EP2534417A2 - Led lamp having a heat pipe for cooling - Google Patents

Led lamp having a heat pipe for cooling

Info

Publication number
EP2534417A2
EP2534417A2 EP11704041A EP11704041A EP2534417A2 EP 2534417 A2 EP2534417 A2 EP 2534417A2 EP 11704041 A EP11704041 A EP 11704041A EP 11704041 A EP11704041 A EP 11704041A EP 2534417 A2 EP2534417 A2 EP 2534417A2
Authority
EP
European Patent Office
Prior art keywords
led
led lamp
lamp according
working medium
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11704041A
Other languages
German (de)
French (fr)
Inventor
Detlef Gerhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2534417A2 publication Critical patent/EP2534417A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/507Cooling arrangements characterised by the adaptation for cooling of specific components of means for protecting lighting devices from damage, e.g. housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/51Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/645Heat extraction or cooling elements the elements being electrically controlled, e.g. Peltier elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to an LED lamp in which a heat pipe is provided for dissipating the heat generated by the operation of the LED. Furthermore, this LED lamp has at least one LED, which is mounted on a support.
  • This Trä ⁇ ger is covered by a housing, which forms a the LED be ⁇ herberg end working chamber and having one of the emission surface of the LED opposite the transparent wall portion, so that the light radiation of the LED place through the wall of the housing to the outside.
  • a not necessarily ⁇ provisionally tubular technical device which houses an interior that is hermetically sealed from the environment.
  • This interior contains a working medium.
  • the working medium evaporates and thus absorbs the heat ⁇ energy required for evaporation and in another area in which heat is to be dissipated, condenses the working fluid, which in the condensation released heat energy is released in this Be ⁇ rich.
  • Heat pipes can be used in various designs.
  • a heat pipe operating on this principle is also called a thermosyphon.
  • the liquid working fluid then always flows to the geodesic lowest point of the thermosyphon, which is also referred to as a sump and forms the area in which the heat pipe can absorb ⁇ heat energy.
  • the evaporating working medium rises in the thermosyphon then up and there
  • heat pipes can also be provided with capillary structures in the interior. These capillary structures convey within the capillary channels formed therein, the liquid working medium largely independent of the mounting position to the area to be cooled. These heat pipes are often referred to in German as “heatpipes.”
  • heatpipes The term “capillary heat pipe” is also common. In the context of this application, the term “capillary heat pipe” should be used to prevent misunderstandings.
  • An LED lamp of the type described is beispielswei ⁇ se in US 2009/0002995 AI described.
  • This LED lamp has a transparent lamp bulb, inside which a three-dimensional support for individual LEDs is provided.
  • This three-dimensional support is thermally conductively connected to a plurality of heat pipes, which lead into a further region of the LED lamp, which is equipped with cooling fins. With the help of the heat pipes, the heat generated during operation of the LEDs is dissipated in the area provided with the cooling fins.
  • the heat produced by the LEDs thus first heats the carrier, which then delivers the heat to the thermally conductive connected with this heat pipes.
  • the carrier thus also serves to transfer heat between the LEDs and the heat pipes.
  • the object of the invention is to add an LED lamp ⁇ which can be operated ben with a comparatively high power.
  • This object is achieved in that the heat pipe through the working space of the LED lamp, ie the space in which the LED is housed, is formed.
  • the working space is hermetically sealed from the environment and contains a working medium which is gaseous at the operating temperature of the LED and liquid at the operating temperature of the housing.
  • the LED is incorporated in the heat pipe itself. This causes the LED (or even several LEDs) can deliver the resulting heat directly to the Häme ⁇ dium, without causing a heat transfer through the support of the LED and the walls of the heat pipe is required.
  • the heat dissipation of the LEDs is greatly increased advantageous since it is no longer from the heat ⁇ conductivity of the carrier and the wall of the heat pipe from ⁇ dependent, but leads to the evaporation of the working medium.
  • it is advantageously possible to achieve higher outputs during operation of the LED since the loss heat produced thereby, which could impair or jeopardize the function of the LED, can be reliably dissipated.
  • a higher light output is possible, in particular Kings ⁇ nen LEDs are tightly packed, because the heat output is not limited by the heat conduction properties of the carrier.
  • the operating temperature of the LED and the Be ⁇ operating temperature of the housing is in the interpretation of the working chamber as a heat pipe as mentioned already be ⁇ , to take into account being established a condition of equilibrium during operation.
  • the working ⁇ medium is to be selected in terms of its evaporation temperature so that it evaporates at the LED and can condense on the walls of the housing again. Possible working media are H 2 O, (CH 3 ) CO, (CH 3 ) OH or C6H6.
  • the carrier for the LED is characterized in that the LED can be reliably held on this. In particular, an electrical contacting of the LED can also take place on the carrier so that it can be connected to a power supply.
  • the carrier may for example consist of a printed circuit board.
  • the carrier may also be an integral part of the housing.
  • the housing is further formed at least ⁇ out with respect to the emitting surface of the LED transparently. This means that at least the useful light emitted by the LED can pass through this transparent wall part.
  • the wall portion in the housing need not necessarily be transparent.
  • the working space accommodating the LED is designed as a thermosyphon, the bottom of the thermosyphon lying in the region of the LED.
  • This is a design of the LED lamp, in which the mounting position of the LED lamp at the installation must be written ⁇ . It must be ensured that the LED is located in the bottom of the thermosyphon, where the working fluid collects by gravity to re-evaporate by the heating of the LED.
  • the advantage of the design of the heat pipe as a thermosyphon lies in the fact that this design is particularly easy to implement.
  • the heat pipe is designed as a capillary heat pipe, wherein at least a part of the housing is provided in the interior with egg ⁇ ner capillary structure, which is in fluid communication with the LED.
  • the fluidic connection of the LED with the capillary structure is advantageously ensured that largely independent of the mounting position of the LED lamp a supply of the LED is ensured with the liquid working medium.
  • the acting Ka ⁇ pillar be exploited in the capillary structure, which transport the liquid working medium for LED back.
  • the fluidic connection is advantageously ensured by bringing the outputs of the capillary structure sufficiently close to the LED so that the gap between the outputs and the LED can be bridged.
  • Another possibility is to realize the fluidic connection by channel structures which permit a conduction of the liquid working medium from the capillary structure to the LED. It is particularly advantageous when the capillary structural ⁇ structure extends up to the LED or covers it in part areas of its surface.
  • the capillary channels of the capillary structure as a result if this construction advantageously directly to the surface of the LED, whereby a reliable transport of the working medium is ensured toward the LED and there ei ⁇ ne reliable wetting of the surface to be cooled can be made of the LED.
  • the part of the surface to be cooled must therefore not be covered by the capillary structure. This is definitely the area of the LED that is supposed to radiate the light at the same time and therefore should not be covered by the capillary structure.
  • the capillary structure may be formed, for example, by an open porous layer in the interior of the housing.
  • ⁇ fen porous materials can be produced for example by sintering.
  • a layer in the interior of the housing is to be understood as a zone of the wall of the housing which has other properties than the remaining housing.
  • the layer may be in ⁇ Herge ⁇ provides example by conventional coating techniques, wherein suitable, for example, cold gas spraying for the production of porous layers.
  • the layer can also be finished by a surface treatment of the interior of the housing for producing the capillary channels, for example an etching treatment.
  • the un ⁇ ferent properties of the layer compared to the remaining wall of the housing then exists in the specific mass of the layer region.
  • Another embodiment of the invention is obtained when the working medium is present in an amount in the working space, that the emitting surface of the LED is completely wetted during operation with the working medium.
  • the optimal cooling capacity is advantageously achieved.
  • Ei ⁇ ne further increase in the amount of working fluid causes no further improvement in the cooling performance, although a larger amount, for example, can be provided to compensate for any losses of working fluid due to leaks ⁇ keiten.
  • the LED lamp can also be operated with a smaller amount of working medium, thereby reducing the heat dissipation from the LED is reduced. The amount of working medium can therefore also directly influence the cooling capacity of the system.
  • a particular embodiment of the invention is obtained when a channel structure accessible to the working medium is provided between the support and the LED.
  • the working medium can penetrate, so that a cooling of the LED also from the bottom, ie the side facing the wearer is possible.
  • the channel structure below the LED itself can also be designed to be capillary. But it is also possible to provide larger cavities that fill with the working fluid. In the case of execution of the workspace as a thermosiphon this is ensured by gravity.
  • the capillary structure In the case In the embodiment of the working space as a capillary heat pipe, the capillary structure must be arranged in such a way that it also ensures the feeding of the channel structure below the LED.
  • the LED is guided as an LED chip from ⁇ and is held in the carrier with their side surfaces.
  • the side surfaces can then simultaneously serve an electrical contact.
  • the entire bottom side of the LED chip is available for cooling, so that optimal heat dissipation can be achieved due to the small dimensions of the LED chip.
  • it can advantageously be provided for certain applications that the Ab ⁇ beam surface of the LED is protected against wetting with the Hämedi-. This has the advantage that the beam path of the emitted light is not disturbed by liquid working medium.
  • the cooling of the LED then takes place from the back. Wetting of the LED on the radiating surface can be prevented by, for example, providing a surface which is difficult to wet (lotus effect surface).
  • a transparent to the radiated light of the LED coating can be done for example by a transparent to the radiated light of the LED coating.
  • Another possibility is to mechanically form the protection.
  • a border around the LED can ensure that no liquid cooling medium flows from the sides onto the emitting surface of the LED.
  • Another embodiment of the invention provides that the transparent wall part is protected against wetting with the Häme ⁇ dium. Again, this is a measure which ⁇ advantageous way ensures an undisturbed beam path through the transparent wall portion. Protection against wetting with the working medium can also be achieved by a difficultly wettable Surface of the transparent wall part can be achieved. Another possibility is a temperature-controlled protection of the transparent wall part. If it heats up more than the other wall parts, the working medium will preferentially condense on the other wall parts. This can advantageously be achieved, for example, by providing the housing with cooling fins on the outside. If these fins are provided only outside the transparent wall portion, the heat transfer is increased in the provided with the cooling fin areas and protected in this manner, the transparent wall ⁇ part from being wetted.
  • the housing is formed inside as a reflector.
  • the reflector can be made for example by a suitable coating of the inner walls of the housing. It must be ensured that an even ⁇ tual capillary structure remains intact with their inputs for the flüssi- ge working medium.
  • FIGS. 1 and 2 show an embodiment of the LED lamp according to the invention with designed as a thermosiphon working space as a sectional view
  • Figure 2 shows an embodiment of the LED according to the invention with designed as a capillary heat pipe working space as a sectional view.
  • one LED 11 or a plurality of LEDs 11 are used, which are preferably designed as LED chips. These are each housed in a working ⁇ space 12, in which circulates a working fluid.
  • the circulation is shown with dash-dotted arrows for the working medium present in the gaseous state and with solid arrows for the working medium present as liquid.
  • the emission direction of the light generated by the LEDs is represented by a large arrow 13.
  • the LED lamp according to FIG. 1 also has the following structure.
  • the LED 11 is mounted on a support 14 (electrical contact not shown), wherein on the support 14, a housing structure 15 and a transparent cover plate 16 are further provided.
  • the carrier 14, the structure 15 and the cover plate 16 thus form the working space indicated 12 for the LED 11.
  • the described structure on both sides is continued so as to form an array of Ar ⁇ beits poll. It can be operated in this way so several LEDs.
  • the working space 12 is filled with a working medium 17, which evaporates due to the heat development on the LED 11.
  • te wall portion 18 serves as a reflector surface for the light irradiated from the LED 11 from ⁇ light and at the same time as a condensing surface for the working medium, which runs down this wall part and finds its way back so in the bottom 19 of the working space is designed as a thermosyphon ,
  • a cooling channel 20 is provided in the structure 15.
  • the transparent cover plate 16 undergoes reduced cooling, so that the 21 little or no diums contributes formed by them transparent wall ⁇ part for condensing the Häme-.
  • the working space 12 is designed as a capillary heat pipe.
  • the wall parts ⁇ 18 with a capillary structure 22 in the form of an openly porous coating are carried out.
  • These are in connection with a likewise filled with the capillary structure channel structure 22a, which is located below the LEDs 11, that is, opposite their radiating surfaces 23.
  • the radiating surfaces 23 are largely protected by the geometric structure of the carrier 14 from wetting, since there is an edge 24 around the radiating surfaces 23, which is formed by the carrier 14.
  • Be ⁇ networking of radiating surfaces 23 could be made on the capillary structure 22 which would have to be brought as close as possible to the edge of the radiating 23rd In this way, he ⁇ available round the clock cooling power for the LEDs could be doubled with an otherwise identical design of the LED lamp.
  • the housing according to FIG. 2 consists of several integrated components.
  • the side walls, which cooling ribs are externally coated 25 tra ⁇ gene and the inside with the capillary structure 22 are made of metal, for example aluminum.
  • the carrier 14 forms the bottom of the housing and is as
  • the cover plate is designed in the embodiment according to Figure 2 as Lin ⁇ senelement and closes the housing on the LEDs 11 opposite side.
  • the cycle of the working medium is Darge ⁇ represents. This vaporises on the LEDs and condenses into the channels of the capillary structure 22 cooled by the cooling fins from outside. There, it flows fluidly into the channel structures below the LEDs. For this purpose, a connection, not shown, between the capillary structure 22 and the channel structure 22a is required in the carrier 14.

Abstract

The invention relates to an LED lamp comprising at least one LED (11) which is arranged in a working space (12). According to the invention, the LED (11) is cooled by means of a heat pipe, which is formed directly by the working space (12) of the LED (11). Advantageously, the heat loss of the LED (11) can be transferred directly to the working medium (17), whereby advantageously very effective cooling is implemented. The evaporating working medium condenses, for example, on the lateral surface (18) of the working space (12) that is designed as a reflector, whereby reliable heat dissipation becomes possible. To support the return transport of the liquid working medium to the LED (11), the lateral surfaces (18) can be provided with a capillary structure.

Description

Beschreibung description
LED-Lampe mit Wärmerohr als Kühlung LED lamp with heat pipe as cooling
Die Erfindung betrifft eine LED-Lampe, bei der ein Wärmerohr zur Abführung der durch den Betrieb der LED erzeugten Wärme vorgesehen ist. Weiterhin weist diese LED-Lampe mindestens eine LED auf, die auf einem Träger montiert ist. Dieser Trä¬ ger wird von einem Gehäuse überspannt, das einen die LED be¬ herbergenden Arbeitsraum bildet und einen der Abstrahlfläche der LED gegenüberliegenden transparenten Wandteil aufweist, so dass die Lichtstrahlung der LED durch die Wandung des Gehäuses nach außen findet. The invention relates to an LED lamp in which a heat pipe is provided for dissipating the heat generated by the operation of the LED. Furthermore, this LED lamp has at least one LED, which is mounted on a support. This Trä ¬ ger is covered by a housing, which forms a the LED be ¬ herberg end working chamber and having one of the emission surface of the LED opposite the transparent wall portion, so that the light radiation of the LED place through the wall of the housing to the outside.
Als Wärmerohre im Sinne der Erfindung soll eine nicht zwangs¬ läufig rohrförmige technische Einrichtung verstanden werden, welche einen Innenraum beherbergt, der hermetisch gegenüber der Umgebung abgeschlossen ist. Dieser Innenraum enthält ein Arbeitsmedium. In einem Bereich des Wärmerohres, der zur Kühlung seiner Umgebung vorgesehen ist, verdampft das Arbeitsmedium und nimmt damit die zur Verdampfung erforderliche Wärme¬ energie auf und in einem anderen Bereich, in dem Wärme abgeführt werden soll, kondensiert das Arbeitsmedium, wodurch die bei der Kondensation frei werdende Wärmeenergie in diesem Be¬ reich abgegeben wird. As heat pipes in the context of the invention, a not necessarily ¬ provisionally tubular technical device is to be understood, which houses an interior that is hermetically sealed from the environment. This interior contains a working medium. In a region of the heat pipe, which is intended to cool its environment, the working medium evaporates and thus absorbs the heat ¬ energy required for evaporation and in another area in which heat is to be dissipated, condenses the working fluid, which in the condensation released heat energy is released in this Be ¬ rich.
Wärmerohre können in verschiedenen Bauformen verwendet werden. Wird die Schwerkraft ausgenutzt, um einen Kreislauf des Arbeitsmediums zu erzeugen, wird ein nach diesem Prinzip arbeitendes Wärmerohr auch als Thermosiphon bezeichnet. Das flüssige Arbeitsmedium fließt dann immer zum geodätisch tiefsten Punkt des Thermosiphons , der auch als Sumpf bezeichnet wird und den Bereich bildet, in dem das Wärmerohr Wärme¬ energie aufnehmen kann. Das verdampfende Arbeitsmedium steigt im Thermosiphon dann nach oben und gibt Heat pipes can be used in various designs. When gravity is used to create a cycle of working fluid, a heat pipe operating on this principle is also called a thermosyphon. The liquid working fluid then always flows to the geodesic lowest point of the thermosyphon, which is also referred to as a sump and forms the area in which the heat pipe can absorb ¬ heat energy. The evaporating working medium rises in the thermosyphon then up and there
Wärmeenergie unter Kondensation wieder Heat energy under condensation again
Um von der Einbaulage unabhängig zu sein, können Wärmerohre auch mit kapillaren Strukturen im Inneren versehen werden. Diese kapillaren Strukturen befördern innerhalb der darin ausgebildeten kapillaren Kanäle das flüssige Arbeitsmedium weitgehend unabhängig von der Einbaulage zu dem zu kühlenden Bereich. Diese Wärmerohre werden im Deutschen häufig als „Heatpipes" bezeichnet. Auch die Bezeichnung „Kapillar- Heatpipe" ist gebräuchlich. Im Rahmen dieser Anmeldung soll zur Vorbeugung vor Missverständnissen der Begriff „Kapillar- Heatpipe" vewendet werden. In order to be independent of the installation position, heat pipes can also be provided with capillary structures in the interior. These capillary structures convey within the capillary channels formed therein, the liquid working medium largely independent of the mounting position to the area to be cooled. These heat pipes are often referred to in German as "heatpipes." The term "capillary heat pipe" is also common. In the context of this application, the term "capillary heat pipe" should be used to prevent misunderstandings.
Eine LED-Lampe der eingangs angegebenen Art ist beispielswei¬ se in der US 2009/0002995 AI beschrieben. Diese LED-Lampe weist einen transparenten Lampenkolben auf, in dessen Inneren ein dreidimensionaler Träger für einzelne LEDs vorgesehen ist. Dieser dreidimensionale Träger ist thermisch leitend mit mehreren Wärmerohren verbunden, welche in einen weiteren Bereich der LED-Lampe führen, der mit Kühlrippen ausgestattet ist. Mit Hilfe der Wärmerohre wird die beim Betrieb der LEDs entstehende Wärme in den mit den Kühlrippen versehenen Bereich abgeführt. An LED lamp of the type described is beispielswei ¬ se in US 2009/0002995 AI described. This LED lamp has a transparent lamp bulb, inside which a three-dimensional support for individual LEDs is provided. This three-dimensional support is thermally conductively connected to a plurality of heat pipes, which lead into a further region of the LED lamp, which is equipped with cooling fins. With the help of the heat pipes, the heat generated during operation of the LEDs is dissipated in the area provided with the cooling fins.
Die durch die LEDs produzierte Wärme erwärmt also zunächst den Träger, wobei dieser die Wärme dann an die thermisch leitend mit diesem verbundenen Wärmerohre abgibt. Der Träger dient somit auch zur Wärmeübertragung zwischen den LEDs und den Wärmerohren. The heat produced by the LEDs thus first heats the carrier, which then delivers the heat to the thermally conductive connected with this heat pipes. The carrier thus also serves to transfer heat between the LEDs and the heat pipes.
Die Aufgabe der Erfindung liegt darin, eine LED-Lampe an¬ zugeben, die mit einer vergleichsweise hohen Leistung betrie- ben werden kann. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass das Wärmerohr durch den Arbeitsraum der LED-Lampe, d. h. den Raum, in dem die LED untergebracht ist, gebildet ist. Dies wird dadurch erreicht, dass der Arbeitsraum gegenüber der Umgebung hermetisch abgeschlossen ist und ein Arbeitsmedium enthält, welches bei der Betriebstemperatur der LED gasförmig und bei der Betriebstemperatur des Gehäuses flüssig vorliegt. Mit anderen Worten wird die LED erfindungsgemäß in das Wärme- rohr selbst eingebaut. Dies bewirkt, dass die LED (oder auch mehrere LEDs) die entstehende Wärme direkt an das Arbeitsme¬ dium abgeben können, ohne dass dabei ein Wärmeübergang durch den Träger der LED und die Wandungen des Wärmerohres erforderlich ist. Hierdurch wird vorteilhaft die Wärmeabfuhr an den LEDs stark gesteigert, da diese nicht mehr von der Wärme¬ leitfähigkeit des Trägers und der Wandung des Wärmerohrs ab¬ hängig ist, sondern direkt zur Verdampfung des Arbeitsmediums führt. Hierdurch lassen sich vorteilhaft höhere Leistungen beim Betrieb der LED erreichen, da die dabei entstehende Ver- lustwärme, die die Funktion der LED beeinträchtigen oder gefährden könnte, zuverlässig abgeführt werden kann. Dadurch ist auch eine höhere Lichtausbeute möglich, insbesondere kön¬ nen mehrere LEDs dicht gepackt werden, weil die Wärmeabgabe nicht durch die Wärmeleitungseigenschaften des Trägers be- grenzt werden. The object of the invention is to add an LED lamp ¬ which can be operated ben with a comparatively high power. This object is achieved in that the heat pipe through the working space of the LED lamp, ie the space in which the LED is housed, is formed. This is achieved in that the working space is hermetically sealed from the environment and contains a working medium which is gaseous at the operating temperature of the LED and liquid at the operating temperature of the housing. In other words, according to the invention, the LED is incorporated in the heat pipe itself. This causes the LED (or even several LEDs) can deliver the resulting heat directly to the Arbeitsme ¬ dium, without causing a heat transfer through the support of the LED and the walls of the heat pipe is required. In this way, the heat dissipation of the LEDs is greatly increased advantageous since it is no longer from the heat ¬ conductivity of the carrier and the wall of the heat pipe from ¬ dependent, but leads to the evaporation of the working medium. As a result, it is advantageously possible to achieve higher outputs during operation of the LED, since the loss heat produced thereby, which could impair or jeopardize the function of the LED, can be reliably dissipated. As a result, a higher light output is possible, in particular Kings ¬ nen LEDs are tightly packed, because the heat output is not limited by the heat conduction properties of the carrier.
Bei der Auslegung des Arbeitsraums als Wärmerohr ist, wie be¬ reits erwähnt, die Betriebstemperatur der LED und die Be¬ triebstemperatur des Gehäuses zu berücksichtigen, wobei sich im Betrieb ein Gleichgewichtszustand einstellt. Das Arbeits¬ medium ist hinsichtlich seiner Verdampfungstemperatur so zu wählen, dass es an der LED verdampft und an den Wänden des Gehäuses wieder kondensieren kann. Mögliche Arbeitsmedien sind H20, (CH3)CO, (CH3)OH oder C6H6. Der Träger für die LED zeichnet sich dadurch aus, dass auf diesem die LED zuverlässig gehalten werden kann. Insbesondere kann auf dem Träger auch eine elektrische Kontaktierung der LED erfolgen, damit diese mit einer Energieversorgung verbunden werden kann. Der Träger kann beispielsweise aus einer Leiterplatte bestehen. Der Träger kann allerdings auch ein integrativer Teil des Gehäuses sein. Das Gehäuse ist weiter¬ hin zumindest gegenüber der Abstrahlfläche der LED transpa- rent ausgebildet. Dies bedeutet, dass zumindest das von der LED abgestrahlte Nutzlicht durch diesen transparenten Wandteil hindurchtreten kann. Für Lichtwellenlängen, die nicht im Nutzlicht enthalten sind, muss der Wandteil im Gehäuse nicht notwendigerweise transparent sein. , The operating temperature of the LED and the Be ¬ operating temperature of the housing is in the interpretation of the working chamber as a heat pipe as mentioned already be ¬, to take into account being established a condition of equilibrium during operation. The working ¬ medium is to be selected in terms of its evaporation temperature so that it evaporates at the LED and can condense on the walls of the housing again. Possible working media are H 2 O, (CH 3 ) CO, (CH 3 ) OH or C6H6. The carrier for the LED is characterized in that the LED can be reliably held on this. In particular, an electrical contacting of the LED can also take place on the carrier so that it can be connected to a power supply. The carrier may for example consist of a printed circuit board. However, the carrier may also be an integral part of the housing. The housing is further formed at least ¬ out with respect to the emitting surface of the LED transparently. This means that at least the useful light emitted by the LED can pass through this transparent wall part. For light wavelengths that are not included in the useful light, the wall portion in the housing need not necessarily be transparent.
Gemäß einer Ausgestaltung der Erfindung ist vorgesehen, dass der die LED beherbergende Arbeitsraum als Thermosiphon ausgebildet ist, wobei der Sumpf des Thermosiphons im Bereich der LED liegt. Hierbei handelt es sich um eine Bauform der LED- Lampe, bei der die Einbaulage der LED-Lampe am Einbauort vor¬ geschrieben sein muss. Es muss nämlich sichergestellt werden, dass die LED im Sumpf des Thermosiphons liegt, wo sich das Arbeitsmedium aufgrund der Schwerkraft sammelt, um durch die Erwärmung an der LED wieder zu verdampfen. Der Vorteil der Ausführung des Wärmerohrs als Thermosiphon liegt darin, das diese Bauform besonders einfach realisierbar ist. According to one embodiment of the invention, it is provided that the working space accommodating the LED is designed as a thermosyphon, the bottom of the thermosyphon lying in the region of the LED. This is a design of the LED lamp, in which the mounting position of the LED lamp at the installation must be written ¬ . It must be ensured that the LED is located in the bottom of the thermosyphon, where the working fluid collects by gravity to re-evaporate by the heating of the LED. The advantage of the design of the heat pipe as a thermosyphon lies in the fact that this design is particularly easy to implement.
Gemäß einer alternativen Ausgestaltung der Erfindung ist vorgesehen, dass das Wärmerohr als Kapillar-Heatpipe ausgebildet ist, wobei zumindest ein Teil des Gehäuses im Inneren mit ei¬ ner kapillaren Struktur versehen ist, die mit der LED in fluidischer Verbindung steht. Durch die fluidische Verbindung der LED mit der kapillaren Struktur wird vorteilhaft sichergestellt, dass weitgehend unabhängig von der Einbaulage der LED-Lampe eine Versorgung der LED mit dem flüssigen Arbeitsmedium sichergestellt wird. Hierbei werden die wirkenden Ka¬ pillarkräfte in der kapillaren Struktur ausgenutzt, die das flüssige Arbeitsmedium zur LED hin transportieren. Die flui- dische Verbindung ist vorteilhaft dadurch gewährleistet, dass die Ausgänge der kapillaren Struktur hinreichend nahe an die LED herangeführt werden, so dass der Zwischenraum zwischen den Ausgängen und der LED überbrückt werden kann. Eine andere Möglichkeit liegt darin, die fluidische Verbindung durch Ka- nalstrukturen zu realisieren, die eine Leitung des flüssigen Arbeitsmediums von der kapillaren Struktur zu der LED erlauben. Besonders vorteilhaft ist es, wenn die kapillare Struk¬ tur bis an die LED heranreicht oder diese in Teilbereichen ihrer Oberfläche abdeckt. Die kapillaren Kanäle der kapilla- ren Struktur münden bei dieser Bauform vorteilhaft direkt auf die Oberfläche der LED, wodurch ein zuverlässiger Transport des Arbeitsmediums hin zur LED gewährleistet ist und dort ei¬ ne zuverlässige Benetzung der zu kühlenden Oberfläche der LED erfolgen kann. Der zu kühlende Teil der Oberfläche darf daher nicht von der kapillaren Struktur abgedeckt werden. Dies ist auf jeden Fall der Bereich der LED, die gleichzeitig das Licht abstrahlen soll und daher nicht von der kapillaren Struktur bedeckt werden darf. Die kapillare Struktur kann beispielsweise durch eine offen poröse Schicht im Inneren des Gehäuses ausgebildet sein. Of¬ fen poröse Materialien lassen sich beispielsweise durch Sintern erzeugen. Als Schicht im Inneren des Gehäuses ist eine Zone der Wandung des Gehäuses zu verstehen, die andere Eigen- schaffen hat, als das Restgehäuse. Die Schicht kann bei¬ spielsweise durch klassische Beschichtungsverfahren herge¬ stellt werden, wobei sich für die Herstellung poröser Schichten beispielsweise das Kaltgasspritzen eignet. Die Schicht kann jedoch auch durch eine Oberflächenbehandlung des Inneren des Gehäuses zur Herstellung der kapillaren Kanäle, beispielsweise eine Ätzbehandlung, hergestellt werden. Die un¬ terschiedlichen Eigenschaften der Schicht im Vergleich zur restlichen Wandung des Gehäuses besteht dann in der spezifischen Masse des Schichtbereiches. According to an alternative embodiment of the invention, it is provided that the heat pipe is designed as a capillary heat pipe, wherein at least a part of the housing is provided in the interior with egg ¬ ner capillary structure, which is in fluid communication with the LED. Through the fluidic connection of the LED with the capillary structure is advantageously ensured that largely independent of the mounting position of the LED lamp a supply of the LED is ensured with the liquid working medium. Here, the acting Ka ¬ pillarkräfte be exploited in the capillary structure, which transport the liquid working medium for LED back. The fluidic connection is advantageously ensured by bringing the outputs of the capillary structure sufficiently close to the LED so that the gap between the outputs and the LED can be bridged. Another possibility is to realize the fluidic connection by channel structures which permit a conduction of the liquid working medium from the capillary structure to the LED. It is particularly advantageous when the capillary structural ¬ structure extends up to the LED or covers it in part areas of its surface. The capillary channels of the capillary structure as a result if this construction advantageously directly to the surface of the LED, whereby a reliable transport of the working medium is ensured toward the LED and there ei ¬ ne reliable wetting of the surface to be cooled can be made of the LED. The part of the surface to be cooled must therefore not be covered by the capillary structure. This is definitely the area of the LED that is supposed to radiate the light at the same time and therefore should not be covered by the capillary structure. The capillary structure may be formed, for example, by an open porous layer in the interior of the housing. Of ¬ fen porous materials can be produced for example by sintering. A layer in the interior of the housing is to be understood as a zone of the wall of the housing which has other properties than the remaining housing. The layer may be in ¬ Herge ¬ provides example by conventional coating techniques, wherein suitable, for example, cold gas spraying for the production of porous layers. However, the layer can also be finished by a surface treatment of the interior of the housing for producing the capillary channels, for example an etching treatment. The un ¬ ferent properties of the layer compared to the remaining wall of the housing then exists in the specific mass of the layer region.
Eine andere Ausgestaltung der Erfindung erhält man, wenn im Arbeitsraum das Arbeitsmedium in einer Menge vorhanden ist, dass die Abstrahlfläche der LED im Betrieb vollständig mit dem Arbeitsmedium benetzt ist. Bei dieser Menge an Arbeitsme¬ dium wird vorteilhaft die optimale Kühlleistung erreicht. Ei¬ ne weitere Steigerung der Menge von Arbeitsmedium bewirkt keine weitere Verbesserung der Kühlleistung, wobei allerdings eine größere Menge beispielsweise vorgesehen werden kann, um eventuelle Verluste an Arbeitsmedium aufgrund von Undichtig¬ keiten auszugleichen. Außerdem kann die LED-Lampe auch mit einer geringeren Menge an Arbeitsmedium betrieben werden, wobei hierdurch die Wärmeabfuhr von der LED verringert wird. Über die Menge an Arbeitsmedium kann daher auch die Kühlleistung des Systems direkt beeinflusst werden. Another embodiment of the invention is obtained when the working medium is present in an amount in the working space, that the emitting surface of the LED is completely wetted during operation with the working medium. With this amount of Arbeitsme ¬ dium the optimal cooling capacity is advantageously achieved. Ei ¬ ne further increase in the amount of working fluid causes no further improvement in the cooling performance, although a larger amount, for example, can be provided to compensate for any losses of working fluid due to leaks ¬ keiten. In addition, the LED lamp can also be operated with a smaller amount of working medium, thereby reducing the heat dissipation from the LED is reduced. The amount of working medium can therefore also directly influence the cooling capacity of the system.
Eine besondere Ausgestaltung der Erfindung wird erhalten, wenn zwischen dem Träger und der LED eine für das Arbeitsmedium zugängliche Kanalstruktur vorgesehen ist. In diese Kanalstruktur kann das Arbeitsmedium eindringen, so dass eine Kühlung der LED auch von der Unterseite, d. h. der dem Träger zugewandten Seite möglich ist. Hierdurch steht eine größere Fläche zur Abgabe der entstehenden Wärme zur Verfügung, wodurch vorteilhaft die Kühlleistung weiter gesteigert werden kann. Die Kanalstruktur unterhalb der LED kann selbst ebenfalls kapillar ausgeführt sein. Es ist aber auch möglich, größere Hohlräume vorzusehen, die sich mit dem Arbeitsmedium füllen. Im Falle der Ausführung des Arbeitsraumes als Thermo- siphon wird dies durch die Schwerkraft gewährleistet. Im Fal- le der Ausführung des Arbeitsraumes als Kapillar-Heatpipe muss die kapillare Struktur derart angeordnet werden, dass diese auch die Speisung der Kanalstruktur unterhalb der LED gewährleistet . A particular embodiment of the invention is obtained when a channel structure accessible to the working medium is provided between the support and the LED. In this channel structure, the working medium can penetrate, so that a cooling of the LED also from the bottom, ie the side facing the wearer is possible. As a result, there is a larger area for the delivery of the resulting heat available, which advantageously the cooling capacity can be further increased. The channel structure below the LED itself can also be designed to be capillary. But it is also possible to provide larger cavities that fill with the working fluid. In the case of execution of the workspace as a thermosiphon this is ensured by gravity. In the case In the embodiment of the working space as a capillary heat pipe, the capillary structure must be arranged in such a way that it also ensures the feeding of the channel structure below the LED.
Besonders vorteilhaft ist es, wenn die LED als LED-Chip aus¬ geführt ist und im Träger mit ihren Seitenflächen gehalten ist. Die Seitenflächen können dann gleichzeitig einer elektrischen Kontaktierung dienen. Weiterhin steht die gesamte Un- terseite des LED-Chips einer Kühlung zur Verfügung, so dass aufgrund der geringen Abmessungen des LED-Chips eine optimale Wärmeabfuhr erreicht werden kann. Außerdem kann für bestimmte Anwendungsfälle vorteilhaft vorgesehen werden, dass die Ab¬ strahlfläche der LED vor einer Benetzung mit dem Arbeitsmedi- um geschützt ist. Dies hat den Vorteil, dass der Strahlengang des abgestrahlten Lichtes nicht durch flüssiges Arbeitsmedium gestört wird. Die Kühlung der LED erfolgt dann von der Rückseite. Eine Benetzung der LED auf der Abstrahlfläche kann verhindert werden, indem beispielsweise eine schwer benetzba- re Oberfläche (Lotuseffekt-Oberfläche) vorgesehen wird. Diese kann beispielsweise durch eine für das abgestrahlte Licht der LED transparente Beschichtung erfolgen. Eine andere Möglichkeit liegt darin, den Schutz mechanisch auszubilden. Beispielsweise kann bei einer als Thermosyphon ausgeführten LED- Lampe eine Umrandung um die LED dafür sorgen, dass kein flüssiges Kühlmedium von den Seiten auf die Abstrahlfläche der LED fließt. It is particularly advantageous if the LED is guided as an LED chip from ¬ and is held in the carrier with their side surfaces. The side surfaces can then simultaneously serve an electrical contact. Furthermore, the entire bottom side of the LED chip is available for cooling, so that optimal heat dissipation can be achieved due to the small dimensions of the LED chip. In addition, it can advantageously be provided for certain applications that the Ab ¬ beam surface of the LED is protected against wetting with the Arbeitsmedi-. This has the advantage that the beam path of the emitted light is not disturbed by liquid working medium. The cooling of the LED then takes place from the back. Wetting of the LED on the radiating surface can be prevented by, for example, providing a surface which is difficult to wet (lotus effect surface). This can be done for example by a transparent to the radiated light of the LED coating. Another possibility is to mechanically form the protection. For example, in an LED lamp designed as a thermosiphon, a border around the LED can ensure that no liquid cooling medium flows from the sides onto the emitting surface of the LED.
Eine andere Ausgestaltung der Erfindung sieht vor, dass der transparente Wandteil vor einer Benetzung mit dem Arbeitsme¬ dium geschützt ist. Auch dies ist eine Maßnahme, die vorteil¬ haft einen ungestörten Strahlengang durch den transparenten Wandteil gewährleistet. Ein Schutz vor einer Benetzung mit dem Arbeitsmedium kann ebenfalls durch eine schwer benetzbare Oberfläche des transparenten Wandteils erreicht werden. Eine andere Möglichkeit ist ein temperaturgesteuerter Schutz des transparenten Wandteils. Wenn dieser sich stärker erwärmt als die anderen Wandteile, so wird das Arbeitsmedium bevorzugt an den anderen Wandteilen kondensieren. Dies kann beispielsweise vorteilhaft dadurch erreicht werden, dass das Gehäuse außen mit Kühlrippen versehen ist. Wenn diese Kühlrippen lediglich außerhalb des transparenten Wandteils vorgesehen sind, so wird der Wärmedurchgang in den mit den Kühlrippen versehenen Bereichen erhöht und auf diese Weise der transparente Wand¬ teil vor einer Benetzung geschützt. Another embodiment of the invention provides that the transparent wall part is protected against wetting with the Arbeitsme ¬ dium. Again, this is a measure which ¬ advantageous way ensures an undisturbed beam path through the transparent wall portion. Protection against wetting with the working medium can also be achieved by a difficultly wettable Surface of the transparent wall part can be achieved. Another possibility is a temperature-controlled protection of the transparent wall part. If it heats up more than the other wall parts, the working medium will preferentially condense on the other wall parts. This can advantageously be achieved, for example, by providing the housing with cooling fins on the outside. If these fins are provided only outside the transparent wall portion, the heat transfer is increased in the provided with the cooling fin areas and protected in this manner, the transparent wall ¬ part from being wetted.
Vorteilhaft ist es auch, wenn das Gehäuse innen als Reflektor ausgebildet ist. Hierzu stehen selbstverständlich nur die Teile des Gehäuses zur Verfügung, welche nicht den transpa¬ renten Wandteil bilden. Der Reflektor kann beispielsweise durch eine geeignete Beschichtung der Innenwände des Gehäuses erfolgen. Hierbei muss berücksichtigt werden, dass eine even¬ tuelle kapillare Struktur mit ihren Eingängen für das flüssi- ge Arbeitsmedium erhalten bleibt. It is also advantageous if the housing is formed inside as a reflector. For this purpose, only the parts of the housing are of course available, which do not form the transpa ¬ pensions wall part. The reflector can be made for example by a suitable coating of the inner walls of the housing. It must be ensured that an even ¬ tual capillary structure remains intact with their inputs for the flüssi- ge working medium.
Weitere Einzelheiten der Erfindung werden im Folgenden anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente sind dabei in den einzelnen Figuren je- weils mit den gleichen Bezugszeichen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen Further details of the invention will be described below with reference to the drawing. Identical or corresponding drawing elements are in each case provided with the same reference symbols in the individual figures and are only explained several times to the extent that differences arise between the individual figures. Show it
Figur 1 ein Ausführungsbeispiel der erfindungsgemäßen LED- Lampe mit als Thermosyphon ausgeführtem Arbeitsraum als Schnittdarstellung und Figur 2 ein Ausführungsbeispiel der erfindungsgemäßen LED mit als Kapillar-Heatpipe ausgeführten Arbeitsraum als Schnittdarstellung. Bei den LED-Lampen gemäß Figur 1 und 2 kommen eine LED 11 oder mehrere LEDs 11 zum Einsatz, die vorzugsweise als LED- Chips ausgeführt sind. Diese sind jeweils in einem Arbeits¬ raum 12 untergebracht, in dem ein Arbeitsmedium zirkuliert. Die Zirkulation ist für das im gasförmigen Zustand vorliegen- de Arbeitsmedium mit strichpunktierten Pfeilen und für das als Flüssigkeit vorliegende Arbeitsmedium mit durchgezogenen Pfeilen dargestellt. Außerdem ist die Abstrahlrichtung des durch die LEDs erzeugten Lichtes durch einen großen Pfeil 13 dargestellt . Figure 1 shows an embodiment of the LED lamp according to the invention with designed as a thermosiphon working space as a sectional view and Figure 2 shows an embodiment of the LED according to the invention with designed as a capillary heat pipe working space as a sectional view. In the case of the LED lamps according to FIGS. 1 and 2, one LED 11 or a plurality of LEDs 11 are used, which are preferably designed as LED chips. These are each housed in a working ¬ space 12, in which circulates a working fluid. The circulation is shown with dash-dotted arrows for the working medium present in the gaseous state and with solid arrows for the working medium present as liquid. In addition, the emission direction of the light generated by the LEDs is represented by a large arrow 13.
Die LED-Lampe gemäß Figur 1 weist weiterhin folgenden Aufbau auf. Die LED 11 ist auf einen Träger 14 montiert (elektrische Kontaktierung nicht dargestellt) , wobei auf dem Träger 14 weiterhin ein Gehäuseaufbau 15 und eine transparente Deck- platte 16 vorgesehen sind. Der Träger 14, der Aufbau 15 und die Deckplatte 16 bilden damit den Arbeitsraum 12 für die LED 11. Wie in Figur 1 angedeutet, wird die beschriebene Struktur zu beiden Seiten fortgeführt, so dass sich ein Array von Ar¬ beitsräumen bildet. Es können auf diese Weise also mehrere LEDs betrieben werden. The LED lamp according to FIG. 1 also has the following structure. The LED 11 is mounted on a support 14 (electrical contact not shown), wherein on the support 14, a housing structure 15 and a transparent cover plate 16 are further provided. The carrier 14, the structure 15 and the cover plate 16 thus form the working space indicated 12 for the LED 11. As shown in Figure 1, the described structure on both sides is continued so as to form an array of Ar ¬ beitsräumen. It can be operated in this way so several LEDs.
Der Arbeitsraum 12 ist mit einem Arbeitsmedium 17 gefüllt, welches aufgrund der Wärmeentwicklung an der LED 11 verdampft. Im Arbeitsraum dient der durch den Aufbau 15 gebilde- te Wandteil 18 als Reflektorfläche für das von der LED 11 ab¬ gestrahlte Licht und gleichzeitig als Kondensationsfläche für das Arbeitsmedium, was an diesem Wandteil herabläuft und so in den Sumpf 19 des als Thermosyphon ausgeführten Arbeitsraums zurückfindet. Um eine Kondensation am Wandteil 18 zu begünstigen, ist im Aufbau 15 ein Kühlkanal 20 vorgesehen. Die transparente Deckplatte 16 erfährt dagegen eine geringere Kühlung, so dass der durch diese gebildete transparente Wand¬ teil 21 wenig oder gar nicht zur Kondensation des Arbeitsme- diums beiträgt. The working space 12 is filled with a working medium 17, which evaporates due to the heat development on the LED 11. In the working space of the gebilde- by the structure 15 te wall portion 18 serves as a reflector surface for the light irradiated from the LED 11 from ¬ light and at the same time as a condensing surface for the working medium, which runs down this wall part and finds its way back so in the bottom 19 of the working space is designed as a thermosyphon , To a condensation on the wall part 18 to favor, a cooling channel 20 is provided in the structure 15. On the other hand the transparent cover plate 16 undergoes reduced cooling, so that the 21 little or no diums contributes formed by them transparent wall ¬ part for condensing the Arbeitsme-.
Bei der LED-Lampe gemäß Figur 2 ist der Arbeitsraum 12 als Kapillar-Heatpipe ausgeführt. Dies bedeutet, dass die Wand¬ teile 18 mit einer kapillaren Struktur 22 in Form einer offen porösen Beschichtung ausgeführt sind. Diese stehen in Verbindung mit einer ebenfalls mit der kapillaren Struktur ausgefüllten Kanalstruktur 22a, die sich unterhalb der LEDs 11, also gegenüberliegend ihrer Abstrahlflächen 23 befindet. Die Abstrahlflächen 23 sind durch den geometrischen Aufbau des Trägers 14 vor einer Benetzung weitgehend geschützt, da sich um die Abstrahlflächen 23 herum ein Rand 24 ergibt, der durch den Träger 14 ausgebildet ist. Nicht dargestellt, allerdings ebenso vorstellbar, wäre eine Bauform des Trägers, die einen solchen Rand nicht aufweist, also mit der Abstrahlfläche 23 der LEDs in einer Ebene läge. In diesem Fall könnte eine Be¬ netzung der Abstrahlflächen 23 über die kapillare Struktur 22 erfolgen, die möglichst nahe an den Rand der Abstrahlflächen 23 herangeführt werden müsste. Hierdurch ließe sich die er¬ reichbare Kühlleistung für die LEDs bei ansonsten gleicher Bauform der LED-Lampe verdoppeln. In the LED lamp according to Figure 2, the working space 12 is designed as a capillary heat pipe. This means that the wall parts ¬ 18 with a capillary structure 22 in the form of an openly porous coating are carried out. These are in connection with a likewise filled with the capillary structure channel structure 22a, which is located below the LEDs 11, that is, opposite their radiating surfaces 23. The radiating surfaces 23 are largely protected by the geometric structure of the carrier 14 from wetting, since there is an edge 24 around the radiating surfaces 23, which is formed by the carrier 14. Not shown, but also conceivable, would be a design of the carrier, which does not have such an edge, so with the emitting surface 23 of the LEDs would be in a plane. In this case, Be ¬ networking of radiating surfaces 23 could be made on the capillary structure 22 which would have to be brought as close as possible to the edge of the radiating 23rd In this way, he ¬ available round the clock cooling power for the LEDs could be doubled with an otherwise identical design of the LED lamp.
Das Gehäuse gemäß Figur 2 besteht aus mehreren integrierten Komponenten. Die Seitenwände, welche außen Kühlrippen 25 tra¬ gen und innen mit der kapillaren Struktur 22 beschichtet sind, sind aus Metall, beispielsweise Aluminium gefertigt. Der Träger 14 bildet den Boden des Gehäuses und ist als The housing according to FIG. 2 consists of several integrated components. The side walls, which cooling ribs are externally coated 25 tra ¬ gene and the inside with the capillary structure 22 are made of metal, for example aluminum. The carrier 14 forms the bottom of the housing and is as
Kunststoffteil in das metallische Gehäusebauteil einge¬ spritzt. Eine elektrische Kontaktierung der LEDs erfolgt in nicht dargestellter Weise über die Seitenflächen der LEDs, wobei die elektrischen Leiter ebenfalls in nicht dargestell¬ ter Weise in den Träger eingespritzt sein können. Die Deckplatte ist bei dem Ausführungsbeispiel gemäß Figur 2 als Lin¬ senelement ausgeführt und verschließt das Gehäuse auf der den LEDs 11 gegenüberliegenden Seite. Plastic part injected into the metallic housing component ¬ . An electrical contacting of the LEDs takes place in a manner not shown on the side surfaces of the LEDs, wherein the electrical conductors can also be injected in not dargestell ¬ ter manner in the carrier. The cover plate is designed in the embodiment according to Figure 2 as Lin ¬ senelement and closes the housing on the LEDs 11 opposite side.
Auch in Figur 2 ist der Kreislauf des Arbeitsmediums darge¬ stellt. Dieses verdampft an den LEDs und kondensiert in den von außen durch die Kühlrippen gekühlten Kanälen der kapilla- ren Struktur 22. Dort läuft es flüssig in die unter den LEDs liegenden Kanalstrukturen. Hierzu ist im Träger 14 eine nicht näher dargestellte Verbindung zwischen der kapillaren Struktur 22 und der Kanalstruktur 22a erforderlich. Also in Figure 2, the cycle of the working medium is Darge ¬ represents. This vaporises on the LEDs and condenses into the channels of the capillary structure 22 cooled by the cooling fins from outside. There, it flows fluidly into the channel structures below the LEDs. For this purpose, a connection, not shown, between the capillary structure 22 and the channel structure 22a is required in the carrier 14.

Claims

Patentansprüche claims
1. LED-Lampe, aufweisend 1. LED lamp, comprising
• mindestens eine LED (11), die auf einem Träger (14) mon- tiert ist,  At least one LED (11) mounted on a support (14),
• ein den Träger (14) überspannendes Gehäuse (14, 15, 16), das einen die LED beherbergenden Arbeitsraum (12) bildet und einen der Abstrahlfläche (23) der LED (11) gegenüber¬ liegenden transparenten Wandteil (18) aufweist, und • a carrier (14) spanning the housing (14, 15, 16) which forms the LED harboring working chamber (12) and one of the emission face (23) of the LED (11) opposite ¬ lying transparent wall part (18), and
· ein Wärmerohr zur Abführung der durch den Betrieb der LED (11) erzeugten Wärme, A heat pipe for dissipating the heat generated by the operation of the LED (11),
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass das Wärmerohr durch den Arbeitsraum (12) gebildet ist, wobei that the heat pipe is formed by the working space (12), wherein
· dieser gegenüber der Umgebung hermetisch abgeschlossen · This hermetically sealed against the environment
ist,  is
• ein Arbeitsmedium enthält, welches bei der Betriebstempe¬ ratur der LED (11) gasförmig und bei der Betriebstempera¬ tur des Gehäuses (14, 15, 16) flüssig vorliegt. • containing a working medium, which at the operating temperature of Tempe ¬ LED (11) and gaseous at the operating temperature ¬ structure of the housing (14, 15, 16) is liquid.
2. LED-Lampe nach Anspruch 1, 2. LED lamp according to claim 1,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass der Arbeitsraum als Thermosyphon ausgebildet ist, wobei der Sumpf (19) des Thermosyphons im Bereich der LED liegt. that the working space is designed as a thermosiphon, wherein the sump (19) of the thermosiphon is in the range of the LED.
3. LED-Lampe nach Anspruch 1, 3. LED lamp according to claim 1,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass der Arbeitsraum als Kapillar-Heatpipe ausgebildet ist, wobei zumindest ein Teil des Gehäuses (14, 15, 16) im Inneren mit einer kapillaren Struktur (22) versehen ist, die mit der LED in fluidischer Verbindung seht. that the working space is designed as a capillary heat pipe, wherein at least a part of the housing (14, 15, 16) is provided in the interior with a capillary structure (22), which see in fluid communication with the LED.
4. LED-Lampe nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , 4. LED lamp according to claim 3, characterized ,
dass die kapillare Struktur (22) bis an die LED heranreicht oder dies in Teilbereichen ihrer Oberfläche abdeckt. the capillary structure (22) reaches as far as the LED or covers it in partial areas of its surface.
5. LED-Lampe nach einem der Ansprüche 3 oder 4, 5. LED lamp according to one of claims 3 or 4,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass die kapillare Struktur (22) durch eine offen poröse Schicht im Inneren des Gehäuses (14, 15, 16) ausgebildet ist. in that the capillary structure (22) is formed by an open porous layer in the interior of the housing (14, 15, 16).
6. LED-Lampe nach einem der voranstehenden Ansprüche, 6. LED lamp according to one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass im Arbeitsraum (12) das Arbeitsmedium (17) in einer Menge vorhanden ist, dass die Abstrahlfläche die LED (11) im Be¬ trieb vollständig mit dem Arbeitsmedium (12) benetzt ist. that in the working chamber (12), the working medium (17) is present in an amount such that the emitting LED (11) in the loading ¬ operating completely with the working medium (12) is wetted.
7. LED-Lampe nach einem der voranstehenden Ansprüche, 7. LED lamp according to one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass zwischen dem Träger (14) und der LED (11) eine für das Arbeitsmedium zugängliche Kanalstruktur (22a) vorgesehen ist. in that a channel structure (22a) accessible to the working medium is provided between the carrier (14) and the LED (11).
8. LED-Lampe nach Anspruch 7, 8. LED lamp according to claim 7,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass die LED (11) als LED-Chip ausgeführt ist und im Träger (14) mit ihren Seitenflächen gehalten ist. the LED (11) is designed as an LED chip and is held in the carrier (14) with its side surfaces.
9. LED-Lampe nach einem der Ansprüche 7 oder 8, 9. LED lamp according to one of claims 7 or 8,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass die Abstrahlfläche der LED (11) vor einer Benetzung mit dem Arbeitsmedium geschützt ist. the emission surface of the LED (11) is protected against wetting with the working medium.
10. LED-Lampe nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , 10. LED lamp according to one of the preceding claims, d a d u c h e c e n e c e n e,
dass der transparente Wandteil (18) vor einer Benetzung mit dem Arbeismedium geschützt ist the transparent wall part (18) is protected against wetting with the working medium
11. LED-Lampe nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , 11. LED lamp according to one of the preceding claims, d a d u c h e c e n e c e n e,
dass das Gehäuse (14, 15, 16) außen mit Kühlrippen versehen ist . that the housing (14, 15, 16) is externally provided with cooling fins.
12. LED-Lampe nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , 12. LED lamp according to one of the preceding claims, d a d u c h e c e n e c e n e,
dass das Gehäuse innen als Reflektor ausgebildet ist. that the housing is formed inside as a reflector.
EP11704041A 2010-02-08 2011-02-07 Led lamp having a heat pipe for cooling Withdrawn EP2534417A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010007687A DE102010007687A1 (en) 2010-02-08 2010-02-08 LED lamp with heat pipe as cooling
PCT/EP2011/051703 WO2011095616A2 (en) 2010-02-08 2011-02-07 Led lamp having a heat pipe for cooling

Publications (1)

Publication Number Publication Date
EP2534417A2 true EP2534417A2 (en) 2012-12-19

Family

ID=44316699

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11704041A Withdrawn EP2534417A2 (en) 2010-02-08 2011-02-07 Led lamp having a heat pipe for cooling

Country Status (3)

Country Link
EP (1) EP2534417A2 (en)
DE (1) DE102010007687A1 (en)
WO (1) WO2011095616A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121155B4 (en) 2011-12-15 2014-01-02 Oechsler Aktiengesellschaft LED light with heat carrier housing
US9122582B2 (en) 2012-06-12 2015-09-01 International Business Machines Corporation File system for maintaining data versions in solid state memory
US9116793B2 (en) 2012-06-12 2015-08-25 International Business Machines Corporation Maintaining versions of data in solid state memory
US9135161B2 (en) 2012-06-12 2015-09-15 International Business Machines Corporation Flash translation layer system for maintaining data versions in solid state memory
DE102012211279A1 (en) 2012-06-29 2014-01-02 Osram Gmbh SEMICONDUCTOR LIGHTING DEVICE WITH HEATER EAR
DE102013201955B4 (en) * 2013-02-06 2017-02-16 Osram Gmbh Semiconductor lighting device with heat pipe
US9401468B2 (en) 2014-12-24 2016-07-26 GE Lighting Solutions, LLC Lamp with LED chips cooled by a phase transformation loop
DE102019213150A1 (en) 2019-08-30 2021-03-04 Würth Elektronik eiSos Gmbh & Co. KG Radiators and methods of radiating light

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410982B1 (en) * 1999-11-12 2002-06-25 Intel Corporation Heatpipesink having integrated heat pipe and heat sink
DE102005013208A1 (en) * 2004-03-21 2005-10-27 Späth, Christian, Dipl.-Designer Lighting unit has light emitting diodes mounted in housing tube filled with a cooling liquid
US7044620B2 (en) * 2004-04-30 2006-05-16 Guide Corporation LED assembly with reverse circuit board
DE102005057524A1 (en) * 2004-12-30 2006-07-13 Osram Opto Semiconductors Gmbh Cooling device for e.g. optoelectronic semiconductor chip, has two structured layers each with groove, where grooves are placed over one another to form outlet duct, and cooling device is integrated in housing of component to be cooled
EP1872400A4 (en) * 2005-04-05 2009-06-24 Tir Technology Lp Mounting assembly for optoelectronic devices
WO2007069119A1 (en) * 2005-12-14 2007-06-21 Philips Intellectual Property & Standards Gmbh Lighting device and method for manufacturing same
US7568817B2 (en) 2007-06-27 2009-08-04 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. LED lamp
DE102007055165A1 (en) * 2007-11-19 2009-05-20 Osram Gesellschaft mit beschränkter Haftung LED headlights
FR2926926A1 (en) * 2008-01-30 2009-07-31 Fd Eclairage Architectural Sa Electric light source for use in e.g. headlight of motor vehicle, has heat transfer fluid provided in thermal conductive contact with rear surface of plate/support of LED, where plate has dissipator immersed in heat transfer fluid

Also Published As

Publication number Publication date
WO2011095616A2 (en) 2011-08-11
WO2011095616A3 (en) 2011-11-10
DE102010007687A1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
WO2011095616A2 (en) Led lamp having a heat pipe for cooling
EP0009605B1 (en) Cooling structure for a semiconductor module
DE3617762C2 (en) Capillary-effect heat exchanger for a thermal operating system
EP0191419A2 (en) Semiconductor power module with integrated heat pipe
WO2008146129A2 (en) Flat heat pipe and cooling bodies using said heat pipe
DE102017200524A1 (en) Cooling device with a heat pipe and a latent heat storage, method for producing the same and electronic circuit
WO2007087791A1 (en) Vehicle headlight
EP1834355A1 (en) Cooling device for cooling a semiconductor component, in particular, an optoelectronic semiconductor component
DE102017218248A1 (en) Battery cell module, secondary battery and motor vehicle
DE102006019376A1 (en) Power radiator for e.g. insulated gate bipolar transistor component of inverter, has cooling plate, where one set of fins exhibits heat conductive material different from other set of fins and ends of fins are inserted into cooling plate
WO2013060357A1 (en) Light emitting component
WO2009024133A1 (en) Cooling device and lighting device
WO2009033891A2 (en) Electronic circuit arrangement having a heat sink that is functionally independent of the installed position, and heat sink therefor
DE102016218679A1 (en) Electronic assembly with a cooling device that can be filled with a coolant
DE202013002411U1 (en) Heat spreader with flat tube cooling element
DE102015218888A1 (en) Capacitor arrangement for operation on a DC voltage circuit
DE102013200212A1 (en) Battery cell for battery module for supplying electric drive of e.g. electric vehicle, has housing that is provided with current collectors that are designed with heat pipes
DE102008010784B3 (en) Heat removal technology polyvalent heat transfer device for at least one semiconductor device and associated test and operating method
AT520692B1 (en) accumulator
EP4071800A1 (en) Semiconductor assembly with cooling
DE112020003635T5 (en) re-entry flow cold plate
DE19963571A1 (en) Cooler
DE102019128871A1 (en) Cooling device and motor vehicle with a cooling device
DE102013217829A1 (en) Integrated circuit system with a cooling device using a latent heat storage medium
DE202011052263U1 (en) Light bulb and cooling device of the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120724

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150901