • the processor 440 and/or other processors and modules at the base station 110 may perform or direct the execution of various processes for the techniques described herein.
  • the processor 480 and/or other processors and modules at the UE 120 may also perform or direct the execution of processes for the techniques described herein.
  • the memories 442 and 482 may store data and program codes for the base station 110 and the UE 120, respectively.
  • a scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
  • Certain aspects of the present disclosure define methods for efficiently utilizing resources in time division duplex (TDD) systems.
  • the proposed methods utilize the unused resources to transmit additional pilot and control signals to mitigate interference in the system.
  • some downlink (DL) subframes may only contain DL assignments while some other subframes may only contain uplink (UL) assignments and acknowledgements .
  • FIGURE 5 illustrates an example downlink HARQ timeline for uplink-downlink configuration 1 and special sub frame configuration 5, according to the long term evolution (LTE) standard.
  • Subframes 0, 4, 5, and 9 may include PDCCH and PDSCH transmissions.
  • the PDCCH transmissions of subframes 0, 4, 5, and 9 include downlink assignments but do not include uplink assignments because in the depicted configuration, more downlink subframes exist than uplink subframes.
  • Each special sub frame includes a downlink pilot time slot (DwPTS). Note that subframes 1 and 6 do not have any downlink grant or physical downlink shared channel (PDSCH) transmissions, for example, when a downlink pilot time slot (DwPTS) configuration contains three symbols or less.
  • DwPTS downlink pilot time slot
  • Each TDD uplink/downlink configuration informs a UE of the uplink and downlink subframes split within a radio frame.
  • some downlink subframes may or may not have corresponding uplink grant and/or uplink acknowledgement messages. For example, as shown in FIGURE 6, for special subframe configuration 1, subframes 0 and 5 do not send any uplink grant or PHICH while subframes 1 and 6 do not send any downlink assignment or PDSCH.
  • FIGURE 6 illustrates an example uplink HARQ timeline, according to the LTE standard. As illustrated, subframes 0 and 5 do not send any uplink grant or acknowledgement messages.
  • FIGS. 5 and 6 may apply to uplink-downlink configurations in which there are more downlink subframes than uplink subframes. Certain downlink subframes may contain only downlink assignments and others may contain only uplink assignments. Therefore, extra PDCCH space may exist in the downlink subframes.
  • the DwPTS has a length equal to three symbols, no PDSCH is sent.
  • unused resource elements (REs) are present in the DwPTS.
  • PDCCH transmissions in the DwPTS may span only one or two symbols, therefore, the third symbol in the DwPTS may only contain a primary synchronization signal (PSS) in the center six resource blocks (RBs) while the rest of the resource elements (REs) are left empty.
  • PSS primary synchronization signal
  • the extra PDCCH space in downlink subframes may be used for cross subframe and/or cross carrier signaling in heterogeneous networks.
  • PDCCH transmissions may be used for signaling for the other downlink subframes where the UE experiences strong interference.
  • the extra PDCCH space in downlink subframes may be used for large aggregation sizes for PDCCH to reduce the interference impact in heterogeneous networks.
  • a PDCCH may be transmitted on multiple tones, with more tones at a higher aggregation level resulting in a more robust protection from interference.
  • an aggregation level of 1 means the 36 tones are used to transmit a single PDCCH
  • an aggregation level of 2 means the 72 tones are used
  • an aggregation level of 4 means 144 tones are used
  • an aggregation level of 8 means 288 tones are used.
  • a transmission of PDCCH may take a larger aggregation size by spanning more CCEs. That is, for example, by allowing a PDCCH to span 72 tones rather than 36 tones, with some tones potentially suffering from interference, the PDCCH may be more resistant to interference.
  • weak cells such as macro cells in heterogeneous networks may use large aggregation sizes while strong interfering cells such as femto cells may use normal aggregation sizes.
  • the unused resource elements in the DwPTS may be used for noise estimation in the receiver processing or may be used to transmit additional pilots (for example, common reference signal (CRS) or channel state information reference signal (CSI-RS)).
  • additional pilots for example, common reference signal (CRS) or channel state information reference signal (CSI-RS)
  • CRS common reference signal
  • CSI-RS channel state information reference signal
  • the unused resource elements in the DwPTS may be used for additional PCFICH/PHICH/PDCCH transmissions.
  • weak cells may send additional PCFICH/PHICH/PDCCH signals using the empty resource elements in addition to the PCFICH/PHICH/PDCCH transmissions based on Rel-8 of the LTE standard, while strong cells simply send Rel-8 PCFICH/PHICH/PDCCH transmissions in the first one or two symbols to reduce interference in heterogeneous networks.
  • CCE control channel element
  • PSS primary synchronization signal
  • DwPTS Downlink Packet Control Signal
  • PSS symbols may be used for PDSCH transmissions and there may not be any unused resource elements.
  • the eNB may prevent scheduling PDSCH transmissions in the DwPTS.
  • the PSS symbol and the symbols onwards in the DwPTS may be used for the additional pilot and/or control signaling to mitigate the interference.
  • an eNB may also advertise a DwPTS length which is smaller than the actual DwPTS length to create additional unused resource elements to be used for sending additional pilot and/or control signals.
  • the eNBs may advertise n-x symbols in the DwPTS.
  • the eNBs may use the x symbols for additional usage/signaling such as noise estimation, CSI-RS, cross-subframe/cross-carrier signaling and so on.
  • the value of x may be a function, e.g., a deterministic function, of system frame number (SFN) and cell ID or it may be signaled to the nodes semi-statically. If semi-static signaling is to occur, the value x may be read from the system information block.
  • SFN system frame number
  • FIGURE 7 illustrates efficient utilization of resources according to one aspect of the present disclosure.
  • resource elements that are not used in a subframe are identified.
  • the unused resource elements are utilized to transmit additional pilot and/or control signals.
  • FIGURE 8 illustrates a system 800 that facilitates efficient resource utilization according to one aspect of the present disclosure.
  • System 800 may reside within a base station, for instance.
  • System 800 includes functional blocks that can represent functions implemented by a processor, software, or combination thereof (e.g., firmware), wherein system 800 includes a logical grouping 802 of electrical components that can act in conjunction.
  • logical grouping 802 can include a component, e.g., an electrical component, for identifying resource elements not used in a subframe 810, as well as a component, e.g., an electrical component, for utilizing the unused resource elements to transmit at least one of additional pilot signals and control signals 812.
  • system 800 can include a memory 820 that retains instructions for executing functions associated with components 810 and 812, wherein any of components 810 and 812 may exist either within or outside memory 820.
  • a memory 820 that retains instructions for executing functions associated with components 810 and 812, wherein any of components 810 and 812 may exist either within or outside memory 820.
  • an apparatus includes means for identifying one or more downlink resource elements that are not used in a subframe and means for utilizing the unused resource elements to transmit at least one of additional pilot and control signals.
  • the aforementioned means may be the controller/processor 440, the transmit processor 420, and/or the scheduler 444.
  • the aforementioned means may be a module or any apparatus configured to perform the functions of the aforementioned means.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer- readable media.

Abstract

In a wireless communication system unused resource elements are utilized to transmit additional pilot and control signals. The additional pilot and control signals may mitigate the impact of interference. The unused resource elements may be in a downlink pilot timeslot (DwPTS) in a time division duplex system.

Description

EFFICIENT RESOURCE UTILIZATION IN TDD
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. provisional patent application no. 61/316,689 filed March 23, 2010, in the names of ZHANG et al, the disclosure of which is expressly incorporated herein by reference in its entirety.
BACKGROUND
Field
[0002] Certain aspects of the present disclosure generally relate to wireless communications and more particularly, to systems and methods for efficient resource utilization in time division duplex.
Background
[0003] Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources. One example of such a network is the Universal Terrestrial Radio Access Network (UTRAN). The UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS), a third generation (3G) mobile phone technology supported by the 3rd Generation Partnership Project (3 GPP). Examples of multiple- access network formats include Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.
[0004] A wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs). A UE may communicate with a base station via downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.
[0005] A base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE. On the downlink, a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters. On the uplink, a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
[0006] As the demand for mobile broadband access continues to increase, the possibilities of interference and congested networks grow with more UEs accessing the long-range wireless communication networks and more short-range wireless systems being deployed in communities. Research and development continue to advance the UMTS technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications .
SUMMARY
[0007] A method for wireless communications is offered. The method includes identifying resource elements not used in a subframe. The method also includes utilizing the unused resource elements to transmit at least one of additional pilot signals and control signals.
[0008] An apparatus for wireless communication is offered. The apparatus includes means for identifying resource elements not used in a subframe. The apparatus also includes means for utilizing the unused resource elements to transmit at least one of additional pilot signals and control signals.
[0009] A computer program product configured for wireless communications in a wireless network is offered. The computer program product includes a computer-readable medium having program code recorded thereon. The program code includes program code to identify resource elements not used in a subframe. The program code also includes program code to utilize the unused resource elements to transmit at least one of additional pilot signals and control signals.
[0010] An apparatus configured for wireless communication is offered.
The apparatus includes a memory and at least one processor(s) coupled to the memory. The processor(s) is configured to identify resource elements not used in a subframe. The processor(s) is also configured to utilize the unused resource elements to transmit at least one of additional pilot signals and control signals.
[0011] A method for wireless communications is offered. The method includes receiving additional pilot signals and/or control signals on downlink resource elements previously identified by an eNodeB as being available in a subframe.
[0012] An apparatus configured for wireless communication is offered.
The apparatus includes a memory, and at least one processor coupled to the memory. The processor(s) is configured to receive additional pilot signals and/or control signals on downlink resource elements previously identified by an eNodeB as being available in a subframe.
[0013] A computer program product configured for wireless communications in a wireless network is offered. The computer program product includes a computer-readable medium having program code recorded thereon. The program code includes program code to receive additional pilot signals and/or control signals on downlink resource elements previously identified by an eNodeB as being available in a subframe.
[0014] An apparatus for wireless communications is offered. The apparatus has means for receiving additional pilot signals and/or control signals on downlink resource elements previously identified by an eNodeB as being available in a subframe. The apparatus also has means for decoding the additional pilot signals and/or control signals.
[0015] This has outlined, rather broadly, the features and technical advantages of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described below. It should be appreciated by those skilled in the art that this disclosure may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the teachings of the disclosure as set forth in the appended claims. The novel features, which are believed to be characteristic of the disclosure, both as to its organization and method of operation, together with further objects and advantages, will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] The features, nature, and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:
[0017] FIGURE 1 is a block diagram conceptually illustrating an example of a mobile communication system.
[0018] FIGURE 2 is a block diagram conceptually illustrating an example of a downlink frame structure in a mobile communication system.
[0019] FIGURE 3 is a block diagram conceptually illustrating an exemplary frame structure in uplink communications.
[0020] FIGURE 4 is a block diagram conceptually illustrating a design of a base station/eNodeB and a UE configured according to one aspect of the present disclosure.
[0021] FIGURE 5 illustrates an example downlink HARQ timeline for
UL-DL configuration 1 and special sub frame configuration 5, according to the long term evolution (LTE) standard.
[0022] FIGURE 6 illustrates an example UL HARQ timeline, according to the LTE standard. [0023] FIGURE 7 is an illustration of efficient resource utilization according to one aspect of the present disclosure.
[0024] FIGURE 8 illustrates a system that facilitates efficient resource utilization according to one aspect of the present disclosure.
DESCRIPTION
[0025] The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
[0026] The techniques described herein may be used for various wireless communication networks such as Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, Single-Carrier FDMA (SC-FDMA) networks, etc. The terms "network" and "system" are often used interchangeably. A CDMA network may implement a radio technology, such as Universal Terrestrial Radio Access (UTRA), Telecommunications Industry Association's (TIA's) CDMA2000®, and the like. The UTRA technology includes Low Chip Rate (LCR), Wideband CDMA (WCDMA) and other variants of CDMA. The CDMA2000® technology includes the IS-2000, IS-95 and IS-856 standards from the Electronics Industry Alliance (EIA) and TIA. A TDMA network may implement a radio technology, such as Global System for Mobile Communications (GSM). An OFDMA network may implement a radio technology, such as Evolved UTRA (E- UTRA), Ultra Mobile Broadband (UMB), IEEE 802.1 1 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM®, and the like. The UTRA and E-UTRA technologies are part of Universal Mobile Telecommunication System (UMTS). 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are newer releases of the UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization called the "3rd Generation Partnership Project" (3 GPP). CDMA2000® and UMB are described in documents from an organization called the "3rd Generation Partnership Project 2" (3GPP2). The techniques described herein may be used for the wireless networks and radio access technologies mentioned above, as well as other wireless networks and radio access technologies. For clarity, certain aspects of the techniques are described for LTE or LTE-A (together referred to in the alternative as "LTE/- A") and use such LTE/-A terminology in much of the description below.
[0027] FIGURE 1 shows a wireless communication network 100, which may be an LTE/-A network. The wireless network 100 includes a number of evolved node Bs (eNodeBs) 110 and other network entities. An eNodeB may be a station that communicates with the UEs and may also be referred to as a base station, a node B, an access point, and the like. Each eNodeB 110 may provide communication coverage for a particular geographic area. In 3GPP, the term "cell" can refer to this particular geographic coverage area of an eNodeB and/or an eNodeB subsystem serving the coverage area, depending on the context in which the term is used.
[0028] An eNodeB may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A pico cell would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG), UEs for users in the home, and the like). An eNodeB for a macro cell may be referred to as a macro eNodeB. An eNodeB for a pico cell may be referred to as a pico eNodeB. And, an eNodeB for a femto cell may be referred to as a femto eNodeB or a home eNodeB. In the example shown in FIGURE 1, the eNodeBs 110a, 110b and 110c are macro eNodeBs for the macro cells 102a, 102b and 102c, respectively. The eNodeB 11 Ox is a pico eNodeB for a pico cell 102x. And, the eNodeBs HOy and HOz are femto eNodeBs for the femto cells 102y and 102z, respectively. An eNodeB may support one or multiple (e.g., two, three, four, and the like) cells.
[0029] The wireless network 100 also includes relay stations. A relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., an eNodeB, a UE, or the like) and sends a transmission of the data and/or other information to a downstream station (e.g., another UE, another eNodeB, or the like). A relay station may also be a UE that relays transmissions for other UEs. In the example shown in FIGURE 1, a relay station 1 lOr may communicate with the eNodeB 110a and a UE 120r, in which the relay station 11 Or acts as a relay between the two network elements (the eNodeB 110a and the UE 120r) in order to facilitate communication between them. A relay station may also be referred to as a relay eNodeB, a relay, and the like.
[0030] The wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the eNodeBs may have similar frame timing, and transmissions from different eNodeBs may be approximately aligned in time. For asynchronous operation, the eNodeBs may have different frame timing, and transmissions from different eNodeBs may not be aligned in time. The techniques described herein may be used for synchronous or asynchronous operations.
[0031] In one aspect, the wireless network 100 may support Frequency
Division Duplex (FDD) or Time Division Duplex (TDD) modes of operation. The techniques described herein may be used for FDD or TDD mode of operation.
[0032] A network controller 130 may couple to a set of eNodeBs 110 and provide coordination and control for these eNodeBs 110. The network controller 130 may communicate with the eNodeBs 110 via a backhaul 132. The eNodeBs 110 may also communicate with one another, e.g., directly or indirectly via a wireless backhaul 134 or a wireline backhaul 136.
[0033] The UEs 120 are dispersed throughout the wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like. A UE may be a cellular phone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like. A UE may be able to communicate with macro eNodeBs, pico eNodeBs, femto eNodeBs, relays, and the like. In FIGURE 1, a solid line with double arrows indicates desired transmissions between a UE and a serving eNodeB, which is an eNodeB designated to serve the UE on the downlink and/or uplink. A dashed line with double arrows indicates interfering transmissions between a UE and an eNodeB. According to an aspect of the present disclosure, a UE 120 communicating with a base station 110a hands over to a base station 110b without the base station 110a first preparing the base station 110b for the handover. Such a handover will be referred to as a "forward handover." The network shown in FIGURE 1 may employ efficient resource utilization according to the aspects of the present disclosure.
[0034] LTE/-A utilizes orthogonal frequency division multiplexing
(OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, or the like. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the smallest resource allocation (called a 'resource block') may be 12 subcarriers (or 180 kHz). Consequently, the nominal FFT size may be equal to 128, 256, 512, 1024 or 2048 for a corresponding system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz), respectively. The system bandwidth may also be partitioned into sub-bands. For example, a sub-band may cover 1.08 MHz (i.e., 6 resource blocks), and there may be 1, 2, 4, 8 or 16 sub-bands for a corresponding system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
[0035] FIGURE 2 shows a downlink FDD frame structure used in LTE/-
A. The transmission timeline for the downlink may be partitioned into units of radio frames. Each radio frame may have a predetermined duration (e.g., 10 milliseconds (ms)) and may be partitioned into 10 sub frames with indices of 0 through 9. Each subframe may include two slots. Each radio frame may thus include 20 slots with indices of 0 through 19. Each slot may include L symbol periods, e.g., 7 symbol periods for a normal cyclic prefix (as shown in FIGURE 2) or 14 symbol periods for an extended cyclic prefix. The 2L symbol periods in each subframe may be assigned indices of 0 through 2L-1. The available time frequency resources may be partitioned into resource blocks. Each resource block may cover N subcarriers (e.g., 12 subcarriers) in one slot. The frame structure shown in FIGURE 2 may employ efficient resource utilization according to the aspects of the present disclosure.
[0036] In LTE/-A, an eNodeB may send a primary synchronization signal (PSC or PSS) and a secondary synchronization signal (SSC or SSS) for each cell in the eNodeB. For FDD mode of operation, the primary and secondary synchronization signals may be sent in symbol periods 6 and 5, respectively, in each of subframes 0 and 5 of each radio frame with the normal cyclic prefix, as shown in FIGURE 2. The synchronization signals may be used by UEs for cell detection and acquisition. For FDD mode of operation, the eNodeB may send a Physical Broadcast Channel (PBCH) in symbol periods 0 to 3 in slot 1 of subframe 0. The PBCH may carry certain system information.
[0037] The eNodeB may send a Physical Control Format Indicator
Channel (PCFICH) in the first symbol period of each subframe, as seen in FIGURE 2. The PCFICH may convey the number of symbol periods (M) used for control channels, where M may be equal to 1, 2 or 3 and may change from subframe to subframe. M may also be equal to 4 for a small system bandwidth, e.g., with less than 10 resource blocks. In the example shown in FIGURE 2, M=3. The eNodeB may send a Physical HARQ Indicator Channel (PHICH) and a Physical Downlink Control Channel (PDCCH) in the first M symbol periods of each subframe. The PDCCH and PHICH are also included in the first three symbol periods in the example shown in FIGURE 2. The PHICH may carry information to support hybrid automatic retransmission (HARQ). The PDCCH may carry information on uplink and downlink resource allocation for UEs and power control information for uplink channels. The eNodeB may send a Physical Downlink Shared Channel (PDSCH) in the remaining symbol periods of each subframe. The PDSCH may carry data for UEs scheduled for data transmission on the downlink.
[0038] The eNodeB may send the PSC, SSC and PBCH in the center
1.08 MHz of the system bandwidth used by the eNodeB. The eNodeB may send the PCFICH and PHICH across the entire system bandwidth in each symbol period in which these channels are sent. The eNodeB may send the PDCCH to groups of UEs in certain portions of the system bandwidth. The eNodeB may send the PDSCH to specific UEs in specific portions of the system bandwidth. The eNodeB may send the PSC, SSC, PBCH, PCFICH and PHICH in a broadcast manner to all UEs, may send the PDCCH in a unicast manner to specific UEs, and may also send the PDSCH in a unicast manner to specific UEs.
[0039] A number of resource elements may be available in each symbol period. Each resource element may cover one subcarrier in one symbol period and may be used to send one modulation symbol, which may be a real or complex value. For symbols that are used for control channels, the resource elements not used for a reference signal in each symbol period may be arranged into resource element groups (REGs). Each REG may include four resource elements in one symbol period. The PCFICH may occupy four REGs, which may be spaced approximately equally across frequency, in symbol period 0. The PHICH may occupy three REGs, which may be spread across frequency, in one or more configurable symbol periods. For example, the three REGs for the PHICH may all belong in symbol period 0 or may be spread in symbol periods 0, 1 and 2. The PDCCH may occupy 9, 18, 36 or 72 REGs, which may be selected from the available REGs, in the first M symbol periods. Only certain combinations of REGs may be allowed for the PDCCH.
[0040] A UE may know the specific REGs used for the PHICH and the
PCFICH. The UE may search different combinations of REGs for the PDCCH. The number of combinations to search is typically less than the number of allowed combinations for the PDCCH. An eNodeB may send the PDCCH to the UE in any of the combinations that the UE will search.
[0041] A UE may be within the coverage of multiple eNodeBs. One of these eNodeBs may be selected to serve the UE. The serving eNodeB may be selected based on various criteria such as received power, path loss, signal-to-noise ratio (SNR), etc.
[0042] FIGURE 3 is a block diagram conceptually illustrating an exemplary FDD and TDD (non-special subframe only) subframe structure in uplink long term evolution (LTE) communications. The available resource blocks (RBs) for the uplink may be partitioned into a data section and a control section. The control section may be formed at the two edges of the system bandwidth and may have a configurable size. The resource blocks in the control section may be assigned to UEs for transmission of control information. The data section may include all resource blocks not included in the control section. The design in FIGURE 3 results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section. The subframe structure shown in FIGURE 3 may employ efficient resource utilization according to the aspects of the present disclosure.
[0043] A UE may be assigned resource blocks in the control section to transmit control information to an eNodeB. The UE may also be assigned resource blocks in the data section to transmit data to the eNode B. The UE may transmit control information in a Physical Uplink Control Channel (PUCCH) on the assigned resource blocks in the control section. The UE may transmit only data or both data and control information in a Physical Uplink Shared Channel (PUSCH) on the assigned resource blocks in the data section. An uplink transmission may span both slots of a subframe and may hop across frequency as shown in FIGURE 3. According to one aspect, in relaxed single carrier operation, parallel channels may be transmitted on the UL resources. For example, a control and a data channel, parallel control channels, and parallel data channels may be transmitted by a UE.
[0044] The PSC, SSC, CRS, PBCH, PUCCH, PUSCH, and other such signals and channels used in LTE/-A are described in 3GPP TS 36.211, entitled "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation," which is publicly available.
[0045] FIGURE 4 shows a block diagram of a design of a base station/eNodeB 110 and a UE 120, which may be one of the base stations/eNodeBs and one of the UEs in FIGURE 1. The eNodeB and UE structures shown in FIGURE 4 may employ efficient resource utilization according to the aspects of the present disclosure. The base station 110 may be the macro eNodeB 110c in FIGURE 1, and the UE 120 may be the UE 120y. The base station 110 may also be a base station of some other type. The base station 110 may be equipped with antennas 434a through 434t, and the UE 120 may be equipped with antennas 452a through 452r.
[0046] At the base station 110, a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440. The control information may be for the PBCH, PCFICH, PHICH, PDCCH, etc. The data may be for the PDSCH, etc. The processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The processor 420 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal. A transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t. Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc.) to obtain an output sample stream. Each modulator 432 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
[0047] At the UE 120, the antennas 452a through 452r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) 454a through 454r, respectively. Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 454 may further process the input samples (e.g., for OFDM, etc.) to obtain received symbols. A MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
[0048] On the uplink, at the UE 120, a transmit processor 464 may receive and process data (e.g., for the PUSCH) from a data source 462 and control information (e.g., for the PUCCH) from the controller/processor 480. The processor 464 may also generate reference symbols for a reference signal. The symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the modulators 454a through 454r (e.g., for SC-FDM, etc.), and transmitted to the base station 110. At the base station 110, the uplink signals from the UE 120 may be received by the antennas 434, processed by the demodulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120. The receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440. The base station 110 can send forward handover control messages to other base stations, for example, over an X2 interface.
[0049] The controllers/processors 440 and 480 may direct the operation at the base station 110 and the UE 120, respectively. The processor 440 and/or other processors and modules at the base station 110 may perform or direct the execution of various processes for the techniques described herein. The processor 480 and/or other processors and modules at the UE 120 may also perform or direct the execution of processes for the techniques described herein. The memories 442 and 482 may store data and program codes for the base station 110 and the UE 120, respectively. A scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
EFFICIENT RESOURCE UTILIZATION
[0050] Certain aspects of the present disclosure define methods for efficiently utilizing resources in time division duplex (TDD) systems. The proposed methods utilize the unused resources to transmit additional pilot and control signals to mitigate interference in the system.
[0051] In TDD systems, due to the hybrid automatic repeat request
(HARQ) timeline, some downlink (DL) subframes may only contain DL assignments while some other subframes may only contain uplink (UL) assignments and acknowledgements .
[0052] FIGURE 5 illustrates an example downlink HARQ timeline for uplink-downlink configuration 1 and special sub frame configuration 5, according to the long term evolution (LTE) standard. Subframes 0, 4, 5, and 9 may include PDCCH and PDSCH transmissions. The PDCCH transmissions of subframes 0, 4, 5, and 9 include downlink assignments but do not include uplink assignments because in the depicted configuration, more downlink subframes exist than uplink subframes.
[0053] Special subframes (1 and 6) are designated with shading. Each special sub frame includes a downlink pilot time slot (DwPTS). Note that subframes 1 and 6 do not have any downlink grant or physical downlink shared channel (PDSCH) transmissions, for example, when a downlink pilot time slot (DwPTS) configuration contains three symbols or less. Each TDD uplink/downlink configuration informs a UE of the uplink and downlink subframes split within a radio frame. Depending on the location of the uplink subframes, some downlink subframes may or may not have corresponding uplink grant and/or uplink acknowledgement messages. For example, as shown in FIGURE 6, for special subframe configuration 1, subframes 0 and 5 do not send any uplink grant or PHICH while subframes 1 and 6 do not send any downlink assignment or PDSCH.
[0054] In the uplink, a similar HARQ timeline as illustrated in FIGURE
6 may apply. FIGURE 6 illustrates an example uplink HARQ timeline, according to the LTE standard. As illustrated, subframes 0 and 5 do not send any uplink grant or acknowledgement messages.
[0055] It should be noted that the behavior illustrated in FIGS. 5 and 6 may apply to uplink-downlink configurations in which there are more downlink subframes than uplink subframes. Certain downlink subframes may contain only downlink assignments and others may contain only uplink assignments. Therefore, extra PDCCH space may exist in the downlink subframes.
[0056] As noted above, when the DwPTS has a length equal to three symbols, no PDSCH is sent. Thus, unused resource elements (REs) are present in the DwPTS. PDCCH transmissions in the DwPTS may span only one or two symbols, therefore, the third symbol in the DwPTS may only contain a primary synchronization signal (PSS) in the center six resource blocks (RBs) while the rest of the resource elements (REs) are left empty.
[0057] For certain aspects, the extra PDCCH space in downlink subframes may be used for cross subframe and/or cross carrier signaling in heterogeneous networks. PDCCH transmissions may be used for signaling for the other downlink subframes where the UE experiences strong interference.
[0058] For certain aspects, the extra PDCCH space in downlink subframes may be used for large aggregation sizes for PDCCH to reduce the interference impact in heterogeneous networks. Thus, a PDCCH may be transmitted on multiple tones, with more tones at a higher aggregation level resulting in a more robust protection from interference. For example, an aggregation level of 1 means the 36 tones are used to transmit a single PDCCH, an aggregation level of 2 means the 72 tones are used, an aggregation level of 4 means 144 tones are used, and an aggregation level of 8 means 288 tones are used. To better handle interference, a transmission of PDCCH may take a larger aggregation size by spanning more CCEs. That is, for example, by allowing a PDCCH to span 72 tones rather than 36 tones, with some tones potentially suffering from interference, the PDCCH may be more resistant to interference.
[0059] For certain aspects, weak cells such as macro cells in heterogeneous networks may use large aggregation sizes while strong interfering cells such as femto cells may use normal aggregation sizes.
[0060] For certain aspects, the unused resource elements in the DwPTS may be used for noise estimation in the receiver processing or may be used to transmit additional pilots (for example, common reference signal (CRS) or channel state information reference signal (CSI-RS)). Weak cells may send additional CRSs using the empty resource elements while strong cells may send CRSs according to Rel-8 of the LTE standard.
[0061] For certain aspects, the unused resource elements in the DwPTS may be used for additional PCFICH/PHICH/PDCCH transmissions. For example, weak cells may send additional PCFICH/PHICH/PDCCH signals using the empty resource elements in addition to the PCFICH/PHICH/PDCCH transmissions based on Rel-8 of the LTE standard, while strong cells simply send Rel-8 PCFICH/PHICH/PDCCH transmissions in the first one or two symbols to reduce interference in heterogeneous networks. However, there may be a desire to modify control channel element (CCE) definition such that the new PCFICH/PHICH/PDCCH uses a primary synchronization signal (PSS) symbol. Locations of CCEs are determined based on section 36.211 of the LTE standard. In one aspect, CCEs may be moved or grouped together to free up blocks of contiguous tones for other purposes.
[0062] For certain aspects, additional symbols may be created in the
DwPTS. For example, when the DwPTS spans more than three symbols, PSS symbols may be used for PDSCH transmissions and there may not be any unused resource elements. To create additional resource elements, the eNB may prevent scheduling PDSCH transmissions in the DwPTS. Hence, the PSS symbol and the symbols onwards in the DwPTS may be used for the additional pilot and/or control signaling to mitigate the interference.
[0063] For certain aspects, an eNB may also advertise a DwPTS length which is smaller than the actual DwPTS length to create additional unused resource elements to be used for sending additional pilot and/or control signals. For example, instead of advertising n symbols in the DwPTS, the eNBs may advertise n-x symbols in the DwPTS. The eNBs may use the x symbols for additional usage/signaling such as noise estimation, CSI-RS, cross-subframe/cross-carrier signaling and so on. The value of x may be a function, e.g., a deterministic function, of system frame number (SFN) and cell ID or it may be signaled to the nodes semi-statically. If semi-static signaling is to occur, the value x may be read from the system information block.
[0064] In addition, there may also be a desire to modify the CCE definition such that new PCFICH/PHICH/PDCCH transmission starts from the PSS symbol or onwards.
[0065] FIGURE 7 illustrates efficient utilization of resources according to one aspect of the present disclosure. At block 700, resource elements that are not used in a subframe are identified. At block 702, the unused resource elements are utilized to transmit additional pilot and/or control signals.
[0066] FIGURE 8 illustrates a system 800 that facilitates efficient resource utilization according to one aspect of the present disclosure. System 800 may reside within a base station, for instance. System 800 includes functional blocks that can represent functions implemented by a processor, software, or combination thereof (e.g., firmware), wherein system 800 includes a logical grouping 802 of electrical components that can act in conjunction. As illustrated, logical grouping 802 can include a component, e.g., an electrical component, for identifying resource elements not used in a subframe 810, as well as a component, e.g., an electrical component, for utilizing the unused resource elements to transmit at least one of additional pilot signals and control signals 812. Additionally, system 800 can include a memory 820 that retains instructions for executing functions associated with components 810 and 812, wherein any of components 810 and 812 may exist either within or outside memory 820. [0067] Aspects of the present disclosure propose methods for efficiently utilizing unused resources in a time division duplex system. The unused resources may be used for additional pilot and/or control signals which may help mitigate effects of interference.
[0068] According to one aspect of the present invention, an apparatus includes means for identifying one or more downlink resource elements that are not used in a subframe and means for utilizing the unused resource elements to transmit at least one of additional pilot and control signals. In one aspect, the aforementioned means may be the controller/processor 440, the transmit processor 420, and/or the scheduler 444. In another aspect, the aforementioned means may be a module or any apparatus configured to perform the functions of the aforementioned means.
[0069] Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
[0070] The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
[0071] The steps of a method or algorithm described in connection with the disclosure herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
[0072] In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer- readable media.
[0073] The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
[0074] WHAT IS CLAIMED IS:

Claims

1. A method for wireless communications, comprising:
identifying resource elements not used in a subframe; and
utilizing the unused resource elements to transmit at least one of additional pilot signals and control signals.
2. The method of claim 1, in which the unused resource elements are in physical downlink control channel (PDCCH) symbols.
3. The method of claim 2, further comprising:
utilizing the unused resource elements to increase a size of aggregation for a physical downlink control channel to mitigate an impact of interference.
4. The method of claim 2, further comprising:
utilizing the unused resource elements to send information for another carrier.
5. The method of claim 2, further comprising:
utilizing the unused resource elements to send information for another subframe.
6. The method of claim 1, in which the unused resource elements exist due to a hybrid automatic repeat request timeline in a time division duplex system.
7. The method of claim 1, in which the unused resource elements are in a downlink pilot timeslot (DwPTS) in a time division duplex system.
8. The method of claim 7, in which the unused resource elements are utilized for noise estimation in receiver processing.
9. The method of claim 7, in which the unused resource elements are utilized by one or more weak cells for additional transmissions in at least one of: a physical control format indicator channel, a physical hybrid automatic repeat request indicator channel, and a physical downlink control channel.
10. The method of claim 7, further comprising:
creating at least one unused resource element by not scheduling physical downlink shared channel transmissions in a downlink pilot timeslot.
11. The method of claim 7, further comprising:
creating at least one unused resource element by advertising fewer symbols in the downlink pilot timeslot.
12. The method of claim 11 in which the advertising occurs semi-statically in a system information block (SIB).
13. The method of claim 11 in which the advertising is based on a deterministic function of at least one of a system frame number (SFN) and a cell identification number.
14. An apparatus for wireless communication, the apparatus comprising:
means for identifying resource elements not used in a subframe; and
means for utilizing the unused resource elements to transmit at least one of additional pilot signals and control signals.
15. A computer program product configured for wireless communications in a wireless network, the computer program product comprising: a computer-readable medium having program code recorded thereon, the program code comprising:
program code to identify resource elements not used in a subframe; and program code to utilize the unused resource elements to transmit at least one of additional pilot signals and control signals.
16. An apparatus configured for wireless communication, the apparatus comprising: a memory; and at least one processor coupled to the memory and configured:
to identify resource elements not used in a subframe; and
to utilize the unused resource elements to transmit at least one of additional pilot signals and control signals.
17. The apparatus of claim 16, in which the unused resource elements are in physical downlink control channel (PDCCH) symbols.
18. The apparatus of claim 17, in which the at least one processor is further configured:
to utilize the unused resource elements to increase a size of aggregation for a physical downlink control channel to mitigate an impact of interference.
19. The apparatus of claim 17, in which the at least one processor is further configured:
to utilize the unused resource elements to send information for another carrier.
20. The apparatus of claim 17, in which the at least one processor is further configured:
to utilize the unused resource elements to send information for another subframe.
21. The apparatus of claim 16, in which the unused resource elements exist due to a hybrid automatic repeat request timeline in a time division duplex system.
22. The apparatus of claim 16, in which the unused resource elements are in a downlink pilot timeslot (DwPTS) in a time division duplex system.
23. The apparatus of claim 22, in which the unused resource elements are utilized for noise estimation in receiver processing.
24. The apparatus of claim 22, in which the unused resource elements are utilized by one or more weak cells for additional transmissions in at least one of: a physical control format indicator channel, a physical hybrid automatic repeat request indicator channel, and a physical downlink control channel.
25. The apparatus of claim 22, in which the at least one processor is further configured:
to create at least one unused resource element by not scheduling physical downlink shared channel transmissions in a downlink pilot timeslot.
26. The apparatus of claim 22, in which the at least one processor is further configured:
to create at least one unused resource element by advertising fewer symbols in the downlink pilot timeslot.
27. The apparatus of claim 26 in which the advertising occurs semi-statically in a system information block (SIB).
28. The apparatus of claim 26 in which the advertising is based on a deterministic function of at least one of a system frame number (SFN) and a cell identification number.
29. A method for wireless communications, comprising:
receiving at least one of additional pilot signals and control signals on downlink resource elements previously identified by an eNodeB as being available in a subframe.
30. The method of claim 29, in which the downlink resource elements are in physical downlink control channel (PDCCH) symbols.
31. An apparatus configured for wireless communication, the apparatus comprising: a memory; and
at least one processor coupled to the memory and configured:
to receive at least one of additional pilot signals and control signals on downlink resource elements previously identified by an eNodeB as being available in a subframe.
32. The apparatus of claim 31 , in which the downlink resource elements are in physical downlink control channel (PDCCH) symbols.
33. A computer program product configured for wireless communications in a wireless network, the computer program product comprising:
a computer-readable medium having program code recorded thereon, the program code comprising:
program code to receive at least one of additional pilot signals and control signals on downlink resource elements previously identified by an eNodeB as being available in a subframe.
34. The computer program product of claim 33, in which the downlink resource elements are in physical downlink control channel (PDCCH) symbols.
35. An apparatus for wireless communications, comprising:
means for receiving at least one of additional pilot signals and control signals downlink resource elements previously identified by an eNodeB as being available in subframe; and
means for decoding the at least one of additional pilot signals and control signals.
36. The apparatus of claim 35, in which the downlink resource elements are in physical downlink control channel (PDCCH) symbols.
EP11713551A 2010-03-23 2011-03-23 Efficient resource utilization in tdd Withdrawn EP2550833A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US31668910P 2010-03-23 2010-03-23
US13/069,312 US9083494B2 (en) 2010-03-23 2011-03-22 Efficient resource utilization in TDD
PCT/US2011/029670 WO2011119765A1 (en) 2010-03-23 2011-03-23 Efficient resource utilization in tdd

Publications (1)

Publication Number Publication Date
EP2550833A1 true EP2550833A1 (en) 2013-01-30

Family

ID=44656403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11713551A Withdrawn EP2550833A1 (en) 2010-03-23 2011-03-23 Efficient resource utilization in tdd

Country Status (6)

Country Link
US (1) US9083494B2 (en)
EP (1) EP2550833A1 (en)
JP (1) JP5512876B2 (en)
KR (1) KR20130020670A (en)
CN (1) CN102812768A (en)
WO (1) WO2011119765A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9282556B2 (en) * 2011-02-15 2016-03-08 Kyocera Corporation Base station and communication method thereof
JP5697483B2 (en) * 2011-02-23 2015-04-08 京セラ株式会社 Wireless communication system, wireless base station, and communication control method
CN102158978B (en) * 2011-04-22 2017-03-01 中兴通讯股份有限公司 A kind of processing method of Downlink Control Information and system
US9788327B2 (en) * 2011-11-14 2017-10-10 Qualcomm Incorporated Methods and apparatus for reducing interference in a heterogeneous network
KR101530833B1 (en) * 2011-11-17 2015-06-29 엘지전자 주식회사 Method and device for exchanging data in wireless communication system
US10791542B2 (en) * 2012-01-27 2020-09-29 Qualcomm Incorporated Regional and narrow band common reference signal (CRS) for user equipment (UE) relays
US9275540B2 (en) 2012-02-06 2016-03-01 Neocific, Inc. Methods and apparatus for contingency communications
WO2013117014A1 (en) * 2012-02-10 2013-08-15 Nokia Siemens Networks Oy Identifying a subset of a plurality of radio resources of a downlink control channel
WO2013138980A1 (en) * 2012-03-19 2013-09-26 富士通株式会社 Resource allocation method, and distributed transmission method and device
US9426714B2 (en) 2012-03-30 2016-08-23 Qualcomm Incorporated Wireless communication in view of time varying interference
US20130336255A1 (en) * 2012-06-19 2013-12-19 Samsung Electronics Co., Ltd. Method and system for decoding pdcch in a multi-carrier lte-advance system
US9693326B2 (en) * 2012-10-17 2017-06-27 Telefonica, S.A. Method for providing phase synchronization to non-phase synchronized cellular base stations
US9780941B2 (en) * 2013-04-04 2017-10-03 Sharp Kabushiki Kaisha Terminal device, integrated circuit, and radio communication method
US9516541B2 (en) 2013-09-17 2016-12-06 Intel IP Corporation Congestion measurement and reporting for real-time delay-sensitive applications
PL3078127T3 (en) 2013-12-04 2019-12-31 Telefonaktiebolaget Lm Ericsson (Publ) Uplink subframe shortening in time-division duplex (tdd) systems
EP4054091A1 (en) * 2013-12-04 2022-09-07 Telefonaktiebolaget LM Ericsson (publ) Downlink subframe shortening in time-division duplex (tdd) systems
US9749144B2 (en) * 2014-01-30 2017-08-29 Qualcomm Incorporated MBSFN and RS considerations in bundled transmission design
CN105493594B (en) * 2014-08-01 2019-05-03 华为技术有限公司 Transmission method, system, base station and the terminal of Downlink Control Information
CN105356978B (en) * 2014-08-21 2019-06-07 电信科学技术研究院 A kind of method and apparatus transmitting CSI-RS
US10201014B2 (en) 2015-08-12 2019-02-05 Qualcomm Incorporated Contention-based co-existence on a shared communication medium
US10291379B2 (en) 2015-08-12 2019-05-14 Qualcomm Incorporated Contention-based co-existence on a shared communication medium
US9843959B2 (en) * 2015-09-30 2017-12-12 Intel IP Corporation Interference mitigation by a scalable digital wireless modem
US10841978B2 (en) 2015-10-08 2020-11-17 Apple Inc. Enhanced self-contained time-division duplex subframe structure
WO2017065830A1 (en) * 2015-10-16 2017-04-20 Intel IP Corporation Flexile universal extended frame structure
EP3451560B1 (en) * 2016-05-17 2020-03-25 Huawei Technologies Co., Ltd. Data transmission method and apparatus
WO2018005615A1 (en) * 2016-06-29 2018-01-04 Intel IP Corporation Early acknowledgement feedback for 5g grouped transmissions
US10630346B2 (en) * 2016-08-25 2020-04-21 Qualcomm Incorporated Carrier aggregation under different subframe structures
CN109644366B (en) * 2016-09-07 2020-12-01 华为技术有限公司 Communication method and base station

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340351A (en) * 1995-06-13 1996-12-24 Fujitsu Ltd Satellite multi-address communication equipment
US7072971B2 (en) * 2000-11-13 2006-07-04 Digital Foundation, Inc. Scheduling of multiple files for serving on a server
US6839565B2 (en) * 2002-02-19 2005-01-04 Nokia Corporation Method and system for a multicast service announcement in a cell
US9008003B2 (en) * 2006-12-08 2015-04-14 Futurewei Technologies, Inc. Method for negotiating the maximum resource for sharing in OFDMA-based communications system
US20080232323A1 (en) * 2007-03-22 2008-09-25 Samsung Electronics Co., Ltd. Method and apparatus for handover in a wireless communication system, and system thereof
KR20080092222A (en) * 2007-04-11 2008-10-15 엘지전자 주식회사 Data transmission method in tdd system
US8467367B2 (en) 2007-08-06 2013-06-18 Qualcomm Incorporated Multiplexing and transmission of traffic data and control information in a wireless communication system
EP3200379B1 (en) * 2007-08-07 2021-09-29 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving packets in a mobile communication system supporting hybrid automatic repeat request
CN101999241B (en) * 2007-12-29 2013-06-12 上海贝尔股份有限公司 Semi-persistent scheduling method and apparatus based on statistically multiplexing in time and frequency resources
US8780798B2 (en) 2008-03-05 2014-07-15 Telefonaktiebolaget L M Ericsson (Publ) Method and devices for providing enhanced signaling
US8316270B2 (en) * 2008-04-18 2012-11-20 Samsung Electronics Co., Ltd. Apparatus and method for supporting synchronous hybrid automatic repeat request in broadband wireless communication system
US8099643B2 (en) 2008-06-16 2012-01-17 Motorola Mobility, Inc. Minimizing slot wastage using overlapping HARQ regions in OFDMA WiMAX system
EP2316183A4 (en) * 2008-08-11 2014-07-30 Nokia Corp Method and apparatus for providing bundled transmissions
US20100039997A1 (en) 2008-08-14 2010-02-18 Motorola, Inc. Method and apparatus for implied resource assignment for uplink acknowledgment signalling
US8493887B2 (en) * 2008-12-30 2013-07-23 Qualcomm Incorporated Centralized control of peer discovery pilot transmission
US8077670B2 (en) * 2009-04-10 2011-12-13 Jianke Fan Random access channel response handling with aggregated component carriers
EP2420072B1 (en) 2009-04-17 2015-02-11 BlackBerry Limited Multicast/broadcast single frequency network subframe physical downlink control channel design
US9622228B2 (en) * 2009-05-04 2017-04-11 Qualcomm Incorporated Data and control multiplexing in wireless communications
WO2011111110A1 (en) * 2010-03-12 2011-09-15 富士通株式会社 Communication section setting method, relay station, mobile station and mobile communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011119765A1 *

Also Published As

Publication number Publication date
CN102812768A (en) 2012-12-05
US20110235555A1 (en) 2011-09-29
JP2013528003A (en) 2013-07-04
KR20130020670A (en) 2013-02-27
JP5512876B2 (en) 2014-06-04
WO2011119765A1 (en) 2011-09-29
US9083494B2 (en) 2015-07-14

Similar Documents

Publication Publication Date Title
US9083494B2 (en) Efficient resource utilization in TDD
EP2625808B1 (en) Control channel resources for multi-bit ack/nak
EP2638651B1 (en) Improved acknowledgement / negative acknowledgement feedback for tdd
CN110891277B (en) Method and device for improving uplink coverage in interference scenario
US8891446B2 (en) Power control with cross-subframe assignment
US8576791B2 (en) Sharing control channel resources
US9042312B2 (en) Heterogeneous network partition in TDD beyond radio frame
KR102063491B1 (en) Efficient downlink operation for eimta
US20130286902A1 (en) Flexible special subframe configuration for tdd in lte
CN107925554B (en) Signaling and decoding with cross Transmission Time Interval (TTI) or cross carrier referencing
US8768263B2 (en) Determining an uplink control path with blind decoding
WO2012021772A1 (en) Backward compatible lte system design for asymmetric uplink/downlink frequency spectrum
US20120082079A1 (en) Discontinuous transmission (dtx) signaling in uplink data channel
WO2011116365A2 (en) Resource mapping for multicarrier operation
US8743764B2 (en) Extending an effective control channel periodicity via discontinuous reception (DRX)
WO2016145568A1 (en) Lte-tdd carrier aggregation enhancement for half-duplex ues

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151001