EP2537351B1 - Method for the binaural left-right localization for hearing instruments - Google Patents

Method for the binaural left-right localization for hearing instruments Download PDF

Info

Publication number
EP2537351B1
EP2537351B1 EP10732915.3A EP10732915A EP2537351B1 EP 2537351 B1 EP2537351 B1 EP 2537351B1 EP 10732915 A EP10732915 A EP 10732915A EP 2537351 B1 EP2537351 B1 EP 2537351B1
Authority
EP
European Patent Office
Prior art keywords
microphone
frequency range
binaural
signal
relevant frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10732915.3A
Other languages
German (de)
French (fr)
Other versions
EP2537351A1 (en
Inventor
Eghart Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Priority to EP10732915.3A priority Critical patent/EP2537351B1/en
Publication of EP2537351A1 publication Critical patent/EP2537351A1/en
Application granted granted Critical
Publication of EP2537351B1 publication Critical patent/EP2537351B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/01Noise reduction using microphones having different directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • H04R2430/21Direction finding using differential microphone array [DMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/552Binaural

Definitions

  • the invention relates to a method and a system for improving the signal-to-noise ratio for output signals from a microphone arrangement of two or more microphones on the basis of useful acoustic signals occurring to the side of the microphone arrangement.
  • a method and system can be used in hearing instruments, in particular in hearing aids that can be worn on the head of a hearing aid wearer.
  • laterally is to be understood to mean in particular to the right and left of the head of the wearer of a binaural hearing aid arrangement.
  • Previously known hearing aids only offer the possibility of emphasizing such lateral signals somewhat by transmitting the signal from the desired side to both ears. For this purpose, audio signals are transmitted from one side of the ear to the other and played there. As a result, however, the hearing aid wearer is presented with a mono signal, with the result that signal properties that make the localization of sound sources possible ('binaural cues') are lost.
  • signal properties can be, for example, interaural level differences, i.e. that the level at the ear or hearing aid facing the noise or the signal source is higher than at the ear or hearing aid facing away.
  • Such spatial ambiguities i.e. The no longer unambiguous assignability of the spatial origin of a signal occurs when the right and left microphone signals of an acoustic original signal are subtracted from one another.
  • the differential processing by subtracting the microphone signals normally allows a directional sensitivity of the microphone arrangement to be specified in a desired direction. If, however, the wavelength of the original acoustic signals is too small compared to the spatial distance between the microphones of the microphone arrangement, the spatial origin of an original signal can only be determined ambiguously or ambiguously.
  • EP 1 465 456 A2 describes a binaural hearing device with a filter for noise suppression.
  • a Wiener filter is used for noise suppression, the weighting factor of which is calculated from the cross-correlation between two microphone signals and the power of the individual microphone signals.
  • the object of the invention is to provide an improvement in the interfering signal-useful signal distance in acoustic signals taking into account a spatial direction of the signal source.
  • the invention according to claim 1 solves the problem in that it is viewed as a classic noise reduction problem.
  • a binaural interference signal and a binaural useful signal are determined or estimated in the manner described below, which are used as input signals of a suitable filter, ie a Wiener filter, in which a gain factor is calculated and applied per frequency band, which is the same for both sides of the ear.
  • a suitable filter ie a Wiener filter, in which a gain factor is calculated and applied per frequency band, which is the same for both sides of the ear.
  • a basic idea of the invention is to process high and low frequency components (cutoff frequency in the range between 700 Hz and 1.5 kHz, for example approx. 1 kHz) differently. Filtering is carried out for low frequency ranges, ie Wiener filtering, based on differential preprocessing based on the computation of a differential binaural directional microphone, the preprocessing generating a left-hand and right-hand signal, usually with oppositely directed cardioid characteristics (kidney-shaped, directional sensitivity).
  • This filtering is then applied separately to each of the microphone signals of the microphone arrangement, and not to the common differential directional microphone signal of the binaural arrangement, which was calculated as the output signal of the conventional directional microphone.
  • the advantage e.g. Compared to the use of omni signals, greater differences between the left and right side are artificially generated by the upstream directional effect, which are expressed in an increased noise suppression of signals arriving from the direction to be suppressed.
  • the invention provides for a pre-filtering based on the calculation of a conventional differential directional microphone and subsequent filtering, i. E.
  • the determination of the interference and useful noise estimate using the head shadowing effect is carried out as follows:
  • the monaural signal facing the desired side is used as the useful signal estimate, that of the opposite side as the interference signal estimate. This is possible because, especially at higher frequencies (> 700 Hz or> 1 kHz), the head shadowing effect causes considerable attenuation of the signal on the opposite side.
  • This filtering is then applied separately to each of the microphone signals of the microphone arrangement.
  • the advantage e.g. Compared to the use of omni signals, greater differences between the left and right side are artificially generated by the upstream directional effect, which are expressed in an increased noise suppression of signals arriving from the direction to be suppressed.
  • the respective preprocessing generates a signal directed to the left and a signal directed to the right for the low and high frequency ranges, usually with oppositely directed cardioid characteristics (kidney-shaped, direction-dependent sensitivity). These respective directional signals are used as a basis for estimating the respective lateral useful and background noise levels.
  • the respective useful and interfering sound levels are in turn used as input variables for the filtering, preferably Wiener filtering.
  • the acoustic signals are broken down into frequency bands, and the filtering, i. Wiener filtering, made specifically for each of the frequency bands.
  • the filtering i. Wiener filtering, made depending on the direction.
  • the directional filtering can be carried out in a conventional manner.
  • Figure 1 are the levels of the hearing aid microphones or - microphone arrangements of the left (provided with the reference symbol L2 in the figure) and right (reference symbol L1) side of the ear a binaural hearing aid arrangement for a circumferential signal, ie for a signal source positioned in the illustrated circumferential spatial directions, shown at 1 kHz.
  • a difference of 6-10 dB can be seen, ie the level L2 of the left-hand microphone or microphone arrangement is 6-10 dB higher for a left-hand signal (270 °) than the level L1 of the right-hand microphone or microphone arrangement; this level difference increases at higher frequencies.
  • the right signal L1 is used as an interfering sound signal, the left L2 as a useful sound signal.
  • the input variables for filtering e.g. a Wiener filtering, can be estimated.
  • Wiener filter Useful signal level / Useful signal level + Noise level
  • the head shadowing effect is particularly pronounced at high frequencies (> 700 Hz or> 1 kHz), but decreases further and further towards lower frequencies, this method can advantageously be used particularly for frequencies above 1 kHz.
  • the solution explained above cannot be used optimally because the head shadowing effect is too low.
  • the method described below can also be used, which can also be used separately and exclusively.
  • the output signal of such a directional microphone could simply be used directly to generate a lateral directional effect at low frequencies.
  • the directional signal determined in this way could then be reproduced identically on both ears or hearing aids of the hearing aid wearer. However, this would have the consequence that the localization ability in this frequency range would be lost, since only one common output signal would be generated and presented for both sides of the ear.
  • both a left and a right-pointing signal are calculated based on a conventional directional microphone, and these signals are used as interference or useful sound signals for subsequent filtering, preferably with a Wiener filter, depending on the desired direction of the useful signal.
  • This filter is then applied separately to each of the microphone signals of the microphone arrangement, and not to the common directional microphone signal calculated as the output signal of the conventional directional microphone.
  • Figure 3 shows the effect of the previously explained audio signal processing in low frequency ranges.
  • a left (at 270 °) left directed "hearing” or “seeing” was calculated.
  • a conventional differential directional microphone signal directed to the left was initially calculated as the useful signal and a signal directed to the right was calculated as the interference signal (solid lines in the figure).
  • the directional microphone signals have the usual kidney / anti-kidney-shaped (cardioid / anticardioid, also: card / anticard) direction-dependent sensitivity characteristics.
  • Wiener filter Useful signal level / Useful signal level + Noise level
  • Such a Wiener filter was calculated for each frequency range (ie 250 Hz and 500 Hz in the figure) for all spatial directions and applied individually to each of the directional microphone signals. This results in a Wiener-prefiltered, direction-dependent sensitivity characteristic for each of the directional microphone signals, which are shown in the figure by dashed lines L6 and L7.
  • the filter methods described above for high and low frequency ranges can e.g. can be used individually for high or low frequencies in hearing instruments to be worn on the head. However, they can also be used in combination and complement one another in a particularly advantageous manner over the entire frequency range of a hearing instrument to be worn on the head.
  • a binaural microphone arrangement picks up acoustic signals.
  • a microphone arrangement comprises at least two microphones, one each to be worn on the left or right side of the head of a hearing aid wearer.
  • the respective microphone arrangement can also each comprise a plurality of microphones, which can, for example, enable a directional effect for perception to the front and back.
  • a lateral direction is determined in which the highest sensitivity of the microphone arrangement should be directed.
  • the direction can for example be automatically dependent on an acoustic analysis of the ambient noise or can be determined depending on a user input.
  • the direction in which the greatest sensitivity is chosen is that direction in space in which the source of the useful acoustic signals is or is presumably located. In the present case, it is therefore also referred to as the useful signal direction.
  • the microphone or microphone arrangement located in this direction is analogously also referred to here as a useful signal microphone.
  • step S3 analogously to the step explained above, a lateral direction is determined in which the lowest sensitivity of the microphone arrangement should be directed. In the present case it is therefore also referred to as the interfering signal direction and the microphone or microphone arrangement located in this direction is referred to as the interfering signal microphone.
  • step S4 the output signals of the microphones are broken down into a frequency range with high frequencies above a cutoff frequency of at least 700 Hz, possibly also 1 kHz, and a frequency range with low frequencies below a cutoff frequency of 1.5 kHz, possibly also 1 kHz.
  • step S5 the microphone signals are processed further in the high frequency range.
  • step S5 a useful signal level is determined or estimated as a function of the output signal of the useful signal microphone.
  • step S6 an interference signal level is determined or estimated as a function of the output signal of the interference signal microphone.
  • a filter preferably a Wiener filter, is calculated using the useful signal level and interference signal level determined above.
  • the signal levels and the filtering can be determined for the entire high frequency range. However, it can also be broken down into frequency bands within the high frequency range and the filtering can be done individually for each of the frequency bands.
  • step S7 the previously calculated filter is applied separately to the respective output signals of the right-hand and left-hand microphones or microphone arrangements in the high frequency range.
  • step S8 the microphone signals of the low frequency range are processed further.
  • step S8 a conventional differential binaural directional microphone with high sensitivity in the direction of the useful signal is calculated, whereby a second useful signal is obtained.
  • step S9 a conventional differential binaural directional microphone with high sensitivity in the interfering signal direction is calculated, whereby a second interfering signal is obtained.
  • step S10 a second useful signal level is determined or estimated as a function of the second useful signal.
  • step S11 a second interference signal level is determined or estimated as a function of the second interference signal.
  • a second filter preferably a Wiener filter, is calculated using the previously determined second useful signal level and second interference signal level.
  • the second signal levels and the filtering can be determined for the entire low frequency range. However, it can also be broken down into frequency bands within the low frequency range and the filtering can be carried out individually for each of the frequency bands.
  • step S13 the previously calculated filter is applied separately to the respective output signals of the right-hand and left-hand microphones or microphone arrangements in the low frequency range.
  • step S14 the filtered output signals of the microphones of both frequency ranges or, in the case of further breakdown into frequency bands of all frequency bands, are combined to form a filtered output signal of the binaural microphone arrangement.
  • Gain factor V Jardinse Useful signal level / Useful signal level + Noise level .
  • the useful signal microphone is arranged on a hearing aid wearer on the right and the interference signal microphone on a hearing aid to be worn on the left or vice versa.
  • one or more of the following is estimated as the useful signal level and / or as the interference signal level: energy, power, amplitude, smoothed amplitude, averaged amplitude, level.

Description

Die Erfindung betrifft ein Verfahren und ein System zur Verbesserung des Signal-Rausch-Abstands bei Ausgangssignalen einer Mikrofonanordnung von zwei oder mehr Mikrofonen aufgrund von seitlich von der Mikrofonanordnung auftretenden akustischen Nutzsignalen. Ein solches Verfahren und System kann in Hörinstrumenten, insbesondere in am Kopf eines Hörgeräteträgers tragbaren Hörgeräten, eingesetzt werden. Unter seitlich soll dabei insbesondere rechts und links vom Kopf des Trägers einer binauralen Hörgeräteanordnung verstanden werden.The invention relates to a method and a system for improving the signal-to-noise ratio for output signals from a microphone arrangement of two or more microphones on the basis of useful acoustic signals occurring to the side of the microphone arrangement. Such a method and system can be used in hearing instruments, in particular in hearing aids that can be worn on the head of a hearing aid wearer. In this context, laterally is to be understood to mean in particular to the right and left of the head of the wearer of a binaural hearing aid arrangement.

Konventionelle Richtwirkungsverfahren, die in Hörgeräten bisher zur Anwendung kommen, bieten die Möglichkeit, Signale bzw. Geräusche, die von vorne oder von hinten auf den Hörgeräteträger auftreffen, aus den übrigen Umgebungsgeräuschen herauszuheben, um so die Sprachverständlichkeit zu erhöhen. Sie bieten jedoch nicht die Möglichkeit, Signale bzw. Geräusche einer seitlichen Quelle, die von links oder rechts auftreffen, hervorzuheben.Conventional directivity methods that have been used in hearing aids up to now offer the possibility of separating signals or noises that impinge on the hearing aid wearer from the front or the rear from the other ambient noises in order to increase speech intelligibility. However, they do not offer the possibility of emphasizing signals or noises from a source from the side that are incident from the left or right.

Vorbekannte Hörgeräte bieten lediglich die Möglichkeit, solche seitlichen Signale dadurch etwas zu betonen, dass das Signal der gewünschten Seite auf beide Ohren übertragen wird. Dazu werden Audiosignale von einer Ohrseite zur anderen übertragen und dort abgespielt. Dadurch wird dem Hörgeräte-Träger jedoch ein Mono-Signal dargeboten, was zur Folge hat, dass Signal-Eigenschaften, die die Lokalisation von Schallquellen möglich machen (,binaural cues') verlorengehen. Solche Signal-Eigenschaften können beispielsweise interaurale Pegeldifferenzen sein, d.h. dass der Pegel am dem Geräusch bzw. der Signalquelle zugewandten Ohr bzw. Hörgerät höher ist als am abgewandten Ohr bzw. Hörgerät.Previously known hearing aids only offer the possibility of emphasizing such lateral signals somewhat by transmitting the signal from the desired side to both ears. For this purpose, audio signals are transmitted from one side of the ear to the other and played there. As a result, however, the hearing aid wearer is presented with a mono signal, with the result that signal properties that make the localization of sound sources possible ('binaural cues') are lost. Such signal properties can be, for example, interaural level differences, i.e. that the level at the ear or hearing aid facing the noise or the signal source is higher than at the ear or hearing aid facing away.

Die Berechnung eines konventionellen differenziellen Richtmikrofons ist keine uneingeschränkt anwendbare Lösung, unter anderem da bei Signalen mit hohen Frequenzanteilen wegen des sogenannten "spatial aliasing" kein differentielles Richtmikrofon ohne räumliche Mehrdeutigkeiten möglich ist.The calculation of a conventional differential directional microphone is not a fully applicable solution, under Among other things, because signals with high frequency components cannot use a differential directional microphone without spatial ambiguities due to the so-called "spatial aliasing".

Solche räumlichen Mehrdeutigkeiten, d.h. die nicht mehr eindeutige Zuordenbarkeit der räumlichen Herkunft eines Signals, entstehen, wenn man rechtes und linkes Mikrofonsignal eines akustischen Ursprungssignals voneinander subtrahiert. Die differenzielle Verarbeitung durch Subtraktion der Mikrofonsignale erlaubt normalerweise eine gerichtete Empfindlichkeit der Mikrofonanordnung in eine gewünschte Richtung vorzugeben. Wird allerdings die Wellenlänge der akustischen Ursprungssignale im Vergleich zum räumlichen Abstand der Mikrofone der Mikrofonanordnung zu gering, so kann die räumliche Herkunft eines Ursprungssignals nur noch zweideutig oder mehrdeutig bestimmt werden.Such spatial ambiguities, i.e. The no longer unambiguous assignability of the spatial origin of a signal occurs when the right and left microphone signals of an acoustic original signal are subtracted from one another. The differential processing by subtracting the microphone signals normally allows a directional sensitivity of the microphone arrangement to be specified in a desired direction. If, however, the wavelength of the original acoustic signals is too small compared to the spatial distance between the microphones of the microphone arrangement, the spatial origin of an original signal can only be determined ambiguously or ambiguously.

In dem Dokument US 2003/147538 A1 ist ein Verfahren zum Unterdrücken von Windgeräuschen in Ausgangssignalen einer Mikrofonanordnung aus zwei Mikrofonen beschrieben. Hierzu werden zu den einzelnen Mikrofonsignalen Leistungswerte sowie eine Kohärenz zwischen den Mikrofonsignalen berechnet. Durch Vergleichen der Leistungswerte wird erkannt, ob ein Windgeräusch vorliegt. Um ein erkanntes Windgeräusch zu unterdrücken, wird ein Verstärkungsfaktor in Abhängigkeit von der Kreuzkorrelation und einer Schätzung der Störsignal-Leistung berechnet.In the document US 2003/147538 A1 describes a method for suppressing wind noise in output signals of a microphone arrangement composed of two microphones. For this purpose, power values and a coherence between the microphone signals are calculated for the individual microphone signals. By comparing the power values, it is recognized whether there is wind noise. In order to suppress a detected wind noise, a gain factor is calculated as a function of the cross-correlation and an estimate of the interference signal power.

In einem wissenschaftlichen Fachartikel ( JUNFENG LI ET AL. "Two-stage binaural speech enhancement with wiener filter based on equalization-cancellation model", APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS, 2009. WASPAS'09. IEEE WORKSHOP ON, IEEE, PISCATAWAY, NJ, USA, 18. Oktober 2009, Seiten 133-136 ) ist eine binaurale Mikrofonanordnung beschrieben, mittels welcher auf Grundlage eines Wiener-Filters Störgeräusche in Mikrofonsignalen unterdrückt werden können. Durch eine differenzielle Verarbeitung der Mikrofonsignale wird ein Störsignal geschätzt. Für die Berechnung des Wiener-Filter-Gains wird eine Schätzung des Signal-zu-Rausch-Verhältnisses auf Grundlage des "Decision-directed-Ansatzes" verwendet.In a scientific article ( JUNFENG LI ET AL. "Two-stage binaural speech enhancement with wiener filter based on equalization-cancellation model", APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS, 2009. WASPAS'09. IEEE WORKSHOP ON, IEEE, PISCATAWAY, NJ, USA, Oct 18, 2009, pp. 133-136 ) describes a binaural microphone arrangement, by means of which interfering noises in microphone signals can be suppressed on the basis of a Wiener filter. An interfering signal is estimated by differential processing of the microphone signals. An estimate of the signal-to-noise ratio is used to calculate the Wiener filter gain used on the basis of the "decision-directed approach".

In dem Dokument EP 1 465 456 A2 ist eine binaurale Hörvorrichtung mit einem Filter zur Geräuschunterdrückung beschrieben. Zur Geräuschunterdrückung wird ein Wiener-Filter verwendet, dessen Gewichtungsfaktor aus der Kreuzkorrelation zwischen zwei Mikrofonsignalen und der Leistung der einzelnen Mikrofonsignale berechnet wird.In the document EP 1 465 456 A2 describes a binaural hearing device with a filter for noise suppression. A Wiener filter is used for noise suppression, the weighting factor of which is calculated from the cross-correlation between two microphone signals and the power of the individual microphone signals.

In einem wissenschaftlichen Fachartikel (" Microphone Arrays / Binarual Noise Suppression" In: James M. Kates: "Digital Hearing Aids", 1. Januar 2008, Plural Publishing, San Diego ) sind mehrere unterschiedliche Filtertechniken betreffend das Reduzieren von Störgeräuschen in Mikrofonsignalen beschrieben. In einem Kapitel werden Mikrofonanordnungen für die differenzielle Verarbeitung eines Mikrofonsignals beschrieben. In einem weiteren Kapitel wird die binaurale Störgeräuschreduktion auf Grundlage einer Wiener-Filterung beschrieben. Das binaurale Wiener-Filter basiert auf der Berechnung der Kreuzkorrelation zwischen zwei Mikrofonsignalen und der Leistung der einzelnen Mikrofonsignale.In a scientific article (" Microphone Arrays / Binarual Noise Suppression "In: James M. Kates:" Digital Hearing Aids ", January 1, 2008, Plural Publishing, San Diego ) describes several different filter techniques with regard to the reduction of background noise in microphone signals. One chapter describes microphone arrangements for the differential processing of a microphone signal. Another chapter describes the binaural noise reduction based on Wiener filtering. The binaural Wiener filter is based on the calculation of the cross-correlation between two microphone signals and the power of the individual microphone signals.

In dem Dokument EP 2 104 377 A2 ist ein binaurales Hörsystem mit Teilbandsignalaustausch beschrieben. Tieffrequente Signalanteile werden auf die jeweils andere Hörvorrichtung übertragen, so dass zum Beispiel ein Beamforming-Algorithmus implementiert werden kann, der Signale von der jeweils anderen Hörvorrichtung nutzt.In the document EP 2 104 377 A2 describes a binaural hearing system with subband signal exchange. Low-frequency signal components are transmitted to the other hearing device, so that, for example, a beamforming algorithm can be implemented that uses signals from the other hearing device.

Die Aufgabe der Erfindung besteht darin, eine Verbesserung des Störsignal-Nutzsignal-Abstands bei akustischen Signalen unter Berücksichtung einer Raumrichtung der Signal-Quelle anzugeben.The object of the invention is to provide an improvement in the interfering signal-useful signal distance in acoustic signals taking into account a spatial direction of the signal source.

Die Erfindung nach Anspruch 1 löst die Aufgabe dadurch, dass es als klassisches Störgeräuschreduktionsproblem betrachtet wird. Es wird nach der unten beschriebenen Art und Weise ein binaurales Störsignal und ein binaurales Nutzsignal ermittelt bzw. geschätzt, die als Eingangssignale eines geeigneten Filters, d.h. eines Wiener-Filters, dienen, in welchem pro Frequenzband ein Verstärkungsfaktor berechnet und appliziert wird, der für beide Ohrseiten gleich groß ist. Durch das Anwenden des gleichen Verstärkungsfaktors für beide Ohren werden die interauralen Pegeldifferenzen erhalten, d.h. die Lokalisation von Schallen bzw. Schallquellen wird ermöglicht.The invention according to claim 1 solves the problem in that it is viewed as a classic noise reduction problem. A binaural interference signal and a binaural useful signal are determined or estimated in the manner described below, which are used as input signals of a suitable filter, ie a Wiener filter, in which a gain factor is calculated and applied per frequency band, which is the same for both sides of the ear. By applying the same gain to both ears the interaural level differences are preserved, ie the localization of sounds or sound sources is made possible.

Ein Grundgedanke der Erfindung besteht darin, hohe und tiefe Frequenzanteile (Grenzfrequenz im Bereich zwischen 700 Hz und 1,5 kHz, z.B. ca. 1 kHz) unterschiedlich zu verarbeiten. Für tiefe Frequenzbereiche erfolgt eine Filterung, d.h. Wiener-Filterung, aufgrund einer differenziellen Vorverarbeitung anhand der Berechnung eines differenziellen binauralen Richtmikrofons, wobei durch die Vorverarbeitung ein nach links und ein nach rechts gerichtetes Signal erzeugt wird, üblicherweise mit entgegengesetzt gerichteter Cardioid-Charakteristik (nierenförmige richtungsabhängige Empfindlichkeit).A basic idea of the invention is to process high and low frequency components (cutoff frequency in the range between 700 Hz and 1.5 kHz, for example approx. 1 kHz) differently. Filtering is carried out for low frequency ranges, ie Wiener filtering, based on differential preprocessing based on the computation of a differential binaural directional microphone, the preprocessing generating a left-hand and right-hand signal, usually with oppositely directed cardioid characteristics (kidney-shaped, directional sensitivity).

Diese beiden nach links und nach rechts gerichteten Signale auf Basis eines konventionellen differenziellen Richtmikrofons werden als Basis für die Schätzung des Niveaus von seitlichem Nutz- und Störschall verwendet, wobei diese Schätzungen wiederum als Eingangsgrößen für die Filterung, d.h. Wiener-Filterung, verwendet werden.These two signals directed to the left and to the right on the basis of a conventional differential directional microphone are used as the basis for estimating the level of useful and interference noise from the side, these estimations in turn being used as input variables for the filtering, i.e. Wiener filtering can be used.

Diese Filterung wird anschließend separat auf jedes der Mikrofonsignale der Mikrofonanordnung angewendet, und nicht auf das gemeinsame differenzielle Richtmikrofonsignal der binauralen Anordnung, das als Ausgangssignal des konventionellen Richtmikrofons berechnet wurde.This filtering is then applied separately to each of the microphone signals of the microphone arrangement, and not to the common differential directional microphone signal of the binaural arrangement, which was calculated as the output signal of the conventional directional microphone.

Der Vorteil z.B. gegenüber der Verwendung von omni-Signalen liegt darin, dass durch die vorgeschaltete Richtwirkung größere Unterschiede zwischen linker und rechter Seite gewissermaßen künstlich erzeugt werden, die sich in einer erhöhten Störschallunterdrückung von Signalen, die aus der zu unterdrückenden Richtung eintreffen, äußern.The advantage e.g. Compared to the use of omni signals, greater differences between the left and right side are artificially generated by the upstream directional effect, which are expressed in an increased noise suppression of signals arriving from the direction to be suppressed.

Die Erfindung sieht vor, in tiefen Frequenzbereichen eine Vorfilterung anhand der Berechnung eines konventionellen differenziellen Richtmikrofon und anschließende Filterung, d.h.The invention provides for a pre-filtering based on the calculation of a conventional differential directional microphone and subsequent filtering, i. E.

Wiener-Filterung, wie vorangehend erläutert vorzunehmen und in hohen Freqzenzbereichen (Grenzfrequenz im Bereich zwischen 700 Hz und 1,5 kHz, z.B. ca. 1 kHz) den natürlichen Kopfabschattungseffekt als Vorfilter zur Stör- und Nutzschallschätzung für eine anschließende Wienerfilterung zu nutzen.Perform Wiener filtering as explained above and use the natural head shadowing effect as a pre-filter for noise and useful noise estimation for subsequent Wiener filtering in high frequency ranges (cutoff frequency in the range between 700 Hz and 1.5 kHz, e.g. approx. 1 kHz).

Die Ermittlung der Stör- und Nutzschallschätzung unter Ausnutzung des Kopfabschattungseffekts erfolgt folgendermaßen: Das der gewünschten Seite zugewandte monaurale Signal wird als Nutzsignalschätzung verwendet, das der abgewandten Seite als Störsignalschätzung. Dies ist möglich, da insbesondere bei höheren Frequenzen (>700 Hz bzw. >1 kHz) der Kopfabschattungseffekt eine beträchtliche Dämpfung des Signals auf der abgewandten Seite bewirkt.The determination of the interference and useful noise estimate using the head shadowing effect is carried out as follows: The monaural signal facing the desired side is used as the useful signal estimate, that of the opposite side as the interference signal estimate. This is possible because, especially at higher frequencies (> 700 Hz or> 1 kHz), the head shadowing effect causes considerable attenuation of the signal on the opposite side.

Diese beiden nach links und nach rechts gerichteten Signale auf Basis eines durch Kopfabschattung vorgefilterten Signals werden als Basis für die Schätzung des Niveaus von seitlichem Nutz- und Störschall verwendet, und diese Schätzungen wiederum werden als Eingangsgrößen für die Filterung, vorzugsweise Wiener-Filterung, verwendet werden.These two signals directed to the left and to the right on the basis of a signal pre-filtered by head shadowing are used as the basis for estimating the level of useful and interfering noise, and these estimations are in turn used as input variables for the filtering, preferably Wiener filtering .

Diese Filterung wird anschließend separat auf jedes der Mikrofonsignale der Mikrofonanordnung angewendet.This filtering is then applied separately to each of the microphone signals of the microphone arrangement.

Der Vorteil z.B. gegenüber der Verwendung von omni-Signalen liegt darin, dass durch die vorgeschaltete Richtwirkung größere Unterschiede zwischen linker und rechter Seite gewissermaßen künstlich erzeugt werden, die sich in einer erhöhten Störschallunterdrückung von Signalen, die aus der zu unterdrückenden Richtung eintreffen, äußern.The advantage e.g. Compared to the use of omni signals, greater differences between the left and right side are artificially generated by the upstream directional effect, which are expressed in an increased noise suppression of signals arriving from the direction to be suppressed.

Durch die jeweilige Vorverarbeitung wird für den tiefen bzw. hohen Frequenzbereich jeweils ein nach links und ein nach rechts gerichtetes Signal erzeugt, üblicherweise mit entgegengesetzt gerichteter Cardioid-Charakteristik (nierenförmige richtungsabhängige Empfindlichkeit). Diese jeweiligen gerichteten Signale werden als Grundlage für die Schätzung jeweiliger seitliche Nutz- und Störschall-Niveaus verwendet. Die jeweiligen Nutz- und Störschall-Niveaus werden wiederum als Eingangsgrößen für die Filterung, vorzugsweise Wiener-Filterung, verwendet. Durch die Kombination des jeweiligen Filterungs-Verfahrens für hohe und für tiefe Frequenzbereiche kann damit eine Filterung über den gesamten Frequenzbereich erreicht werden.The respective preprocessing generates a signal directed to the left and a signal directed to the right for the low and high frequency ranges, usually with oppositely directed cardioid characteristics (kidney-shaped, direction-dependent sensitivity). These respective directional signals are used as a basis for estimating the respective lateral useful and background noise levels. The respective useful and interfering sound levels are in turn used as input variables for the filtering, preferably Wiener filtering. By combining the respective filtering process for high and low frequency ranges filtering over the entire frequency range can thus be achieved.

Erfindugsgemäß werden die akustischen Signale in Frequenzbänder zerlegt, und die Filterung, d.h. Wiener-Filterung, spezifisch für jedes der Frequenzbänder vorgenommen.According to the invention, the acoustic signals are broken down into frequency bands, and the filtering, i. Wiener filtering, made specifically for each of the frequency bands.

In einer weiteren vorteilhaften Weiterbildung wird die Filterung, d.h. Wiener-Filterung, richtungsabhängig vorgenommen. Die richtungsabhängige Filterung kann nach herkömmlicher Art und Weise vorgenommen werden.In a further advantageous development, the filtering, i. Wiener filtering, made depending on the direction. The directional filtering can be carried out in a conventional manner.

Vorteilhafter Weise wird als Nutzsignal-Niveau und/oder als Störsignal-Niveau einer oder mehrere der folgenden Parameterwerte ermittelt bzw. abgeschätzt: Energie, Leistung, Amplitude, geglättete Amplitude, gemittelte Amplitude, Pegel. Weitere vorteilhafte Weiterbildungen und Vorteile sind den abhängigen Patentansprüchen und den nachfolgenden Figuren samt Beschreibung zu entnehmen. Es zeigen:

Fig 1:
Pegel des linkseitigen und rechtsseitigen Mikrofons für ein umlaufendes Signal bei 1 kHz
Fig 2:
Richtungsabhängig gedämpftes Signal bei 1 kHz nach Anwendung Wiener-Filter für das linksseitige und rechtsseitige Mikrofon
Fig 3:
Gerichtetes differenzielles Richtmikrofonsignal sowie jeweiliges Wiener-vorgefiltertes Mikrofonsignal für Frequenzen von 250 Hz und 500 Hz nach links (bei 270°)
Fig 4:
Schematische Darstellung des Verfahrens zur Verbesserung des Signal-Rausch-Abstands bei binauraler Seitenwahrnehmung
One or more of the following parameter values is advantageously determined or estimated as the useful signal level and / or as the interference signal level: energy, power, amplitude, smoothed amplitude, averaged amplitude, level. Further advantageous developments and advantages can be found in the dependent claims and the following figures, including the description. Show it:
Fig 1:
Levels of the left and right microphone for a circulating signal at 1 kHz
Fig 2:
Directional attenuated signal at 1 kHz after using Wiener filter for the left and right microphone
Fig 3:
Directional differential directional microphone signal as well as the respective Wiener pre-filtered microphone signal for frequencies of 250 Hz and 500 Hz to the left (at 270 °)
Fig 4:
Schematic representation of the method for improving the signal-to-noise ratio in binaural side perception

In Figur 1 sind die Pegel der Hörgeräte-Mikrofone bzw. - Mikrofonanordnungen der linken (in der Figur mit dem Bezugszeichen L2 versehen) und rechten (Bezugszeichen L1) Ohrseite einer binauralen Hörgeräte-Anordnung für ein umlaufendes Signal, d.h. für eine in den dargestellten umlaufenden Raumrichtungen positionierte Signal-Quelle, bei 1 kHz dargestellt. Es ist eine Differenz von 6-10 dB zu erkennen, d.h. der Pegel L2 des linksseitigen Mikrofons bzw. Mikrofonanordnung ist für ein linksseitiges Signal (270°) um 6-10 dB höher als der Pegel L1 des rechtsseitigen Mikrofons bzw. Mikrofonanordnung; bei höheren Frequenzen steigt diese Pegeldifferenz noch an.In Figure 1 are the levels of the hearing aid microphones or - microphone arrangements of the left (provided with the reference symbol L2 in the figure) and right (reference symbol L1) side of the ear a binaural hearing aid arrangement for a circumferential signal, ie for a signal source positioned in the illustrated circumferential spatial directions, shown at 1 kHz. A difference of 6-10 dB can be seen, ie the level L2 of the left-hand microphone or microphone arrangement is 6-10 dB higher for a left-hand signal (270 °) than the level L1 of the right-hand microphone or microphone arrangement; this level difference increases at higher frequencies.

Wird nun z.B. ein Hören nach links (270°) gewünscht, so wird das rechte Signal L1 als Störschall-Signal verwendet, das linke L2 als Nutzschall-Signal. Auf Basis dieses Störschall- und Nutzschall-Signals können sodann die Eingangsgrößen für eine Filterung, z.B. eine Wiener-Filterung, abgeschätzt werden.If now e.g. If you want to hear to the left (270 °), the right signal L1 is used as an interfering sound signal, the left L2 as a useful sound signal. On the basis of this background noise and useful noise signal, the input variables for filtering, e.g. a Wiener filtering, can be estimated.

Für die Wiener-Filterung werden aus dem Nutzsignal und Störsignal jeweilige Nutzsignal- und Störsignal-Niveaus ermittelt bzw. geschätzt. Diese wurden als Eingangsgrößen für ein Wiener-Filter verwendet, also: Wiener-Filter = Nutzsignal-Niveau / Nutzsignal-Niveau + Störsignal-Niveau

Figure imgb0001
For Wiener filtering, respective useful signal and interference signal levels are determined or estimated from the useful signal and interference signal. These were used as input variables for a Wiener filter, i.e.: Wiener filter = Useful signal level / Useful signal level + Noise level
Figure imgb0001

In Figur 2 ist die richtungsabhängige Dämpfung dargestellt, die sich bei Anwendung der Wiener-Formel für ein umlaufendes (360°) Signal bei 1 kHz ergibt. Es ergibt sich das richtungsabhängig gedämpfte Signal L4 für das linksseitige Mikrofon bzw. Mikrofonanordnung und L3 für das rechtsseitige Mikrofon bzw. Mikrofon-Anordnung.In Figure 2 the direction-dependent attenuation is shown, which results from the application of the Wiener formula for a circumferential (360 °) signal at 1 kHz. The result is the directionally attenuated signal L4 for the left-hand microphone or microphone arrangement and L3 for the right-hand microphone or microphone arrangement.

Es ist im Vergleich mit der vorangegangenen Figur zu erkennen, dass die interauralen Pegeldifferenzen erhalten bleiben. Signale von der rechten Seite werden als Störsignale betrachtet und abgesenkt, Signale von links bleiben ungedämpft. Der räumliche Eindruck, d.h. die Signal-Information woher die Signale jeweils kommen, bleibt erhalten, da die Pegeldifferenzen erhalten bleiben. Treffen Signale von beiden Seiten ein, erfolgt eine Absenkung je nach Verhältnis von Nutz- und Störschall-Abschätzung gemäß der bekannten Wiener-Formel.In comparison with the previous figure, it can be seen that the interaural level differences are retained. Signals from the right are viewed as interfering signals and are reduced, signals from the left remain undamped. The spatial impression, ie the signal information from where the signals come from, is retained because the level differences are retained. Hit signals from both sides on, there is a reduction depending on the ratio of useful and background noise estimate according to the well-known Wiener formula.

Wie vorangehend beschrieben wird vorgeschlagen, sich den natürlichen Kopfabschattungseffekt zunutze zu machen, um die durch den Kopfabschattungseffekt vorgefilterten Signale als Stör- und Nutzschall-Signale für die Ermittlung der Eingangsgrößen eines auf einem Filter ,z.B. Wiener Filter, basierten Störgeräuschbefreiungsansatzes zu verwenden. Da der Kopfabschattungseffekt bei hohen Frequenzen (>700 Hz bzw. >1 kHz) besonders ausgeprägt ist, zu tieferen Frequenzen hin jedoch immer weiter abnimmt, ist dieses Verfahren besonders für Frequenzen oberhalb 1 kHz vorteilhaft anwendbar.As described above, it is proposed to make use of the natural head shadowing effect in order to use the signals pre-filtered by the head shadowing effect as interference and useful sound signals for determining the input variables of a filter on a filter, e.g. Wiener Filter, based on the noise suppression approach. Since the head shadowing effect is particularly pronounced at high frequencies (> 700 Hz or> 1 kHz), but decreases further and further towards lower frequencies, this method can advantageously be used particularly for frequencies above 1 kHz.

Für tiefe Frequenzen (<1,5 kHz bzw. <1 kHz) ist wegen des zu geringen Kopfabschattungseffekt die vorangehend erläuterte Lösung nicht optimal anwendbar. In tiefen Frequenzbereichen kann ergänzend das nachfolgend beschriebene Verfahren verwendet werden, das auch separat und ausschließlich eingesetzt werden kann.For low frequencies (<1.5 kHz or <1 kHz), the solution explained above cannot be used optimally because the head shadowing effect is too low. In the low frequency ranges, the method described below can also be used, which can also be used separately and exclusively.

Da für tiefe Frequenzen (<1,5 kHz bzw. <1 kHz) gilt, dass der binaurale Mikrofonabstand am Kopf eines Hörgeräteträgers im Vergleich zur Wellenlänge klein genug ist, entstehen keine räumlichen Mehrdeutigkeiten (,spatial aliasing'). Daher kann bei tiefen Frequenzen (<1,5 kHz bzw. <1 kHz) des akustischen Ursprungssignals mit der Mikrofonanordnung eines linksseitigen und eines rechtsseitigen Mikrofons bzw. Mikrofonanordnung am Kopf eines Hörgeräteträgers ein konventionelles differentielles Richtmikrofon, das zur Seite "schaut" bzw. "hört", berechnet werden.Since for low frequencies (<1.5 kHz or <1 kHz) it applies that the binaural microphone distance at the head of a hearing aid wearer is small enough compared to the wavelength, no spatial ambiguities ('spatial aliasing') arise. Therefore, at low frequencies (<1.5 kHz or <1 kHz) of the original acoustic signal with the microphone arrangement of a left-hand and a right-hand microphone or microphone arrangement on the head of a hearing aid wearer, a conventional differential directional microphone that "looks" or "looks" to the side can be used. hears ", be calculated.

Das Ausgangssignal eines solchen Richtmikrofons könnte zwar einfach direkt verwendet werden, um eine seitliche Richtwirkung bei tiefen Frequenzen zu erzeugen. Das derart ermittelte gerichtete Signal könnte dann identisch an beiden Ohren bzw. Hörgeräten des Hörgeräteträgers wiedergegeben werden. Dies hätte allerdings zur Folge, dass die Lokalisationsfähigkeit in diesem Frequenzbereich verloren ginge, da ja nur ein gemeinsames Ausgangssignal für beide Ohrseiten erzeugt und dargeboten würde.The output signal of such a directional microphone could simply be used directly to generate a lateral directional effect at low frequencies. The directional signal determined in this way could then be reproduced identically on both ears or hearing aids of the hearing aid wearer. However, this would have the consequence that the localization ability in this frequency range would be lost, since only one common output signal would be generated and presented for both sides of the ear.

Daher wird stattdessen sowohl ein nach links als auch ein nach rechts gerichtetes Signal auf Basis eines konventionellen Richtmikrofons berechnet, und diese Signale werden je nach gewünschter Nutzsignalrichtung als Stör- bzw. Nutzschallsignal für eine anschließende Filterung, vorzugsweise mit Wiener-Filter, verwendet. Dieser Filter wird sodann separat auf jedes der Mikrofonsignale der Mikrofonanordnung angewendet, und nicht etwa auf das gemeinsame als Ausgangssignal des konventionellen Richtmikrofons berechnete Richtmikrofonsignal.Instead, both a left and a right-pointing signal are calculated based on a conventional directional microphone, and these signals are used as interference or useful sound signals for subsequent filtering, preferably with a Wiener filter, depending on the desired direction of the useful signal. This filter is then applied separately to each of the microphone signals of the microphone arrangement, and not to the common directional microphone signal calculated as the output signal of the conventional directional microphone.

In Figur 3 ist die Wirkung der vorangehend erläuterten Hörsignalverarbeitung in tiefen Frequenzbereichen dargestellt. Dazu wurde für Frequenzen von 250 Hz L8 und 500 Hz L5 wurde ein links (bei 270°) links gerichtetes "hören" oder "sehen" berechnet. Im Rahmen der Vorfilterung wurde zunächst ein nach links gerichtetes konventionelles differenzielles Richtmikrofonsignal als Nutzsignal und ein nach rechts gerichtetes als Störsignal berechnet (durchgezogene Linien in der Figur) berechnet. Die gerichteten Mikrofonsignale haben die übliche nieren-/antinieren-förmige (cardioid/anticardioid, kurz auch: card/anticard) richtungsabhängige Empfindlichkeits-Charakteristik.In Figure 3 shows the effect of the previously explained audio signal processing in low frequency ranges. For this purpose, for frequencies of 250 Hz L8 and 500 Hz L5, a left (at 270 °) left directed "hearing" or "seeing" was calculated. As part of the pre-filtering, a conventional differential directional microphone signal directed to the left was initially calculated as the useful signal and a signal directed to the right was calculated as the interference signal (solid lines in the figure). The directional microphone signals have the usual kidney / anti-kidney-shaped (cardioid / anticardioid, also: card / anticard) direction-dependent sensitivity characteristics.

Aus dem Nutzsignal und Störsignal wurden Nutzsignal- und Störsignal-Niveaus ermittelt bzw. geschätzt. Diese wurden als Eingangsgrößen für ein Wiener-Filter verwendet, also: Wiener-Filter = Nutzsignal-Niveau / Nutzsignal-Niveau + Störsignal-Niveau

Figure imgb0002
The useful signal and interference signal levels were determined or estimated from the useful signal and interference signal. These were used as input variables for a Wiener filter, i.e.: Wiener filter = Useful signal level / Useful signal level + Noise level
Figure imgb0002

Ein solches Wiener-Filter wurde für jeden Frequenzbereich (in der Figur also 250 Hz und 500 Hz) für alle Raumrichtungen berechnet und auf jedes der Richtmikrofonsignale einzeln angewendet. Dadurch ergibt sich für jedes der Richtmikrofonsignale eine Wiener-vorgefilterte richtungsabhängige Empfindlichkeits-Charakteristik, die in der Figur durch strichlierte Linien L6 und L7 dargestellt sind.Such a Wiener filter was calculated for each frequency range (ie 250 Hz and 500 Hz in the figure) for all spatial directions and applied individually to each of the directional microphone signals. This results in a Wiener-prefiltered, direction-dependent sensitivity characteristic for each of the directional microphone signals, which are shown in the figure by dashed lines L6 and L7.

In der Figur ist erkennbar, dass in Störsignal-Richtung (also rechts, 90°) eine höhere Dämpfung als in Nutzsignal-Richtung (also links, 270°) erzielt wird. Zudem ist ersichtlich, dass die Pegel-Unterschiede weitgehend erhalten bleiben (nämlich ein höherer Pegel des linken L7 im Vergleich zum rechten Mikrofonsignal L6) und damit eine räumliche Zuordnung des akustischen Ursprungssignals für den Hörgeräteträger weiterhin möglich bleibt.It can be seen in the figure that a higher attenuation is achieved in the interfering signal direction (ie right, 90 °) than in the useful signal direction (ie left, 270 °). It can also be seen that the level differences are largely retained (namely a higher level of the left L7 compared to the right microphone signal L6) and thus a spatial assignment of the original acoustic signal remains possible for the hearing aid wearer.

Die vorangehend beschriebenen Filter-Verfahren für hohe und tiefe Frequenzbereiche können z.B. in am Kopf zu tragenden Hörinstrumenten jeweils einzeln für hohe oder für niedrige Frequenzen eingesetzt werden. Sie können jedoch auch in Kombination eingesetzt werden und ergänzen sich dabei über den gesamten Frequenz-Bereich eines am Kopf zu tragenden Hörinstruments in besonders vorteilhafter Weise.The filter methods described above for high and low frequency ranges can e.g. can be used individually for high or low frequencies in hearing instruments to be worn on the head. However, they can also be used in combination and complement one another in a particularly advantageous manner over the entire frequency range of a hearing instrument to be worn on the head.

In Figur 4 ist das vorangehend erläuterte Verfahren zur Verbesserung des Signal-Rausch-Abstands bei binauraler Seitenwahrnehmung schematisch dargestellt.In Figure 4 the previously explained method for improving the signal-to-noise ratio in binaural side perception is shown schematically.

In Schritt S1 nimmt eine binaurale Mikrofonanordnung akustische Signale auf. Eine solche Mikrofonanordnung umfasst mindestens zwei Mikrofone, je eines linksseitig oder rechtsseitig am Kopf eines Hörgeräteträgers zu tragen. Die jeweilige Mikrofonanordnung kann auch jeweils mehrere Mikrofone umfassen, die beispielsweise eine Richtwirkung für die Wahrnehmung nach vorne und nach hinten ermöglichen können.In step S1, a binaural microphone arrangement picks up acoustic signals. Such a microphone arrangement comprises at least two microphones, one each to be worn on the left or right side of the head of a hearing aid wearer. The respective microphone arrangement can also each comprise a plurality of microphones, which can, for example, enable a directional effect for perception to the front and back.

In Schritt S2 wird eine seitliche Richtung festgelegt, in welche die höchste Empfindlichkeit der Mikrofonanordnung gerichtet sein soll. Die Richtung kann beispielsweise automatisch abhängig von einer akustischen Analyse der Umgebungsgeräusche oder abhängig von einer Nutzereingabe festgelegt werden. Als Richtung höchster Empfindlichkeit wird diejenige Raumrichtung gewählt, in der die Quelle der akustischen Nutzsignale liegt oder vermutlich liegt. Vorliegend wird sie daher auch als Nutzsignal-Richtung bezeichnet. Das in dieser Richtung gelegene Mikrofon bzw. Mikrofonanordnung wird analog dazu vorliegend auch als Nutzsignal-Mikrofon bezeichnet.In step S2, a lateral direction is determined in which the highest sensitivity of the microphone arrangement should be directed. The direction can for example be automatically dependent on an acoustic analysis of the ambient noise or can be determined depending on a user input. The direction in which the greatest sensitivity is chosen is that direction in space in which the source of the useful acoustic signals is or is presumably located. In the present case, it is therefore also referred to as the useful signal direction. The microphone or microphone arrangement located in this direction is analogously also referred to here as a useful signal microphone.

In Schritt S3 wird analog zum vorangehend erläuterten Schritt eine seitliche Richtung festgelegt, in welcher die geringste Empfindlichkeit der Mikrofonanordnung gerichtet sei soll. Vorliegend wird sie daher auch als Störsignal-Richtung und das in dieser Richtung gelegene Mikrofon oder Mikrofonanordnung als Störsignal-Mikrofon bezeichnet.In step S3, analogously to the step explained above, a lateral direction is determined in which the lowest sensitivity of the microphone arrangement should be directed. In the present case it is therefore also referred to as the interfering signal direction and the microphone or microphone arrangement located in this direction is referred to as the interfering signal microphone.

In Schritt S4 erfolgt eine Zerlegung der Ausgangssignale der Mikrofone in einen Frequenzbereich mit hohen Frequenzen oberhalb einer Grenzfrequenz von mindestens 700 Hz, möglicherweise auch 1 kHz, und einen Frequenzbereich mit tiefen Frequenzen unterhalb einer Grenzfrequenz von 1,5 kHz, möglicherweise auch 1 kHz.In step S4, the output signals of the microphones are broken down into a frequency range with high frequencies above a cutoff frequency of at least 700 Hz, possibly also 1 kHz, and a frequency range with low frequencies below a cutoff frequency of 1.5 kHz, possibly also 1 kHz.

In den Schritten S5 bis S7 werden die Mikrofon-Signale im hohen Frequenzbereich weiter verarbeitet. In Schritt S5 wird abhängig von dem Ausgangssignal des Nutzsignal-Mikrofons ein Nutzsignal-Niveau ermittelt bzw. abgeschätzt.In steps S5 to S7, the microphone signals are processed further in the high frequency range. In step S5, a useful signal level is determined or estimated as a function of the output signal of the useful signal microphone.

In Schritt S6 wird abhängig von dem Ausgangssignal des Störsignal-Mikrofons ein Störsignal-Niveau ermittelt bzw. abgeschätzt.In step S6, an interference signal level is determined or estimated as a function of the output signal of the interference signal microphone.

In Schritt S6 wird unter Verwendung des vorangehend ermittelten Nutzsignal-Niveaus und Störsignal-Niveaus ein Filter, vorzugsweise Wiener Filter, berechnet. Die Signal-Niveaus sowie die Filterung können für den kompletten hohen Frequenzbereich ermittelt werden. Es kann jedoch auch eine Zerlegung in Frequenzbänder innerhalb des hohen Frequenzbereichs erfolgen und die Filterung kann individuell für jedes der Frequenzbänder erfolgen.In step S6, a filter, preferably a Wiener filter, is calculated using the useful signal level and interference signal level determined above. The signal levels and the filtering can be determined for the entire high frequency range. However, it can also be broken down into frequency bands within the high frequency range and the filtering can be done individually for each of the frequency bands.

In Schritt S7 wird der zuvor errechnete Filter separat auf die jeweiligen Ausgangssignale des rechtsseitigen und des linksseitigen Mikrofons bzw. Mikrofonanordnung im hohen Frequenzbereich angewendet.In step S7, the previously calculated filter is applied separately to the respective output signals of the right-hand and left-hand microphones or microphone arrangements in the high frequency range.

In den Schritten S8 bis S13 werden die Mikrofon-Signale des tiefen Frequenzbereichs weiterverarbeitet. In Schritt S8 wird ein konventionelles differenzielles binaurales Richtmikrofon mit hoher Empfindlichkeit in Nutzsignal-Richtung berechnet, wodurch ein zweites Nutzsignal erhalten wird.In steps S8 to S13, the microphone signals of the low frequency range are processed further. In step S8, a conventional differential binaural directional microphone with high sensitivity in the direction of the useful signal is calculated, whereby a second useful signal is obtained.

In Schritt S9 wird ein konventionelles differenzielles binaurales Richtmikrofon mit hoher Empfindlichkeit in Störsignal-Richtung berechnet, wodurch ein zweites Störsignal erhalten wird.In step S9, a conventional differential binaural directional microphone with high sensitivity in the interfering signal direction is calculated, whereby a second interfering signal is obtained.

In Schritt S10 wird abhängig von dem zweiten Nutzsignal ein zweites Nutzsignal-Niveau ermittelt bzw. abgeschätzt.In step S10, a second useful signal level is determined or estimated as a function of the second useful signal.

In Schritt S11 wird abhängig von dem zweiten Störsignal ein zweites Störsignal-Niveau ermittelt bzw. abgeschätzt.In step S11, a second interference signal level is determined or estimated as a function of the second interference signal.

In Schritt S12 wird unter Verwendung des vorangehend ermittelten zweiten Nutzsignal-Niveaus und zweiten Störsignal-Niveaus ein zweites Filter, vorzugsweise Wiener Filter, berechnet. Die zweiten Signal-Niveaus sowie die Filterung können für den kompletten tiefen Frequenzbereich ermittelt werden. Es kann jedoch auch eine Zerlegung in Frequenzbänder innerhalb des tiefen Frequenzbereichs erfolgen und die Filterung kann individuell für jedes der Frequenzbänder erfolgen.In step S12, a second filter, preferably a Wiener filter, is calculated using the previously determined second useful signal level and second interference signal level. The second signal levels and the filtering can be determined for the entire low frequency range. However, it can also be broken down into frequency bands within the low frequency range and the filtering can be carried out individually for each of the frequency bands.

In Schritt S13 wird der zuvor errechnete Filter separat auf die jeweiligen Ausgangssignale des rechtsseitigen und des linksseitigen Mikrofons bzw. Mikrofonanordnung im tiefen Frequenzbereich angewendet.In step S13, the previously calculated filter is applied separately to the respective output signals of the right-hand and left-hand microphones or microphone arrangements in the low frequency range.

In Schritt S14 werden die gefilterten Ausgangssignale der Mikrofone beider Frequenzbereiche bzw. bei weiterer Zerlegung in Frequenzbänder sämtlicher Frequenzbänder zu einem gefilterten Ausgangssignal der binauralen Mikrofonanordnung zusammengeführt. In einer weiteren Weiterbildung wird der Verstärkungsfaktor Wiener bestimmt gemäß der Formel Verstärkungsfaktor Wiener = Nutzsignal-Niveau / Nutzsignal-Niveau + Störsignal-Niveau .

Figure imgb0003
In step S14, the filtered output signals of the microphones of both frequency ranges or, in the case of further breakdown into frequency bands of all frequency bands, are combined to form a filtered output signal of the binaural microphone arrangement. In one further further education becomes of the Gain factor Viennese certainly according to of the formula Gain factor Viennese = Useful signal level / Useful signal level + Noise level .
Figure imgb0003

In einer weiteren Weiterbildung ist das Nutzsignal-Mikrophon an einem von einem Hörgeräteträger rechtsseitig und das Störsignal-Mikrophon an einem linksseitig zu tragenden Hörgerät bzw. umgekehrt angeordnet.In a further development, the useful signal microphone is arranged on a hearing aid wearer on the right and the interference signal microphone on a hearing aid to be worn on the left or vice versa.

In einer weiteren Weiterbildung wird als Nutzsignal-Niveau und/oder als Störsignal-Niveau eines oder mehrere der folgenden geschätzt: Energie, Leistung, Amplitude, geglättete Amplitude, gemittelte Amplitude, Pegel.In a further development, one or more of the following is estimated as the useful signal level and / or as the interference signal level: energy, power, amplitude, smoothed amplitude, averaged amplitude, level.

Claims (5)

  1. Method for improving the signal-to-noise difference for laterally impinging acoustic useful signals, comprising the steps:
    - Recording (S1) of acoustic signals by a right-side microphone and a left-side microphone of a binaural microphone arrangement,
    - Definition of a first relevant frequency range and a second relevant frequency range located at higher frequencies with respect to first relevant frequency range, wherein a limit frequency between the first relevant frequency range and the second relevant frequency range is chosen in the range between 700 Hz and 1.5 kHz,
    - Definition (S2, S3) of a spatial direction as useful signal direction and a spatial direction as noise signal direction,
    - Determination (S9) of a binaural noise signal in the first relevant frequency range by means of differential preprocessing of monaural output signals (L1, L2) of the binaural microphone arrangement, for which in the useful signal direction, a lower sensitivity than in the noise signal direction is achieved,
    - Determination (S8) of a binaural useful signal in the first relevant frequency range by means of differential preprocessing of the monaural output signals (L1, L2) of the binaural microphone arrangement, for which in the useful signal direction, a higher sensitivity of the binaural microphone arrangement than in the noise signal direction is achieved,
    - Determination (S 11) of a first noise signal level in the first relevant frequency range in dependence of the binaural noise signal,
    - Determination (S10) of a first useful signal level in the first relevant frequency range in dependence of the binaural useful signal,
    - Definition (S2, S3) of the microphone of the binaural microphone arrangement which is located closer to the source as the useful signal microphone, and of the microphone of the binaural microphone arrangement which is located more remotely as the noise signal microphone,
    - Determination (S6) of a monaural second noise signal level in the second relevant frequency range in dependence of the monaural output signal (L1) of the noise signal microphone,
    - Determination (S5) of a monaural second useful signal level in the second relevant frequency range in dependence of the binaural output signal (L2) of the useful signal microphone,
    - Ascertainment (S12) of a first gain factor for the amplification of the acoustic signals being recorded with the microphones in the first relevant frequency range, by means of a first Wiener filter in dependence of the first noise signal level and the second noise signal level, and of a second gain factor for the amplification of the acoustic signals be recorded with the microphones in the second relevant frequency range, by means of a second Wiener filter in dependence of the second noise signal level and the second useful signal level, and
    - Application (S7, S13) of the first gain factor in the first relevant frequency range and the second gain factor in the second relevant frequency range separately to the respective output signals (L1, L2) of the right-side microphone and the left-side microphone of the binaural microphone arrangement.
  2. Method according to claim one, comprising further the step
    - Direction-dependent ascertainment of the first gain factor.
  3. The method according to one of the preceding claims, wherein the first and/or second gain factor is ascertained according to the formula gain factor = useful signal level / (useful signal level + noise signal level).
  4. The method according to one of the preceding claims, wherein the useful signal microphone is arranged at a hearing aid to be worn by a hearing aid user at his right side, and the noise signal microphone is arranged at a hearing aid to be worn by a hearing aid user at his left side, or vice versa.
  5. The method according to one of the preceding claims, wherein as a useful signal level and/or a noise signal level, one or more out of the following parameter values are determined:
    Energy, power, amplitude, smoothest amplitude, average amplitude, level.
EP10732915.3A 2010-02-19 2010-07-07 Method for the binaural left-right localization for hearing instruments Active EP2537351B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10732915.3A EP2537351B1 (en) 2010-02-19 2010-07-07 Method for the binaural left-right localization for hearing instruments

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10154096 2010-02-19
PCT/EP2010/059690 WO2011101043A1 (en) 2010-02-19 2010-07-07 Method for the binaural left-right localization for hearing instruments
EP10732915.3A EP2537351B1 (en) 2010-02-19 2010-07-07 Method for the binaural left-right localization for hearing instruments

Publications (2)

Publication Number Publication Date
EP2537351A1 EP2537351A1 (en) 2012-12-26
EP2537351B1 true EP2537351B1 (en) 2020-09-02

Family

ID=43661934

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10732915.3A Active EP2537351B1 (en) 2010-02-19 2010-07-07 Method for the binaural left-right localization for hearing instruments
EP10734078A Ceased EP2537352A1 (en) 2010-02-19 2010-07-07 Method for the binaural left-right localization for hearing instruments

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10734078A Ceased EP2537352A1 (en) 2010-02-19 2010-07-07 Method for the binaural left-right localization for hearing instruments

Country Status (6)

Country Link
US (2) US9167358B2 (en)
EP (2) EP2537351B1 (en)
CN (2) CN102783185B (en)
AU (2) AU2010346385B2 (en)
DK (1) DK2537351T3 (en)
WO (2) WO2011101043A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101043A1 (en) * 2010-02-19 2011-08-25 Siemens Medical Instruments Pte. Ltd. Method for the binaural left-right localization for hearing instruments
EP2699020B1 (en) * 2012-08-17 2016-04-13 Sivantos Pte. Ltd. Method and device for determining a gain factor of a hearing aid
DE102013201043B4 (en) 2012-08-17 2016-03-17 Sivantos Pte. Ltd. Method and device for determining an amplification factor of a hearing aid
US10347269B2 (en) 2013-03-12 2019-07-09 Hear Ip Pty Ltd Noise reduction method and system
KR102186307B1 (en) * 2013-11-08 2020-12-03 한양대학교 산학협력단 Beam-forming system and method for binaural hearing support device
JP6204618B2 (en) 2014-02-10 2017-09-27 ボーズ・コーポレーションBose Corporation Conversation support system
US10412549B2 (en) 2014-11-25 2019-09-10 Huawei Technologies Co., Ltd. Orientation method, device, and system
CN104867499A (en) * 2014-12-26 2015-08-26 深圳市微纳集成电路与系统应用研究院 Frequency-band-divided wiener filtering and de-noising method used for hearing aid and system thereof
DE102015211747B4 (en) * 2015-06-24 2017-05-18 Sivantos Pte. Ltd. Method for signal processing in a binaural hearing aid
US10507137B2 (en) 2017-01-17 2019-12-17 Karl Allen Dierenbach Tactile interface system
CN109218920B (en) * 2017-06-30 2020-09-18 华为技术有限公司 Signal processing method and device and terminal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070269064A1 (en) * 2006-05-16 2007-11-22 Phonak Ag Hearing system and method for deriving information on an acoustic scene
WO2008104446A2 (en) * 2008-02-05 2008-09-04 Phonak Ag Method for reducing noise in an input signal of a hearing device as well as a hearing device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778674B1 (en) 1999-12-28 2004-08-17 Texas Instruments Incorporated Hearing assist device with directional detection and sound modification
US7171008B2 (en) * 2002-02-05 2007-01-30 Mh Acoustics, Llc Reducing noise in audio systems
US7330556B2 (en) * 2003-04-03 2008-02-12 Gn Resound A/S Binaural signal enhancement system
ATE511321T1 (en) 2005-03-01 2011-06-15 Oticon As SYSTEM AND METHOD FOR DETERMINING THE DIRECTIONALITY OF SOUND USING A HEARING AID
US8483416B2 (en) * 2006-07-12 2013-07-09 Phonak Ag Methods for manufacturing audible signals
JP4293377B2 (en) * 2006-11-22 2009-07-08 株式会社船井電機新応用技術研究所 Voice input device, manufacturing method thereof, and information processing system
EP2364036A3 (en) * 2006-11-22 2011-09-28 Funai Electric Advanced Applied Technology Research Institute Inc. Voice input device, its manufacturing method and information processing system
EP2088802B1 (en) 2008-02-07 2013-07-10 Oticon A/S Method of estimating weighting function of audio signals in a hearing aid
DE102008015263B4 (en) * 2008-03-20 2011-12-15 Siemens Medical Instruments Pte. Ltd. Hearing system with subband signal exchange and corresponding method
DE102008046040B4 (en) 2008-09-05 2012-03-15 Siemens Medical Instruments Pte. Ltd. Method for operating a hearing device with directivity and associated hearing device
WO2010022456A1 (en) 2008-08-31 2010-03-04 Peter Blamey Binaural noise reduction
WO2011101043A1 (en) 2010-02-19 2011-08-25 Siemens Medical Instruments Pte. Ltd. Method for the binaural left-right localization for hearing instruments

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070269064A1 (en) * 2006-05-16 2007-11-22 Phonak Ag Hearing system and method for deriving information on an acoustic scene
WO2008104446A2 (en) * 2008-02-05 2008-09-04 Phonak Ag Method for reducing noise in an input signal of a hearing device as well as a hearing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEUKIMMIATIS S ET AL: "An optimum microphone array post-filter for speech applications", INTERSPEECH INTL. CONF. SPOKEN LANG. PROC., INTERSPEECH ICSLP; INTERSPEECH 2006 AND 9TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING, INTERSPEECH 2006 - ICSLP; INTERSPEECH 2006 AND 9TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING,, vol. 5, 1 January 2006 (2006-01-01), pages 2142 - 2145, XP002489289 *

Also Published As

Publication number Publication date
WO2011101043A1 (en) 2011-08-25
US20120321092A1 (en) 2012-12-20
CN102783185B (en) 2015-07-29
CN102783184B (en) 2015-11-25
AU2010346384A1 (en) 2012-08-23
EP2537351A1 (en) 2012-12-26
AU2010346385A1 (en) 2012-08-30
US20120321091A1 (en) 2012-12-20
US9167357B2 (en) 2015-10-20
AU2010346384B2 (en) 2014-11-20
EP2537352A1 (en) 2012-12-26
WO2011101042A1 (en) 2011-08-25
AU2010346385B2 (en) 2014-06-19
DK2537351T3 (en) 2020-12-07
CN102783185A (en) 2012-11-14
US9167358B2 (en) 2015-10-20
CN102783184A (en) 2012-11-14

Similar Documents

Publication Publication Date Title
EP2537351B1 (en) Method for the binaural left-right localization for hearing instruments
EP3451705B1 (en) Method and apparatus for the rapid detection of own voice
EP2405673B1 (en) Method for localising an audio source and multi-channel audio system
DE102012200745A1 (en) Method and hearing device for estimating a component of one&#39;s own voice
EP3926982A2 (en) Method for direction-dependent noise suppression for a hearing system comprising a hearing device
EP2840809A2 (en) Control of the strength of the effect of a binaural directional microphone
EP3393143B1 (en) Method for operating a hearing aid
EP2595414B1 (en) Hearing aid with a device for reducing a microphone noise and method for reducing a microphone noise
DE102008017550A1 (en) Multi-stage estimation method for noise reduction and hearing aid
DE102015204253B4 (en) Method for frequency-dependent noise suppression of an input signal and hearing aid
EP2129167B1 (en) Method for operating a hearing device and microphone system for a hearing device
DE102018117557A1 (en) ADAPTIVE AFTER-FILTERING
EP1962554A2 (en) Hearing device with interference signal separation and corresponding method
DE102013207161B4 (en) Method for use signal adaptation in binaural hearing aid systems
DE102018117558A1 (en) ADAPTIVE AFTER-FILTERING
DE102020210805B3 (en) Directional signal processing method for an acoustic system
EP2219389B1 (en) Device and method for evaluating interference noises in a binaural hearing device product
DE102019211943B4 (en) Method for directional signal processing for a hearing aid
DE102013205790B4 (en) Method for estimating a wanted signal and hearing device
DE102018117556B4 (en) SINGLE CHANNEL NOISE REDUCTION
DE102006049870B4 (en) Differential directional microphone system and hearing aid with such a differential directional microphone system
EP3048813B1 (en) Method and device for suppressing noise based on inter-subband correlation
EP2622879B1 (en) Method and device for frequency compression

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120803

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180410

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1310215

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016742

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20201202

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210104

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016742

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210707

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1310215

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100707

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230724

Year of fee payment: 14

Ref country code: CH

Payment date: 20230801

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 14

Ref country code: DK

Payment date: 20230724

Year of fee payment: 14

Ref country code: DE

Payment date: 20230720

Year of fee payment: 14