EP2531553A1 - High-performance thermal insulation materials - Google Patents
High-performance thermal insulation materialsInfo
- Publication number
- EP2531553A1 EP2531553A1 EP11707455A EP11707455A EP2531553A1 EP 2531553 A1 EP2531553 A1 EP 2531553A1 EP 11707455 A EP11707455 A EP 11707455A EP 11707455 A EP11707455 A EP 11707455A EP 2531553 A1 EP2531553 A1 EP 2531553A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- insulating material
- thermal insulating
- material according
- binder
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012774 insulation material Substances 0.000 title description 5
- 239000006265 aqueous foam Substances 0.000 claims abstract description 45
- 239000000203 mixture Substances 0.000 claims abstract description 41
- 239000011230 binding agent Substances 0.000 claims abstract description 37
- 239000011810 insulating material Substances 0.000 claims abstract description 35
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 19
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 4
- 239000011707 mineral Substances 0.000 claims abstract description 4
- 239000006260 foam Substances 0.000 claims description 37
- 229920000126 latex Polymers 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 150000003839 salts Chemical class 0.000 claims description 19
- 125000000217 alkyl group Chemical group 0.000 claims description 18
- 239000004816 latex Substances 0.000 claims description 18
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 15
- 239000003945 anionic surfactant Substances 0.000 claims description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims description 15
- 239000007864 aqueous solution Substances 0.000 claims description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 13
- 239000003093 cationic surfactant Substances 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 13
- 239000000377 silicon dioxide Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 8
- 229940114930 potassium stearate Drugs 0.000 claims description 6
- ANBFRLKBEIFNQU-UHFFFAOYSA-M potassium;octadecanoate Chemical compound [K+].CCCCCCCCCCCCCCCCCC([O-])=O ANBFRLKBEIFNQU-UHFFFAOYSA-M 0.000 claims description 6
- 125000001931 aliphatic group Chemical group 0.000 claims description 5
- 150000007942 carboxylates Chemical class 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 4
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 125000001153 fluoro group Chemical group F* 0.000 claims description 4
- 125000000623 heterocyclic group Chemical group 0.000 claims description 4
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000004094 surface-active agent Substances 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 229910021653 sulphate ion Inorganic materials 0.000 claims description 3
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 claims description 2
- CXRFDZFCGOPDTD-UHFFFAOYSA-M Cetrimide Chemical compound [Br-].CCCCCCCCCCCCCC[N+](C)(C)C CXRFDZFCGOPDTD-UHFFFAOYSA-M 0.000 claims description 2
- 235000021360 Myristic acid Nutrition 0.000 claims description 2
- 229940088990 ammonium stearate Drugs 0.000 claims description 2
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical compound [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 claims description 2
- 150000001768 cations Chemical class 0.000 claims description 2
- SXPWTBGAZSPLHA-UHFFFAOYSA-M cetalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SXPWTBGAZSPLHA-UHFFFAOYSA-M 0.000 claims description 2
- 229960000228 cetalkonium chloride Drugs 0.000 claims description 2
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 claims description 2
- XJWSAJYUBXQQDR-UHFFFAOYSA-M dodecyltrimethylammonium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)C XJWSAJYUBXQQDR-UHFFFAOYSA-M 0.000 claims description 2
- 238000005187 foaming Methods 0.000 claims description 2
- 230000009477 glass transition Effects 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims description 2
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 claims description 2
- 229940080350 sodium stearate Drugs 0.000 claims description 2
- HNJXPTMEWIVQQM-UHFFFAOYSA-M triethyl(hexadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](CC)(CC)CC HNJXPTMEWIVQQM-UHFFFAOYSA-M 0.000 claims description 2
- SZEMGTQCPRNXEG-UHFFFAOYSA-M trimethyl(octadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C SZEMGTQCPRNXEG-UHFFFAOYSA-M 0.000 claims description 2
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 claims 2
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 claims 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 claims 1
- CEYYIKYYFSTQRU-UHFFFAOYSA-M trimethyl(tetradecyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[N+](C)(C)C CEYYIKYYFSTQRU-UHFFFAOYSA-M 0.000 claims 1
- 239000004965 Silica aerogel Substances 0.000 abstract description 13
- 239000000243 solution Substances 0.000 description 25
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 24
- 239000004964 aerogel Substances 0.000 description 20
- 239000000047 product Substances 0.000 description 17
- 229920000642 polymer Polymers 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 13
- 238000009413 insulation Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000012153 distilled water Substances 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 229920005789 ACRONAL® acrylic binder Polymers 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- JYCQQPHGFMYQCF-UHFFFAOYSA-N 4-tert-Octylphenol monoethoxylate Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCO)C=C1 JYCQQPHGFMYQCF-UHFFFAOYSA-N 0.000 description 4
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 229920004896 Triton X-405 Polymers 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000004005 microsphere Substances 0.000 description 4
- 229920002113 octoxynol Polymers 0.000 description 4
- 239000011505 plaster Substances 0.000 description 4
- 238000007873 sieving Methods 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 150000002148 esters Chemical group 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 235000011837 pasties Nutrition 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 3
- 229920001897 terpolymer Polymers 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- -1 alkali metal salt Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 229940049964 oleate Drugs 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 229940114926 stearate Drugs 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N EtOH Substances CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000004794 expanded polystyrene Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 229940105132 myristate Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 238000009418 renovation Methods 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical group [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0066—Use of inorganic compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/30—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/7604—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only fillings for cavity walls
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/02—Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
- C08J2205/026—Aerogel, i.e. a supercritically dried gel
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2321/00—Characterised by the use of unspecified rubbers
- C08J2321/02—Latex
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2425/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2425/02—Homopolymers or copolymers of hydrocarbons
- C08J2425/04—Homopolymers or copolymers of styrene
- C08J2425/08—Copolymers of styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2433/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2433/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2433/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2433/08—Homopolymers or copolymers of acrylic acid esters
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B2001/742—Use of special materials; Materials having special structures or shape
Definitions
- the present invention relates to a high performance thermal insulation material, its manufacturing method, and its use in the field of construction to isolate the walls (exterior or interior) of buildings, or to fill gaps in the materials of construction.
- fibrous insulators based on natural or synthetic fibers such as glass or rock wool
- cellular insulators of the expanded or foamed polymer type such as expanded polystyrene
- extruded or polyurethane and airgel mats, ie layered aerogels in the form of a web of mechanically strong entangled fibers, but for which it is difficult to print a particular shape.
- Silica aerogels are the most efficient insulation products. However, their poor mechanical properties make it necessary to use them in combination with a reinforcing agent. Their use has remained very little developed until today, because their use in association with the usual insulation products (polystyrene ...) did not make it possible to obtain exploitable products, as underlined later in the text. Silica aerogels that can achieve thermal conductivities down to 12 mW / mK are produced from silica gel dried in special conditions. They may be in the form of either translucent granules which must be protected from handling, with application to insulating glass, or from fine powder and can not be used as such to constitute conventional insulating products such as insulating panels (thermal, acoustic ...) for the insulation of building walls.
- composite foam comprising 27-47% by volume of supercritical silica airgel in the form of 2-5 mm particles and between 53 and 73% by volume of styrene polymer foam are found in EP489319.
- the products are advertised with a thermal conductivity of 20 to 27 mW / m.K at 10 ° C.
- WO03097227 the direct incorporation of a polymeric binder to airgel particles.
- the application US20080287561 relates more particularly to silica airgel composites such as composite materials made from aerogels associated with syntactic foams without hollow microspheres (glass or thermoplastic). These syntactic foams are obtained in particular through the use of an aqueous polymer ("water-based polymer”) in the mixture.
- water-based polymer aqueous polymer
- the thermal performances obtained by this technique are limited, the samples obtained by the protocol described in US20080287561 not making it possible to obtain thermal conductivities of less than 60 mW / m.K.
- the application WO03097227 also relates to syntactic foams obtained in particular by virtue of the use of an aqueous polymeric binder ("aqueous binder ”) in the form of foam.
- the foams are syntactic foams generated by the use of hollow microspheres (glass or thermoplastic).
- Such syntactic foams including the aforementioned microspheres are particularly expensive.
- the thermal performance obtained by this technique is limited, since the microspheres used degrade the high thermal performance provided by the airgel.
- the present invention aims to provide a new type of insulating material demonstrating excellent thermal performance, while maintaining good mechanical strength and low densities for relief of the load.
- the present invention also aims at providing an innovative material that remains easy to spread during curing and to which it is possible to impart all desirable shapes, including molding.
- the present invention relates to a thermal insulating material capable of being obtained from the mixture of at least the following elements: an aqueous foam, particles silica airgel, an organic binder and / or a mineral binder.
- thermal insulating materials comprising silica aerogels prepared from aqueous foams make it possible to achieve thermal performances close to those of aerogels as such, with densities compatible for use as lightweight material.
- thermal insulating material also demonstrates very good mechanical performance, especially in terms of compressive strength and deformability.
- the insulating material of the invention is therefore compatible both for use as a filler material, and for use on the surface, especially on the facade.
- Silica aerogels used in the context of the present invention are prepared from commercial airgel granules, for example aerogels marketed by Cabot (Nanogel® TLD 302, etc.). They can be used after grinding and sieving or alternatively be used directly without any transformation. Aerogels are usually obtained from of a gel manufactured, for example by hydrolysis in the presence of a solvent and then gelling with catalysis, from an organic or inorganic precursor, and then by evaporation or extraction of the gel-forming liquid (for example at high temperature and / or or under pressure) to replace this liquid with a gas (in particular air). Aerogels can be produced especially in the form of foam, granules, blocks that are divided if necessary.
- the mixture for the preparation of the thermal insulating material comprises an organic and / or inorganic binder. It is used, for example, to allow the binding of the particles together and / or the binding of the particles to the rest of the material structure at the final product.
- binder used alone will refer indifferently to a mineral binder, an organic binder or a binder system belonging to at least one of these two families.
- the thermally insulating material described above is capable of being prepared from at least the following elements, taken in quantities expressed as a percentage by weight relative to the total mass of the mixture (overall mixture used for the preparation of the material insulation), varying from 25 to 75% for the aqueous foam, from 5 to 35% for the silica airgel particles and from 5 to 35% for the binder.
- the amount of aqueous foam varies from 35 to 65%, preferably from 45 to 55%, and even up to 50%.
- the amount of silica airgel particles advantageously varies from 17 to 25%, preferably from 21 to 23%, and even is 22%.
- the amount of binder advantageously varies from 17 to
- aqueous foam in the meaning of the invention defines any type of foam obtained by a disordered stack of gas bubbles in an aqueous phase, in particular in a soapy liquid.
- a soap-like liquid comprises water and at least one surfactant compound.
- the aqueous foam used to obtain the insulating material of the invention is preferably prepared from a mixture comprising:
- At least one cationic surfactant salt selected from one of the following compounds of general formula:
- R is an aliphatic chain of 8 to 24 carbon atoms
- R 1 is a group selected from alkyls containing 1 to 16 carbon atoms, hydroxyalkyls containing 1 to 16 carbon atoms, a benzyl group, a group which, taken together with the nitrogen of formula (I), gives a heterocycle optionally substituted with at least one fluorine atom
- R 2 and R 3 are selected from groups consisting of an alkyl group having 1 to 6 carbon atoms, hydroxyalkyls containing 1 to 6 carbon atoms, a hydrogen atom, a benzyl group, a group which, taken together with the nitrogen of the formula (I), gives a heterocycle optionally substituted by at least one fluorine atom
- X " is a counter-anion
- At least one anionic surfactant salt selected from one of the following compounds of general formula (II):
- R is an aliphatic chain of 10 to 24 carbon atoms
- X " is a group bearing a negative charge selected from carboxylate, sulphate and phosphate groups
- Y + is a counter cation selected from ammonium, sodium and potassium groups.
- the ratio of the weight content of the cationic surfactant salt to the weight content of the anionic surfactant salt varies from 0.05: 1 to 15: 1, preferably from 0.2: 1 to 5: 1, or even 0.4: 1 at 2.5: 1.
- the cationic surfactant salt is selected from alkyltrimethylammonium salts containing an alkyl group having 10 to 22 carbon atoms, and is preferably selected from at least one of the following compounds: the bromide (or chloride) of dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide (or chloride), hexadecyltrimethylammonium bromide (or chloride), octadecyltrimethylammonium bromide (or chloride), cetyltrimethylammonium bromide (or chloride), cetylbenzyldimethylammonium chloride, cetyltriethylammonium bromide, and tallowtri
- the anionic surfactant salt is tallowtrimethylammonium chloride.
- the anionic surfactant salt (s) mentioned above is (are) selected from at least one of the following compounds: ammonium stearate, potassium stearate and sodium stearate.
- anionic surfactants consisting of an alkali metal salt of an organic acid carrying an aliphatic chain containing 12 to 24 carbon atoms, advantageously a sodium, potassium or ammonium salt (optionly substituted).
- the group X " of the general formula (II) can be a carboxylate, sulphate or sulphonate group, and salts of carboxylates containing from 12 to 24 carbon atoms, selected for example from the salts of: myristate, palmitate, stearate, of oleate, or of the conjugated base of behenic acid, and in particular the selected anions derived from soap by hydrolysis of triglyceride (saponification), and other carboxylates such as those resulting from the treatment of acids.
- tallow fat including palmitate, stearate and oleate
- Other conjugated fatty acid bases may also be used, such as soaps / shower gels comprising fatty acids from natural sources such as tallow , coconut oil or even palm oil.
- the cationic and anionic surfactants are comprised in two distinct aqueous phases and are mixed in the contents indicated above to form the foam.
- the aqueous foam can also be prepared from the two-component kits marketed by the company Allied Foam (referenced 425A and 510B). Such kits consist of a first aqueous mixture containing an anionic surfactant and a second aqueous mixture comprising a cationic surfactant and a latex.
- aqueous foams comprising a cationic surfactant and anionic surfactant have the advantage of remaining particularly stable during the incorporation of silica airgel particles. It becomes easy enough to control the amount of silica airgel to be introduced into the mixture for the preparation of the insulating material of the invention. This aspect is particularly interesting because it allows access to a wide range of different products. Indeed, silica aerogels being quite expensive, it is preferable to be able to control their content to be able to prepare more affordable products in terms of cost, without degrading too much the thermal properties and mechanical strength.
- Increasing the foam / airgel ratio also makes it possible to prepare ventilated advantage systems, thus more compressible when this is associated with an intrinsic flexibility of the material, which is sought for certain uses, such as, for example, soil insulation (particularly the sound insulation) or the filling of honeycomb structures.
- the use of stable foams also makes it possible to obtain a material which remains of low density, even with lower concentrations of silica airgel.
- aqueous foams may be used in the context of the present invention, for example, Gillette Foam Regular Foam.
- aqueous foams comprising a water / glycerol mixture, one or more surfactants (as previously defined) and one or more zwitterions.
- zwitterions there may be mentioned amino acids or derivatives, or molecules synthesized from acids amines.
- Betaines may also be mentioned, such as phosphorus betaines and / or ammonium betaines.
- such aqueous foams comprise a mixture of 25 to 55% glycerol (expressed in percentages by weight relative to the total mass of foam).
- these aqueous foams comprise less than 5%, advantageously less than 2%, or even less than 1% of preferably anionic surfactant.
- these aqueous foams comprise less than 5%, preferably less than 2%, or even less than 1% of zwitterion, preferably selected from ammonium betaines.
- such an aqueous foam comprises 35 to 45% of glycerol, ideally 40%, mixed with less than 0.5% of dodecylpolyoxyethylene-3-sulfate, less than 0.5% of cocoamidopropyl betaine and less than 0.05% of myristic acid.
- the binder used in the composition used to obtain the thermally insulating material according to the invention is an organic binder, preferably a latex.
- the thermal insulating material according to the invention is obtained from a mixture comprising at least one organic binder and at least one inorganic binder.
- the weight of organic binder represents a content of less than 25% relative to the total weight of binder (organic and inorganic), preferably this level is less than 15%, more preferably it is less than 10%, or even less than 10%. 8%.
- the binder (s) can (s) consist solely of inorganic material (s), which ensures the fireproof properties of the insulating material.
- latex in the sense of the present invention refers in particular latex polymers usually used in building materials.
- polymers that may be included in the composition of such a powder, mention may be made, for example, of elastomeric latices, thermoplastic latices and thermosetting latices.
- the term "latex" means an aqueous emulsion or dispersion of one or more natural or synthetic, generally thermoplastic, polymeric substances.
- the polymer (s) may be self-emulsifiable, or else the emulsion or dispersion is stabilized by suitable surfactants.
- a latex useful in the context of the present invention advantageously has a glass transition temperature Tg of less than 50 ° C. Ideally the Tg should be between -50 ° C and 25 ° C, preferably between -20 ° C and 10 ° C, preferably between -10 ° C and 0 ° C, or be substantially -5 ° C. Such ranges of Tg make it possible to obtain a desired rigidity for the insulating materials to be applied to a support in the field of building construction, since the product obtained is flexible and deformable.
- polymers with a Tg at most slightly less than room temperature are also preferred.
- the latex contains a polymer, copolymer or terpolymer (or more) of vinyl type, acrylic type and / or carboxylic acid derivative.
- Vinyl-type latices in particular with pendant ester functional groups, or based on copolymers of vinyl chloride and of olefin, whether or not silanized, are particularly preferred.
- Mention may in particular be made of vinyl acetate-based latexes, in particular based on polyvinyl acetate homopolymer, or vinyl acetate copolymer, and especially acid and / or ester copolymer. (meth) acrylic, maleic ester, olefin and / or vinyl chloride, or based on vinyl chloride / ethylene copolymer.
- Other useful latexes may be chosen from those containing a polymer of acrylic and / or methacrylic type, especially an acrylonitrile / acrylic ester copolymer, or styrene / acid or silanized acrylic ester (that is to say copolymerized with a monomer with ethylenic unsaturation carrying at least one silane or silanol function).
- the latex may advantageously be a styrene-acrylic copolymer, or an all-acrylic copolymer (derived from different acrylic monomers) obtained by radical polymerization in emulsion or dispersion. These latices are stabilized with acrylic acid and / or acrylonitrile.
- Such polymers marketed by BASF are found in the range referenced by the name Acronal®, in particular Acronal® S 400. It is also possible to use alternatively or in combination any latex (one or more) of this Acronal range. ®.
- the powders marketed by the company Hexion TM and the Axilat TM UP range such as the Axilat TM UP 620 E.
- the Axilat TM UP 620 E, as well as the Axilat TM UP 600 B and the Axilat TM UP 820 A, are terpolymers of vinyl acetate, vinyl versatate and maleic ester.
- the thermal conductivity of the material according to the invention is generally less than or equal to 27 mW / m.K.
- the thermal conductivity of the material according to the invention is less than or equal to 25 mW / m ⁇ K, and is advantageously less than or equal to 23 mW / m ⁇ K; particularly preferably it is less than or equal to 20 mW / m.K, or even less than or equal to 19 mW / m.K.
- the densities of thermal insulating materials obtained according to the invention described above are generally less than 250 kg / m 3 .
- the densities of thermal insulation materials obtained according to the invention described above are typically less than or equal to 150 kg / m 3 (for comparison the density of an airgel block is of the order of 150 kg / m 3 ).
- the density of the insulating material according to the invention is less than or equal to 130 kg / m 3 and advantageously preferred 120 kg / m 3 , advantageously the density is less than or equal to 100 kg / m 3 , or even less than or equal to 85 kg / m 3 , and even less than or equal to 70 kg / m 3 , or even less than or equal to at 55 kg / m 3 .
- the invention also relates to a method of manufacturing the thermal insulation material described above, comprising the steps of: a) preparing an aqueous foam;
- step a) it is possible to add the binder directly to step a) during the preparation of the aqueous foam.
- This aspect is dependent on the binder used: when latexes in the form of powder are used, the binder can be added after the preparation of the stable aqueous foam, that is to say in step b), whereas uses a latex in the form of a dispersion / suspension in a liquid (preferably aqueous) it will be added preferably in step a).
- the shaping and drying step may comprise casting operations or molding of said preparation in cavities of appropriate shape or section.
- molding is to be taken in the broadest sense and covers any form of conformation, such as open mold casting, extrusion through a die and cutting the extrudate, etc.
- the shaping can be achieved by co-extruding the preparation with a polymeric organic phase, and / or with gypsum, to make a surface layer.
- thermal insulating material within the meaning of the invention described above can be used in the form of at least one layer applied for example on a plasterboard.
- a particularly elastic and deformable insulating material may be impregnated or spread over a web (for example non-woven ).
- the aqueous foam is prepared as follows: a) stir-foaming a mixture comprising the cationic surfactant; b) then adding an aqueous solution comprising the anionic surfactant.
- the inventors have demonstrated that an aqueous foam prepared and remained stable throughout the manufacturing process, even after incorporating the other ingredients (airgel, fillers, adjuvants ).
- the conductivity measurement is carried out according to the principle of the Flash method (BALAGEAS D. - Measurement of thermal diffusivity by the flash method, R 2955, Engineering Technique, Measurement and Control Treaty -1986), where the thermal excitation is obtained by a plane heating resistor, in accordance with the protocol described in the document "A new method for measuring the thermophysical properties of super-insulators", Yves Jannot & Alain Degiovanni, Infrared thermography conference for building and public works, Mesurexpo (Villepinte ), October 2, 2008.
- the characterization temperature ranges from 34 to 37 ° C, and measurements are made at atmospheric pressure.
- the accuracy of the measurements is estimated at 5%.
- Thermal conductivities were also measured with a NETZSCH TM HFM 436 series flowmeter following the protocols established by ASTM C518 and ISO 8301. The measured samples have dimensions of 15x15x5 cm 3 .
- the density is determined by the ratio of the mass of the sample by its volume.
- a kit provided by the company Allied Foam is used (the percentages are weight contents calculated with respect to the total mass of the compositions):
- Component 2 of commercial reference 510B is Component 2 of commercial reference 510B:
- Anionic surfactant mixture belonging to the class of fatty acids 15-30%
- the foam is generated by a foam generator marketed by the company Allied Foam.
- Component 1 is diluted to 136 g for 1 L of water.
- Component 2 is introduced directly into the tank provided for this purpose.
- aqueous foam prepared as follows may be used:
- Two aqueous solutions (1 and 2) are prepared as follows (the percentages are weight contents calculated with respect to the total mass of the solutions after dilution):
- Solution 1 (supplemented to 200 g with distilled water) is prepared by adding 3.2% by weight of Arquad® T50 marketed by BASF (49% of propylene glycol, 51% of tallowtrimethylammonium chloride (64% of C18 alkyl, 31% of C16 alkyl, 4% of C14 alkyl and 1% of C12 alkyl, suspended in propylene glycol) in suspension in water) and 0.65% mass of Triton® X-405 sold by Dow Chemical (70% octylphenol ethoxylate).
- Arquad® T50 marketed by BASF
- Triton® X-405 sold by Dow Chemical (70% octylphenol ethoxylate
- Solution 2 (supplemented to 40 g with distilled water) is prepared by adding 5% potassium stearate.
- Solution 1 is introduced into a high speed mixer (Kenwood Major 1800 Watts). To the foam obtained by this first mixture, the solution 2 is added and mixed.
- aqueous foam 250 g of freshly obtained aqueous foam are weighed to which 100 g of styrene-acrylic ester copolymer (latex) in aqueous solution (Acronal® S 400, BASF, whose latex content is 57%) are added.
- latex styrene-acrylic ester copolymer
- the silica aerogels used for the realization of the invention are produced by the company Cabot: they are in the form of millimetric granules, it was necessary to grind and sieve in order to obtain the desired particle size for the test .
- the sieving is carried out by grinding the aerogels above a sieve whose mesh width is 250 ⁇ .
- the powder recovered after sieving thus has a smaller particle size equal to 250 ⁇ .
- the airgel powder is introduced into the foam during kneading; this operation has a duration of about 5 minutes.
- the pulp which has undergone a mass loss of about 50%, has hardened and is in the form of a solid having a certain flexibility, this also depending on the amount of aerogels present in the mixed.
- the aerogels are present in the final product at a content of approximately 50% of the total volume.
- the protocol is identical to that of Example 1, but the silica aerogels (Nanogel® TLD 302) are not sieved. Thus the aerogels were not subjected to sieving, but inserted into the mixture in the form of millimetric granules.
- the change in the size of the aerogels makes it possible to introduce a larger quantity into the latex-reinforced foam: 140 g. This is because the foam does not undergo settlement and / or collapse, a phenomenon which is observed during the manufacture of the sample during the introduction of aerogels of smaller particle size equal to 250 ⁇ .
- Sample 5 the sample, referred to as Sample 5, was subjected to a thermal conductivity measurement.
- the product is particularly flexible and aerated, it was necessary to squeeze the sample between the plates of the measuring apparatus in order to obtain a thermal conductivity value for a determined corresponding density.
- Two aqueous solutions (1 and 2) are prepared as follows (the percentages are weight contents calculated with respect to the total mass of the solutions after dilution):
- Solution 1 is prepared by adding 3.2% by weight of Arquad® T50 marketed by BASF (49% of propylene glycol, 51% of tallowtrimethylammonium chloride (64% of C18 alkyl, 31% of alkyl). C16, 4% C14 alkyl and 1% C12 alkyl, suspended in propylene glycol) in suspension in water) and 0.65% by weight of Triton® X-405 marketed by Dow Chemical (70% octylphenol ethoxylate), the whole is added to a solution of distilled water to obtain an aqueous solution of 200 g.
- Solution 2 is prepared by adding 5% by weight of potassium stearate to a solution of distilled water to obtain an aqueous solution of 40 g.
- Solution 1 is introduced into a high speed mixer (Kenwood Major 1800 Watts) and foamed by stirring at maximum speed for two minutes. To this first foam, solution 2 is added. The mixture is stirred at maximum speed for two minutes to obtain the stable aqueous foam. 3.2 Transformation of the aqueous foam into finished product:
- 230 g of the stable aqueous foam freshly prepared are weighed according to the protocol described in 3.1, to which is added an inorganic binder formed from a plaster batch formed from powdered plaster, optionally sodium silicate (NaO / SiO 2 .3H 2 O) powder, and an organic latex of the vinyl terpolymer powder type (Axilat® UP 620 E, Hexion Company, with a latex content of 90-95%) with a solid / water in the mix of 10: 9 by weight. Stirring continues in the mixer: it is now a mixing because the foam becomes more and more pasty.
- an inorganic binder formed from a plaster batch formed from powdered plaster, optionally sodium silicate (NaO / SiO 2 .3H 2 O) powder
- an organic latex of the vinyl terpolymer powder type (Axilat® UP 620 E, Hexion Company, with a latex content of 90-95%) with a solid / water in the mix
- the silica aerogels sold by Cabot (Nanogel® TLD 302), a fraction of which is sieved to a particle size of less than or equal to 250 ⁇ , are incorporated into the foamed mixture.
- the silica aerogels sold by Cabot Nagel® TLD 302
- one more dough is obtained in addition compact, depending on the amount of aerogels introduced, which remains however easy enough to spread and manipulate to give it different forms.
- the paste which has undergone a weight loss of about 50%, has hardened and is in the form of a solid having a certain flexibility, this also depending on the amount of aerogels present in the mixture.
- Two aqueous solutions (1 and 2) are prepared as follows (the percentages are weight contents calculated with respect to the total mass of the solutions after dilution):
- Solution 1 is prepared by adding 3.2% by weight of Arquad® T50 marketed by BASF (49% of propylene glycol, 51% of tallowtrimethylammonium chloride (64% of C18 alkyl, 31% of alkyl). C16, 4% C14 alkyl and 1% C12 alkyl, suspended in propylene glycol) in suspension in water) and 0.65% by weight of Triton® X-405 marketed by Dow Chemical ( 70% octylphenol ethoxylate), the whole is added to a solution of distilled water to obtain an aqueous solution of 200 g.
- Arquad® T50 marketed by BASF (49% of propylene glycol, 51% of tallowtrimethylammonium chloride (64% of C18 alkyl, 31% of alkyl). C16, 4% C14 alkyl and 1% C12 alkyl, suspended in propylene glycol) in suspension in water
- Triton® X-405 marketed by Dow Chemical ( 70% oct
- Solution 2 is prepared by preparing an aqueous solution (distilled water) of 40 g containing 5% by weight of potassium stearate, to which 25-38% by weight of spraying is added with stirring by the operator.
- an organic binder of the styrene-acrylic ester copolymer (latex) type in aqueous solution (Acronal® S 400, BASF, the latex content of which is 57%).
- Solution 1 is introduced into a high speed mixer (Kenwood Major 1800 Watts) and foamed by stirring at maximum speed for two minutes. To this first foam, solution 2 is added. The mixture is stirred at maximum speed for two minutes to obtain the stable aqueous foam.
- the silica aerogels sold by Cabot (Nanogel® TLD 302), a fraction of which is sieved to a particle size of less than or equal to 250 ⁇ , are incorporated into the foamed mixture.
- an increasingly compact paste is obtained, depending on the amount of aerogels introduced, which remains fairly easy to spread and handle to give it different shapes.
- the paste which has undergone a weight loss of about 50%, has hardened and is in the form of a solid having a certain flexibility, this also depending on the amount of aerogels present in the mixture.
- the amounts of reagents used and the experimental results are reported in Table 3.
- aqueous foam Two aqueous solutions (1 and 2) are prepared as follows (the percentages are weight contents calculated with respect to the total mass of the solutions after dilution):
- Solution 1 is prepared by adding 3.2% by weight of Arquad® T50 marketed by BASF (49% of propylene glycol, 51% of tallowtrimethylammonium chloride (64% of C18 alkyl, 31% of alkyl). C16, 4% C14 alkyl and 1% C12 alkyl, suspended in propylene glycol) in suspension in water) and 0.65% by weight of Triton® X-405 marketed by Dow Chemical ( 70% octylphenol ethoxylate), the whole is added to a solution of distilled water to obtain an aqueous solution of 200 g.
- Arquad® T50 marketed by BASF (49% of propylene glycol, 51% of tallowtrimethylammonium chloride (64% of C18 alkyl, 31% of alkyl). C16, 4% C14 alkyl and 1% C12 alkyl, suspended in propylene glycol) in suspension in water
- Triton® X-405 marketed by Dow Chemical ( 70% oct
- Solution 2 is prepared by adding 5% by weight of potassium stearate to a solution of distilled water to obtain an aqueous solution of 40 g.
- Solution 1 is introduced into a high speed mixer (Kenwood Major 1800 Watts) and foamed by stirring at maximum speed for two minutes. To this first foam, solution 2 is added. The mixture is stirred at maximum speed for two minutes to obtain the stable aqueous foam.
- the silica aerogels sold by Cabot (Nanogel® TLD 302), a fraction of which is sieved to a particle size of less than or equal to 250 ⁇ , are incorporated into the foamed mixture.
- an increasingly compact paste is obtained, depending on the amount of aerogels introduced, which remains fairly easy to spread and handle to give it different shapes.
- the paste which has undergone a weight loss of about 50%, has hardened and is in the form of a solid having a certain flexibility, this also depending on the amount of aerogels present in the mixture.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The invention relates to a thermally insulating material that can be produced from the mixture of at least the following elements: an aqueous foam, silica aerogel particles, and at least one binder selected from an organic binder and a mineral binder.
Description
MATERIAUX D'ISOLATION THERMIQUE HAUTES PERFORMANCES HIGH PERFORMANCE THERMAL INSULATION MATERIALS
La présente invention concerne un matériau d'isolation thermique haute performance, son procédé de fabrication, ainsi que son utilisation dans le domaine de la construction pour isoler les parois (extérieures, voire intérieures) de bâtiments, voire pour combler des interstices dans les matériaux de construction. The present invention relates to a high performance thermal insulation material, its manufacturing method, and its use in the field of construction to isolate the walls (exterior or interior) of buildings, or to fill gaps in the materials of construction.
Actuellement, en neuf et en rénovation, pour répondre au cahier des charges des ouvrages du bâtiment, il est indispensable de développer de nouveaux matériaux particulièrement performants en terme d'isolation thermique. Le développement de nouveaux matériaux qui répondent à un tel besoin connaît un essor sans précédent de nos jours. Il est cependant souvent indispensable que de tels matériaux de construction plus isolants gardent, voire améliorent, les propriétés recherchées pour la construction de bâtiments (habitations...), notamment en termes d'allégement de la charge, de résistance mécanique, ou par exemple d'isolation phonique. Currently, in nine and renovation, to meet the specifications of building structures, it is essential to develop new materials particularly effective in terms of thermal insulation. The development of new materials that meet such a need is experiencing an unprecedented boom nowadays. However, it is often essential that such more insulating building materials maintain or even improve the properties sought for the construction of buildings (dwellings, etc.), in particular in terms of reducing the load, mechanical resistance, or, for example, sound insulation.
Par ailleurs, on connaît de nos jours une grande diversité de produits isolants thermiques. Parmi les produits isolants d'utilisation courante, on peut citer principalement les isolants fibreux, à base de fibres naturelles ou synthétiques telles que la laine de verre ou de roche, les isolants cellulaires du type en polymère expansé ou moussé tel que le polystyrène expansé ou extrudé ou le polyuréthane, et les mats d'aérogel, c'est-à-dire les aérogels en couche sous forme d'une nappe formée de fibres enchevêtrées mécaniquement résistantes, mais qui pour lesquels il est difficile d'imprimer une forme déterminée. Moreover, there is nowadays a wide variety of thermal insulation products. Among the insulating products of current use, fibrous insulators, based on natural or synthetic fibers such as glass or rock wool, cellular insulators of the expanded or foamed polymer type, such as expanded polystyrene, can be mentioned mainly. extruded or polyurethane, and airgel mats, ie layered aerogels in the form of a web of mechanically strong entangled fibers, but for which it is difficult to print a particular shape.
Les aérogels de silice sont les produits isolants parmi les plus performants. Cependant, leurs propriétés mécaniques médiocres imposent de les utiliser en association avec un agent de renforcement. Leur emploi est resté très peu développé jusqu'à aujourd'hui, car leur utilisation en association avec les produits isolants habituels (polystyrène...) n'a pas permis d'obtenir des produits exploitables, comme souligné plus loin dans le texte. Les aérogels de silice qui peuvent atteindre des conductivités thermiques descendant jusqu'à 12 mW/m.K, sont produits à partir d'un gel de silice séché en conditions particulières. Ils
peuvent se présenter sous forme soit de granules translucides qui doivent être protégées de toute manipulation, avec une application aux vitrages isolants, soit de poudre fine et ne peuvent être utilisés tels quels pour constituer des produits isolants conventionnels tels que des panneaux isolants (thermiques, acoustiques...) pour l'isolation des murs de bâtiments. Silica aerogels are the most efficient insulation products. However, their poor mechanical properties make it necessary to use them in combination with a reinforcing agent. Their use has remained very little developed until today, because their use in association with the usual insulation products (polystyrene ...) did not make it possible to obtain exploitable products, as underlined later in the text. Silica aerogels that can achieve thermal conductivities down to 12 mW / mK are produced from silica gel dried in special conditions. They may be in the form of either translucent granules which must be protected from handling, with application to insulating glass, or from fine powder and can not be used as such to constitute conventional insulating products such as insulating panels (thermal, acoustic ...) for the insulation of building walls.
En vue d'améliorer les performances thermiques du polystyrène, il a déjà été proposé de fabriquer des matériaux composites renfermant un mélange de polystyrène et d'aérogel. In order to improve the thermal performance of polystyrene, it has already been proposed to manufacture composite materials containing a mixture of polystyrene and airgel.
Ainsi on trouve dans EP489319 des exemples de mousse composite comprenant entre 27 et 47 % en volume d'aérogel de silice supercritique sous forme de particules de 2-5 mm et entre 53 et 73% en volume de mousse de polymère de styrène. Les produits sont annoncés avec une conductivité thermique de 20 à 27 mW/m.K à 10°C. Thus, examples of composite foam comprising 27-47% by volume of supercritical silica airgel in the form of 2-5 mm particles and between 53 and 73% by volume of styrene polymer foam are found in EP489319. The products are advertised with a thermal conductivity of 20 to 27 mW / m.K at 10 ° C.
Ces composites ne peuvent toutefois pas être produits en grande quantité, tel qu'il est nécessaire pour la fabrication de produits commerciaux, car l'aérogel est d'une nature friable qui ne tolère pas la friction subie lors d'une opération de mélange avec les billes de polymère. En outre, les qualités de résistance mécanique de tels produits restent insuffisantes et sont notablement dégradées avec l'accroissement de la proportion d'aérogel. These composites, however, can not be produced in large quantities, as is necessary for the manufacture of commercial products, because the airgel is of a friable nature that does not tolerate the friction experienced during a mixing operation with the polymer beads. In addition, the qualities of mechanical strength of such products remain insufficient and are significantly degraded with the increase in the proportion of airgel.
On connaît aussi des demandes de brevet, US20080287561 et Also known are patent applications, US20080287561 and
WO03097227, l'incorporation directe d'un liant polymère à des particules d'aérogel. La demande US20080287561 concerne plus particulièrement des composites d'aérogel de silice tels que des matériaux composites réalisés à partir d'aérogels associés à des mousses syntactiques sans microsphères creuses (de verre ou thermoplastiques). Ces mousses syntactiques sont obtenues en particulier grâce à l'utilisation d'un polymère aqueux (« water-based polymer ») dans le mélange. Les performances thermiques obtenues par cette technique sont limitées, les échantillons obtenus par le protocole décrit dans US20080287561 ne permettant pas d'obtenir des conductivités thermiques inférieures à 60 mW/m.K. WO03097227, the direct incorporation of a polymeric binder to airgel particles. The application US20080287561 relates more particularly to silica airgel composites such as composite materials made from aerogels associated with syntactic foams without hollow microspheres (glass or thermoplastic). These syntactic foams are obtained in particular through the use of an aqueous polymer ("water-based polymer") in the mixture. The thermal performances obtained by this technique are limited, the samples obtained by the protocol described in US20080287561 not making it possible to obtain thermal conductivities of less than 60 mW / m.K.
La demande WO03097227 concerne aussi des mousses syntactiques obtenues notamment grâce à l'utilisation d'un liant polymère aqueux (« aqueous
binder ») sous forme de mousse. Dans ce cas, les mousses sont des mousses syntactiques générées par l'utilisation de microsphères creuses (de verre ou thermoplastiques). De telles les mousses syntactiques incluant les microsphères précitées sont particulièrement coûteuses. De plus, là encore, les performances thermiques obtenues par cette technique sont limitées, étant donné que les microsphères utilisées dégradent les hautes performances thermiques apportées par l'aérogel. The application WO03097227 also relates to syntactic foams obtained in particular by virtue of the use of an aqueous polymeric binder ("aqueous binder ") in the form of foam. In this case, the foams are syntactic foams generated by the use of hollow microspheres (glass or thermoplastic). Such syntactic foams including the aforementioned microspheres are particularly expensive. In addition, again, the thermal performance obtained by this technique is limited, since the microspheres used degrade the high thermal performance provided by the airgel.
La présente invention vise à proposer un nouveau type de matériau isolant démontrant des performances thermiques excellentes, tout en gardant une bonne résistance mécanique et avec des densités basses pour un allégement de la charge. La présente invention vise également à proposer un matériau innovant qui reste facile à étaler lors de son durcissement et auquel il est possible de conférer toutes les formes souhaitables, notamment par moulage. The present invention aims to provide a new type of insulating material demonstrating excellent thermal performance, while maintaining good mechanical strength and low densities for relief of the load. The present invention also aims at providing an innovative material that remains easy to spread during curing and to which it is possible to impart all desirable shapes, including molding.
A cet égard, et pour pallier aux inconvénients de l'état de la technique, la présente invention a pour objet un matériau isolant thermique susceptible d'être obtenu à partir du mélange d'au moins les éléments suivants : une mousse aqueuse, des particules d'aérogel de silice, un liant organique et/ou un liant minéral. In this respect, and to overcome the disadvantages of the state of the art, the present invention relates to a thermal insulating material capable of being obtained from the mixture of at least the following elements: an aqueous foam, particles silica airgel, an organic binder and / or a mineral binder.
Les inventeurs ont mis en évidence de manière inattendue que les matériaux isolants thermiques comprenant des aérogels de silice préparés à partir de mousses aqueuses permettent d'atteindre des performances thermiques proches de celles des aérogels en tant que tel, avec des densités compatibles pour une utilisation comme matériau allégé. Un tel matériau isolant thermique démontre également de très bonnes performances mécaniques, notamment en terme de résistance en compression et de déformabilité. Le matériau isolant de l'invention est donc compatible aussi bien pour une utilisation comme matériau de comblement, que pour une utilisation en surface, notamment en façade. The inventors have unexpectedly demonstrated that thermal insulating materials comprising silica aerogels prepared from aqueous foams make it possible to achieve thermal performances close to those of aerogels as such, with densities compatible for use as lightweight material. Such a thermal insulating material also demonstrates very good mechanical performance, especially in terms of compressive strength and deformability. The insulating material of the invention is therefore compatible both for use as a filler material, and for use on the surface, especially on the facade.
Les aérogels de silice utilisés dans le cadre de la présente invention sont préparés à partir de granules d'aérogel commercial, par exemple les aérogels commercialisée par la société Cabot (Nanogel® TLD 302, etc .). Ils peuvent être utilisés après broyage et tamisage ou alternativement être utilisés directement sans aucune transformation. Les aérogels sont généralement obtenus à partir
d'un gel fabriqué, par exemple par hydrolyse en présence d'un solvant puis gélification avec catalyse, à partir d'un précurseur, organique ou inorganique, puis par évaporation ou extraction du liquide formant le gel (par exemple à haute température et/ou sous pression) afin de remplacer ce liquide par un gaz (en particulier de l'air). Les aérogels peuvent être produits notamment sous forme de mousse, granules, blocs que l'on divise le cas échéant. Silica aerogels used in the context of the present invention are prepared from commercial airgel granules, for example aerogels marketed by Cabot (Nanogel® TLD 302, etc.). They can be used after grinding and sieving or alternatively be used directly without any transformation. Aerogels are usually obtained from of a gel manufactured, for example by hydrolysis in the presence of a solvent and then gelling with catalysis, from an organic or inorganic precursor, and then by evaporation or extraction of the gel-forming liquid (for example at high temperature and / or or under pressure) to replace this liquid with a gas (in particular air). Aerogels can be produced especially in the form of foam, granules, blocks that are divided if necessary.
En plus de la mousse aqueuse et des aérogels de silice, le mélange destiné à la préparation du matériau isolant thermique comprend un liant organique et/ou minéral. Il est utilisé, par exemple, pour permettre la liaison des particules entre elles et/ou la liaison des particules au reste de la structure du matériau au niveau du produit final. Dans la suite du texte, le terme liant utilisé seul fera indifféremment référence à un liant minéral, un liant organique ou à un système de liants appartenant à au moins une de ces deux familles. In addition to the aqueous foam and silica aerogels, the mixture for the preparation of the thermal insulating material comprises an organic and / or inorganic binder. It is used, for example, to allow the binding of the particles together and / or the binding of the particles to the rest of the material structure at the final product. In the remainder of the text, the term binder used alone will refer indifferently to a mineral binder, an organic binder or a binder system belonging to at least one of these two families.
De préférence, le matériau isolant thermiquement décrit précédemment est susceptible d'être préparé à partir d'au moins les éléments suivants, pris dans des quantités exprimées en pourcentage pondéral par rapport à la masse totale du mélange (mélange global utilisé pour la préparation du matériau isolant), variant : de 25 à 75 % pour la mousse aqueuse, de 5 à 35 % pour les particules d'aérogel de silice et de 5 à 35 % pour le liant. Preferably, the thermally insulating material described above is capable of being prepared from at least the following elements, taken in quantities expressed as a percentage by weight relative to the total mass of the mixture (overall mixture used for the preparation of the material insulation), varying from 25 to 75% for the aqueous foam, from 5 to 35% for the silica airgel particles and from 5 to 35% for the binder.
Avantageusement, la quantité de mousse aqueuse varie de 35 à 65 %, de manière préférée de 45 à 55%, et voire même est de 50%. Advantageously, the amount of aqueous foam varies from 35 to 65%, preferably from 45 to 55%, and even up to 50%.
De même, la quantité de particules d'aérogel de silice varie avantageusement de 17 à 25 %, de manière préférée de 21 à 23 %, et voire même est de 22%. Similarly, the amount of silica airgel particles advantageously varies from 17 to 25%, preferably from 21 to 23%, and even is 22%.
De la même manière, la quantité de liant varie avantageusement de 17 à In the same way, the amount of binder advantageously varies from 17 to
25 %, de manière préférée de 21 à 23 %, et voire même est de 22%. 25%, preferably 21 to 23%, and even 22%.
Toutes les combinaisons des ingrédients pris dans les plages de valeurs précitées sont également possibles. All combinations of ingredients taken within the aforementioned ranges of values are also possible.
Le terme « mousse aqueuse » au sens de l'invention, définit tout type de mousse obtenu par un empilement désordonné de bulles de gaz dans une phase aqueuse, en particulier dans un liquide d'aspect savonneux. Un tel liquide d'aspect savonneux comprend de l'eau et au moins un composé tensioactif.
La mousse aqueuse utilisée pour obtenir le matériau isolant de l'invention est de préférence préparée à partir d'un mélange comprenant : The term "aqueous foam" in the meaning of the invention defines any type of foam obtained by a disordered stack of gas bubbles in an aqueous phase, in particular in a soapy liquid. Such a soap-like liquid comprises water and at least one surfactant compound. The aqueous foam used to obtain the insulating material of the invention is preferably prepared from a mixture comprising:
- au moins un sel de tensioactif cationique sélectionné parmi l'un des composés suivants de formule générale : at least one cationic surfactant salt selected from one of the following compounds of general formula:
Ri Ri
I Θ Θ R N R2 X I Θ Θ RNR 2 X
R, R
(I) pour laquelle R est une chaîne aliphatique de 8 à 24 atomes de carbones ; Ri est un groupement sélectionné parmi les alkyles comportant 1 à 16 atomes de carbones, les hydroxyalkyles comportant 1 à 16 atomes de carbones, un groupement benzyle, un groupement qui, pris ensemble avec l'azote de la formule (I), donne un hétérocycle éventuellement substitué par au moins un atome de fluor ; R2 et R3 sont sélectionnés parmi les groupements constitués d'un groupement alkyle comportant 1 à 6 atomes de carbones, les hydroxyalkyles comportant 1 à 6 atomes de carbones, un atome d'hydrogène, un groupement benzyle, un groupement qui, pris ensemble avec l'azote de la formule (I), donne un hétérocycle éventuellement substitué par au moins atome de fluor ; et X" est un contre anion ; (I) wherein R is an aliphatic chain of 8 to 24 carbon atoms; R 1 is a group selected from alkyls containing 1 to 16 carbon atoms, hydroxyalkyls containing 1 to 16 carbon atoms, a benzyl group, a group which, taken together with the nitrogen of formula (I), gives a heterocycle optionally substituted with at least one fluorine atom; R 2 and R 3 are selected from groups consisting of an alkyl group having 1 to 6 carbon atoms, hydroxyalkyls containing 1 to 6 carbon atoms, a hydrogen atom, a benzyl group, a group which, taken together with the nitrogen of the formula (I), gives a heterocycle optionally substituted by at least one fluorine atom; and X " is a counter-anion;
- au moins un sel de tensioactif anionique sélectionné parmi l'un des composés suivants de formule générale (II) : at least one anionic surfactant salt selected from one of the following compounds of general formula (II):
R-X", Y+ (II) RX " , Y + (II)
pour lequel R est une chaîne aliphatique de 10 à 24 atomes de carbones ; X" est un groupement portant une charge négative sélectionnée parmi les groupement carboxylate, sulfates et phosphate ; et Y+ est un contre cation sélectionné parmi les groupements ammonium, sodium et potassium.wherein R is an aliphatic chain of 10 to 24 carbon atoms; X " is a group bearing a negative charge selected from carboxylate, sulphate and phosphate groups, and Y + is a counter cation selected from ammonium, sodium and potassium groups.
De préférence, le rapport de la teneur pondérale du sel de tensioactif cationique sur la teneur pondérale du sel de tensioactif anionique varie de 0.05 :1 à 15 :1 , de préférence de 0.2 :1 à 5 :1 , voire même de 0.4 :1 à 2.5 :1 .
Avantageusement, le sel de tensioactif cationique est sélectionné parmi les sels d'alkyltriméthyle ammonium contenant un groupement alkyle comportant 10 à 22 atomes de carbone, et est sélectionné de préférence parmi au moins l'un des composé suivants : le bromure (ou chlorure) de dodécyltriméthylammonium, le bromure (ou chlorure) de tetradecyltriméthylammonium, le bromure (ou chlorure) d'hexadecyltriméthylammonium, le bromure (ou chlorure) d'octadécyltriméthylammonium, le bromure (ou chlorure) de cétyltriméthylammonium, le chlorure de cétylbenzyldimethylammonium, le bromure de cétyltriéthylammonium et le chlorure de tallowtriméthylammonium. Preferably, the ratio of the weight content of the cationic surfactant salt to the weight content of the anionic surfactant salt varies from 0.05: 1 to 15: 1, preferably from 0.2: 1 to 5: 1, or even 0.4: 1 at 2.5: 1. Advantageously, the cationic surfactant salt is selected from alkyltrimethylammonium salts containing an alkyl group having 10 to 22 carbon atoms, and is preferably selected from at least one of the following compounds: the bromide (or chloride) of dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide (or chloride), hexadecyltrimethylammonium bromide (or chloride), octadecyltrimethylammonium bromide (or chloride), cetyltrimethylammonium bromide (or chloride), cetylbenzyldimethylammonium chloride, cetyltriethylammonium bromide, and tallowtrimethylammonium chloride.
De préférence, le sel de tensioactif anionique est le chlorure de tallowtriméthylammonium. Preferably, the anionic surfactant salt is tallowtrimethylammonium chloride.
De manière avantageuse, le(s) sel(s) de tensioactif(s) anionique(s) cité(s) précédemment est(sont) sélectionné(s) parmi au moins l'un des composés suivant : le stéarate d'ammonium, le stéarate de potassium et le stéarate de sodium. Advantageously, the anionic surfactant salt (s) mentioned above is (are) selected from at least one of the following compounds: ammonium stearate, potassium stearate and sodium stearate.
On peut également utiliser de manière alternative ou complémentaire des tensioactifs anioniques constitués d'un sel de métal alcalin d'un acide organique portant une chaîne aliphatique comportant 12 à 24 atomes de carbones, avantageusement un sel de sodium, de potassium ou d'ammonium (éventuellement substitué). It is also possible alternatively or additionally to use anionic surfactants consisting of an alkali metal salt of an organic acid carrying an aliphatic chain containing 12 to 24 carbon atoms, advantageously a sodium, potassium or ammonium salt ( optionally substituted).
Le groupement X" de la formule générale (II) peut être un groupement carboxylate, sulfate ou sulfonate. On peut citer des sels de carboxylates comportant 12 à 24 atomes de carbone, sélectionnés par exemple parmi les sels : de myristate, de palmitate, de stéarate, d'oléate, ou de la base conjuguée de l'acide béhénique ; et en particulier les anions sélectionnés dérivés du savon par hydrolyse de triglycéride (saponification). On peut citer également d'autres carboxylates tels que ceux issus du traitement des acides gras du suif, comprenant notamment du palmitate, du stéarate et de l'oléate. D'autres bases conjuguées d'acides gras peuvent également être utilisée comme par exemple les savons/gels douche comprenant des acides gras issus de sources naturels telles que le suif, l'huile de coco ou bien encore l'huile de palme.
De préférence, les tensioactifs cationiques et anioniques sont compris dans deux phases aqueuses distinctes et sont mélangés dans les teneurs indiqués précédemment pour former la mousse. The group X " of the general formula (II) can be a carboxylate, sulphate or sulphonate group, and salts of carboxylates containing from 12 to 24 carbon atoms, selected for example from the salts of: myristate, palmitate, stearate, of oleate, or of the conjugated base of behenic acid, and in particular the selected anions derived from soap by hydrolysis of triglyceride (saponification), and other carboxylates such as those resulting from the treatment of acids. tallow fat including palmitate, stearate and oleate Other conjugated fatty acid bases may also be used, such as soaps / shower gels comprising fatty acids from natural sources such as tallow , coconut oil or even palm oil. Preferably, the cationic and anionic surfactants are comprised in two distinct aqueous phases and are mixed in the contents indicated above to form the foam.
La préparation d'une telle mousse aqueuse est décrite dans la demande WO96/25475. The preparation of such an aqueous foam is described in the application WO96 / 25475.
La mousse aqueuse peut également être préparé à partir des kits bicomposants commercialisés par la société Allied Foam (référencés : 425A et 510B). De tels kits sont constitués d'un premier mélange aqueux contenant un tensioactif anionique et d'un second mélange aqueux comprenant un tensioactif cationique et un latex. The aqueous foam can also be prepared from the two-component kits marketed by the company Allied Foam (referenced 425A and 510B). Such kits consist of a first aqueous mixture containing an anionic surfactant and a second aqueous mixture comprising a cationic surfactant and a latex.
Les inventeurs ont montré que ces mousses aqueuses comprenant un tensioactif cationique et un tensioactif anionique ont l'avantage de rester particulièrement stables lors de l'incorporation des particules d'aérogel de silice. Il devient assez aisé de contrôler la quantité d'aérogel de silice à introduire dans le mélange pour la préparation du matériau isolant de l'invention. Cet aspect est particulièrement intéressant, car il permet d'avoir accès à une large gamme de produits différents. En effet, les aérogels de silice étant assez onéreux, il est préférable de pouvoir contrôler leur teneur pour pouvoir préparer des produits plus accessibles en terme de coût, sans dégrader trop les propriétés thermiques et la tenue mécanique. Augmenter le ratio mousse/aérogel permet également de préparer des systèmes d'avantage aérés, donc plus compressibles lorsque cela est associé à une souplesse intrinsèque du matériau, ce qui est recherché pour certaines utilisations, comme par exemple l'isolation des sols (notamment l'isolation acoustique) ou le remplissage de structures de type alvéolaire. L'emploi de mousses stables permet aussi d'obtenir un matériau qui reste de faible densité, même avec des teneurs en aérogel de silice plus faibles. The inventors have shown that these aqueous foams comprising a cationic surfactant and anionic surfactant have the advantage of remaining particularly stable during the incorporation of silica airgel particles. It becomes easy enough to control the amount of silica airgel to be introduced into the mixture for the preparation of the insulating material of the invention. This aspect is particularly interesting because it allows access to a wide range of different products. Indeed, silica aerogels being quite expensive, it is preferable to be able to control their content to be able to prepare more affordable products in terms of cost, without degrading too much the thermal properties and mechanical strength. Increasing the foam / airgel ratio also makes it possible to prepare ventilated advantage systems, thus more compressible when this is associated with an intrinsic flexibility of the material, which is sought for certain uses, such as, for example, soil insulation (particularly the sound insulation) or the filling of honeycomb structures. The use of stable foams also makes it possible to obtain a material which remains of low density, even with lower concentrations of silica airgel.
D'autres mousses aqueuses peuvent être utilisées dans le cadre de la présente invention, par exemple, la mousse Gillette Foam Regular. Other aqueous foams may be used in the context of the present invention, for example, Gillette Foam Regular Foam.
On peut également utiliser des mousses aqueuses comprenant un mélange eau/glycérol, un ou plusieurs tensioactifs (tels que précédemment définis) et un ou plusieurs zwittérions. Parmi les zwittérions on peut citer des acides aminés ou dérivés, ou encore des molécules synthétisées à partir d'acides
aminés. On peut également citer les bétaïnes telles que les bétaïnes de phosphore et/ou les bétaïnes d'ammonium. It is also possible to use aqueous foams comprising a water / glycerol mixture, one or more surfactants (as previously defined) and one or more zwitterions. Among the zwitterions, there may be mentioned amino acids or derivatives, or molecules synthesized from acids amines. Betaines may also be mentioned, such as phosphorus betaines and / or ammonium betaines.
De préférence, de telles mousses aqueuses comprennent un mélange de 25 à 55 % de glycérol (exprimé en pourcentages pondéraux par rapport à la masse totale de mousse). Preferably, such aqueous foams comprise a mixture of 25 to 55% glycerol (expressed in percentages by weight relative to the total mass of foam).
De manière également préférée, ces mousses aqueuses comprennent moins de 5%, avantageusement moins de 2%, voire même moins de 1 % de tensioactif de préférence anionique. Also preferably, these aqueous foams comprise less than 5%, advantageously less than 2%, or even less than 1% of preferably anionic surfactant.
De manière également préférée, ces mousses aqueuses comprennent moins de 5% avantageusement moins de 2%, voire même moins de 1 % de zwittérion choisi de préférence parmi les bétaïnes d'ammonium. Also preferably, these aqueous foams comprise less than 5%, preferably less than 2%, or even less than 1% of zwitterion, preferably selected from ammonium betaines.
Toutes les combinaisons de ces différents ingrédients sont également possibles en faisant varier les teneurs en particulier comme exprimé précédemment. All combinations of these different ingredients are also possible by varying the contents in particular as previously expressed.
De manière d'avantage préférée, une telle mousse aqueuse comprend 35 à 45 % de glycérol, idéalement 40 %, mélangé avec moins de 0.5% de dodécylpolyoxyéthylène-3-sulfate, moins de 0.5% de cocoamidopropyl bétaïne et moins de 0.05 % d'acide myristique. More preferably, such an aqueous foam comprises 35 to 45% of glycerol, ideally 40%, mixed with less than 0.5% of dodecylpolyoxyethylene-3-sulfate, less than 0.5% of cocoamidopropyl betaine and less than 0.05% of myristic acid.
Toutes les combinaisons de mousses citées précédemment dans le cadre de l'invention sont également possibles en association dans le mélange destiné à préparer le matériau isolant thermique. All the foam combinations mentioned above in the context of the invention are also possible in combination in the mixture intended to prepare the thermal insulating material.
De préférence, le liant utilisé dans la composition utilisée pour obtenir le matériau isolant thermiquement selon l'invention est un liant organique, de préférence un latex. Preferably, the binder used in the composition used to obtain the thermally insulating material according to the invention is an organic binder, preferably a latex.
De manière encore plus préférée, le matériau isolant thermique selon l'invention est obtenu à partir d'un mélange comprenant au moins un liant organique et au moins un liant inorganique. Avantageusement, le poids de liant organique représente un taux inférieur à 25% par rapport à la quantité pondérale totale de liant (organique et inorganique), préférentiellement ce taux est inférieur à 15%, plus préférentiellement il est inférieur à 10%, voire même à 8%.
De manière tout particulièrement préféré, le ou les liant(s) peut(vent) être constitué(s) uniquement de matériau(x) inorganique(s), ce qui garantit les propriétés anti-feu du matériau isolant. Even more preferably, the thermal insulating material according to the invention is obtained from a mixture comprising at least one organic binder and at least one inorganic binder. Advantageously, the weight of organic binder represents a content of less than 25% relative to the total weight of binder (organic and inorganic), preferably this level is less than 15%, more preferably it is less than 10%, or even less than 10%. 8%. Most preferably, the binder (s) can (s) consist solely of inorganic material (s), which ensures the fireproof properties of the insulating material.
Le terme « latex » au sens de la présente invention désigne en particulier les polymères latex utilisés habituellement dans les matériaux de construction. Parmi les polymères pouvant entrer dans la composition d'une telle poudre on peut citer, par exemple, les latex élastomères, les latex thermoplastiques et les latex thermodurcissables. The term "latex" in the sense of the present invention refers in particular latex polymers usually used in building materials. Among the polymers that may be included in the composition of such a powder, mention may be made, for example, of elastomeric latices, thermoplastic latices and thermosetting latices.
De manière préférée, dans le cadre de la présente invention, on entend par latex, une émulsion ou dispersion aqueuse d'une ou plusieurs substances polymères naturelles ou synthétiques, généralement thermoplastiques. Le ou les polymères peuvent être auto-émulsifiables, ou bien dans le cas contraire, l'émulsion ou la dispersion est stabilisée par des agents tensioactifs appropriés. Un latex utile dans le cadre de la présente l'invention a avantageusement une température de transition vitreuse Tg inférieure à 50°C. Idéalement la Tg doit être comprise entre - 50°C et 25°C, de préférence entre - 20°C et 10°C, avantageusement entre - 10°C et 0°C, voire être sensiblement de -5°C. De telles gammes de Tg permettent d'obtenir une rigité recherchée pour les matériaux isolants à appliquer sur un support dans le domaine de la construction de bâtiments, étant donné que le produit obtenu est souple et déformable. Preferably, in the context of the present invention, the term "latex" means an aqueous emulsion or dispersion of one or more natural or synthetic, generally thermoplastic, polymeric substances. The polymer (s) may be self-emulsifiable, or else the emulsion or dispersion is stabilized by suitable surfactants. A latex useful in the context of the present invention advantageously has a glass transition temperature Tg of less than 50 ° C. Ideally the Tg should be between -50 ° C and 25 ° C, preferably between -20 ° C and 10 ° C, preferably between -10 ° C and 0 ° C, or be substantially -5 ° C. Such ranges of Tg make it possible to obtain a desired rigidity for the insulating materials to be applied to a support in the field of building construction, since the product obtained is flexible and deformable.
On préfère utiliser des polymères avec une Tg au maximum légèrement inférieure à la température ambiante pour assurer la formation d'un film polymère qui confère les propriétés adéquates du polymère dans le matériau durci. On préfère également des polymères ayant des Tg qui ne soient pas trop basses afin que le polymère ne soit pas trop mou, ce qui donnerait un matériau trop flexible. It is preferred to use polymers with a Tg at most slightly less than room temperature to ensure the formation of a polymeric film which imparts the proper properties of the polymer in the cured material. Polymers having Tg's which are not too low so that the polymer is not too soft, which would give a material that is too flexible, are also preferred.
Avantageusement, le latex renferme un polymère, copolymère ou terpolymère (ou plus) de type vinylique, de type acrylique et/ou dérivé d'acide carboxylique. On préfère tout particulièrement les latex de type vinylique, en particulier à fonctions ester pendantes, ou à base de copolymère de chlorure de vinyle et d'oléfine, silanisé ou non. On peut citer notamment des latex à base d'acétate de vinyle, en particulier à base d'homopolymère de polyacétate de vinyle, ou de copolymère d'acétate de vinyle et notamment d'acide et/ou ester
(méth)acrylique, d'ester maléïque, d'oléfine et/ou de chlorure de vinyle, ou à base de copolymère chlorure de vinyle/éthylène. D'autres latex intéressants peuvent être choisis parmi ceux renfermant un polymère de type acrylique et/ou méthacrylique, notamment un copolymère acrylonitrile/ester acrylique, ou styrène/acide ou ester acrylique silanisé (c'est-à-dire copolymérisé avec un monomère à insaturation éthylénique porteur d'au moins une fonction silane ou silanol). Advantageously, the latex contains a polymer, copolymer or terpolymer (or more) of vinyl type, acrylic type and / or carboxylic acid derivative. Vinyl-type latices, in particular with pendant ester functional groups, or based on copolymers of vinyl chloride and of olefin, whether or not silanized, are particularly preferred. Mention may in particular be made of vinyl acetate-based latexes, in particular based on polyvinyl acetate homopolymer, or vinyl acetate copolymer, and especially acid and / or ester copolymer. (meth) acrylic, maleic ester, olefin and / or vinyl chloride, or based on vinyl chloride / ethylene copolymer. Other useful latexes may be chosen from those containing a polymer of acrylic and / or methacrylic type, especially an acrylonitrile / acrylic ester copolymer, or styrene / acid or silanized acrylic ester (that is to say copolymerized with a monomer with ethylenic unsaturation carrying at least one silane or silanol function).
Le latex pourra de manière avantageuse être un copolymère styrène- acrylique, ou un copolymère tout acrylique (issu de différents monomères acrylique) obtenus par polymérisation radicalaire en émulsion ou dispersion. Ces latex sont stabilisés par de l'acide acrylique et/ou de l'acrylonitrile. On trouve de tels polymères commercialisés par la société BASF dans la gamme référencée par la dénomination Acronal®, en particulier l'Acronal® S 400. On peut également utiliser alternativement ou en combinaison, tout latex (un seul ou plusieurs) de cette gamme Acronal®. The latex may advantageously be a styrene-acrylic copolymer, or an all-acrylic copolymer (derived from different acrylic monomers) obtained by radical polymerization in emulsion or dispersion. These latices are stabilized with acrylic acid and / or acrylonitrile. Such polymers marketed by BASF are found in the range referenced by the name Acronal®, in particular Acronal® S 400. It is also possible to use alternatively or in combination any latex (one or more) of this Acronal range. ®.
On peut avantageusement utiliser les poudres commercialisée par la société Hexion™ et de la gamme Axilat™ UP tel que l'Axilat™ UP 620 E. L'Axilat™ UP 620 E, tout comme l'Axilat™ UP 600 B et l'Axilat™ UP 820 A, sont des terpolymères d'acétate de vinyle, de versatate de vinyle et d'ester maléique. It is advantageously possible to use the powders marketed by the company Hexion ™ and the Axilat ™ UP range such as the Axilat ™ UP 620 E. The Axilat ™ UP 620 E, as well as the Axilat ™ UP 600 B and the Axilat ™ UP 820 A, are terpolymers of vinyl acetate, vinyl versatate and maleic ester.
La conductivité thermique du matériau selon l'invention est généralement inférieure ou égale à 27 mW/m.K. The thermal conductivity of the material according to the invention is generally less than or equal to 27 mW / m.K.
De préférence, la conductivité thermique du matériau selon l'invention est inférieure ou égale à 25 mW/m.K, et est avantageusement inférieure ou égale à 23 mW/m.K ; de manière particulièrement préférée elle est inférieure ou égale à 20 mW/m.K, voire même inférieure ou égale à 19 mW/m.K. Preferably, the thermal conductivity of the material according to the invention is less than or equal to 25 mW / m · K, and is advantageously less than or equal to 23 mW / m · K; particularly preferably it is less than or equal to 20 mW / m.K, or even less than or equal to 19 mW / m.K.
Les masses volumiques des matériaux isolants thermiques obtenus selon l'invention décrite précédemment sont généralement inférieures à 250 kg/m3. The densities of thermal insulating materials obtained according to the invention described above are generally less than 250 kg / m 3 .
Les masses volumiques des matériaux isolants thermiques obtenus selon l'invention décrite précédemment sont typiquement inférieures ou égale à 150 kg/m3 (à titre de comparaison la masse volumique d'un bloc d'aérogel est de l'ordre de 150 kg/m3). De préférence, la masse volumique du matériau isolant selon l'invention est inférieure ou égale à 130 kg/m3 et de manière d'avantage
préférée 120 kg/m3, avantageusement la masse volumique est inférieure ou égale à 100 kg/m3, voire inférieure ou égale à 85 kg/m3, et même inférieure ou égale à 70 kg/m3, ou encore inférieure ou égale à 55 kg/m3. The densities of thermal insulation materials obtained according to the invention described above are typically less than or equal to 150 kg / m 3 (for comparison the density of an airgel block is of the order of 150 kg / m 3 ). Preferably, the density of the insulating material according to the invention is less than or equal to 130 kg / m 3 and advantageously preferred 120 kg / m 3 , advantageously the density is less than or equal to 100 kg / m 3 , or even less than or equal to 85 kg / m 3 , and even less than or equal to 70 kg / m 3 , or even less than or equal to at 55 kg / m 3 .
Toutes les combinaisons de ces plages de valeur de conductivité thermique et de masse volumique sont également possibles. All combinations of these ranges of thermal conductivity value and density are also possible.
L'invention a également pour objet un procédé de fabrication du matériau isolant thermique décrit précédemment, comprenant les étapes consistant à : a) préparer une mousse aqueuse ; The invention also relates to a method of manufacturing the thermal insulation material described above, comprising the steps of: a) preparing an aqueous foam;
b) ajouter au moins un liant ; b) adding at least one binder;
c) ajouter la poudre d'aérogel en agitant ou en malaxant ; c) adding the airgel powder by stirring or mixing;
d) laisser sécher le mélange ; et d) allow the mixture to dry; and
e) éventuellement mettre en forme pendant le séchage. e) possibly shaping during drying.
Alternativement, il est possible d'ajouter le liant directement à l'étape a) pendant la préparation de la mousse aqueuse. Cet aspect est dépendant du liant utilisé : lorsqu'on utilise des latex sous forme de poudre on peut ajouter le liant après la préparation de la mousse aqueuse stable c'est-à-dire à l'étape b), tandis que lorsqu'on utilise un latex sous la forme d'une dispersion/suspension dans un liquide (de préférence aqueux) on l'ajoutera de préférence à l'étape a). Alternatively, it is possible to add the binder directly to step a) during the preparation of the aqueous foam. This aspect is dependent on the binder used: when latexes in the form of powder are used, the binder can be added after the preparation of the stable aqueous foam, that is to say in step b), whereas uses a latex in the form of a dispersion / suspension in a liquid (preferably aqueous) it will be added preferably in step a).
L'étape de mise en forme et séchage peut comprendre des opérations de coulée ou moulage de ladite préparation dans des cavités de forme ou section approprié. Le terme moulage est à prendre au sens large et recouvre toute forme de conformation, telles que la coulée en moule ouvert, l'extrusion à travers une filière et découpe de l'extrudât, etc .. Le cas échéant le façonnage peut être réalisé par co-extrusion de la préparation avec une phase organique polymérique, et/ou avec du gypse, pour réaliser une couche de surface. The shaping and drying step may comprise casting operations or molding of said preparation in cavities of appropriate shape or section. The term molding is to be taken in the broadest sense and covers any form of conformation, such as open mold casting, extrusion through a die and cutting the extrudate, etc. Where appropriate the shaping can be achieved by co-extruding the preparation with a polymeric organic phase, and / or with gypsum, to make a surface layer.
Le matériau isolant thermique au sens de l'invention décrit précédemment peut être utilisé sous forme d'au moins une couche appliquée par exemple sur une plaque de plâtre. En outre, un tel matériau isolant particulièrement élastique et déformable peut être imprégné ou étalé sur un voile (par exemple non tissé...). The thermal insulating material within the meaning of the invention described above can be used in the form of at least one layer applied for example on a plasterboard. In addition, such a particularly elastic and deformable insulating material may be impregnated or spread over a web (for example non-woven ...).
De préférence, la mousse aqueuse est préparée comme suit : a) faire mousser par agitation un mélange comprenant le tensio-actif cationique ; b) ajouter ensuite une solution aqueuse comprenant le tensio-actif anionique.
Les inventeurs ont mis en évidence qu'une mousse aqueuse préparée ainsi restait stable tout au long du processus de fabrication, même après incorporations des autres ingrédients (aérogel, charges, adjuvants...). Preferably, the aqueous foam is prepared as follows: a) stir-foaming a mixture comprising the cationic surfactant; b) then adding an aqueous solution comprising the anionic surfactant. The inventors have demonstrated that an aqueous foam prepared and remained stable throughout the manufacturing process, even after incorporating the other ingredients (airgel, fillers, adjuvants ...).
La présente invention et ses avantages seront mieux compris à la lecture des exemples qui suivent, uniquement donnés à titre illustratif et qui ne peuvent en aucun cas être considérés comme limitatifs: The present invention and its advantages will be better understood on reading the following examples, which are only given by way of illustration and which can in no way be considered as limiting:
EXEMPLES : - Pour les mesures des conductivités thermiques les protocoles utilisés dans les exemples sont : EXAMPLES: - For thermal conductivity measurements, the protocols used in the examples are:
La mesure de conductivité est réalisée selon le principe de la méthode Flash (BALAGEAS D. - Mesure de la diffusivité thermique par la méthode flash, R 2955, Technique de l'Ingénieur, Traité Mesures et Contrôle -1986 ), où l'excitation thermique est obtenue par une résistance chauffante plane, conformément au protocole décrit dans le document "Une nouvelle méthode de mesure des propriétés thermophysiques de super-isolants", Yves Jannot & Alain Degiovanni, conférence Thermographie infrarouge pour le bâtiment et les travaux publics, Mesurexpo (Villepinte), 2 octobre 2008. The conductivity measurement is carried out according to the principle of the Flash method (BALAGEAS D. - Measurement of thermal diffusivity by the flash method, R 2955, Engineering Technique, Measurement and Control Treaty -1986), where the thermal excitation is obtained by a plane heating resistor, in accordance with the protocol described in the document "A new method for measuring the thermophysical properties of super-insulators", Yves Jannot & Alain Degiovanni, Infrared thermography conference for building and public works, Mesurexpo (Villepinte ), October 2, 2008.
La température de caractérisation varie de 34 à 37 °C, et les mesures sont effectuées à pression atmosphérique. The characterization temperature ranges from 34 to 37 ° C, and measurements are made at atmospheric pressure.
La précision des mesures est estimée à 5%. Les conductivités thermiques ont été aussi mesurées avec un fluxmètre de la série HFM 436 de la société NETZSCH™ en suivant les protocoles établis par les normes ASTM C518 et ISO 8301 . Les échantillons mesurés ont des dimensions de 15x15x5 cm3. The accuracy of the measurements is estimated at 5%. Thermal conductivities were also measured with a NETZSCH ™ HFM 436 series flowmeter following the protocols established by ASTM C518 and ISO 8301. The measured samples have dimensions of 15x15x5 cm 3 .
- La densité est déterminée par le rapport de la masse de l'échantillon par son volume. - The density is determined by the ratio of the mass of the sample by its volume.
La précision de cette mesure est estimée à 3%.
Exemple 1 : The accuracy of this measurement is estimated at 3%. Example 1
1 .1 Préparation de la mousse aqueuse : 1 .1 Preparation of the aqueous foam:
On utilise un kit fourni par la société Allied Foam (les pourcentages sont des teneurs pondérales calculées par rapport à la masse totale des compositions ) : A kit provided by the company Allied Foam is used (the percentages are weight contents calculated with respect to the total mass of the compositions):
Composant 1 de référence commerciale 425A : Commercial Reference Component 1 425A:
- Mélange de tensioactif cationique appartenant à la classe des alkyls à longues chaîne : 50-60% - Cationic surfactant mixture belonging to the long chain alkyl class: 50-60%
- Mélange de tensioactif phénoxyle non ionique : 10-20% - Phenyl nonionic surfactant mixture: 10-20%
- Ethanol : 5-8% - Ethanol: 5-8%
- Eau : 12-35% - Water: 12-35%
Composant 2 de référence commerciale 510B : Component 2 of commercial reference 510B:
- Mélange de polymères acrylique : 25-35% - Acrylic polymer blend: 25-35%
- Mélange de tensioactif anionique appartenant à la classe des acides gras : 15-30% - Anionic surfactant mixture belonging to the class of fatty acids: 15-30%
- Eau : 35-60% - Water: 35-60%
La mousse est générée par un générateur de mousse commercialisé par la société Allied Foam. The foam is generated by a foam generator marketed by the company Allied Foam.
Le composant 1 est dilué à 136 g pour 1 L d'eau. Component 1 is diluted to 136 g for 1 L of water.
Le composant 2 est introduit directement dans le réservoir prévu à cet effet. Component 2 is introduced directly into the tank provided for this purpose.
Alternativement on pourra utiliser la mousse aqueuse préparée comme suit : Alternatively, the aqueous foam prepared as follows may be used:
On prépare deux solutions aqueuses (1 et 2) comme suit (les pourcentages sont des teneurs pondérales calculées par rapport à la masse totale des solutions après dilution) : Two aqueous solutions (1 and 2) are prepared as follows (the percentages are weight contents calculated with respect to the total mass of the solutions after dilution):
- La solution 1 (complétée à 200 g avec de l'eau distillée) est préparée en ajoutant 3.2% en masse d'Arquad® T50 commercialisé par la société BASF (49% de propylène glycol, 51 % de chlorure de tallowtriméthylammonium (64% d'alkyl en C18, 31 % d'alkyl en C16, 4% d'alkyl en C14 et 1 % d'alkyl en C12, en suspension dans le propylène glycol) en suspension dans l'eau) et 0.65 %
en masse de Triton® X-405 commercialisé par la société Dow Chemical (70% d'éthoxylate de d'octylphénol). Solution 1 (supplemented to 200 g with distilled water) is prepared by adding 3.2% by weight of Arquad® T50 marketed by BASF (49% of propylene glycol, 51% of tallowtrimethylammonium chloride (64% of C18 alkyl, 31% of C16 alkyl, 4% of C14 alkyl and 1% of C12 alkyl, suspended in propylene glycol) in suspension in water) and 0.65% mass of Triton® X-405 sold by Dow Chemical (70% octylphenol ethoxylate).
- La solution 2 (complétée à 40 g avec de l'eau distillée) est préparée en ajoutant 5 % de stéarate de potassium. Solution 2 (supplemented to 40 g with distilled water) is prepared by adding 5% potassium stearate.
La solution 1 est introduite dans un mélangeur à grande vitesse (batteur de cuisine Kenwood Major 1800 Watts). A la mousse obtenue par ce premier mélange, la solution 2 est ajoutées et mélangées. Solution 1 is introduced into a high speed mixer (Kenwood Major 1800 Watts). To the foam obtained by this first mixture, the solution 2 is added and mixed.
1 .2 Transformation de la mousse aqueuse en produit fini : 1 .2 Transformation of aqueous foam into finished product:
On pèse 250 g de mousse aqueuse fraîchement obtenue auquel on ajoute 100 g de copolymère styrène-ester acrylique (latex) en solution aqueuse (Acronal® S 400, BASF, dont la teneur en latex est de 57 %). 250 g of freshly obtained aqueous foam are weighed to which 100 g of styrene-acrylic ester copolymer (latex) in aqueous solution (Acronal® S 400, BASF, whose latex content is 57%) are added.
Une fois obtenue cette mousse renforcée en latex, trois dosages d'aérogels de silice (Nanogel® TLD 302) tamisés à une granulométrie inférieure ou égale à 250 μιτι ont été ajouté à la mousse : 70, 90 et 100 g qui correspondent respectivement aux échantillons 2, 3 et 4 du tableau 1 . Once this latex-reinforced foam was obtained, three doses of silica aerogels (Nanogel® TLD 302) sieved at a particle size of less than or equal to 250 μιτι were added to the foam: 70, 90 and 100 g respectively corresponding to the samples. 2, 3 and 4 of Table 1.
Les aérogels de silice utilisés pour la réalisation de l'invention sont produits par la société Cabot : ils se présentent sous forme de granules millimétriques, qu'il a été nécessaire de broyer et de tamiser afin d'obtenir la granulométrie souhaitée pour l'essai. Le tamisage s'effectue en broyant les aérogels au dessus d'un tamis dont la largeur des mailles est de 250 μιτι. La poudre récupérée après le tamisage présente ainsi une granulométrie inférieure égale à 250 μιτι. The silica aerogels used for the realization of the invention are produced by the company Cabot: they are in the form of millimetric granules, it was necessary to grind and sieve in order to obtain the desired particle size for the test . The sieving is carried out by grinding the aerogels above a sieve whose mesh width is 250 μιτι. The powder recovered after sieving thus has a smaller particle size equal to 250 μιτι.
La poudre d'aérogel est introduite dans la mousse au cours du malaxage ; cette opération a une durée d'environ 5 minutes. The airgel powder is introduced into the foam during kneading; this operation has a duration of about 5 minutes.
Suite au mélange de la mousse renforcée avec la poudre d'aérogels on obtient une pâte de plus en plus compacte, selon la quantité d'aérogels introduite, qui reste cependant assez facile à étaler et à manipuler pour lui conférer différentes formes. Following the mixing of the reinforced foam with the aerogels powder, an increasingly compact paste is obtained, depending on the amount of aerogels introduced, which however remains fairly easy to spread and handle to give it different shapes.
Une fois séchée (48 heures à T ambiante ou 24 heures à l'étuve à 50°C, par
exemple), la pâte, qui a subi une perte de masse d'environ 50 %, a durci et se présente sous la forme d'un solide possédant une certaine souplesse, celle-ci aussi dépendant de la quantité d'aérogels présents dans le mélange. Once dried (48 hours at room temperature or 24 hours in an oven at 50 ° C., example), the pulp, which has undergone a mass loss of about 50%, has hardened and is in the form of a solid having a certain flexibility, this also depending on the amount of aerogels present in the mixed.
Des mesures de densité et de conductivité thermique ont été effectuées sur la poudre d'aérogel et sur les trois échantillons réalisées (échantillons 2, 3, et 4 du tableau 1 ) une fois durcies. Les valeurs mesurées sont résumées dans le tableau 1 , à titre comparatif on a reporté les valeurs mesurées pour la poudre d'aérogel tamisée seule (entrée 1 du tableau) : Density and thermal conductivity measurements were made on the airgel powder and on the three samples made (samples 2, 3, and 4 of Table 1) once cured. The measured values are summarized in Table 1, for comparison the values measured for the sieved airgel powder alone (entry 1 of the table) are reported:
Tableau 1 Table 1
Concernant les trois échantillons 2, 3 et 4, les aérogels sont présents dans le produit final à une teneur d'environ 50% du volume global. For the three samples 2, 3 and 4, the aerogels are present in the final product at a content of approximately 50% of the total volume.
Concernant l'échantillon 2 du tableau 1 on obtient une pâte à l'état frais plus souple, et moins rigide une fois durcie ; alors que pour l'échantillon 4 on obtient une pâte à l'état frais plus compacte, et plus rigide une fois durcie. With regard to sample 2 of Table 1, a fresh paste that is softer and less rigid once cured is obtained; while for sample 4 we obtain a paste in the fresh state more compact, and more rigid once cured.
Exemple 2 : Example 2
Le protocole est identique à celui de l'exemple 1 , mais les aérogels de silice (Nanogel® TLD 302) ne sont pas tamisés. Ainsi les aérogels n'ont pas été soumis à tamisage, mais insérés dans le mélange sous la forme de granules millimétriques.
Le changement de la taille des aérogels permet d'en introduire une quantité plus importante dans la mousse renforcée au latex: 140 g. Ceci parce que la mousse ne subit pas le tassement et/ou d'effondrement, phénomène qui est observé lors de la fabrication de l'échantillon lors de l'introduction des aérogels de granulométrie inférieure égale à 250 μιτι. The protocol is identical to that of Example 1, but the silica aerogels (Nanogel® TLD 302) are not sieved. Thus the aerogels were not subjected to sieving, but inserted into the mixture in the form of millimetric granules. The change in the size of the aerogels makes it possible to introduce a larger quantity into the latex-reinforced foam: 140 g. This is because the foam does not undergo settlement and / or collapse, a phenomenon which is observed during the manufacture of the sample during the introduction of aerogels of smaller particle size equal to 250 μιτι.
Une fois mise en forme et séchée pendant 48h à 50°C, l'échantillon, dénommé échantillon 5, a été soumis à une mesure de conductivité thermique. Lorsque le produit est particulièrement souple et aéré, il a été nécessaire de presser l'échantillon entre les plaques de l'appareil de mesure afin d'obtenir une valeur de conductivité thermique pour une densité correspondante déterminée. Once shaped and dried for 48 hours at 50 ° C, the sample, referred to as Sample 5, was subjected to a thermal conductivity measurement. When the product is particularly flexible and aerated, it was necessary to squeeze the sample between the plates of the measuring apparatus in order to obtain a thermal conductivity value for a determined corresponding density.
Les résultats sont présentés dans le tableau 2. The results are shown in Table 2.
Tableau 2 Table 2
Exemple 3 : Example 3
3.1 Préparation de la mousse aqueuse : 3.1 Preparation of the aqueous foam:
On prépare deux solutions aqueuses (1 et 2) comme suit (les pourcentages sont des teneurs pondérales calculées par rapport à la masse totale des solutions après dilution) : Two aqueous solutions (1 and 2) are prepared as follows (the percentages are weight contents calculated with respect to the total mass of the solutions after dilution):
- La solution 1 est préparée en ajoutant 3.2% en masse d'Arquad® T50 commercialisé par la société BASF (49% de propylène glycol, 51 % de chlorure de tallowtriméthylammonium (64% d'alkyl en C18, 31 % d'alkyl en C16, 4% d'alkyl en C14 et 1 % d'alkyl en C12, en suspension dans le propylène glycol) en suspension dans l'eau) et 0.65 % en masse de Triton®
X-405 commercialisé par la société Dow Chemical (70% d'éthoxylate de d'octylphénol), le tout est ajouté à une solution d'eau distillée pour obtenir une solution aqueuse de 200 g. - La solution 2 est préparée en ajoutant 5% en masse de stéarate de potassium à une solution d'eau distillée pour obtenir une solution aqueuse de 40 g. Solution 1 is prepared by adding 3.2% by weight of Arquad® T50 marketed by BASF (49% of propylene glycol, 51% of tallowtrimethylammonium chloride (64% of C18 alkyl, 31% of alkyl). C16, 4% C14 alkyl and 1% C12 alkyl, suspended in propylene glycol) in suspension in water) and 0.65% by weight of Triton® X-405 marketed by Dow Chemical (70% octylphenol ethoxylate), the whole is added to a solution of distilled water to obtain an aqueous solution of 200 g. Solution 2 is prepared by adding 5% by weight of potassium stearate to a solution of distilled water to obtain an aqueous solution of 40 g.
La solution 1 est introduite dans un mélangeur à grande vitesse (batteur de cuisine Kenwood Major 1800 Watts) et on effectue un moussage par agitation à vitesse maximum pendant deux minutes. A cette première mousse, on ajoute la solution 2. On agite l'ensemble à vitesse maximum pendant deux minutes pour obtenir la mousse aqueuse stable. 3.2 Transformation de la mousse aqueuse en produit fini : Solution 1 is introduced into a high speed mixer (Kenwood Major 1800 Watts) and foamed by stirring at maximum speed for two minutes. To this first foam, solution 2 is added. The mixture is stirred at maximum speed for two minutes to obtain the stable aqueous foam. 3.2 Transformation of the aqueous foam into finished product:
Préparation des échantillons 1 et 2 : Preparation of samples 1 and 2:
On pèse 230 g de la mousse aqueuse stable fraîchement préparée selon le protocole décrit au 3.1 , à laquelle on ajoute un liant inorganique formé à partir d'une gâché de plâtre formée à partir de plâtre en poudre, éventuellement de silicate de sodium (NaO/SiO2.3H2O) en poudre, et d'un latex organique de type terpolymère de vinyle en poudre (Axilat® UP 620 E, société Hexion, dont la teneur en latex est de 90-95 %) avec un ratio solide/eau dans la gâchée de 10 : 9 en poids. L'agitation se poursuit dans le mélangeur : il s'agit maintenant d'un malaxage étant donné que la mousse devient de plus en plus pâteuse. 230 g of the stable aqueous foam freshly prepared are weighed according to the protocol described in 3.1, to which is added an inorganic binder formed from a plaster batch formed from powdered plaster, optionally sodium silicate (NaO / SiO 2 .3H 2 O) powder, and an organic latex of the vinyl terpolymer powder type (Axilat® UP 620 E, Hexion Company, with a latex content of 90-95%) with a solid / water in the mix of 10: 9 by weight. Stirring continues in the mixer: it is now a mixing because the foam becomes more and more pasty.
Ensuite pendant 5 minutes, au cours du malaxage, on incorpore au mélange moussé les aérogels de silice vendus par la société Cabot (Nanogel® TLD 302) dont une fraction est tamisée à une granulométrie inférieure ou égale à 250 μιτι. Pendant le malaxage, au cours du temps, on obtient une pâte de plus
en plus compacte, selon la quantité d'aérogels introduite, qui reste cependant assez facile à étaler et à manipuler pour lui conférer différentes formes. Then for 5 minutes, during mixing, the silica aerogels sold by Cabot (Nanogel® TLD 302), a fraction of which is sieved to a particle size of less than or equal to 250 μιτι, are incorporated into the foamed mixture. During mixing, over time, one more dough is obtained in addition compact, depending on the amount of aerogels introduced, which remains however easy enough to spread and manipulate to give it different forms.
Une fois séchée (48 heures à T ambiante ou 24 heures à l'étuve à 50°C, par exemple), la pâte, qui a subi une perte de masse d'environ 50%, a durci et se présente sous la forme d'un solide possédant une certaine souplesse, celle-ci aussi dépendant de la quantité d'aérogels présents dans le mélange. Once dried (48 hours at room temperature or 24 hours in an oven at 50 ° C., for example), the paste, which has undergone a weight loss of about 50%, has hardened and is in the form of a solid having a certain flexibility, this also depending on the amount of aerogels present in the mixture.
Les quantités de réactifs utilisés et les résultats expérimentaux sont reportés dans le tableau 3. The amounts of reagents used and the experimental results are reported in Table 3.
Exemple 4 : Example 4
4.1 Préparation de la mousse aqueuse : 4.1 Preparation of the aqueous foam
On prépare deux solutions aqueuses (1 et 2) comme suit (les pourcentages sont des teneurs pondérales calculées par rapport à la masse totale des solutions après dilution) : Two aqueous solutions (1 and 2) are prepared as follows (the percentages are weight contents calculated with respect to the total mass of the solutions after dilution):
- La solution 1 est préparée en ajoutant 3.2% en masse d'Arquad® T50 commercialisé par la société BASF (49% de propylène glycol, 51 % de chlorure de tallowtriméthylammonium (64% d'alkyl en C18, 31 % d'alkyl en C16, 4% d'alkyl en C14 et 1 % d'alkyl en C12, en suspension dans le propylène glycol) en suspension dans l'eau) et 0.65 % en masse de Triton® X-405 commercialisé par la société Dow Chemical (70% d'éthoxylate de d'octylphénol), le tout est ajouté à une solution d'eau distillée pour obtenir une solution aqueuse de 200 g. Solution 1 is prepared by adding 3.2% by weight of Arquad® T50 marketed by BASF (49% of propylene glycol, 51% of tallowtrimethylammonium chloride (64% of C18 alkyl, 31% of alkyl). C16, 4% C14 alkyl and 1% C12 alkyl, suspended in propylene glycol) in suspension in water) and 0.65% by weight of Triton® X-405 marketed by Dow Chemical ( 70% octylphenol ethoxylate), the whole is added to a solution of distilled water to obtain an aqueous solution of 200 g.
- La solution 2 est réalisée en préparant une solution aqueuse (eau distillée) de 40 g contenant 5% en masse de stéarate de potassium auxquels on ajoute, sous agitation effectuée à la spatule par l'opérateur, 25-38% en masse d'un liant organique de type copolymère styrène-ester acrylique (latex) en solution aqueuse (Acronal® S 400, BASF, dont la teneur en latex est de 57 %).
La solution 1 est introduite dans un mélangeur à grande vitesse (batteur de cuisine Kenwood Major 1800 Watts) et on effectue un moussage par agitation à vitesse maximum pendant deux minutes. A cette première mousse, on ajoute la solution 2. On agite l'ensemble à vitesse maximum pendant deux minutes pour obtenir la mousse aqueuse stable. Solution 2 is prepared by preparing an aqueous solution (distilled water) of 40 g containing 5% by weight of potassium stearate, to which 25-38% by weight of spraying is added with stirring by the operator. an organic binder of the styrene-acrylic ester copolymer (latex) type in aqueous solution (Acronal® S 400, BASF, the latex content of which is 57%). Solution 1 is introduced into a high speed mixer (Kenwood Major 1800 Watts) and foamed by stirring at maximum speed for two minutes. To this first foam, solution 2 is added. The mixture is stirred at maximum speed for two minutes to obtain the stable aqueous foam.
4.2 Transformation de la mousse aqueuse en produit fini : Préparation des échantillons 3 et 4 : 4.2 Transformation of the aqueous foam into finished product: Preparation of samples 3 and 4:
A 230 g de la mousse aqueuse stable fraîchement préparée selon le protocole décrit au 4.1 , on incorpore un liant inorganique formé à partir d'une gâché de plâtre, et éventuellement de silicate de sodium (NaO/SiO2.3H2O) : le ratio solide/eau dans la gâchée est de 1 : 1 en poids. L'agitation se poursuit dans le mélangeur à faible vitesse : il s'agit maintenant d'un malaxage étant donné que la mousse devient de plus en plus pâteuse. To 230 g of the stable aqueous foam freshly prepared according to the protocol described in 4.1, is incorporated an inorganic binder formed from a plaster batch, and optionally sodium silicate (NaO / SiO 2 .3H 2 O): the solid / water ratio in the batch is 1: 1 by weight. Stirring continues in the mixer at low speed: it is now a mixing because the foam becomes more and more pasty.
Ensuite pendant 5 minutes, au cours du malaxage, on incorpore au mélange moussé les aérogels de silice vendus par la société Cabot (Nanogel® TLD 302) dont une fraction est tamisée à une granulométrie inférieure ou égale à 250 μιτι. Pendant le malaxage, au cours du temps, on obtient une pâte de plus en plus compacte, selon la quantité d'aérogels introduite, qui reste cependant assez facile à étaler et à manipuler pour lui conférer différentes formes. Then for 5 minutes, during mixing, the silica aerogels sold by Cabot (Nanogel® TLD 302), a fraction of which is sieved to a particle size of less than or equal to 250 μιτι, are incorporated into the foamed mixture. During mixing, over time, an increasingly compact paste is obtained, depending on the amount of aerogels introduced, which remains fairly easy to spread and handle to give it different shapes.
Une fois séchée (48 heures à T ambiante ou 24 heures à l'étuve à 50°C, par exemple), la pâte, qui a subi une perte de masse d'environ 50%, a durci et se présente sous la forme d'un solide possédant une certaine souplesse, celle-ci aussi dépendant de la quantité d'aérogels présents dans le mélange. Les quantités de réactifs utilisés et les résultats expérimentaux sont reportés dans le tableau 3.
Exemple 5 : Once dried (48 hours at room temperature or 24 hours in an oven at 50 ° C., for example), the paste, which has undergone a weight loss of about 50%, has hardened and is in the form of a solid having a certain flexibility, this also depending on the amount of aerogels present in the mixture. The amounts of reagents used and the experimental results are reported in Table 3. Example 5
5.1 Préparation de la mousse aqueuse : On prépare deux solutions aqueuses (1 et 2) comme suit (les pourcentages sont des teneurs pondérales calculées par rapport à la masse totale des solutions après dilution) : 5.1 Preparation of the aqueous foam: Two aqueous solutions (1 and 2) are prepared as follows (the percentages are weight contents calculated with respect to the total mass of the solutions after dilution):
- La solution 1 est préparée en ajoutant 3.2% en masse d'Arquad® T50 commercialisé par la société BASF (49% de propylène glycol, 51 % de chlorure de tallowtriméthylammonium (64% d'alkyl en C18, 31 % d'alkyl en C16, 4% d'alkyl en C14 et 1 % d'alkyl en C12, en suspension dans le propylène glycol) en suspension dans l'eau) et 0.65% en masse de Triton® X- 405 commercialisé par la société Dow Chemical (70% d'éthoxylate de d'octylphénol), le tout est ajouté à une solution d'eau distillée pour obtenir une solution aqueuse de 200 g. Solution 1 is prepared by adding 3.2% by weight of Arquad® T50 marketed by BASF (49% of propylene glycol, 51% of tallowtrimethylammonium chloride (64% of C18 alkyl, 31% of alkyl). C16, 4% C14 alkyl and 1% C12 alkyl, suspended in propylene glycol) in suspension in water) and 0.65% by weight of Triton® X-405 marketed by Dow Chemical ( 70% octylphenol ethoxylate), the whole is added to a solution of distilled water to obtain an aqueous solution of 200 g.
- La solution 2 est préparée en ajoutant 5% en masse de stéarate de potassium à une solution d'eau distillée pour obtenir une solution aqueuse de 40 g. Solution 2 is prepared by adding 5% by weight of potassium stearate to a solution of distilled water to obtain an aqueous solution of 40 g.
La solution 1 est introduite dans un mélangeur à grande vitesse (batteur de cuisine Kenwood Major 1800 Watts) et on effectue un moussage par agitation à vitesse maximum pendant deux minutes. A cette première mousse, on ajoute la solution 2. On agite l'ensemble à vitesse maximum pendant deux minutes pour obtenir la mousse aqueuse stable. Solution 1 is introduced into a high speed mixer (Kenwood Major 1800 Watts) and foamed by stirring at maximum speed for two minutes. To this first foam, solution 2 is added. The mixture is stirred at maximum speed for two minutes to obtain the stable aqueous foam.
5.2 Transformation de la mousse aqueuse en produit fini : 5.2 Transformation of the aqueous foam into finished product:
Préparation de l'échantillon 5
A 230 g de la mousse aqueuse stable fraîchement préparée selon le protocole décrit au 5.1 , on incorpore un liant inorganique formé à partir d'une gâché de plâtre, et éventuellement de silicate de sodium (NaO/SiO2.3H2O) : le ratio solide/eau dans la gâchée est de 1 : 1 en poids. L'agitation se poursuit dans le mélangeur : il s'agit maintenant d'un malaxage étant donné que la mousse devient de plus en plus pâteuse. Preparation of the sample 5 To 230 g of the stable aqueous foam freshly prepared according to the protocol described in 5.1, is incorporated an inorganic binder formed from a plaster batch, and optionally sodium silicate (NaO / SiO 2 .3H 2 O): the solid / water ratio in the batch is 1: 1 by weight. Stirring continues in the mixer: it is now a mixing because the foam becomes more and more pasty.
Ensuite pendant 5 minutes, au cours du malaxage, on incorpore au mélange moussé les aérogels de silice vendus par la société Cabot (Nanogel® TLD 302) dont une fraction est tamisée à une granulométrie inférieure ou égale à 250 μιτι. Pendant le malaxage, au cours du temps, on obtient une pâte de plus en plus compacte, selon la quantité d'aérogels introduite, qui reste cependant assez facile à étaler et à manipuler pour lui conférer différentes formes. Then for 5 minutes, during mixing, the silica aerogels sold by Cabot (Nanogel® TLD 302), a fraction of which is sieved to a particle size of less than or equal to 250 μιτι, are incorporated into the foamed mixture. During mixing, over time, an increasingly compact paste is obtained, depending on the amount of aerogels introduced, which remains fairly easy to spread and handle to give it different shapes.
Une fois séchée (48 heures à T ambiante ou 24 heures à l'étuve à 50°C, par exemple), la pâte, qui a subi une perte de masse d'environ 50%, a durci et se présente sous la forme d'un solide possédant une certaine souplesse, celle-ci aussi dépendant de la quantité d'aérogels présents dans le mélange. Once dried (48 hours at room temperature or 24 hours in an oven at 50 ° C., for example), the paste, which has undergone a weight loss of about 50%, has hardened and is in the form of a solid having a certain flexibility, this also depending on the amount of aerogels present in the mixture.
Les quantités de réactifs utilisés et les résultats expérimentaux sont reportés dans le tableau 3.
The amounts of reagents used and the experimental results are reported in Table 3.
Tableau 3 : Table 3:
Claims
REVENDICATIONS
Matériau isolant thermique susceptible d'être obtenu à partir du mélange d'au moins les éléments suivants : Thermal insulating material obtainable from the mixture of at least the following elements:
- une mousse aqueuse, an aqueous foam,
- des particules d'aérogel de silice, et silica airgel particles, and
- au moins un liant sélectionné parmi un liant organique et un liant minéral. Matériau isolant thermique selon la revendication 1 , caractérisé en ce qu'il est susceptible d'être préparé à partir d'au moins lesdits éléments pris dans des quantités exprimées par rapport à la masse totale dudit mélange variant de 25 à 75 % pour la mousse aqueuse, de 5 à 35 % pour les particules d'aérogel de silice et de 5 à 35 % pour ledit liant. at least one binder selected from an organic binder and a mineral binder. Thermal insulating material according to claim 1, characterized in that it is capable of being prepared from at least said elements taken in quantities expressed with respect to the total mass of said mixture varying from 25 to 75% for the foam aqueous, 5 to 35% for silica airgel particles and 5 to 35% for said binder.
Matériau isolant thermique selon la revendication 2, caractérisé en ce qu'il est susceptible d'être préparé à partir d'au moins 35 à 65 % de mousse aqueuse, 17 à 25 % de particule d'aérogel de silice et de 17 à 25 % dudit liant. Thermal insulating material according to claim 2, characterized in that it is capable of being prepared from at least 35 to 65% aqueous foam, 17 to 25% silica airgel particle and from 17 to 25 % of said binder.
Matériau isolant thermique selon l'une quelconque des revendications précédentes, caractérisé en ce que la mousse aqueuse comprend : Thermal insulating material according to any one of the preceding claims, characterized in that the aqueous foam comprises:
- au moins un sel de tensioactif cationique sélectionné parmi l'un des composés suivants de formule générale : at least one cationic surfactant salt selected from one of the following compounds of general formula:
Ri Ri
I © Θ I © Θ
R N R2 , x RNR 2 , x
R3 (|) R 3 (|)
pour laquelle R est une chaîne aliphatique de 8 à 24 atomes de carbones ; Ri est un groupement sélectionné parmi les alkyles comportant 1 à 16 atomes de carbones, les hydroxyalkyles comportant 1 à 16 atomes de carbones, un groupement benzyle, un groupement qui, pris ensemble avec l'azote de la formule (I), donne un hétérocycle éventuellement substitué par au moins un atome de fluor ; R2 et R3 sont sélectionnés parmi les groupements constitués d'un groupement alkyle comportant 1 à 6 atomes de carbones, les hydroxyalkyles comportant 1 à
6 atomes de carbones, un atome d'hydrogène, un groupement benzyle, un groupement qui, pris ensemble avec l'azote de la formule (I), donne un hétérocycle éventuellement substitué par au moins atome de fluor ; et X" est un contre anion ; wherein R is an aliphatic chain of 8 to 24 carbon atoms; R 1 is a group selected from alkyls containing 1 to 16 carbon atoms, hydroxyalkyls containing 1 to 16 carbon atoms, a benzyl group, a group which, taken together with the nitrogen of formula (I), gives a heterocycle optionally substituted with at least one fluorine atom; R 2 and R 3 are selected from the groups consisting of an alkyl group having 1 to 6 carbon atoms, the hydroxyalkyls comprising 1 to 6 carbon atoms, a hydrogen atom, a benzyl group, a group which, taken together with the nitrogen of formula (I), gives a heterocycle optionally substituted by at least one fluorine atom; and X " is a counter-anion;
- au moins un sel de tensioactif anionique sélectionné parmi l'un des composés suivants de formule générale (II) : at least one anionic surfactant salt selected from one of the following compounds of general formula (II):
R-Y", Y+ (II) RY " , Y + (II)
pour lequel R est une chaîne aliphatique de 10 à 24 atomes de carbones ; X" est un groupement portant une charge négative sélectionnée parmi les groupements carboxylate, sulfates et phosphate ; et Y+ est un contre cation sélectionné parmi les groupements ammonium, sodium et potassium ; et wherein R is an aliphatic chain of 10 to 24 carbon atoms; X " is a group bearing a negative charge selected from carboxylate, sulphate and phosphate groups, and Y + is a counter cation selected from ammonium, sodium and potassium groups, and
tel que le rapport de la teneur pondérale du sel de tensioactif cationique sur la teneur pondérale du sel de tensioactif anionique varie de 0.05 :1 à 15 :1 , de préférence de 0.2 :1 à 5 :1 , voire même de 0.4 :1 à 2.5 :1 . such that the ratio of the weight content of the cationic surfactant salt to the weight content of the anionic surfactant salt varies from 0.05: 1 to 15: 1, preferably from 0.2: 1 to 5: 1, or even from 0.4: 1 to 2.5: 1.
Matériau isolant thermique selon la revendication 4, caractérisé en ce que le sel de tensioactif cationique est sélectionné parmi au moins l'un des éléments suivants : le bromure de dodécyltriméthylammonium, le chlorure de dodécyltriméthylammonium, le bromure de tetradecyltriméthylammonium, le chlorure de tetradecyltriméthylammonium, le bromure d'hexadecyltriméthylammonium, le chlorure d'hexadecyltriméthylammonium, le bromure d'octadécyltriméthylammonium, le chlorure d'octadécyltriméthylammonium, le bromure de cétyltriméthylammonium, le chlorure de cétyltriméthylammonium, le chlorure de cétylbenzyldimethylammonium, le bromure de cétyltriéthylammonium et le chlorure de tallowtriméthylammonium. Thermal insulating material according to Claim 4, characterized in that the cationic surfactant salt is selected from at least one of the following: dodecyltrimethylammonium bromide, dodecyltrimethylammonium chloride, tetradecyltrimethylammonium bromide, tetradecyltrimethylammonium chloride, hexadecyltrimethylammonium bromide, hexadecyltrimethylammonium chloride, octadecyltrimethylammonium bromide, octadecyltrimethylammonium chloride, cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, cetylbenzyldimethylammonium chloride, cetyltriethylammonium bromide and tallowtrimethylammonium chloride.
Matériau isolant thermique selon l'une quelconque des revendications 4 ou 5, caractérisé en ce que le sel de tensioactif cationique est le chlorure de tallowtriméthylammonium. Thermal insulating material according to either of Claims 4 and 5, characterized in that the cationic surfactant salt is tallowtrimethylammonium chloride.
Matériau isolant thermique selon l'une quelconque des revendications 4 à 6, caractérisé en ce que le sel de tensioactif anionique est sélectionné parmi au moins l'un des composés suivants : le stéarate d'ammonium, le stéarate de potassium et le stéarate de sodium.
Thermal insulating material according to one of Claims 4 to 6, characterized in that the anionic surfactant salt is selected from at least one of the following compounds: ammonium stearate, potassium stearate and sodium stearate .
8. Matériau isolant thermique selon l'une des revendications 1 à 3, caractérisé en ce que la mousse aqueuse comprend un mélange d'eau et de glycérol, au moins un tensioactif et au moins un zwittérion. 8. Thermal insulating material according to one of claims 1 to 3, characterized in that the aqueous foam comprises a mixture of water and glycerol, at least one surfactant and at least one zwitterion.
9. Matériau isolant thermique selon la revendication 8, caractérisé en ce que la mousse aqueuse comprend 35 à 45 % de glycérol, de préférence 40 %, moins de 0.5% de dodécylpolyoxyéthylène-3-sulfate, moins de 0.5% de cocoamidopropyl bétaïne et moins de 0.05 % d'acide myristique. 9. Thermal insulating material according to claim 8, characterized in that the aqueous foam comprises 35 to 45% of glycerol, preferably 40%, less than 0.5% of dodecylpolyoxyethylene-3-sulfate, less than 0.5% of cocoamidopropyl betaine and less 0.05% myristic acid.
10. Matériau isolant thermique selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit liant est un latex. 10. Thermal insulating material according to any one of the preceding claims, characterized in that said binder is a latex.
1 1 . Matériau isolant thermique selon la revendication 10, caractérisé en ce que ledit latex a une température de transition vitreuse Tg inférieure à 50°C. 12. Matériau isolant thermique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il a une conductivité thermique inférieure ou égale à 23 mW/m.K, de préférence 20 mW/m.K. 1 1. Thermal insulating material according to claim 10, characterized in that said latex has a glass transition temperature Tg of less than 50 ° C. 12. Thermal insulating material according to any one of the preceding claims, characterized in that it has a thermal conductivity less than or equal to 23 mW / m.K, preferably 20 mW / m.K.
13. Matériau isolant thermique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il a une conductivité thermique inférieure ou égale à 19 mW/m.K. 13. Thermal insulating material according to any one of the preceding claims, characterized in that it has a thermal conductivity less than or equal to 19 mW / m.K.
14. Matériau isolant thermique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il a une masse volumique inférieure ou égale à 150 kg/m3, de préférence 130 kg/m3. 14. Thermal insulating material according to any one of the preceding claims, characterized in that it has a density of less than or equal to 150 kg / m 3 , preferably 130 kg / m 3 .
15. Matériau isolant thermique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il a une masse volumique inférieure ou égale à 100 kg/m3. 15. Thermal insulating material according to any one of the preceding claims, characterized in that it has a density of less than or equal to 100 kg / m 3 .
16. Procédé de fabrication du matériau isolant thermique selon l'une quelconque des revendications précédentes, comprenant les étapes consistant à : The method of manufacturing the thermal insulating material according to any one of the preceding claims, comprising the steps of:
a) préparer une mousse aqueuse ; a) preparing an aqueous foam;
b) ajouter au moins un liant ; b) adding at least one binder;
c) ajouter une poudre d'aérogel de silice en agitant ou en malaxant ; et d) laisser sécher le mélange. c) adding a silica airgel powder by stirring or mixing; and d) allow the mixture to dry.
17. Procédé de fabrication selon la revendication 16, caractérisé en ce qu'après l'étape d) on met en forme pendant le séchage. 17. The manufacturing method according to claim 16, characterized in that after step d) is shaped during drying.
18. Procédé de fabrication selon l'une des revendications 16 ou 17, caractérisé en ce que la mousse aqueuse est préparée comme suit :
a) faire mousser par agitation un mélange comprenant le tensio-actif cationique ; 18. Manufacturing process according to one of claims 16 or 17, characterized in that the aqueous foam is prepared as follows: a) stir-foaming a mixture comprising the cationic surfactant;
b) ajouter ensuite une solution aqueuse comprenant le tensio-actif anionique.
b) then adding an aqueous solution comprising the anionic surfactant.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1050744A FR2955863B1 (en) | 2010-02-03 | 2010-02-03 | HIGH PERFORMANCE THERMAL INSULATION MATERIALS |
PCT/FR2011/050222 WO2011095745A1 (en) | 2010-02-03 | 2011-02-03 | High-performance thermal insulation materials |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2531553A1 true EP2531553A1 (en) | 2012-12-12 |
Family
ID=42635459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11707455A Withdrawn EP2531553A1 (en) | 2010-02-03 | 2011-02-03 | High-performance thermal insulation materials |
Country Status (8)
Country | Link |
---|---|
US (2) | US9045609B2 (en) |
EP (1) | EP2531553A1 (en) |
JP (1) | JP6006119B2 (en) |
BR (1) | BR112012019417B1 (en) |
FR (1) | FR2955863B1 (en) |
RU (1) | RU2585645C2 (en) |
WO (1) | WO2011095745A1 (en) |
ZA (1) | ZA201206096B (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2955863B1 (en) * | 2010-02-03 | 2012-03-09 | Saint Gobain Rech | HIGH PERFORMANCE THERMAL INSULATION MATERIALS |
WO2012174377A1 (en) | 2011-06-17 | 2012-12-20 | Basf Se | High performance wall assembly |
FR2977888B1 (en) * | 2011-07-13 | 2014-01-10 | Saint Gobain Isover | THERMAL INSULATION MATERIALS HIGH PERFORMANCE. |
FR2977889B1 (en) * | 2011-07-13 | 2014-01-10 | Saint Gobain Isover | HIGH PERFORMANCE THERMAL INSULATION MATERIALS |
FR2991316B1 (en) * | 2012-06-05 | 2014-05-16 | Saint Gobain Isover | HIGH PERFORMANCE THERMAL INSULATION PRODUCTS |
FR2991315B1 (en) | 2012-06-05 | 2014-05-16 | Saint Gobain Isover | HIGH PERFORMANCE THERMAL INSULATION PRODUCTS |
CN104603344B (en) * | 2012-06-26 | 2020-03-31 | 卡博特公司 | Flexible insulation structure and methods of making and using same |
KR101804345B1 (en) * | 2013-07-04 | 2017-12-06 | 알이엠텍 주식회사 | Heat-insulating composition, method for preparing thereof and heat-insulating material using the same |
US9764301B2 (en) * | 2013-11-14 | 2017-09-19 | Nanyang Technological University | Silica aerogel composite |
KR101637270B1 (en) | 2015-03-23 | 2016-07-07 | 현대자동차 주식회사 | Porous polymer resin layer and method for manufacturing the same |
KR102023531B1 (en) * | 2015-04-07 | 2019-09-24 | 주식회사 엘지화학 | Aerogel containing composition and thermal insulation blanket prepared by using the same |
FR3037964B1 (en) * | 2015-06-24 | 2019-12-20 | Saint-Gobain Isover | THERMOSET POLYESTER FOAMS AND MANUFACTURING METHOD |
EP3391433B1 (en) * | 2015-12-15 | 2023-04-05 | Apple Inc. | Microporous insulators |
KR101958014B1 (en) | 2016-03-14 | 2019-03-13 | 주식회사 엘지화학 | Preparation method of super absorbent polymer |
US10818903B1 (en) | 2017-08-15 | 2020-10-27 | Apple Inc. | Polypropylene carbonate and catalysts |
NL2025711B1 (en) * | 2020-05-29 | 2022-01-13 | Takkenkamp Innovatie Bv | Thermal Insulating Slurry Composition And Method For Its Manufacture |
CN113527772B (en) * | 2021-06-08 | 2023-08-22 | 深圳中凝科技有限公司 | Aerogel latex foam and preparation method and application thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4038784A1 (en) | 1990-12-05 | 1992-06-11 | Basf Ag | COMPOSITE FOAMS WITH LOW HEAT CONDUCTIVITY |
US5569513A (en) * | 1994-08-10 | 1996-10-29 | Armstrong World Industries, Inc. | Aerogel-in-foam thermal insulation and its preparation |
DE4441567A1 (en) * | 1994-11-23 | 1996-05-30 | Hoechst Ag | Airgel-containing composite material, process for its production and its use |
WO1996025475A1 (en) * | 1995-02-14 | 1996-08-22 | Allied Foam Tech Corporation | Stable and water-resistant aqueous foam composition_____________ |
DE50109465D1 (en) * | 2001-12-28 | 2006-05-18 | Lefatex Chemie Gmbh | FORMABLE PLASTIC MASS, COMPOSITE MATERIAL, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS LIGHT INSULATING MATERIAL |
JP4369239B2 (en) * | 2002-01-29 | 2009-11-18 | キャボット コーポレイション | Heat resistant airgel insulating composite material and method for producing the same, airgel binder composition and method for producing the same |
AU2003241488B2 (en) * | 2002-05-15 | 2008-01-24 | Cabot Corporation | Aerogel and hollow particle binder composition, insulation composite, and method for preparing the same |
WO2004018919A2 (en) * | 2002-08-21 | 2004-03-04 | The Research Foundation Of State University Of New York | Process for enhancing material properties and materials so enhanced |
US7118801B2 (en) * | 2003-11-10 | 2006-10-10 | Gore Enterprise Holdings, Inc. | Aerogel/PTFE composite insulating material |
KR101423342B1 (en) | 2005-10-21 | 2014-07-30 | 캐보트 코포레이션 | Aerogel based composites |
WO2007146945A2 (en) * | 2006-06-12 | 2007-12-21 | Aspen Aerogels, Inc. | Aerogel-foam composites |
ES2568458T3 (en) * | 2009-07-29 | 2016-04-29 | Dow Global Technologies Llc | Thermal insulating polymer foam and airgel composite material article |
FR2955863B1 (en) * | 2010-02-03 | 2012-03-09 | Saint Gobain Rech | HIGH PERFORMANCE THERMAL INSULATION MATERIALS |
-
2010
- 2010-02-03 FR FR1050744A patent/FR2955863B1/en not_active Expired - Fee Related
-
2011
- 2011-02-03 RU RU2012137251/05A patent/RU2585645C2/en not_active IP Right Cessation
- 2011-02-03 WO PCT/FR2011/050222 patent/WO2011095745A1/en active Application Filing
- 2011-02-03 EP EP11707455A patent/EP2531553A1/en not_active Withdrawn
- 2011-02-03 JP JP2012551667A patent/JP6006119B2/en not_active Expired - Fee Related
- 2011-02-03 BR BR112012019417-8A patent/BR112012019417B1/en not_active IP Right Cessation
- 2011-02-03 US US13/576,424 patent/US9045609B2/en not_active Expired - Fee Related
-
2012
- 2012-08-14 ZA ZA2012/06096A patent/ZA201206096B/en unknown
-
2015
- 2015-03-12 US US14/645,807 patent/US9249272B2/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2011095745A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2013518961A (en) | 2013-05-23 |
US20150183947A1 (en) | 2015-07-02 |
JP6006119B2 (en) | 2016-10-12 |
RU2585645C2 (en) | 2016-05-27 |
FR2955863B1 (en) | 2012-03-09 |
RU2012137251A (en) | 2014-03-10 |
BR112012019417B1 (en) | 2020-03-10 |
ZA201206096B (en) | 2013-04-24 |
US9045609B2 (en) | 2015-06-02 |
US20120326071A1 (en) | 2012-12-27 |
FR2955863A1 (en) | 2011-08-05 |
US9249272B2 (en) | 2016-02-02 |
WO2011095745A1 (en) | 2011-08-11 |
BR112012019417A2 (en) | 2018-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2531553A1 (en) | High-performance thermal insulation materials | |
EP2731985B1 (en) | High-performance thermal insulation materials | |
EP2981512A1 (en) | Insulating mortar composition | |
EP2401239B1 (en) | Powder insulating mortar, and layered insulating mortar | |
EP3778524A1 (en) | Insulating silica xerogel plaster | |
EP2093201A2 (en) | Lime foam composition for thermal insulation | |
EP3442929A1 (en) | Highly lightweight and thermally insulating mortar composition | |
CA2941325C (en) | Acoustic panel made of plaster | |
EP2731986B1 (en) | High-performance thermal insulation materials | |
EP2855998B1 (en) | High performance thermal insulation products | |
EP3325424A1 (en) | Method for preparing a glycerine-containing lightweight concrete or mortar | |
EP2531462B1 (en) | Method for spraying foam material, and coating obtained from such a method | |
EP2855389B1 (en) | High-performance thermal insulation products | |
EP4069654A1 (en) | Method for fireproofing material | |
WO2024074521A1 (en) | Composition for an insulating coating | |
FR3104154A1 (en) | Material fireproofing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120903 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20170324 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20200408 |