EP2539650B1 - Cryogenic cooling method using a gas-solid diphasic flow of co2 - Google Patents

Cryogenic cooling method using a gas-solid diphasic flow of co2 Download PDF

Info

Publication number
EP2539650B1
EP2539650B1 EP11705937.8A EP11705937A EP2539650B1 EP 2539650 B1 EP2539650 B1 EP 2539650B1 EP 11705937 A EP11705937 A EP 11705937A EP 2539650 B1 EP2539650 B1 EP 2539650B1
Authority
EP
European Patent Office
Prior art keywords
liquid
pressure
heat exchanger
exchanger system
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11705937.8A
Other languages
German (de)
French (fr)
Other versions
EP2539650A1 (en
Inventor
Mohammed Youbi-Idrissi
Thierry Dubreuil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP2539650A1 publication Critical patent/EP2539650A1/en
Application granted granted Critical
Publication of EP2539650B1 publication Critical patent/EP2539650B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide

Definitions

  • the present invention relates to the field of processes using CO 2 as a cryogenic fluid, in processes of cooling, freezing and crusting of products, in particular food products, but also as a source of cold in refrigerated trucks carrying fresh products. and / or frozen (so heat-sensitive).
  • the CO 2 is most often intended to be used in direct injection, with control temperatures of the products to be cooled which typically vary between 0 to -20 ° C in the case of refrigerated transport, and between -40 ° C to -70 ° C in cells and other cooling tunnels.
  • WO 2006/129034 discloses a method and apparatus for transferring frigories to products using liquid CO 2 according to the preambles of claims 1 and 5, respectively.
  • the present invention wishes to propose new conditions of use of CO 2 as a source of cold in such indirect injection applications.
  • the invention proposes to set up a two-phase gas-solid flow.
  • the invention relates to a process using liquid CO 2 as a cryogenic fluid, for transferring frigories to products, a process of the so-called indirect injection type where the liquid CO 2 is sent to a heat exchanger system where it is evaporates, the transfer of cold products passing through an exchange between the air surrounding the products and the cold walls of the heat exchanger, favored by the intervention of ventilation means associated with the heat exchanger system, the process is characterized in that before reaching the exchanger system, the liquid CO 2 has undergone an expansion operation, at a pressure chosen to obtain a solid / gas mixture at the outlet of the expansion operation.
  • the liquid CO 2 before reaching the expansion operation, the liquid CO 2 has been put into a heat exchange position with the cold gases obtained at the outlet of the system. heat exchanger (resulting from the melting carried out in the heat exchanger system).
  • This heat exchange between the liquid CO 2 and the cold gases obtained at the outlet of the heat exchanger system is for example made in a plate heat exchanger.
  • the figure 1 allows to visualize in a simple and clear way the flow of liquid CO 2 in a process according to the invention.
  • the liquid CO 2 (point 1) withdrawn from storage for example under standard conditions of 20 bar / -20 ° C. (or 45 ° C./8 bar depending on the country concerned), is expanded to a lower pressure than that of the triple point, for example at 5.18 bar (point 2), before reaching the exchanger system.
  • the exchanger system is implemented in a so-called indirect injection process: for example in a cooling, freezing or crusting operation of products, in particular foodstuffs (the exchanger system is then for example present at inside a cryogenic cell or tunnel), or in a refrigerated truck carrying perishable thermosensitive products.
  • a diphasic gas / solid mixture whose solid fraction varies as a function of the pressure at point 2.
  • it is typically 52% at 5.18 bar / -56.6 ° C. and 47% at 1 bar / -80 ° C.
  • This two-phase mixture is then circulated inside the exchanger system where the mixture gives up its latent heat of fusion in addition to a portion of its sensible heat.
  • the design of the exchanger and in particular its exchange surface, as well as the CO 2 flow rate, will define the cooling capacity delivered as well as the exit temperature of the gas at point 3.
  • the figure 2 presents curves of difference of enthalpy, allowing to visualize the difference of enthalpy between points 2 and 3 of the figure 1 , including latent and sensible heat, for two pressure levels after expansion of liquid CO 2 , 5.18 bar (ie the pressure of the triple point) and 1 bar.
  • This figure 2 shows well the available energy (expressed in variation of enthalpy) contained in a kilogram of CO 2 when this one is relaxed from 20 bar to 5.18 bar representing the limit of the change of phase liquid / vapor (low curve in the figure), or from 20 bar to 1 bar (high curve in the figure), to obtain in accordance with the invention a two-phase solid / gas mixture.
  • the change in enthalpy is all the greater as the exit temperature of the gas is also higher, and the fact that this enthalpy change is even higher than the pressure after relaxation is low.
  • cryogenic temperature is strongly sought.
  • This advantageous mode aims to maximize the calories still present in the gas extracted at the outlet of the exchanger system.
  • the temperature in this point 4 will be dictated by the technical constraints of the user application of the cold, which leads to a higher or lower level.
  • This second example illustrates a case where if the user application of cold requires a temperature of the medium to cool as cold as possible, it is possible to consider a partial exploitation of the heat of fusion in the exchanger system (between points 3 and 4 ), the total melting of the mixture and its overheating then being done in the subcooler with a recovery of calories.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

La présente invention concerne le domaine des procédés utilisant le CO2 comme fluide cryogénique, dans des procédés de refroidissement, de surgélation et de croutage de produits, en particulier de produits alimentaires, mais également comme source de froid dans les camions frigorifiques transportant des produits frais et/ou surgelés (donc thermosensibles).The present invention relates to the field of processes using CO 2 as a cryogenic fluid, in processes of cooling, freezing and crusting of products, in particular food products, but also as a source of cold in refrigerated trucks carrying fresh products. and / or frozen (so heat-sensitive).

Dans de tels procédés et applications, le CO2 est destiné le plus souvent à être utilisé en injection directe, avec des températures de régulation des produits à refroidir qui varient typiquement entre 0 à -20°C dans le cas du transport réfrigéré, et entre -40°C à -70°C dans les cellules et autres tunnels de refroidissement.In such processes and applications, the CO 2 is most often intended to be used in direct injection, with control temperatures of the products to be cooled which typically vary between 0 to -20 ° C in the case of refrigerated transport, and between -40 ° C to -70 ° C in cells and other cooling tunnels.

Si l'utilisation du CO2 en injection directe présente des avantages incontestables, notamment l'absence de barrière thermique et par conséquent, la garantie d'une efficacité thermique maximale, elle présente en revanche des inconvénients, parmi lesquels on peut citer :

  • la question de la sécurité : il requiert la mise en place de dispositifs permettant d'éviter le risque d'asphyxie (systèmes d'alarme, systèmes d'extraction, capteurs de CO2), avec les coûts et les contraintes que cela implique ;
  • du point de vue thermodynamique : les calories des gaz d'extraction notamment ceux à -40°C/-70°C sont difficilement valorisables car après leur contact direct avec les produits à refroidir, ils deviennent pollués, par la présence de traces d'humidité, de particules de produits, etc...
Although the use of direct injection CO 2 has undeniable advantages, in particular the absence of a thermal barrier and therefore the guarantee of maximum thermal efficiency, it has disadvantages, among which are:
  • the question of safety: it requires the establishment of devices to avoid the risk of asphyxiation (alarm systems, extraction systems, CO 2 sensors), with the costs and constraints that entails;
  • from the thermodynamic point of view: the calories of the extraction gases especially those at -40 ° C / -70 ° C are difficult to recover because after their direct contact with the products to be cooled, they become polluted, by the presence of traces of humidity, particle of products, etc ...

Mais il y a également de nombreuses applications où le CO2 est utilisé en injection indirecte dans une boucle ouverte, notamment dans les applications pour le transport réfrigéré mais également dans des tunnels de surgélation; où un échangeur de chaleur est alimenté en CO2 liquide qui en s'évaporant dans cet échangeur, extrait la chaleur du milieu à refroidir et produit ainsi le froid désiré (le transfert du froid aux produits passe par un échange avec l'air interne du tunnel ou du camion par l'intervention de moyens de ventilation associés à chaque échangeur). On met donc ici en oeuvre un changement de phase Liquide/Vapeur qui au regard des propriétés thermodynamiques du CO2, est « bridé » à une pression théorique de 5.18 bar correspondant à la pression du point triple de ce fluide. En d'autres termes, la température à laquelle se fait le changement de phase se trouve limitée, et dans tous les cas, elle est strictement supérieure à -56.6°C. La démonstration est ainsi faite du fait que l'utilisation du CO2 en injection indirecte ne permet pas d'atteindre des niveaux de températures très basses, contrairement à ce que permet l'azote liquide par exemple.But there are also many applications where CO 2 is used in indirect injection in an open loop, especially in applications for refrigerated transport but also in freezing tunnels; where a heat exchanger is supplied with liquid CO 2 which, by evaporating in this exchanger, extracts the heat from the medium to be cooled and thus produces the desired cold (the transfer of the cold to the products passes through a exchange with the internal air tunnel or truck by the intervention of ventilation means associated with each exchanger). A liquid / vapor phase change is therefore implemented here which, with regard to the thermodynamic properties of CO 2 , is "flanged" at a theoretical pressure of 5.18 bar corresponding to the pressure of the triple point of this fluid. In other words, the temperature at which the phase change is made is limited, and in all cases, it is strictly greater than -56.6 ° C. The demonstration is thus made that the use of CO 2 indirect injection does not achieve very low temperature levels, unlike liquid nitrogen for example.

Le document WO 2006/129034 divulgue un procédé et une installation de transfert de frigories à des produits utilisant du CO2 liquide selon les préambules des revendications 1 et 5, respectivement.The document WO 2006/129034 discloses a method and apparatus for transferring frigories to products using liquid CO 2 according to the preambles of claims 1 and 5, respectively.

La présente invention souhaite proposer de nouvelles conditions d'utilisation du CO2 en tant que source de froid dans de telles applications d'injection indirecte.The present invention wishes to propose new conditions of use of CO 2 as a source of cold in such indirect injection applications.

Comme on le verra plus en détail ci-dessous, l'invention propose de mettre en place un écoulement diphasique gaz-solide.As will be seen in more detail below, the invention proposes to set up a two-phase gas-solid flow.

L'invention concerne un procédé mettant en oeuvre du CO2 liquide comme fluide cryogénique, permettant de transférer des frigories à des produits, procédé du type dit à injection indirecte où le CO2 liquide est envoyé dans un système d'échangeur thermique où il s'évapore, le transfert de froid aux produits passant par un échange entre l'air environnant les produits et les parois froides de l'échangeur thermique, favorisé par l'intervention de moyens de ventilation associés au système d'échangeur thermique, le procédé se caractérisant en ce qu'avant d'atteindre le système d'échangeur, le CO2 liquide a subi une opération de détente, à une pression choisie pour obtenir en sortie d'opération de détente un mélange solide/gaz.The invention relates to a process using liquid CO 2 as a cryogenic fluid, for transferring frigories to products, a process of the so-called indirect injection type where the liquid CO 2 is sent to a heat exchanger system where it is evaporates, the transfer of cold products passing through an exchange between the air surrounding the products and the cold walls of the heat exchanger, favored by the intervention of ventilation means associated with the heat exchanger system, the process is characterized in that before reaching the exchanger system, the liquid CO 2 has undergone an expansion operation, at a pressure chosen to obtain a solid / gas mixture at the outlet of the expansion operation.

Selon un mode préféré de mise en oeuvre de l'invention, avant d'atteindre l'opération de détente, le CO2 liquide a été mis en situation d'échanger thermiquement avec les gaz froids obtenus en sortie du système d'échangeur thermique (résultant de la fusion opérée dans le système d'échangeur thermique).According to a preferred embodiment of the invention, before reaching the expansion operation, the liquid CO 2 has been put into a heat exchange position with the cold gases obtained at the outlet of the system. heat exchanger (resulting from the melting carried out in the heat exchanger system).

Cet échange thermique entre le CO2 liquide et les gaz froids obtenus en sortie du système d'échangeur thermique est par exemple réalisé dans un échangeur à plaques.This heat exchange between the liquid CO 2 and the cold gases obtained at the outlet of the heat exchanger system is for example made in a plate heat exchanger.

On l'aura donc compris à la lecture de ce qui précède :

  • on envoie dans l'échangeur de ce procédé d'injection indirecte non pas, comme selon l'art antérieur, du CO2 liquide, mais un fluide résultant d'une détente, dans lequel il y a une part de solide (c'est un fluide diphasique gaz/solide) ;
  • et le mode avantageux de mise en oeuvre de l'invention explicité plus haut, où avant d'être envoyé dans le détendeur, le liquide échange avec la phase gaz extraite du système d'échangeur thermique (ce qui est une manière de sous-refroidir ce liquide), offre un rendement thermique plus élevé puisque la fraction solide dans le liquide sous-refroidi puis détendu est alors plus élevée.
It will therefore be understood from the foregoing:
  • this indirect injection process is sent into the exchanger not, as in the prior art, liquid CO 2 , but a fluid resulting from a relaxation, in which there is a solid part (this is a two-phase gas / solid fluid);
  • and the advantageous mode of implementation of the invention explained above, where before being sent into the expander, the liquid exchanges with the gas phase extracted from the heat exchanger system (which is a way of sub-cooling this liquid), offers a higher thermal efficiency since the solid fraction in the subcooled and then expanded liquid is then higher.

D'autres caractéristiques et avantages de la présente invention apparaîtront ainsi plus clairement dans la description suivante, donnée à titre illustratif mais nullement limitatif, faite en relation avec les dessins annexés pour lesquels :

  • la figure 1 est une représentation schématique partielle d'un mode de mise en oeuvre de l'invention ;
  • la figure 2 présente des courbes de différence d'enthalpie, permettant de visualiser la différence d'enthalpie entre les points 2 et 3 de la figure 1, incluant les chaleurs latente et sensible, ceci pour deux niveaux de pression, 5.18 bar (pression du point triple) et 1 bar.
  • la figure 3 est une représentation schématique partielle d'un mode avantageux de mise en oeuvre de l'invention mettant en oeuvre un sous-refroidissement du CO2 liquide avant son arrivée dans le détendeur.
Other features and advantages of the present invention will thus become more clearly apparent in the following description, given by way of illustration but in no way limiting, with reference to the accompanying drawings for which:
  • the figure 1 is a partial schematic representation of an embodiment of the invention;
  • the figure 2 presents curves of difference of enthalpy, allowing to visualize the difference of enthalpy between points 2 and 3 of the figure 1 , including latent and sensible heat, for two pressure levels, 5.18 bar (triple point pressure) and 1 bar.
  • the figure 3 is a partial schematic representation of an advantageous embodiment of the invention implementing an undercooling of the liquid CO 2 before its arrival in the expander.

La figure 1 permet de visualiser de façon simple et claire le cheminement du CO2 liquide dans un procédé conforme à l'invention. On pourra se reporter si nécessaire, pour mieux suivre ce qui suit, mais ce n'est en aucune manière une obligation, à un diagramme de Mollier, diagramme bien connu de l'homme du métier, mais que la Demanderesse a choisi de ne pas faire figurer ici pour des raisons de lisibilité.The figure 1 allows to visualize in a simple and clear way the flow of liquid CO 2 in a process according to the invention. We can refer if necessary, to better follow the following, but it is in no way an obligation, to a diagram of Mollier, a diagram well known to those skilled in the art, but that the Applicant has chosen not to be included here for readability purposes.

Comme on peut le lire sur la figure 1, le CO2 liquide (point 1) soutiré du stockage, par exemple dans des conditions standard de type 20 bar / -20°C (ou encore 45°C / 8 bar selon le pays concerné), est détendu à une pression inférieure à celle du point triple, par exemple à 5.18 bar (point 2), avant d'atteindre le système d'échangeur.As we can read on the figure 1 , the liquid CO 2 (point 1) withdrawn from storage, for example under standard conditions of 20 bar / -20 ° C. (or 45 ° C./8 bar depending on the country concerned), is expanded to a lower pressure than that of the triple point, for example at 5.18 bar (point 2), before reaching the exchanger system.

Le système d'échangeur est mis en oeuvre dans un procédé dit à injection indirecte : par exemple dans une opération de refroidissement, de surgélation ou de croutage de produits, en particulier de produits alimentaires (le système d'échangeur est alors par exemple présent à l'intérieur d'une cellule ou d'un tunnel cryogénique), ou dans un camion frigorifique transportant des produits périssables thermosensibles.The exchanger system is implemented in a so-called indirect injection process: for example in a cooling, freezing or crusting operation of products, in particular foodstuffs (the exchanger system is then for example present at inside a cryogenic cell or tunnel), or in a refrigerated truck carrying perishable thermosensitive products.

On obtient ainsi au point 2, un mélange diphasique gaz/solide dont la fraction de solide varie en fonction de la pression au point 2. A titre illustratif elle est typiquement de 52% à 5.18 bar / - 56.6°C et de 47% à 1 bar / -80°C.Thus, at point 2, a diphasic gas / solid mixture whose solid fraction varies as a function of the pressure at point 2. As an illustration, it is typically 52% at 5.18 bar / -56.6 ° C. and 47% at 1 bar / -80 ° C.

Ce mélange diphasique est alors mis en circulation à l'intérieur du système d'échangeur où le mélange cède sa chaleur latente de fusion en plus d'une partie de sa chaleur sensible. La conception de l'échangeur et notamment sa surface d'échange, ainsi que le débit de CO2, définiront la puissance frigorifique délivrée ainsi que la température de sortie du gaz au point 3.This two-phase mixture is then circulated inside the exchanger system where the mixture gives up its latent heat of fusion in addition to a portion of its sensible heat. The design of the exchanger and in particular its exchange surface, as well as the CO 2 flow rate, will define the cooling capacity delivered as well as the exit temperature of the gas at point 3.

La figure 2 présente des courbes de différence d'enthalpie, permettant de visualiser la différence d'enthalpie entre les points 2 et 3 de la figure 1, incluant les chaleurs latente et sensible, ceci pour deux niveaux de pression après détente du CO2 liquide, 5.18 bar (i.e. la pression du point triple) et 1 bar.The figure 2 presents curves of difference of enthalpy, allowing to visualize the difference of enthalpy between points 2 and 3 of the figure 1 , including latent and sensible heat, for two pressure levels after expansion of liquid CO 2 , 5.18 bar (ie the pressure of the triple point) and 1 bar.

Cette figure 2 montre bien l'énergie disponible (exprimée en variation d'enthalpie) contenue dans un kilogramme de CO2 quand ce dernier est détendu de 20 bar à 5.18 bar représentant la limite du changement de phase liquide/vapeur (courbe basse sur la figure), ou bien de 20 bar à 1 bar (courbe haute sur la figure), permettant d'obtenir conformément à l'invention un mélange diphasique solide/gaz. On remarque que dans les deux cas, la variation d'enthalpie est d'autant plus élevée que la température de sortie du gaz l'est aussi, et le fait que cette variation d'enthalpie est d'autant plus élevée que la pression après détente est basse. D'où l'intérêt énergétique incontestable de ce que propose la présente invention par la mise en oeuvre d'un fluide solide/gaz au lieu d'un fluide liquide/gaz comme selon l'art antérieur.This figure 2 shows well the available energy (expressed in variation of enthalpy) contained in a kilogram of CO 2 when this one is relaxed from 20 bar to 5.18 bar representing the limit of the change of phase liquid / vapor (low curve in the figure), or from 20 bar to 1 bar (high curve in the figure), to obtain in accordance with the invention a two-phase solid / gas mixture. Note that in both cases, the change in enthalpy is all the greater as the exit temperature of the gas is also higher, and the fact that this enthalpy change is even higher than the pressure after relaxation is low. Hence the undeniable energy interest of what the present invention proposes by the implementation of a solid fluid / gas instead of a liquid / gas fluid as in the prior art.

Il faut néanmoins mentionner que pour certaines applications de cryogénie alimentaire, par exemple pour certains produits dans des applications de surgélation en tunnels, l'effet de température cryogénique est vivement recherché. Ainsi dans de telles applications on pourra difficilement obtenir des gaz en sortie d'échangeur à une température aussi élevée puisque la température de l'air environnant les produits, recherchée dans de tels procédés, doit atteindre typiquement -60°C à -80°C.It should nevertheless be mentioned that for certain applications of food cryogenics, for example for certain products in freezing tunnel applications, the effect of cryogenic temperature is strongly sought. Thus, in such applications, it will be difficult to obtain gases at the outlet of the exchanger at such a high temperature since the temperature of the air surrounding the products, sought in such processes, must typically reach -60 ° C. to -80 ° C. .

Pour de tels cahiers des charges, tout comme pour d'autres applications, il sera alors tout particulièrement intéressant de mettre en oeuvre le mode de réalisation avantageux de l'invention qui est illustré en figure 3 ci-après.For such specifications, as for other applications, it will then be particularly advantageous to implement the advantageous embodiment of the invention which is illustrated in FIG. figure 3 below.

Ce mode avantageux vise à pouvoir valoriser le maximum des calories encore présentes dans les gaz extraits à la sortie du système d'échangeur.This advantageous mode aims to maximize the calories still present in the gas extracted at the outlet of the exchanger system.

Examinons le mode de réalisation de la figure 3.Let's look at the embodiment of the figure 3 .

On note sur cette figure la présence d'un moyen additionnel, il s'agit d'un moyen permettant de réaliser un échange thermique, en l'occurrence un sous-refroidisseur, par exemple constitué comme c'est le cas ici d'un échangeur à plaques, moyen dont nous allons ici expliquer l'intervention :

  • le CO2 liquide (point 1) soutiré du stockage, par exemple dans des conditions standard déjà évoquées plus haut dans le cadre de la figure 1, passe, avant d'atteindre le détendeur, dans un échangeur à plaques où il échange thermiquement avec les gaz issus du système d'échangeur (point 4), système d'échangeur présent dans le tunnel, ou le camion etc.....;
  • on voit donc que circulent à contre-courant dans l'échangeur à plaques le CO2 liquide venant du stockage (point 1), et les gaz extraits du système d'échangeur thermique (point 4), ce qui permet le sous-refroidissement du courant de CO2 liquide avant que celui-ci n'atteigne le poste de détente (point 2) ;
  • entre les points 1 et 2, le liquide reste donc à pression sensiblement constante mais subit un refroidissement ;
  • à la sortie du poste de détente (point 3) le mélange solide/gaz obtenu est dirigé vers le système d'échangeur thermique ;
  • les gaz extraits du système d'échangeur thermique (point 4), une fois passés dans le sous-refroidisseur, sont évacués (point 5) ;
  • la production de froid se fait donc au niveau du système d'échangeur entre les points 3 (après détente) et 4 (sortie d'échangeur).
This figure shows the presence of an additional means, it is a means for performing a heat exchange, in this case a subcooler, for example constituted as is the case here of a plate heat exchanger, the medium of which we will here explain the intervention:
  • the liquid CO 2 (point 1) withdrawn from the storage, for example under the standard conditions already mentioned above in the context of the figure 1 passes, before reaching the expander, in a plate heat exchanger where it exchanges thermally with the gases from the exchanger system (point 4), exchanger system present in the tunnel, or the truck etc .... .
  • it is thus seen that the liquid CO 2 coming from the storage (point 1) and the gases extracted from the heat exchanger system (point 4) are circulating countercurrently in the plate heat exchanger, thus allowing the subcooling of the liquid CO 2 flow before it reaches the expansion station (point 2);
  • between points 1 and 2, the liquid therefore remains at substantially constant pressure but undergoes cooling;
  • at the outlet of the expansion station (point 3) the solid / gas mixture obtained is directed towards the heat exchanger system;
  • the gases extracted from the heat exchanger system (point 4), once passed into the subcooler, are evacuated (point 5);
  • the production of cold is therefore at the level of the exchanger system between points 3 (after relaxation) and 4 (exchanger outlet).

Comme signalé plus haut, la température en ce point 4 sera dictée par les contraintes techniques de l'application utilisatrice du froid, qui permet d'aboutir à un niveau plus ou moins élevé.As mentioned above, the temperature in this point 4 will be dictated by the technical constraints of the user application of the cold, which leads to a higher or lower level.

On détaille ci-dessous deux exemples de conditions et constitutions de phases aux différents points 1, 2, 3, 4 et 5 de la figure 3.Two examples of conditions and constitutions of phases at the different points 1, 2, 3, 4 and 5 of the figure 3 .

Premier exemple :First example:

PointPoint T (°C)T (° C) P (bar)P (bar) h (kJ/kg)h (kJ / kg) Etat thermodynamiqueThermodynamic state 11 -20-20 2020 40,840.8 Equilibre liquide-vapeurLiquid-vapor equilibrium 22 -34-34 2020 13,113.1 Liquide sous-refroidiSubcooled liquid 33 -80-80 11 13,113.1 Mélange gaz-solideGas-solid mixture 44 -60-60 11 323,5323.5 Gaz surchaufféOverheated gas 55 -25-25 11 351,2351.2 Gaz surchaufféOverheated gas

Second exemple :Second example:

PointPoint T (° )T (°) P (bar)P (bar) h (kJ/kg)h (kJ / kg) Etat thermodynamiqueThermodynamic state 11 -20-20 2020 40,840.8 Equilibre liquide-vapeurLiquid-vapor equilibrium 22 -52-52 2020 -22,4-22.4 Liquide sous-refroidiSubcooled liquid 33 -80-80 11 -22,4-22.4 Mélange gaz solideSolid gas mixture 44 -80-80 11 288,0288.0 Mélange gazsolideGas solid mixture 55 -25-25 11 351,2351.2 Gaz surchaufféOverheated gas

Ce second exemple illustre un cas où si l'application utilisatrice du froid exige une température du milieu à refroidir la plus froide possible, on peut envisager une exploitation partielle de la chaleur de fusion dans le système d'échangeur (entre les points 3 et 4), la fusion totale du mélange et sa surchauffe se faisant alors dans le sous-refroidisseur avec une récupération des calories.This second example illustrates a case where if the user application of cold requires a temperature of the medium to cool as cold as possible, it is possible to consider a partial exploitation of the heat of fusion in the exchanger system (between points 3 and 4 ), the total melting of the mixture and its overheating then being done in the subcooler with a recovery of calories.

En d'autres termes, en jouant sur la surface d'échange de l'échangeur, on peut réaliser dans l'échangeur une fusion partielle, en sortant donc au point 4 un mélange solide/gaz, il se déroule alors dans l'échangeur un changement d'état de fusion, qui s'opère à température constante pour un fluide pur comme le CO2 (dans le mode illustré ici ce n'est pas la température qui change mais la fraction massique du solide qui diminue au fur et à mesure pour se transformer en vapeur).In other words, by playing on the exchange surface of the heat exchanger, it is possible to realize in the exchanger a partial melting, thus leaving at point 4 a solid / gas mixture, it then takes place in the heat exchanger a change of state of fusion, which operates at a constant temperature for a pure fluid such as CO 2 (in the mode illustrated here it is not the temperature that changes but the mass fraction of the solid which decreases as and when measure to turn into vapor).

On l'aura compris à la lecture de toutes les explications données ci-dessus, le procédé selon l'invention en son mode de la figure 3 permet :

  • d'augmenter la puissance frigorifique de l'échangeur du système d'injection indirect puisque le sous-refroidissement du CO2 liquide permet de gagner jusqu'à 12% d'énergie disponible ;
  • d'améliorer l'échange thermique car un fluide sous-refroidi, une fois détendu donne lieu à une fraction solide plus élevée, ce qui est bénéfique pour le coefficient de transfert.
  • Si l'application exige une température du milieu la plus froide possible, on peut envisager une exploitation partielle de la chaleur de fusion dans le procédé (entre les points 3 et 4), la fusion totale du mélange et sa surchauffe se faisant alors dans le sous-refroidisseur avec une récupération des calories.
It will be understood from reading all the explanations given above, the method according to the invention in its mode of figure 3 allows:
  • to increase the cooling capacity of the exchanger of the indirect injection system since the subcooling of the liquid CO 2 makes it possible to save up to 12% of available energy;
  • to improve the heat exchange because a sub-cooled fluid, once relaxed gives rise to a higher solid fraction, which is beneficial for the transfer coefficient.
  • If the application requires the coldest possible medium temperature, partial exploitation of the heat of fusion in the process (between points 3 and 4) can be envisaged, the total melting of the mixture and its overheating then taking place in the process. subcooler with a recovery of calories.

Claims (6)

  1. Process using liquid CO2 as a cryogenic fluid for transferring cold to products, a process of the "indirect injection" type where liquid CO2 is conveyed into a heat exchanger system where it evaporates, the transfer of cold to the products taking place by means of an exchange between the air surrounding the products and the cold walls of the heat exchanger, promoted by the involvement of ventilation means associated with the heat exchanger system, characterised in that, before reaching the exchanger system, the liquid CO2 has been subjected to an operation for reducing pressure to a pressure chosen in order to obtain, at the output of the pressure-reducing operation, a solid/gas mixture.
  2. Process according to claim 1, characterised in that before reaching the pressure-reducing operation, the liquid CO2 exchanges heat with the cold gases obtained at the output of the heat exchanger system, in a means which allows for such a heat exchange.
  3. Process according to claim 2, characterised in that the exchange surface of the exchanger system is sized so as to carry out, in the exchanger, only a partial melting of the entering gas/solid mixture, the complete melting of the mixture then taking place in said means which allows for heat exchange.
  4. Process according to either claim 2 or claim 3, characterised in that said means which allows for heat exchange is a plate exchanger.
  5. Plant for transferring cold to products using liquid CO2, the plant using a process of the "indirect injection" type and comprising:
    - a heat exchanger system capable of passing liquid CO2 therethrough; and
    - ventilation means associated with the heat exchanger system, capable of bringing the air surrounding the products into contact with the cold walls of the heat exchanger system,
    characterised in that it comprises a pressure-reducing system, positioned upstream of the exchanger system, thus capable of reducing the pressure of the liquid CO2, before it arrives in the exchanger system, to a pressure chosen in order to obtain a solid/gas mixture at the output of the pressure-reducing operation.
  6. Plant according to claim 5, characterised in that it additionally comprises a subcooling system, for example a plate exchanger, positioned in the plant according to the following arrangement:
    - the subcooling system is positioned between the source of liquid CO2 and the pressure-reducing system, in order to make it possible for the liquid CO2 to be able to pass through a first pathway of this subcooling system, before reaching the pressure-reducing system;
    - said arrangement is furthermore such that it makes it possible to pass the cold gases extracted from the heat exchanger system through a second pathway of the subcooling system.
EP11705937.8A 2010-02-25 2011-01-27 Cryogenic cooling method using a gas-solid diphasic flow of co2 Not-in-force EP2539650B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1051344A FR2956730B1 (en) 2010-02-25 2010-02-25 CRYOGENIC COOLING PROCESS USING SOLID-GAS DIPHASIC CO2 FLOW
PCT/FR2011/050159 WO2011104453A1 (en) 2010-02-25 2011-01-27 Cryogenic cooling method using a gas-solid diphasic flow of co2

Publications (2)

Publication Number Publication Date
EP2539650A1 EP2539650A1 (en) 2013-01-02
EP2539650B1 true EP2539650B1 (en) 2014-11-26

Family

ID=42543064

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11705937.8A Not-in-force EP2539650B1 (en) 2010-02-25 2011-01-27 Cryogenic cooling method using a gas-solid diphasic flow of co2

Country Status (10)

Country Link
US (1) US20120312505A1 (en)
EP (1) EP2539650B1 (en)
JP (1) JP2013520638A (en)
AU (1) AU2011219693B9 (en)
BR (1) BR112012021510A2 (en)
DK (1) DK2539650T3 (en)
ES (1) ES2531044T3 (en)
FR (1) FR2956730B1 (en)
PT (1) PT2539650E (en)
WO (1) WO2011104453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11022347B2 (en) 2015-05-13 2021-06-01 Nel Hydrogen A/S Cooling of a fluid with a refrigerant at triple point

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013078455A2 (en) 2011-11-23 2013-05-30 The Board Of Regents Of The University Of Texas System Proteomic identification of antibodies
US9708654B2 (en) 2012-06-15 2017-07-18 Board Of Regents, The University Of Texas System High throughput sequencing of multiple transcripts
US10513733B2 (en) 2015-03-23 2019-12-24 Board Of Regents, The University Of Texas System High throughout sequencing of paired VH and VL transcripts from B cells secreting antigen-specific antibodies
WO2019084538A1 (en) 2017-10-27 2019-05-02 Board Of Regents, The University Of Texas System Tumor specific antibodies and t-cell receptors and methods of identifying the same
BR102019000228A2 (en) * 2019-01-07 2020-07-28 Fernando Jácome Brandão dry ice-based cooling method and apparatus
JP7474012B1 (en) 2024-02-27 2024-04-24 株式会社関東技研 Cloud chamber

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754407A (en) * 1970-02-26 1973-08-28 L Tyree Method and system for cooling material using carbon dioxide snow
US4127008A (en) * 1976-11-01 1978-11-28 Lewis Tyree Jr Method and apparatus for cooling material using liquid CO2
US4437312A (en) * 1981-03-06 1984-03-20 Air Products And Chemicals, Inc. Recovery of power from vaporization of liquefied natural gas
FR2619203B1 (en) * 1987-08-04 1989-11-17 Anhydride Carbonique Ind CRYOGENIC COOLING PROCESS AND INSTALLATION USING LIQUID CARBON DIOXIDE AS A REFRIGERANT
US6014864A (en) * 1998-03-16 2000-01-18 Life Science Holdings, Inc. Cryogenic fluid heat exchanger method and apparatus
US6497106B2 (en) * 2001-01-17 2002-12-24 Praxair Technology, Inc. Method and apparatus for chilling a food product
WO2005005897A2 (en) * 2003-07-11 2005-01-20 Packo Inox Nv Snow into a freezing or cooling chamber and use of a one-way valve as an expansion nozzle in such a device
WO2006029762A1 (en) * 2004-09-16 2006-03-23 Unilever Plc Apparatus and method for cooling a food product
FR2886719B1 (en) * 2005-06-02 2007-08-10 Air Liquide METHOD FOR REFRIGERATING A THERMAL LOAD
US9301432B2 (en) * 2007-05-23 2016-03-29 Oracle America, Inc. Method and apparatus for cooling electronic equipment
JP5473922B2 (en) * 2007-10-09 2014-04-16 ビーイー・エアロスペース・インコーポレーテッド Thermal control system
DK2220450T4 (en) * 2007-11-09 2023-02-20 Carrier Corp TRANSPORT REFRIGERATION SYSTEM AND METHOD FOR USING THEREOF
JP5018496B2 (en) * 2008-01-16 2012-09-05 ダイキン工業株式会社 Refrigeration equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11022347B2 (en) 2015-05-13 2021-06-01 Nel Hydrogen A/S Cooling of a fluid with a refrigerant at triple point

Also Published As

Publication number Publication date
ES2531044T3 (en) 2015-03-10
AU2011219693B2 (en) 2014-03-27
JP2013520638A (en) 2013-06-06
PT2539650E (en) 2015-02-20
EP2539650A1 (en) 2013-01-02
US20120312505A1 (en) 2012-12-13
WO2011104453A1 (en) 2011-09-01
DK2539650T3 (en) 2015-03-02
BR112012021510A2 (en) 2016-07-05
AU2011219693B9 (en) 2014-04-10
AU2011219693A1 (en) 2012-09-06
FR2956730B1 (en) 2012-04-06
FR2956730A1 (en) 2011-08-26

Similar Documents

Publication Publication Date Title
EP2539650B1 (en) Cryogenic cooling method using a gas-solid diphasic flow of co2
US10488085B2 (en) Thermoelectric energy storage system and an associated method thereof
EP1979072B1 (en) Method and device for recovering carbon dioxide from fumes
CA3010590C (en) System for producing dihydrogen, and associated method
CA2588540A1 (en) Method to condense and recover carbon dioxide (co2) from co2 containing gas streams
EP4010647A1 (en) Cooling and/or liquefying system and method
EP2872237B1 (en) Method for separating a carbon dioxide-rich gas by partial condensation and permeation
Boetcher et al. Thermodynamic model of CO2 deposition in cold climates
FR2700835A1 (en) Method and installation for producing snow
MY196372A (en) Improved Method and System for Cooling a Hydrocarbon Stream
Clodic et al. Test results of CO2 capture by anti-sublimation Capture efficiency and energy consumption for Boiler plants
WO2015075335A1 (en) Cryomechanical refrigeration system using cryogen/refrigerant exchanges
WO2016156708A1 (en) Heat exchanger for the cryogenic transportation of heat-sensitive products
FR2778970A1 (en) Deicing evaporators of refrigeration equipment and/or heat pumps
EP2577191B1 (en) Cryogenic cooling method and installaton using liquid co2 and employing tow exchangers in series
FR3034507A1 (en) SYSTEM FOR PRODUCING COLD FROM COMPRESSED AIR
WO2011055048A1 (en) Method and plant for cryogenically cooling materials, coupling together the cryogenic system of a tunnel and a refrigeration system added via a condenser outside the tunnel
FR2995392A1 (en) Method for implementing liquid carbon dioxide as cryogenic fluid to transfer cold energy to meals in freight containers in air transport fields, involves feeding electricity to installation that is attached with heat exchanger
FR3140153A1 (en) Process and system for solidifying a gas at atmospheric pressure
Kondratev The efficiency analysis of the turbo air refrigerators for producing solid carbon dioxide from the boiler combustion products flow
FR3033397A1 (en) PROCESS FOR COMPRESSING AND COOLING A GASEOUS MIXTURE
FR3033396A1 (en) METHOD FOR COOLING A FLUID UP TO SUBAMBIAN TEMPERATURE
US11028968B2 (en) Method for recovering energy from dry ice at infra-atmospheric pressure
FR3057941A1 (en) DEVICE AND METHOD FOR REFRIGERATING AND / OR LIQUEFACTING A CRYOGENIC FLUID
FR2944095A1 (en) Liquefied natural gas producing method for engine of jet aircraft, involves driving compressor by driving units, and transferring part of heat of fumes from gas turbine towards refrigerating machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140616

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 698433

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011011711

Country of ref document: DE

Effective date: 20150108

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20150212

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20150226

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2531044

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150310

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 698433

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141126

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150326

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011011711

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

26N No opposition filed

Effective date: 20150827

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180119

Year of fee payment: 8

Ref country code: DK

Payment date: 20180119

Year of fee payment: 8

Ref country code: DE

Payment date: 20180122

Year of fee payment: 8

Ref country code: ES

Payment date: 20180227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180119

Year of fee payment: 8

Ref country code: IT

Payment date: 20180129

Year of fee payment: 8

Ref country code: PT

Payment date: 20180125

Year of fee payment: 8

Ref country code: SE

Payment date: 20180119

Year of fee payment: 8

Ref country code: BE

Payment date: 20180119

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011011711

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20190131

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190127

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190729

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190801

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190128

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190127

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190128