EP2520891B1 - Rotary heat exchanger with improved surrounding seal - Google Patents

Rotary heat exchanger with improved surrounding seal Download PDF

Info

Publication number
EP2520891B1
EP2520891B1 EP20110164602 EP11164602A EP2520891B1 EP 2520891 B1 EP2520891 B1 EP 2520891B1 EP 20110164602 EP20110164602 EP 20110164602 EP 11164602 A EP11164602 A EP 11164602A EP 2520891 B1 EP2520891 B1 EP 2520891B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
housing
rotary heat
sealing
storage mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20110164602
Other languages
German (de)
French (fr)
Other versions
EP2520891A1 (en
Inventor
Hannes Ing. Hausbichler
Martin Geiselhart
Alfred Frick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoval AG
Original Assignee
Hoval AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoval AG filed Critical Hoval AG
Priority to EP20110164602 priority Critical patent/EP2520891B1/en
Publication of EP2520891A1 publication Critical patent/EP2520891A1/en
Application granted granted Critical
Publication of EP2520891B1 publication Critical patent/EP2520891B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/041Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier with axial flow through the intermediate heat-transfer medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/047Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1096Rotary wheel comprising sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants

Definitions

  • the present invention relates to a rotary heat exchanger having a housing, a circular cylindrical storage mass rotating in the housing about an axis with a plurality of flow channels and a first and a second cylinder end surface, housing end surfaces of the housing at least slightly overlapping the cylinder end surfaces at their entire circumference, so that between the cylinder end faces and the housing end faces, a gap is formed and associated flow and Abström vom are released, and a peripheral seal, which is arranged on the lateral surface of the storage mass and comprising at least two sealing profiles in contact with the housing end faces and the lateral surface are and thus seal the storage mass against the housing.
  • Rotary heat exchangers are used in ventilation systems for the purpose of heat recovery by means of regenerative heat transfer.
  • An air-permeable storage mass usually rotates at a speed of 1 to 20 rpm. and transfers the heat, and optionally moisture, between two air streams, usually in the pressure loss range of 100 to 300 Pa and at differential pressures of up to 2000 Pa.
  • the storage mass rotates in a housing, and the housing of the rotary heat exchanger is embedded in a channel system which supplies a fresh and an exhaust air flow of the rotating storage mass and a supply and exhaust air flow continues after passing through the storage mass of the rotary heat exchanger itself.
  • leakage losses occur between the housing and the rotating storage mass itself, which losses are to be prevented by the most effective possible seal between the storage mass and the housing.
  • peripheral seals are realized by means of circulating brushes and / or textiles mounted on the storage mass.
  • the rotary heat exchanger comprises a housing and a circular cylindrical storage mass rotating in the housing about an axis with a plurality of flow channels and a first and a second cylinder end surface, housing end surfaces of the housing at least slightly overlap the cylinder end surfaces at a distance over their entire circumference, so that between the cylinder end faces and the housing end faces a gap is formed and associated with each other inflow and outflow surfaces are released.
  • the distance between the housing end faces and the storage mass is dependent on the size of the rotary heat exchanger itself. In any case, it must be avoided that the storage mass comes into contact with the housing end faces, since such a contact disturbs the rotation of the storage mass due to increased friction and the storage mass and housing end faces can be damaged. However, the distance should always be chosen as small as possible, since leakage can occur due to the gap formed between the storage mass and the housing end faces, which must be prevented.
  • the rotary heat exchanger further comprises a circumferential seal which is arranged on the lateral surface of the storage mass and which comprises at least two sealing profiles, which are in contact with the housing end faces and the lateral surface and thus seal the storage mass against the housing.
  • the peripheral seal comprises a plurality of pressure spring elements which are slidably mounted on the lateral surface of the storage mass and at whose ends facing the housing end faces a stop is formed, over which the sealing profiles are pressed against the housing end faces by the restoring force of the compression spring elements.
  • the sealing profiles themselves are not directly connected to the compression spring elements, but these exert pressure on the sealing profiles, which ensures that the most complete possible contact between the housing end faces and sealing profiles, so that leakage between the housing end faces and the adjacent thereto sealing profiles is largely prevented.
  • the compression spring elements themselves are slidably mounted on the storage mass to allow compression in the axial direction.
  • the compression spring elements for example, axially parallel slots through which the compression spring elements are secured with appropriate fasteners on the lateral surface of the storage mass.
  • the sliding surface between the lateral surface and compression spring elements may be coated in order to provide the least possible friction.
  • the peripheral seal further comprises a plurality of circumferential supports, which hold the sealing profiles in contact with the lateral surface, so that a lifting of the sealing profiles is prevented from the lateral surface.
  • circumferential supports always exert a certain pressure on the sealing profiles, in such a way that they remain in contact with the lateral surface.
  • the various elements (compression spring elements, peripheral supports) of the peripheral seal thus always exert two types of force or pressure on the sealing profiles, namely an axially acting restoring force (compression spring elements) and a radially acting in the direction of the axis contact pressure (circumferential support). Due to the forces, the sealing profiles are always held in contact with the housing end faces and with the lateral surface, so that an effective sealing of the storage mass relative to the housing is ensured.
  • the sealing profiles themselves are not attached to the storage mass itself nor to the compression spring elements, but are by the compression spring elements and the circumferential seals only positioned, but not stationary, but sliding, with a corresponding sliding primarily in the axial direction, due to inaccuracies of the housing end faces and the storage mass takes place.
  • a sliding movement in the circumferential direction is essentially limited to an expansion and shrinkage of the sealing profiles.
  • a selective attachment of a sealing profile on a compression spring element can be done to possibly limit a wall of the sealing profile, but such a selective attachment is only necessary if the wall of the sealing profile due to eg the choice of material is too strong.
  • the sealing profiles in particular a polyethylene extrusion profile has been proven, but other plastic materials can be used. Since the sealing profiles are in constant frictional contact with the housing end faces, care should be taken in the choice of materials, however, that a correspondingly low coefficient of friction between the housing and the surface in contact with the housing of the sealing profiles is ensured. On the other hand, it is also possible to coat in particular the area of the sealing profiles in contact with the housing. In order to ensure a particularly simple sliding of the sealing profiles on the lateral surface, either the lateral surface in the sliding region of the sealing profiles or the surface of the sealing profiles which slides on the lateral surface can be coated with a corresponding friction-reducing material.
  • the compression spring elements are therefore designed as a co-efficient springs with a flat spring characteristic in the sealing portion, the co-springs exert an axially acting restoring force on the sealing elements on the stops at their ends facing the housing end faces.
  • the term "sealing portion of the spring characteristic" is understood in the present application, the part of the spring travel of the compression spring element, which lies in the course of the function of the peripheral seal between maximum and minimum deflection of the spring.
  • the equal-force compression spring elements provide an almost equal restoring force in the axial direction and thus a uniform and rapid compensation of axial tolerances, caused by inaccuracies of the storage mass and the housing and non- ideal concentricity of the storage mass takes place.
  • the restoring force is not so great even with more compressed compression spring elements that the peripheral seal itself introduces inaccuracies in the housing by the housing partially outwardly, i. away from the cylinder end faces of the storage mass, presses.
  • the use of co-efficient springs, and thus an almost equal restoring force in the axial direction over the spring travel necessary for sealing also has the advantage that the drive torque of the motor is not exceeded by the pressing force of the spring.
  • the co-efficient springs are designed as buckling springs, each buckling spring having at its ends facing the housing end faces each having a peripheral support in the form of a Anpress Schemes, wherein the Anpress Schemee exert a radial force on the sealing profiles and press the sealing profiles on the outer surface.
  • the sealing profiles are not attached to the Anpress Schemeen, but are merely positioned by these.
  • the circumferential support is formed integrally with the compression spring element, which is particularly cost-effective.
  • the use of buckling springs also has the advantage that they can be installed to save space and easy and the production of the springs is inexpensive.
  • the circumferential seal has a plurality of guide brackets fastened on the lateral surface, wherein each guide bracket has at least one guide element in which a bending spring is guided in a sliding manner.
  • the buckling springs are therefore not mounted directly on the lateral surface of the storage mass, but a guide bracket is interposed, which has a guide element in which the buckling spring itself is stored accompanying.
  • the guide bracket have more than one guide element they can be arranged either radially or axially on or on the guide bracket.
  • a plurality of compression spring elements are received with a bracket, but there are also two brackets per compression spring element necessary (each in the region of the end faces of the storage mass).
  • the individual compression springs with a certain radial Distance to each other mounted on the storage mass so that it is preferred for material savings (in terms of the size of the guide bracket) that the guide bracket has two axially arranged guide elements in which a buckling spring is slidably mounted (radial and axial arrangement can of course also be combined so that, for example, a guide bracket with four guide elements can be used to guide two compression spring elements).
  • guide clips simplifies the assembly of the rotary diver, since the buckling springs must be easily guided by guide elements to ensure their sliding storage; when using, for example, oblong holes for fixing the compression spring elements is to ensure in the screw that all compression spring elements are mounted with the substantially same force - such a time-consuming installation is eliminated when using guide brackets.
  • the motor is arranged in the housing and drives the storage mass via a belt drive, the belt or belts of the belt drive usually resting against the lateral surface of the storage mass.
  • the guide elements of the guide bar or the associated buckling spring surface and each provide an attack surface for a drive belt ready. In this way it is prevented that the drive belt itself influences the freedom of movement of the buckling springs and possibly takes damage from them.
  • the guide elements of the guide bracket each comprise a stop which limit the axial compression of the bending spring.
  • the attacks require a stiffening of the overall construction under appropriate load.
  • the combination buckling spring (with stops) and guide bracket can thus be used in the horizontal installation of the rotary heat exchanger as axial storage for the storage mass.
  • a certain point of a sealing profile moves at a cylinder end face during rotation of the storage mass of a region of lower temperature (for example, the inflow surface for fresh air) in a region of higher temperature (for example, the outflow surface for exhaust air). Due to the temperature difference, deformations and stresses of the sealing profiles can occur. In order to compensate for this, in a preferred embodiment, at least one sealing profile of the circumferential seal is made open, so that a gap is formed between the ends of the open sealing profile. Local deformations and stresses of a sealing profile can thus be better distributed over the entire sealing profile.
  • the sealing profiles in the lateral surface of the storage mass can also be made in several parts, i. a sealing profile may be formed from a plurality of sealing profile segments, wherein between adjacent segments, a gap for the compensation of stresses and deformations is formed.
  • an auxiliary seal is fastened to the lateral surface at the at least one gap, which ensures a seal towards the housing end face.
  • the seal is preferably made of an elastic material to compensate for inaccuracies of the housing can.
  • the peripheral seal comprises a plurality of compression spring elements, and these have in a preferred embodiment on Anpress Schemee that press the sealing profiles (or the segments) on the outer surface.
  • the circumferential seal can comprise at least one (further) circumferential support. This is designed as a ring that can be performed as a soul in a sealing profile and at least at one point with the sealing profile (or each segment of the sealing profile) is connected, so that a sliding of the sealing profile (or a segment) along the soul is possible.
  • the selective connection of the sealing profile (or a segment) on the soul or the ring prevents gradual migration of the sealing profile in the circumferential direction.
  • Such configured (further) circumferential support prevents "lifting" of the sealing profile of the lateral surface surface; If a circumferential seal is already provided by the contact pressure areas, the additional circumferential support formed as a ring prevents lifting between the contact surfaces (relative to the circumference).
  • the sealing profiles are attached depending on the size of the storage mass and the application with a predetermined number of compression spring elements or co-springs or buckling springs on the lateral surface of the storage mass (regularly about 2 - 4 spring elements per perimeter).
  • the sealing profiles themselves are pressed or pressed by a certain force from the peripheral supports (contact areas and / or ring) onto the lateral surface of the storage mass.
  • this contact pressure must not be too great, otherwise the rapid sliding of the sealing profiles over the lateral surface is prevented, which is necessary to compensate for inaccuracies of the housing quickly and reliably.
  • the sealing profiles and the at least one circumferential support formed as a ring are made of different materials which expand and shrink differently when the temperature fluctuates.
  • the coefficient of thermal expansion of the circumferential support (designed as a ring) essentially corresponds to the coefficient of thermal expansion of the storage mass, so that the circumferential support expands or shrinks simultaneously under thermal influences with the storage mass.
  • FIG. 1 shows an oblique view of a first embodiment of the rotary heat exchanger 1 according to the invention with a housing 4 and a rotating in the housing about an axis A circular cylindrical storage mass 2 with a plurality of flow channels 3 (see FIGS. 2A-2C ).
  • the storage mass 2 and the material from which it is made are adapted to the intended use of the rotary heat exchanger 1.
  • the arrangement, number and execution of the flow channels 3 is tuned to the application. If a recovery of moisture from the exhaust air is desired, the flow channels 3 are usually equipped with a corresponding moisture-absorbing material.
  • the storage mass 2 comprises two cylinder end faces 10, 20, which are divided by the housing or in each case a central spar 4b of the housing in each case an inflow 11, 21 and an outflow surface 12, 22.
  • the housing 4 comprises two housing end faces 4a, 4b, which cover the cylinder end faces 10, 20 at their entire circumference at least slightly with a distance S, so that between the cylinder end faces 10, 20 and the housing end faces 4a, 4b, a gap is formed and the associated Anström- 11, 21 and outflow surfaces 12, 22 are released.
  • the fresh air 60a and the supply air 60b is guided in the upper channels. Accordingly, in the lower channels, the exhaust air 61a is supplied to the rotary heat exchanger 1 and enters via the inflow surface 21 (Ab povertyanström choice) in the flow channels 1 of the rotary heat exchanger. In the flow channels 3, the exhaust air, the entrained heat energy to the walls of the flow channels 3 and the storage mass and exits the storage mass on the outflow surface 12 (Abluftabström nature) from the storage mass 2 and is discharged as exhaust air 61b via a corresponding channel.
  • the rotary heat exchanger 1 comprises a peripheral seal 30 which will be described below with reference to the in the FIGS. 2A-2C embodiment shown will be described in more detail.
  • FIGS. 2A-2C a so-called buckling and bending spring 40 is used as a compression spring element, which is characterized in that it has a nearly constant restoring force (in the axial direction) over a large part of the spring travel.
  • FIGS. 2A-2C should demonstrate the operation of the peripheral seal, wherein FIG. 2B represents the peripheral seal in its "starting position". Under starting position here is the position of the peripheral seal or the compression / bias of the bending spring 40 understood, which is in an "ideal" sealing state, so if there are no inaccuracies in the housing end walls 4a, 4b and the storage mass 2.
  • the buckling spring is preferably biased so that the spring travel in the middle of substantially constant (flat portion of the spring characteristic) section (in the following equilibrium range) of the spring characteristic, with deviations from this ideal center position then not hinder are, if the maximum deviations from the central position by compression and expansion of the bending spring are less than half the equilibrium force range.
  • the buckling spring 40 comprises in the central region a bending or bending region 42, to each of which a sliding region 41a, 41b adjoins outwards, the buckling region 42 providing the actual restoring force of the bending spring 40.
  • the buckling spring is attached to the sliding surface 41a, 41b on the lateral surface 2a of the storage mass 2, wherein the sliding attachment is achieved, for example, characterized in that the sliding portions 41a, 41b (in the FIGS. 2A-2B not shown) has slots through which the buckling spring 40 is secured with retaining elements 34.
  • either the sliding portion of the circumferential surface or the sliding portions 41a, 41b may be provided with a friction reducing sliding surface.
  • Adjoining the sliding areas 41a, 41b towards the outside in each case is a stop 43a, 43b, via which the sealing profiles 31a, 31b are pressed in the axial direction against the housing end faces 4a, 4b.
  • the abutments 43a, 43b are adjoined by circumferential supports formed as contact areas 44a, 44b.
  • the contact pressure areas are formed substantially parallel to the lateral surface 2a and press the sealing elements 31a, 31b on the lateral surface 2a.
  • a sliding mass can be interposed be.
  • the design of the stops, the Anpress Schemee and the sealing profiles may of course differ in other embodiments; It is essential that the function of the aforementioned elements is maintained.
  • the contact pressure of the contact areas 44a, 44b is to be selected so that the friction between the underside of the sealing profiles 31a, 31b and the lateral surface 2a can be overcome by the restoring force of the bending region 42 of the bending spring 40.
  • the contact pressure must not be so low that the sealing profiles stand out even at low pressure on an inflow surface of the storage mass.
  • the restoring force of the bending spring 40 is to be chosen so that an impairment of the sealing profiles and / or the housing end faces avoided and the driving torque of the storage mass 2 driving (not shown) motor (by friction between the sealing profiles and housing end faces) is not exceeded.
  • the sealing profiles are pressed with about 10N on the lateral surface.
  • the restoring force of the buckling spring is in the equilibrium range at about 30N.
  • FIGS. 2A-2C embodiment shown comprises (in addition to the Anpress Schemeen 44a, 44b), two further peripheral supports 32a, 32b, which are designed as rings and are arranged as a soul in the sealing profiles 31a, 31b.
  • the rings are designed without opening and go through the sealing profiles in full.
  • circumferential supports can be designed as rings 33a, 33b, which are not arranged in the sealing profiles, but on the contact areas 44a, 44b.
  • the circumferential supports 32a, 32b may also be guided in upwardly open recesses of the sealing profiles 31a, 31b, the exact shape of the sealing profiles may differ from that shown.
  • the sealing profiles may be divided into segments, which makes sense in particular for very large rotary heat exchangers, as so damaged areas of the sealing profile can be replaced if necessary, by only the damaged segment is renewed. There is a small gap between the segments, over which length or circumferential dimensions of the sealing profile segments can be compensated. For very large rotary heat divers with several meters of circumference, three or more segments per sealing profile can be used.
  • FIG. 3 shows an oblique view of a guide bracket 50 including buckling spring 40 and sealing profiles 31a, 31b of an embodiment of the rotary heat exchanger according to the invention.
  • the buckling springs 40 are not directly on the lateral surface 2a of the storage mass 2 attached, but each slidably guided in guide elements 51a, 51b of the guide bracket 50.
  • the guide bracket itself is fastened with fastening means (not shown) via elongated holes 53a, 53b to the lateral surface 2a of the storage mass 2.
  • the interposition of the guide bracket does not change the freedom of movement of the bending spring 40 relative to the lateral surface 2a, but the buckling spring no longer slides over the lateral surface 2a, but in the guide elements 51a, 51b.
  • the guide elements 51a, 51b engage over the buckling spring on the sliding areas and provide an engagement surface on which a belt of a belt drive can be mounted. When using a corresponding guide bracket so the benefits of the buckling spring can be used without the need to dispense with an attacking on the lateral surface belt drive.
  • the guide elements 51a, 51b comprise at their outer end faces stops 52a, 52b, which limit an axial compression of the bending spring.
  • FIG. 4 an oblique view of a further embodiment of the rotary heat exchanger 1 according to the invention branches, in this figure, only one designed as a bending spring 40 compression spring element and associated sealing elements 31a, 31b are shown.
  • FIG. 4 should again illustrate a buckling spring "as such" in the non-clamped state.
  • the buckling spring comprises a bending or bending region 42, which is adjoined by sliding regions 41a, 41b, to which in turn the stops 43a, 43b join.
  • the stops are not in contact with the sealing elements 31a, 31b - the contact and thus the power transmission is only at the input or bias of the buckling spring (on lateral surface 2a or in the guide bracket) through the Case end faces.

Abstract

The heat exchanger has a housing, and a storage mass (2) comprising flow channels (3) and cylinder front surfaces (10, 20). A peripheral seal is arranged on a casing surface (2a) of the storage mass, and has sealing profiles (31a, 31b). The seal has buckling springs (40) fastened to the casing surface. Stoppers (43a, 43b) are formed for pressing the profiles at housing front surfaces by restoring force of the springs. The seal has pressing areas (44a, 44b) for holding the profiles in contact with the casing surface such that lifting of the profiles from the casing surface is inhibited.

Description

Die vorliegende Erfindung betrifft einen Rotationswärmetauscher mit einem Gehäuse, einer in dem Gehäuse um eine Achse rotierenden kreiszylindrischen Speichermasse mit einer Vielzahl von Strömungskanälen und einer ersten und einer zweiten Zylinderstirnfläche, wobei Gehäusestirnflächen des Gehäuses die Zylinderstirnflächen an deren gesamtem Umfang zumindest geringfügig mit einem Abstand überdecken, so dass zwischen den Zylinderstirnflächen und den Gehäusestirnflächen ein Spalt gebildet ist und einander zugeordnete Anström- und Abströmflächen freigegeben sind, und einer Umfangsdichtung, die auf der Mantelfläche der Speichermasse angeordnet ist und die zumindest zwei Dichtprofile umfasst, die in Kontakt mit den Gehäusestirnflächen und der Mantelfläche sind und so die Speichermasse gegen das Gehäuse abdichten.The present invention relates to a rotary heat exchanger having a housing, a circular cylindrical storage mass rotating in the housing about an axis with a plurality of flow channels and a first and a second cylinder end surface, housing end surfaces of the housing at least slightly overlapping the cylinder end surfaces at their entire circumference, so that between the cylinder end faces and the housing end faces, a gap is formed and associated flow and Abströmflächen are released, and a peripheral seal, which is arranged on the lateral surface of the storage mass and comprising at least two sealing profiles in contact with the housing end faces and the lateral surface are and thus seal the storage mass against the housing.

Rotationswärmetauscher werden in raumlufttechnischen Anlagen zum Zwecke der Wärmerückgewinnung mittels regenerativer Wärmeübertragung eingesetzt. Eine luftdurchlässige Speichermasse rotiert üblicherweise mit einer Drehzahl von 1 bis 20 U/min. und überträgt die Wärme, und optional Feuchte, zwischen zwei Luftströmen, und zwar gewöhnlich im Druckverlustbereich von 100 bis 300 Pa und bei Differenzdrücken von bis zu 2000 Pa. Die Speichermasse rotiert in einem Gehäuse, und das Gehäuse des Rotationswärmetauschers ist in ein Kanalsystem eingebettet, welches einen Frisch- und einen Abluftstrom der rotierenden Speichermasse zuführt und einen Zu- und Fortluftstrom nach Durchtritt durch die Speichermasse von dem Rotationswärmetauscher selber fortführt. Bei der Rotation der Speichermasse in dem Gehäuse treten zwischen dem Gehäuse und der rotierenden Speichermasse selber Leckageverluste auf, welche durch eine möglichst wirksame Dichtung zwischen Speichermasse und Gehäuse zu verhindern sind.Rotary heat exchangers are used in ventilation systems for the purpose of heat recovery by means of regenerative heat transfer. An air-permeable storage mass usually rotates at a speed of 1 to 20 rpm. and transfers the heat, and optionally moisture, between two air streams, usually in the pressure loss range of 100 to 300 Pa and at differential pressures of up to 2000 Pa. The storage mass rotates in a housing, and the housing of the rotary heat exchanger is embedded in a channel system which supplies a fresh and an exhaust air flow of the rotating storage mass and a supply and exhaust air flow continues after passing through the storage mass of the rotary heat exchanger itself. During the rotation of the storage mass in the housing, leakage losses occur between the housing and the rotating storage mass itself, which losses are to be prevented by the most effective possible seal between the storage mass and the housing.

Bei üblichen, eingangs genannten Rotationswärmetauschern werden Umfangsdichtungen mittels umlaufender, auf die Speichermasse montierter Bürsten und/oder Textilien realisiert. Nachteilig bei den bekannten Umfangsdichtungen ist jedoch, dass der Ausgleich von Radial- und Axialtoleranzen bei der Rotation der Speichermasse, bedingt durch Ungenauigkeiten der Speichermasse selber sowie der Gehäusestirnflächen, nur unzureichend stattfindet. Ferner bestehen bei oben genannten Dichtmaterialien Probleme hinsichtlich der Erfüllung von Hygienekriterien, da sich materialbedingt leicht Keime und dergleichen in dem Material bilden.In the case of the customary rotary heat exchangers mentioned at the beginning, peripheral seals are realized by means of circulating brushes and / or textiles mounted on the storage mass. adversely in the known circumferential seals, however, that the compensation of radial and axial tolerances in the rotation of the storage mass, due to inaccuracies of the storage mass itself and the housing end faces, takes place only insufficient. Furthermore, there are problems with respect to the fulfillment of hygiene criteria in the above-mentioned sealing materials, because of the material easily formed germs and the like in the material.

Die Dokumente US 2 681 208 und US 3 985 181 offenbaren beispielweise Rotationswärmetauscher mit Umfangsdichtungen.The documents US 2,681,208 and US 3,985,181 For example, discloses rotary heat exchangers with circumferential seals.

Es ist daher Aufgabe der vorliegenden Erfindung, einen Rotationswärmetauscher mit einer verbesserten Umfangsdichtung zu schaffen.It is therefore an object of the present invention to provide a rotary heat exchanger with an improved peripheral seal.

Diese Aufgabe wird erfindungsgemäß durch einen Rotationswärmetauscher mit den Merkmalen des Patentanspruchs 1 gelöst.This object is achieved by a rotary heat exchanger with the features of claim 1.

Der erfindungsgemäße Rotationswärmetauscher umfasst ein Gehäuse und eine in dem Gehäuse um eine Achse rotierende kreiszylindrische Speichermasse mit einer Vielzahl von Strömungskanälen und einer ersten und einer zweiten Zylinderstirnfläche, wobei Gehäusestirnflächen des Gehäuses die Zylinderstirnflächen an deren gesamtem Umfang zumindest geringfügig mit einem Abstand überdecken, so dass zwischen den Zylinderstirnflächen und den Gehäusestirnflächen ein Spalt gebildet ist und einander zugeordnete Anström- und Abströmflächen freigegeben sind. Der Abstand zwischen den Gehäusestirnflächen und der Speichermasse ist von der Größe des Rotationswärmetauschers selber abhängig. In jedem Fall ist zu vermeiden, dass die Speichermasse mit den Gehäusestirnflächen in Kontakt kommt, da durch einen solchen Kontakt die Rotation der Speichermasse durch eine erhöhte Reibung gestört wird und Speichermasse sowie Gehäusestirnflächen beschädigt werden können. Der Abstand ist jedoch stets so gering wie möglich zu wählen, da durch den zwischen Speichermasse und Gehäusestirnflächen gebildeten Spalt Leckageverluste stattfinden können, die es zu verhindern gilt.The rotary heat exchanger according to the invention comprises a housing and a circular cylindrical storage mass rotating in the housing about an axis with a plurality of flow channels and a first and a second cylinder end surface, housing end surfaces of the housing at least slightly overlap the cylinder end surfaces at a distance over their entire circumference, so that between the cylinder end faces and the housing end faces a gap is formed and associated with each other inflow and outflow surfaces are released. The distance between the housing end faces and the storage mass is dependent on the size of the rotary heat exchanger itself. In any case, it must be avoided that the storage mass comes into contact with the housing end faces, since such a contact disturbs the rotation of the storage mass due to increased friction and the storage mass and housing end faces can be damaged. However, the distance should always be chosen as small as possible, since leakage can occur due to the gap formed between the storage mass and the housing end faces, which must be prevented.

Dazu umfasst der erfindungsgemäße Rotationswärmetauscher ferner eine Umfangsdichtung, die auf der Mantelfläche der Speichermasse angeordnet ist und die zumindest zwei Dichtprofile umfasst, die in Kontakt mit den Gehäusestirnflächen und der Mantelfläche sind und so die Speichermasse gegen das Gehäuse abdichten. Die Umfangsdichtung umfasst eine Mehrzahl von an der Mantelfläche der Speichermasse gleitend befestigter Druckfederelemente, bei deren den Gehäusestirnflächen zugewandten Enden eine Anschlag ausgebildet ist, über welchen die Dichtprofile durch die Rückstellkraft der Druckfederelemente an die Gehäusestirnflächen gedrückt werden. Die Dichtprofile selber sind nicht direkt mit dem Druckfederelementen verbunden, sondern diese üben einen Druck auf die Dichtprofile aus, welcher dafür Sorge trägt, dass ein möglichst vollumfänglicher Kontakt zwischen Gehäusestirnflächen und Dichtprofilen besteht, so dass eine Leckage zwischen den Gehäusestirnflächen und den an diesen anliegenden Dichtprofilen weitgehend verhindert ist.For this purpose, the rotary heat exchanger according to the invention further comprises a circumferential seal which is arranged on the lateral surface of the storage mass and which comprises at least two sealing profiles, which are in contact with the housing end faces and the lateral surface and thus seal the storage mass against the housing. The peripheral seal comprises a plurality of pressure spring elements which are slidably mounted on the lateral surface of the storage mass and at whose ends facing the housing end faces a stop is formed, over which the sealing profiles are pressed against the housing end faces by the restoring force of the compression spring elements. The sealing profiles themselves are not directly connected to the compression spring elements, but these exert pressure on the sealing profiles, which ensures that the most complete possible contact between the housing end faces and sealing profiles, so that leakage between the housing end faces and the adjacent thereto sealing profiles is largely prevented.

Die Druckfederelemente selber sind gleitend auf der Speichermasse befestigt, um eine Stauchung in Axialrichtung zu ermöglichen. Dazu weisen die Druckfederelemente beispielsweise achsparallele Langlöcher auf, über welche die Druckfederelemente mit entsprechenden Befestigungselementen an der Mantelfläche der Speichermasse befestigt sind. Die Gleitfläche zwischen Mantelfläche und Druckfederelementen kann beschichtet sein, um eine möglichst geringe Reibung bereitzustellen.The compression spring elements themselves are slidably mounted on the storage mass to allow compression in the axial direction. For this purpose, the compression spring elements, for example, axially parallel slots through which the compression spring elements are secured with appropriate fasteners on the lateral surface of the storage mass. The sliding surface between the lateral surface and compression spring elements may be coated in order to provide the least possible friction.

Die Umfangsdichtung umfasst ferner eine Mehrzahl von Umfangsabstützungen, die die Dichtprofile in Kontakt mit der Mantelfläche halten, so dass ein Abheben der Dichtprofile von der Mantelfläche verhindert ist. Mit anderen Worten üben Umfangsabstützungen stets einen gewissen Druck auf die Dichtprofile aus, und zwar derart, dass diese in Kontakt der Mantelfläche bleiben.The peripheral seal further comprises a plurality of circumferential supports, which hold the sealing profiles in contact with the lateral surface, so that a lifting of the sealing profiles is prevented from the lateral surface. In other words, circumferential supports always exert a certain pressure on the sealing profiles, in such a way that they remain in contact with the lateral surface.

Die verschiedenen Elemente (Druckfederelemente, Umfangsabstützungen) der Umfangsdichtung üben also stets zwei Arten von Kraft bzw. Druck auf die Dichtprofile auf, und zwar eine in Axialrichtung wirkende Rückstellkraft (Druckfederelemente) sowie eine radial in Richtung auf die Achse wirkende Anpresskraft (Umfangsabstützung). Durch die Kräfte werden die Dichtprofile stets in Kontakt mit den Gehäusestirnflächen und mit der Mantelfläche gehalten, so dass eine effektive Abdichtung der Speichermasse gegenüber dem Gehäuse gewährleistet ist. Die Dichtprofile selber sind weder an der Speichermasse selber noch an den Druckfederelementen befestigt, sondern werden durch die Druckfederelemente und die Umfangsabdichtungen lediglich positioniert, jedoch nicht ortsfest, sondern gleitend, wobei ein entsprechendes Gleiten primär in Axialrichtung, bedingt durch Ungenauigkeiten der Gehäusestirnflächen und der Speichermasse, stattfindet. Eine Gleitbewegung in Umfangsrichtung ist im Wesentlichen beschränkt auf eine Ausdehnung und Schrumpfung der Dichtprofile. Eine punktuelle Befestigung eines Dichtprofiles an einem Druckfederelement kann jedoch erfolgen, um ggf. eine Wandung des Dichtprofiles zu begrenzen, wobei eine solche punktuelle Befestigung jedoch nur dann notwendig ist, wenn die Wandung des Dichtprofiles aufgrund z.B. der Materialwahl zu stark ist.The various elements (compression spring elements, peripheral supports) of the peripheral seal thus always exert two types of force or pressure on the sealing profiles, namely an axially acting restoring force (compression spring elements) and a radially acting in the direction of the axis contact pressure (circumferential support). Due to the forces, the sealing profiles are always held in contact with the housing end faces and with the lateral surface, so that an effective sealing of the storage mass relative to the housing is ensured. The sealing profiles themselves are not attached to the storage mass itself nor to the compression spring elements, but are by the compression spring elements and the circumferential seals only positioned, but not stationary, but sliding, with a corresponding sliding primarily in the axial direction, due to inaccuracies of the housing end faces and the storage mass takes place. A sliding movement in the circumferential direction is essentially limited to an expansion and shrinkage of the sealing profiles. However, a selective attachment of a sealing profile on a compression spring element can be done to possibly limit a wall of the sealing profile, but such a selective attachment is only necessary if the wall of the sealing profile due to eg the choice of material is too strong.

Als Material für die Dichtungsprofile hat sich insbesondere ein Polyethylen-Extrusionsprofil bewährt, jedoch können auch andere Kunststoffmaterialien verwendet werden. Da die Dichtprofile in ständigem reibenden Kontakt zu den Gehäusestirnflächen stehen, sollte bei der Materialwahl jedoch darauf geachtet werden, dass ein entsprechend niedriger Reibungskoeffizient zwischen dem Gehäuse und der mit dem Gehäuse in Kontakt stehenden Fläche der Dichtprofile gewährleistet ist. Andererseits ist es auch möglich, insbesondere die mit dem Gehäuse in Kontakt stehende Fläche der Dichtprofile entsprechend zu beschichten. Um ein besonderes einfaches Gleiten der Dichtprofile auf der Mantelfläche zu gewährleisten, kann entweder die Mantelfläche in dem Gleitbereich der Dichtprofile oder aber die auf der Mantelfläche gleitende Fläche der Dichtprofile mit einem entsprechenden, die Reibung vermindernden Material beschichtet sein.As a material for the sealing profiles, in particular a polyethylene extrusion profile has been proven, but other plastic materials can be used. Since the sealing profiles are in constant frictional contact with the housing end faces, care should be taken in the choice of materials, however, that a correspondingly low coefficient of friction between the housing and the surface in contact with the housing of the sealing profiles is ensured. On the other hand, it is also possible to coat in particular the area of the sealing profiles in contact with the housing. In order to ensure a particularly simple sliding of the sealing profiles on the lateral surface, either the lateral surface in the sliding region of the sealing profiles or the surface of the sealing profiles which slides on the lateral surface can be coated with a corresponding friction-reducing material.

Als Druckfederelemente können übliche Schrauben-Druckfedern oder Blattfedern zum Einsatz kommen. Übliche Schrauben-Druckfedern weisen eine lineare Kennlinie auf, d.h. Federweg und Federkraft sind proportional zueinander. Bezogen auf eine Druckfeder bedeutet dies, dass die Rückstellkraft mit der Stauchung der Feder (also dem Federweg) zunimmt. Im Hinblick auf den Rotationswärmetauscher bedeutet dies, dass bei Verwendung einer üblichen Schrauben-Druckfeder die Rückstellkraft (oder Anpresskraft) des Druckfederelementes in Abhängigkeit von der Spaltbreite (bedingt durch Krümmung der Gehäusestirnflächen, Verformung der Speichermasse oder durch einen nicht-idealen Rundlauf der Speichermasse) zu groß oder zu klein ausfallen kann. Dies führt dazu, dass entweder das Antriebsmoment des die Speichermasse antreibenden Motors überstiegen oder die Funktion der Umfangsdichtung durch die zu geringe Anpresskraft der Druckfederelemente auf die Dichtprofile nicht mehr gewährleistet ist, was zu erheblichen Leckagen führt. Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Rotationswärmetauchers sind die Druckfederelemente daher als Gleichkraftfedern mit einer möglichst flachen Federkennlinie im Dichtabschnitt ausgeführt, wobei die Gleichkraftfedern über die Anschläge bei ihren den Gehäusestirnflächen zugewandten Enden eine axial wirkende Rückstellkraft auf die Dichtelemente ausüben. Unter dem Begriff des "Dichtabschnitts der Federkennlinie" sei bei der vorliegenden Anmeldung der Teil des Federweges des Druckfederelementes verstanden, welcher im Zuge der Funktion der Umfangsdichtung zwischen maximaler und minimaler Auslenkung der Feder liegt.As compression spring elements conventional coil compression springs or leaf springs can be used. Conventional helical compression springs have a linear characteristic, ie spring travel and spring force are proportional to each other. Relative to a compression spring, this means that the restoring force increases with the compression of the spring (ie the spring travel). With regard to the rotary heat exchanger, this means that when using a conventional helical compression spring, the restoring force (or contact force) of the compression spring element as a function of the gap width (due to curvature of the housing end faces, deformation of the storage mass or by a non-ideal concentricity the storage mass) may be too large or too small. This means that either the driving torque of the memory mass driving motor exceeded or the function of the peripheral seal is no longer guaranteed by the insufficient contact force of the compression spring elements on the sealing profiles, resulting in significant leaks. In a preferred embodiment of the rotary heat exchanger according to the invention, the compression spring elements are therefore designed as a co-efficient springs with a flat spring characteristic in the sealing portion, the co-springs exert an axially acting restoring force on the sealing elements on the stops at their ends facing the housing end faces. The term "sealing portion of the spring characteristic" is understood in the present application, the part of the spring travel of the compression spring element, which lies in the course of the function of the peripheral seal between maximum and minimum deflection of the spring.

Durch die Verwendung von Gleichkraftfedern ist gewährleistet, dass über den zur Abdichtung notwendigen Federweg (Dichtabschnitt) die Gleichkraft-Druckfederelemente eine nahezu gleiche Rückstellkraft in Axialrichtung bereitstellen und so ein gleichmäßiger und rascher Ausgleich von Axialtoleranzen, bedingt durch Ungenauigkeiten der Speichermasse und des Gehäuses und nicht-idealen Rundlauf der Speichermasse, stattfindet. Andererseits ist die Rückstellkraft auch bei stärker gestauchten Druckfederelementen nicht derart groß, dass die Umfangsdichtung selber Ungenauigkeiten in das Gehäuse einbringt, indem diese das Gehäuse teilweise nach außen, d.h. weg von den Zylinderstirnflächen der Speichermasse, drückt. Die Verwendung von Gleichkraftfedern, und damit eine nahezu gleiche Rückstellkraft in Axialrichtung über den zur Abdichtung notwendigen Federweg, hat ferner den Vorteil, dass das Antriebsmoment des Motors durch die Andrückkraft der Feder nicht überstiegen wird.By the use of co-efficient springs it is ensured that over the spring travel (sealing section) necessary for sealing, the equal-force compression spring elements provide an almost equal restoring force in the axial direction and thus a uniform and rapid compensation of axial tolerances, caused by inaccuracies of the storage mass and the housing and non- ideal concentricity of the storage mass takes place. On the other hand, the restoring force is not so great even with more compressed compression spring elements that the peripheral seal itself introduces inaccuracies in the housing by the housing partially outwardly, i. away from the cylinder end faces of the storage mass, presses. The use of co-efficient springs, and thus an almost equal restoring force in the axial direction over the spring travel necessary for sealing, also has the advantage that the drive torque of the motor is not exceeded by the pressing force of the spring.

Alternativ kann als Druckfederelement eine über einen weiten Federweg vorgespannte Druckfeder verwendet werden, da sich bei einer entsprechend vorgespannten Feder die Steigung der Federkennlinie zwischen maximaler Auslenkung und minimaler Auslenkung nicht mehr relevant auswirkt.Alternatively it can be used as a compression spring element biased over a wide spring travel compression spring, as in a correspondingly biased spring, the slope of the spring characteristic between maximum deflection and minimum deflection no longer relevant.

Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Rotationswärmetauschers sind die Gleichkraftfedern als Knickfedern ausgeführt, wobei jede Knickfeder an ihren den Gehäusestirnflächen zugewandten Enden je eine Umfangsabstützung in Form eines Anpressbereichs aufweist, wobei die Anpressbereiche eine Radialkraft auf die Dichtprofile ausüben und die Dichtprofile auf die Manteloberfläche drücken. Die Dichtprofile sind nicht an den Anpressbereichen befestigt, sondern werden von diesen lediglich positioniert. Zusammen mit den Anschlägen der Druckfederelemente findet eine axiale (Rückstellkraft der als Knickfedern ausgeführten Druckfederelemente) und radiale (Anpresskraft der Anpressbereiche) Positionierung der Dichtelemente statt, wobei diese auch bei einer derartigen Ausgestaltung weder bei den Anschlägen noch den Anpressbereichen befestigt im eigentlichen Sinne (also ortsfest) sind. Bei dieser bevorzugten Ausführungsform ist also die Umfangsabstützung einteilig mit dem Druckfederelement ausgebildet, was besonders kostengünstig ist. Die Verwendung von Knickfedern hat ferner den Vorteil, dass diese platzsparend und einfach montiert werden können und die Fertigung der Federn kostengünstig ist.In a preferred embodiment of the rotary heat exchanger according to the invention, the co-efficient springs are designed as buckling springs, each buckling spring having at its ends facing the housing end faces each having a peripheral support in the form of a Anpressbereichs, wherein the Anpressbereiche exert a radial force on the sealing profiles and press the sealing profiles on the outer surface. The sealing profiles are not attached to the Anpressbereichen, but are merely positioned by these. Together with the stops of the compression spring elements is an axial (restoring force of the compression springs designed as buckling springs) and radial (contact pressure of Anpressbereiche) positioning of the sealing elements instead, and this fixed even in such a configuration neither in the attacks nor the Anpressbereichen in the true sense (ie stationary ) are. In this preferred embodiment, therefore, the circumferential support is formed integrally with the compression spring element, which is particularly cost-effective. The use of buckling springs also has the advantage that they can be installed to save space and easy and the production of the springs is inexpensive.

Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Rotationswärmetauschers weist die Umfangsdichtung eine Mehrzahl von auf der Mantelfläche befestigter Führungsbügel auf, wobei jeder Führungsbügel zumindest ein Führungselement aufweist, in welchem eine Knickfeder gleitend geführt ist. Bei dieser Ausführungsform sind die Knickfedern also nicht direkt auf der Mantelfläche der Speichermasse montiert, sondern ein Führungsbügel ist zwischengeschaltet, der ein Führungselement aufweist, in welchem die Knickfeder selber begleitend gelagert ist.In a preferred embodiment of the rotary heat exchanger according to the invention, the circumferential seal has a plurality of guide brackets fastened on the lateral surface, wherein each guide bracket has at least one guide element in which a bending spring is guided in a sliding manner. In this embodiment, the buckling springs are therefore not mounted directly on the lateral surface of the storage mass, but a guide bracket is interposed, which has a guide element in which the buckling spring itself is stored accompanying.

Sofern die Führungsbügel mehr als ein Führungselement aufweisen können diese entweder radial oder axial auf bzw. an dem Führungsbügel angeordnet sein. Bei einer radialen Anordnung werden mit einem Bügel mehrere Druckfederelemente aufgenommen, es sind jedoch auch zwei Bügel pro Druckfederelement notwendig (jeweils im Bereich der Stirnflächen der Speichermasse).If the guide bracket have more than one guide element they can be arranged either radially or axially on or on the guide bracket. In a radial arrangement a plurality of compression spring elements are received with a bracket, but there are also two brackets per compression spring element necessary (each in the region of the end faces of the storage mass).

Üblicherweise sind bei dem erfindungsgemäßen Rotationswärmetauscher die einzelnen Druckfedern mit einem gewissen radialen Abstand zueinander auf der Speichermasse montiert, so dass es zur Materialeinsparung (im Hinblick auf die Baugröße der Führungsbügel) bevorzugt ist, dass der Führungsbügel zwei axial angeordnete Führungselemente aufweist, in welchen eine Knickfeder gleitend gelagert ist (radiale und axiale Anordnung können natürlich auch kombiniert werden, so dass z.B. ein Führungsbügel mit vier Führungselementen zur Führung von zwei Druckfederelementen verwendet werden kann).Usually, in the rotary heat exchanger according to the invention, the individual compression springs with a certain radial Distance to each other mounted on the storage mass, so that it is preferred for material savings (in terms of the size of the guide bracket) that the guide bracket has two axially arranged guide elements in which a buckling spring is slidably mounted (radial and axial arrangement can of course also be combined so that, for example, a guide bracket with four guide elements can be used to guide two compression spring elements).

Die Verwendung von Führungsbügel vereinfacht die Montage der Rotationswärmetaucher, da die Knickfedern einfach durch Führungselemente geführt werden müssen um deren gleitende Lagerung zu gewährleisten; bei der Verwendung von zum Beispiel Langlöchern zur Befestigung der Druckfederelemente ist bei der Verschraubung darauf zu achten, dass sämtliche Druckfederelemente mit der im Wesentlichen gleichen Kraft befestigt sind - eine solche zeitaufwendige Montage entfällt bei der Verwendung von Führungsbügeln.The use of guide clips simplifies the assembly of the rotary diver, since the buckling springs must be easily guided by guide elements to ensure their sliding storage; when using, for example, oblong holes for fixing the compression spring elements is to ensure in the screw that all compression spring elements are mounted with the substantially same force - such a time-consuming installation is eliminated when using guide brackets.

Bei üblichen Rotationswärmetauschern ist der Motor in dem Gehäuse angeordnet und treibt über einen Riementrieb die Speichermasse an, wobei der bzw. die Riemen des Riementriebes üblicherweise an der Mantelfläche der Speichermasse anliegen. Um die Beeinflussung der Knickfedern durch den Riementrieb zu verhindern, übergreifen bei einer bevorzugten Ausführungsform des erfindungsgemäßen Rotationswärmetauschers die Führungselemente des bzw. der Führungsbügel die zugeordnete Knickfeder flächig und stellen jeweils eine Angriffsfläche für einen Antriebsriemen bereit. Auf diese Weise wird verhindert, dass der Antriebsriemen die Bewegungsfreiheit der Knickfedern selber beeinflusst und ggf. durch diese Schaden nimmt.In conventional rotary heat exchangers, the motor is arranged in the housing and drives the storage mass via a belt drive, the belt or belts of the belt drive usually resting against the lateral surface of the storage mass. In order to prevent the influence of the buckling springs by the belt drive, engage in a preferred embodiment of the rotary heat exchanger according to the invention, the guide elements of the guide bar or the associated buckling spring surface and each provide an attack surface for a drive belt ready. In this way it is prevented that the drive belt itself influences the freedom of movement of the buckling springs and possibly takes damage from them.

Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Rotationswärmetauschers umfassen die Führungselemente der Führungsbügel jeweils einen Anschlag, welche die Axialstauchung der Knickfeder begrenzen. Die Anschläge bedingen bei entsprechender Belastung auch eine Versteifung der Gesamtkonstruktion. Die Kombination Knickfeder (mit Anschlägen) und Führungsbügel kann so im liegenden Einbau des Rotationswärmetauschers als Axiallagerung für die Speichermasse mitgenutzt werden.In a preferred embodiment of the rotary heat exchanger according to the invention, the guide elements of the guide bracket each comprise a stop which limit the axial compression of the bending spring. The attacks require a stiffening of the overall construction under appropriate load. The combination buckling spring (with stops) and guide bracket can thus be used in the horizontal installation of the rotary heat exchanger as axial storage for the storage mass.

Aufgrund der unterschiedlichen Materialien der Dichtprofile und der Speichermasse weisen diese unterschiedliche Wärmeausdehnungskoeffizienten auf, was zu unterschiedlichen Wärmeausdehnungen bei Temperaturschwankungen führt. Aufgrund der speziellen Bauweise von Rotationswärmetauschern bewegt sich ein bestimmter Punkt eines Dichtprofils bei einer Zylinderstirnfläche bei der Rotation der Speichermasse von einem Bereich geringerer Temperatur (beispielsweise die Anströmfläche für Frischluft) in einen Bereich höherer Temperatur (beispielsweise die Abströmfläche für Fortluft). Aufgrund der Temperaturdifferenz können Verformungen und Spannungen der Dichtprofile auftreten. Um diese Auszugleichen ist bei einer bevorzugten Ausführungsform zumindest ein Dichtprofil der Umfangsdichtung offen ausgeführt, so dass ein Spalt zwischen den Enden des offenen Dichtprofils gebildet ist. Lokale Verformungen und Spannungen eines Dichtprofils können sich so besser über das gesamte Dichtprofil verteilen.Due to the different materials of the sealing profiles and the storage mass, these have different thermal expansion coefficients, which leads to different thermal expansions in the event of temperature fluctuations. Due to the special design of rotary heat exchangers, a certain point of a sealing profile moves at a cylinder end face during rotation of the storage mass of a region of lower temperature (for example, the inflow surface for fresh air) in a region of higher temperature (for example, the outflow surface for exhaust air). Due to the temperature difference, deformations and stresses of the sealing profiles can occur. In order to compensate for this, in a preferred embodiment, at least one sealing profile of the circumferential seal is made open, so that a gap is formed between the ends of the open sealing profile. Local deformations and stresses of a sealing profile can thus be better distributed over the entire sealing profile.

In Abhängigkeit von der Größe des Rotationswärmetauchers können die Dichtprofile bei der Mantelfläche der Speichermasse auch mehrteilig ausgeführt sein, d.h. ein Dichtprofil kann aus mehrere Dichtprofilsegmenten gebildet sein, wobei zwischen jeweils benachbarten Segmenten ein Spalt zum Ausgleich von Spannungen und Verformungen ausgebildet ist.Depending on the size of the rotary heat exchanger, the sealing profiles in the lateral surface of the storage mass can also be made in several parts, i. a sealing profile may be formed from a plurality of sealing profile segments, wherein between adjacent segments, a gap for the compensation of stresses and deformations is formed.

Die Spalte als solche sind klein gehalten, so dass durch diese nur eine sehr geringe Leckage stattfindet. Um diese aber weiter zu verringern ist bei dem zumindest einen Spalt eine Hilfsdichtung an der Mantelfläche befestigt, die für eine Abdichtung hin zu der Gehäusestirnfläche sorgt. Die Abdichtung besteht vorzugsweise aus einem elastischen Material, um Ungenauigkeiten des Gehäuses ausgleichen zu können.The gaps as such are kept small, so that only a very small leakage takes place through them. However, in order to further reduce this, an auxiliary seal is fastened to the lateral surface at the at least one gap, which ensures a seal towards the housing end face. The seal is preferably made of an elastic material to compensate for inaccuracies of the housing can.

Die Umfangsdichtung umfasst eine Mehrzahl von Druckfederelementen, und diese weisen bei einer bevorzugten Ausführungsform Anpressbereiche auf, die die Dichtprofile (bzw. die Segmente) auf die Mantelfläche drücken. Alternativ oder in Addition zu den als Anpressbereichen ausgeführten Umfangsabstützungen kann die Umfangsdichtung zumindest eine (weitere) Umfangsabstützung umfassen. Diese ist als Ring ausgeführt, der als Seele in einem Dichtprofil geführt sein kann und zumindest bei einem Punkt mit dem Dichtprofil (bzw. jedem Segment des Dichtprofils) verbunden ist, so dass ein Gleiten des Dichtprofiles (oder eines Segments) entlang der Seele möglich ist. Die punktuelle Verbindung des Dichtprofiles (bzw. eines Segments) an der Seele bzw. dem Ring verhindert ein allmähliches Wandern des Dichtprofils in Umfangsrichtung.The peripheral seal comprises a plurality of compression spring elements, and these have in a preferred embodiment on Anpressbereiche that press the sealing profiles (or the segments) on the outer surface. As an alternative or in addition to the peripheral supports designed as pressing areas, the circumferential seal can comprise at least one (further) circumferential support. This is designed as a ring that can be performed as a soul in a sealing profile and at least at one point with the sealing profile (or each segment of the sealing profile) is connected, so that a sliding of the sealing profile (or a segment) along the soul is possible. The selective connection of the sealing profile (or a segment) on the soul or the ring prevents gradual migration of the sealing profile in the circumferential direction.

Eine derart ausgestaltete (weitere) Umfangsabstützung verhindert ein "Abheben" des Dichtprofiles von der Mantelflächenoberfläche; sofern bereits eine Umfangsabdichtung durch die Anpressbereiche bereitgestellt ist, verhindert die zusätzliche als Ring ausbildete Umfangsabstützung ein Abheben zwischen den Anpressflächen (bezogen auf den Umfang).Such configured (further) circumferential support prevents "lifting" of the sealing profile of the lateral surface surface; If a circumferential seal is already provided by the contact pressure areas, the additional circumferential support formed as a ring prevents lifting between the contact surfaces (relative to the circumference).

Die Dichtprofile sind in Abhängigkeit von der Größe der Speichermasse und dem Anwendungszweck mit einer vorgegebenen Anzahl von Druckfederelementen bzw. Gleichkraftfedern bzw. Knickfedern an der Mantelfläche der Speichermasse befestigt (regelmäßig ca. 2 - 4 Druckfederelemente pro Umfangsmeter). Die Dichtprofile selber werden mit einer gewissen Kraft von den Umfangsabstützungen (Anpressbereiche und/oder Ring) auf die Mantelfläche der Speichermasse gedrückt bzw. gepresst. Dieser Anpressdruck darf jedoch nicht zu groß sein, da ansonsten das rasche Gleiten der Dichtprofile über die Mantelfläche verhindert wird, welches notwendig ist, um Ungenauigkeiten des Gehäuses rasch und zuverlässig ausgleichen zu können.The sealing profiles are attached depending on the size of the storage mass and the application with a predetermined number of compression spring elements or co-springs or buckling springs on the lateral surface of the storage mass (regularly about 2 - 4 spring elements per perimeter). The sealing profiles themselves are pressed or pressed by a certain force from the peripheral supports (contact areas and / or ring) onto the lateral surface of the storage mass. However, this contact pressure must not be too great, otherwise the rapid sliding of the sealing profiles over the lateral surface is prevented, which is necessary to compensate for inaccuracies of the housing quickly and reliably.

Regelmäßig sind die Dichtprofile und die zumindest eine als Ring ausgebildete Umfangsabstützung aus unterschiedlichen Materialen ausgeführt, die sich bei Temperaturschwankungen unterschiedlich Ausdehnen und Schrumpfen. In diesem Zusammenhang ist es besonders bevorzugt, dass der Wärmeausdehnungskoeffizient der (als Ring) ausgeführten Umfangsabstützung dem Wärmeausdehnungskoeffizienten der Speichermasse im Wesentlichen entspricht, so dass die Umfangsabstützung unter thermischen Einflüssen simultan mit der Speichermasse dehnt bzw. schrumpft.Regularly, the sealing profiles and the at least one circumferential support formed as a ring are made of different materials which expand and shrink differently when the temperature fluctuates. In this connection, it is particularly preferred that the coefficient of thermal expansion of the circumferential support (designed as a ring) essentially corresponds to the coefficient of thermal expansion of the storage mass, so that the circumferential support expands or shrinks simultaneously under thermal influences with the storage mass.

Nachfolgend wird die Erfindung anhand von in der Zeichnung dargestellten bevorzugten Ausführungsformen näher erläutert. In der Zeichnung zeigt:

  • Figur 1 eine schematische Schrägansicht einer Ausführungsform des erfindungsgemäßen Rotationswärmetauschers in einem angedeuteten Luftkanalsystem;
  • Figuren 2A bis 2C schematische Schnittansichten durch eine Speichermasse einer Ausführungsform des erfindungsgemäßen Rotationswärmetauschers, wobei verschiedene Stauchungszustände der als Knickfedern ausgeführten Druckfederelemente dargestellt sind;
  • Figur 3 eine Schrägansicht eines Führungsbügels samt Knickfeder und Dichtprofilen; und
  • Figur 4 eine weitere Schrägansicht einer Knickfeder einer Ausführungsform des erfindungsgemäßen Rotationswärmetauschers.
The invention will be explained in more detail with reference to preferred embodiments shown in the drawing. In the drawing shows:
  • FIG. 1 a schematic oblique view of an embodiment of the rotary heat exchanger according to the invention in an indicated air duct system;
  • FIGS. 2A to 2C schematic sectional views through a storage mass of an embodiment of the rotary heat exchanger according to the invention, wherein various compression states of the pressure spring elements designed as buckling springs are shown;
  • FIG. 3 an oblique view of a guide bracket including buckling spring and sealing profiles; and
  • FIG. 4 a further perspective view of a buckling spring of an embodiment of the rotary heat exchanger according to the invention.

Figur 1 zeigt eine Schrägansicht einer ersten Ausführungsform des erfindungsgemäßen Rotationswärmetauschers 1 mit einem Gehäuse 4 und einer in dem Gehäuse um eine Achse A rotierenden kreiszylindrischen Speichermasse 2 mit einer Vielzahl von Strömungskanälen 3 (siehe dazu Figur 2A - 2C). Die Speichermasse 2 und das Material, aus welcher diese gefertigt ist, sind auf den Verwendungszweck des Rotationswärmetauschers 1 abgestimmt. Ebenso ist die Anordnung, Anzahl und Ausführung der Strömungskanäle 3 auf den Anwendungszweck abgestimmt. Sofern auch eine Rückgewinnung von Feuchtigkeit aus der Abluft gewünscht ist, sind die Strömungskanäle 3 üblicherweise mit einem entsprechenden feuchtigkeitsaufnehmenden Material ausgestattet. FIG. 1 shows an oblique view of a first embodiment of the rotary heat exchanger 1 according to the invention with a housing 4 and a rotating in the housing about an axis A circular cylindrical storage mass 2 with a plurality of flow channels 3 (see FIGS. 2A-2C ). The storage mass 2 and the material from which it is made are adapted to the intended use of the rotary heat exchanger 1. Likewise, the arrangement, number and execution of the flow channels 3 is tuned to the application. If a recovery of moisture from the exhaust air is desired, the flow channels 3 are usually equipped with a corresponding moisture-absorbing material.

Die Speichermasse 2 umfasst zwei Zylinderstirnflächen 10, 20, die durch das Gehäuse bzw. jeweils einen Mittelholm 4b des Gehäuses in jeweils eine Anström- 11, 21 und eine Abströmfläche 12, 22 unterteilt sind. Das Gehäuse 4 umfasst zwei Gehäusestirnflächen 4a, 4b, die die Zylinderstirnflächen 10, 20 an deren gesamtem Umfang zumindest geringfügig mit einem Abstand S überdecken, so dass zwischen den Zylinderstirnflächen 10, 20 und den Gehäusestirnflächen 4a, 4b ein Spalt gebildet ist und die einander zugeordnete Anström- 11, 21 und Abströmflächen 12, 22 freigegeben sind.The storage mass 2 comprises two cylinder end faces 10, 20, which are divided by the housing or in each case a central spar 4b of the housing in each case an inflow 11, 21 and an outflow surface 12, 22. The housing 4 comprises two housing end faces 4a, 4b, which cover the cylinder end faces 10, 20 at their entire circumference at least slightly with a distance S, so that between the cylinder end faces 10, 20 and the housing end faces 4a, 4b, a gap is formed and the associated Anström- 11, 21 and outflow surfaces 12, 22 are released.

An das Gehäuse 4 bzw. die Gehäusestirnflächen 4a, 4b schließen sich vier lediglich schematisch dargestellte Luftkanäle an, wobei Außen- bzw. Frischluft 60a über einen Kanal dem Rotationswärmetauscher 1 zugeführt wird und über die Anströmfläche 11 (Zuluftanströmfläche) in die Speichermasse 2 bzw. die Strömungskanäle 3 der Speichermasse 2 eintritt und diese über die Abströmfläche 12 (Zuluftabströmfläche) verlässt. Die die Speichermasse 2 über die Zuluftabströmfläche 22 verlassende Zuluft 60b wird über einen weiteren Kanal von dem Rotationswärmetauscher fortgeführt.To the housing 4 and the housing end faces 4a, 4b, four air ducts shown only schematically connect, with outdoor or fresh air 60a via a channel to the rotary heat exchanger 1 is supplied and via the inflow surface 11 (Zuluftanströmfläche) in the storage mass 2 and the flow channels 3 of the storage mass 2 enters and leaves them via the outflow surface 12 (Zuluftabströmfläche). The supply air 60b leaving the storage mass 2 via the supply air discharge surface 22 is continued by the rotary heat exchanger via a further channel.

Bei dem gezeigten Ausführungsbeispiel wird die Frischluft 60a und die Zuluft 60b in den oberen Kanälen geführt. Dementsprechend wird in den unteren Kanälen die Abluft 61a dem Rotationswärmetauscher 1 zugeführt und tritt über die Anströmfläche 21 (Abluftanströmfläche) in die Strömungskanäle 1 des Rotationswärmetauschers ein. In den Strömungskanälen 3 gibt die Abluft die mitgeführte Wärmeenergie an die Wandungen der Strömungskanäle 3 bzw. die Speichermasse ab und tritt aus der Speichermasse über die Abströmfläche 12 (Abluftabströmfläche) aus der Speichermasse 2 aus und wird als Fortluft 61b über einen entsprechenden Kanal abgeführt.In the embodiment shown, the fresh air 60a and the supply air 60b is guided in the upper channels. Accordingly, in the lower channels, the exhaust air 61a is supplied to the rotary heat exchanger 1 and enters via the inflow surface 21 (Abluftanströmfläche) in the flow channels 1 of the rotary heat exchanger. In the flow channels 3, the exhaust air, the entrained heat energy to the walls of the flow channels 3 and the storage mass and exits the storage mass on the outflow surface 12 (Abluftabströmfläche) from the storage mass 2 and is discharged as exhaust air 61b via a corresponding channel.

Zur Vermeidung von Leckageverlusten zwischen der Speichermasse 2 und dem Gehäuse 4 umfasst der erfindungsgemäße Rotationswärmetauscher 1 eine Umfangsdichtung 30, die im Nachfolgenden unter Bezugnahme auf die in den Figuren 2A - 2C gezeigte Ausführungsform detaillierter beschrieben wird.In order to avoid leakage losses between the storage mass 2 and the housing 4, the rotary heat exchanger 1 according to the invention comprises a peripheral seal 30 which will be described below with reference to the in the FIGS. 2A-2C embodiment shown will be described in more detail.

Bei der in den Figuren 2A - 2C beschriebenen Ausführungsform des erfindungsgemäßen Rotationswärmetauschers wird als Druckfederelement eine sogenannte Knick- und Beugefeder 40 verwendet, die sich dadurch auszeichnet, dass sie über einen Großteil des Federweges eine nahezu konstante Rückstellkraft (in Axialrichtung) aufweist. Die Figuren 2A - 2C sollen die Wirkungsweise der Umfangsdichtung demonstrieren, wobei Figur 2B die Umfangsdichtung in ihrer "Ausgangslage" darstellt. Unter Ausgangslage sei hier die Stellung der Umfangsdichtung bzw. die Stauchung / Vorspannung der Knickfeder 40 verstanden, die bei einem "idealen" Dichtungszustand vorliegt, wenn also keine Ungenauigkeiten in den Gehäusestirnwänden 4a, 4b und der Speichermasse 2 vorliegen. Ein Nicht-Rundlaufen der Speichermasse, das zu einer Schiefstellung der Speichermasse innerhalb des Gehäuses führt, bleibt hier unberücksichtigt, da die Auswirkungen auf die Umfangsdichtung im Wesentlichen die gleichen sind (Änderungen des Spaltes zwischen den Zylinderstirnflächen und den Gehäusestirnflächen durch Winkelungenauigkeiten). In der durch Ungenauigkeiten "unbelasteten" Ausgangslage ist die Knickfeder vorzugsweise derart vorgespannt, dass der Federweg in der Mitte des im Wesentlichen konstanten (flacher Bereich der Federkennlinie) Abschnittes (im nachfolgenden Gleichkraftbereich) der Federkennlinie liegt, wobei Abweichungen von dieser idealen Mittellage dann nicht hinderlich sind, wenn die maximalen Abweichungen von der Mittellage durch Stauchung und Dehnung der Knickfeder geringer als der halbe Gleichkraftbereich sind.In the in the FIGS. 2A-2C described embodiment of the rotary heat exchanger according to the invention, a so-called buckling and bending spring 40 is used as a compression spring element, which is characterized in that it has a nearly constant restoring force (in the axial direction) over a large part of the spring travel. The FIGS. 2A-2C should demonstrate the operation of the peripheral seal, wherein FIG. 2B represents the peripheral seal in its "starting position". Under starting position here is the position of the peripheral seal or the compression / bias of the bending spring 40 understood, which is in an "ideal" sealing state, so if there are no inaccuracies in the housing end walls 4a, 4b and the storage mass 2. A non-running of the storage mass, which leads to a misalignment of the storage mass within the housing remains here The effects on the circumferential seal are essentially the same (changes in the gap between the cylinder end faces and the housing end faces due to angular inaccuracies). In the "unloaded" by inaccuracies starting position, the buckling spring is preferably biased so that the spring travel in the middle of substantially constant (flat portion of the spring characteristic) section (in the following equilibrium range) of the spring characteristic, with deviations from this ideal center position then not hinder are, if the maximum deviations from the central position by compression and expansion of the bending spring are less than half the equilibrium force range.

Die Knickfeder 40 umfasst im Zentralbereich einen Knick- bzw. Beugebereich 42, an welchen sich nach außen hin jeweils ein Gleitbereich 41a, 41b anschließt, wobei der Knickbereich 42 die eigentliche Rückstellkraft der Knickfeder 40 bereitstellt. Die Knickfeder ist bei den Gleitbereichen 41a, 41b an der Mantelfläche 2a der Speichermasse 2 befestigt, wobei die gleitende Befestigung beispielsweise dadurch erreicht ist, dass die Gleitbereiche 41a, 41b (in den Figuren 2A - 2B nicht dargestellte) Langlöcher aufweist, über welche die Knickfeder 40 mit Halteelementen 34 befestigt ist. Zur Verminderung der Reibung zwischen den Gleitbereichen 41a, 41b und der Mantelfläche 2a kann entweder der Gleitbereich der Mantelfläche oder die Gleitbereiche 41a, 41b mit einer die Reibung vermindernden Gleitfläche versehen sein.The buckling spring 40 comprises in the central region a bending or bending region 42, to each of which a sliding region 41a, 41b adjoins outwards, the buckling region 42 providing the actual restoring force of the bending spring 40. The buckling spring is attached to the sliding surface 41a, 41b on the lateral surface 2a of the storage mass 2, wherein the sliding attachment is achieved, for example, characterized in that the sliding portions 41a, 41b (in the FIGS. 2A-2B not shown) has slots through which the buckling spring 40 is secured with retaining elements 34. In order to reduce the friction between the sliding portions 41a, 41b and the circumferential surface 2a, either the sliding portion of the circumferential surface or the sliding portions 41a, 41b may be provided with a friction reducing sliding surface.

An die Gleitbereiche 41a, 41b schließt sich nach außen hin jeweils ein Anschlag 43a, 43b an, über welchen die Dichtprofile 31a, 31b in Axialrichtung an die Gehäusestirnflächen 4a, 4b gedrückt werden. An die Anschläge 43a, 43b wiederrum schließen sich als Anpressbereiche 44a, 44b ausgebildete Umfangsabstützungen an. In dem in den Figuren 2A-2C dargestellten "eingespannten" Zustand der Knickfeder 40 sind die Anpressbereiche im Wesentlichen parallel zu der Mantelfläche 2a ausgebildet und drücken die Dichtelemente 31a, 31b auf die Mantelfläche 2a. Um die Reibung zwischen den Unterseiten der Dichtprofile und der Mantelfläche zu minimieren kann eine Gleitmasse zwischengeordnet sein. Die Ausgestaltung der Anschläge, der Anpressbereiche und der Dichtprofile kann bei anderen Ausführungsformen natürlich abweichen; wesentlich ist, dass die Funktion der vorgenannten Elemente erhalten bleibt.Adjoining the sliding areas 41a, 41b towards the outside in each case is a stop 43a, 43b, via which the sealing profiles 31a, 31b are pressed in the axial direction against the housing end faces 4a, 4b. The abutments 43a, 43b, in turn, are adjoined by circumferential supports formed as contact areas 44a, 44b. In the in the Figures 2A-2C illustrated "clamped" state of the bending spring 40, the contact pressure areas are formed substantially parallel to the lateral surface 2a and press the sealing elements 31a, 31b on the lateral surface 2a. In order to minimize the friction between the undersides of the sealing profiles and the lateral surface, a sliding mass can be interposed be. The design of the stops, the Anpressbereiche and the sealing profiles may of course differ in other embodiments; It is essential that the function of the aforementioned elements is maintained.

Der Anpressdruck der Anpressbereiche 44a, 44b ist so zu wählen, dass die Reibung zwischen der Unterseite der Dichtprofile 31a, 31b und der Mantelfläche 2a durch die Rückstellkraft des Knickbereiches 42 der Knickfeder 40 überwunden werden kann. Andererseits darf der Anpressdruck nicht so gering sein, dass die Dichtprofile selbst bei geringem Druck auf eine Anströmfläche der Speichermasse von dieser abheben.The contact pressure of the contact areas 44a, 44b is to be selected so that the friction between the underside of the sealing profiles 31a, 31b and the lateral surface 2a can be overcome by the restoring force of the bending region 42 of the bending spring 40. On the other hand, the contact pressure must not be so low that the sealing profiles stand out even at low pressure on an inflow surface of the storage mass.

Die Rückstellkraft der Knickfeder 40 ist so zu wählen, dass eine Beeinträchtigung der Dichtprofile und/oder der Gehäusestirnflächen vermieden und das Antriebsdrehmoment des die Speichermasse 2 antreibenden (nicht gezeigten) Motors (durch Reibung zwischen den Dichtprofilen und Gehäusestirnflächen) nicht überstiegen wird. In der Praxis werden die Dichtprofile mit etwa 10N auf die Mantelfläche gedrückt. Die Rückstellkraft der Knickfeder liegt in dem Gleichkraftbereich bei etwa 30N.The restoring force of the bending spring 40 is to be chosen so that an impairment of the sealing profiles and / or the housing end faces avoided and the driving torque of the storage mass 2 driving (not shown) motor (by friction between the sealing profiles and housing end faces) is not exceeded. In practice, the sealing profiles are pressed with about 10N on the lateral surface. The restoring force of the buckling spring is in the equilibrium range at about 30N.

Im nachfolgenden wird eine durch eine Ungenauigkeit der Gehäusestirnflächen bedingte Aufweitung des Spalts S (Abstand Gehäusestirnfläche(n) / Stirnflächen Speichermasse) beschrieben. Sobald eine solche auftritt, hält die ständig auf die Dichtprofile 31a, 31b wirkende Rückstellkraft der Knickfeder 40 die Dichtprofile an die Gehäusestirnflächen gedrückt. Gleichzeitig bewegen sich die Gleitbereiche 41, 41b nach außen, und der Knickbereich 42 der Knickfeder bewegt sich geringfügig an die Mantelfläche heran; der Federweg der Knickfeder nimmt also ab. Aufgrund der Eigenschaften der Knickfeder in Bezug auf die Rückstellkraft entspricht diese bei der in Figur 2A gezeigten Stellung annähernd der in Figur 2B gezeigten, so dass die Funktionsfähigkeit der Umfangsdichtung nicht beeinträchtigt ist. Während die Dichtprofile 31a, 31b bei der Aufweitung nach außen verschoben werden, wirken die Anpressbereiche 44a, 44b der Knickfeder auf diese, so dass stets ein Kontakt zwischen den Dichtprofilen und der Manteloberfläche gewährleistet ist.In the following, a widening of the gap S (distance housing end face (s) / end faces of storage mass) caused by an inaccuracy of the housing end faces will be described. As soon as such occurs, constantly acting on the sealing profiles 31a, 31b restoring force of the bending spring 40 keeps the sealing profiles pressed against the housing end faces. At the same time, the sliding portions 41, 41b move outwardly, and the buckling portion 42 of the buckling spring moves slightly to the lateral surface; the spring travel of the folding spring thus decreases. Due to the properties of the buckling spring in relation to the restoring force, this corresponds to the in FIG. 2A shown position approximately in FIG. 2B shown, so that the functionality of the peripheral seal is not impaired. While the sealing profiles 31a, 31b are displaced outwards during the expansion, the contact pressure areas 44a, 44b of the buckling spring act on them, so that always a contact between the sealing profiles and the jacket surface is ensured.

Im Falle einer durch eine Ungenauigkeit der Gehäusestirnflächen 4a, 4b bedingten Verengung des Spalts (Figur 2C) drücken die Gehäusestirnflächen 4a, 4b die Dichtprofile 31a, 31b zusammen, und über die Anschläge 43a, 43b werden die Gleitbereiche 41a, 41b nach innen geschoben, so dass sich der Knickbereich 42 der Knickfeder 40 leicht aus der Ausgangslage weg von der Mantelfläche bewegt. Auch in dieser Situation ändert sich die Rückstellkraft der Knickfeder nur geringfügig (nimmt also nicht zu stark zu), so dass die Funktionsweise der Umfangsdichtung nicht negativ beeinflusst ist.In the case of an inaccuracy of the housing end faces 4a, 4b conditional narrowing of the gap ( Figure 2C ) press the housing end faces 4a, 4b, the sealing profiles 31a, 31b together, and on the stops 43a, 43b, the sliding portions 41a, 41b pushed inward, so that the bending portion 42 of the bending spring 40 moves slightly from the starting position away from the lateral surface. Also in this situation, the restoring force of the buckling spring changes only slightly (ie does not increase too much), so that the operation of the peripheral seal is not adversely affected.

Die in den Figuren 2A - 2C gezeigte Ausführungsform umfasst (neben den Anpressbereichen 44a, 44b) zwei weitere Umfangsabstützungen 32a, 32b, die als Ringe ausgeführt sind und als Seele in den Dichtprofilen 31a, 31b angeordnet sind. Die Ringe sind ohne Öffnung ausgeführt und durchlaufen die Dichtprofile vollumfänglich. Alternativ können Umfangsabstützungen als Ringe 33a, 33b ausgeführt sein, die nicht in den Dichtprofilen, sondern auf den Anpressbereichen 44a, 44b angeordnet sind.The in the FIGS. 2A-2C embodiment shown comprises (in addition to the Anpressbereichen 44a, 44b), two further peripheral supports 32a, 32b, which are designed as rings and are arranged as a soul in the sealing profiles 31a, 31b. The rings are designed without opening and go through the sealing profiles in full. Alternatively, circumferential supports can be designed as rings 33a, 33b, which are not arranged in the sealing profiles, but on the contact areas 44a, 44b.

Bei der in den Figuren 2A - 2C gezeigten Ausführungsform sind zahlreiche Abwandlungen möglich, die sämtliche in den Schutzbereich der Anmeldung fallen. So können die Umfangsabstützungen 32a, 32b auch in nach oben offenen Ausnehmungen der Dichtprofile 31a, 31b geführt sein, die genaue Form der Dichtprofile kann von der gezeigten abweichen. Ferner können die Dichtprofile in Segmente geteilt sein, was insbesondere bei sehr großen Rotationswärmetauschern sinnvoll ist, da so ggf. beschädigte Stellen des Dichtprofiles ersetzt werden können, indem lediglich das beschädigte Segment erneuert wird. Zwischen den Segmenten besteht jeweils ein geringer Spalt, über den Längen- oder Umfangsausdehnungen der Dichtprofilsegmente ausgeglichen werden können. Bei sehr großen Rotationswärmetauchern mit mehreren Metern Umfang können drei oder mehr Segmente pro Dichtprofil verwendet werden.In the in the FIGS. 2A-2C shown embodiment, numerous modifications are possible, all falling within the scope of the application. Thus, the circumferential supports 32a, 32b may also be guided in upwardly open recesses of the sealing profiles 31a, 31b, the exact shape of the sealing profiles may differ from that shown. Furthermore, the sealing profiles may be divided into segments, which makes sense in particular for very large rotary heat exchangers, as so damaged areas of the sealing profile can be replaced if necessary, by only the damaged segment is renewed. There is a small gap between the segments, over which length or circumferential dimensions of the sealing profile segments can be compensated. For very large rotary heat divers with several meters of circumference, three or more segments per sealing profile can be used.

Figur 3 zeigt eine Schrägansicht eines Führungsbügels 50 samt Knickfeder 40 und Dichtprofilen 31a, 31b einer Ausführungsform des erfindungsgemäßen Rotationswärmetauschers. Bei dieser Ausführungsform sind die Knickfedern 40 nicht direkt an der Mantelfläche 2a der Speichermasse 2 befestigt, sondern jeweils gleitend in Führungselemente 51a, 51b des Führungsbügels 50 geführt. Der Führungsbügel selber ist mit (nicht gezeigten) Befestigungsmitteln über Langlöcher 53a, 53b an der Mantelfläche 2a der Speichermasse 2 befestigt. Die Zwischenschaltung des Führungsbügels verändert die Bewegungsfreiheit der Knickfeder 40 gegenüber der Mantelfläche 2a nicht, jedoch gleitet die Knickfeder nicht mehr über die Mantelfläche 2a, sondern in den Führungselementen 51a, 51b. Die Führungselemente 51a, 51b übergreifen die Knickfeder an den Gleitbereichen flächig und stellen eine Angriffsfläche bereit, auf der ein Riemen eines Riementriebes gelagert sein kann. Bei Verwendung eines entsprechenden Führungsbügels können also die Vorteile der Knickfeder genutzt werden, ohne dass auf einen an der Mantelfläche angreifenden Riementrieb verzichtet werden müsste. Die Führungselemente 51a, 51b umfassen bei ihren äußeren Stirnseiten Anschläge 52a, 52b, die eine Axialstauchung der Knickfeder begrenzen. FIG. 3 shows an oblique view of a guide bracket 50 including buckling spring 40 and sealing profiles 31a, 31b of an embodiment of the rotary heat exchanger according to the invention. In this embodiment, the buckling springs 40 are not directly on the lateral surface 2a of the storage mass 2 attached, but each slidably guided in guide elements 51a, 51b of the guide bracket 50. The guide bracket itself is fastened with fastening means (not shown) via elongated holes 53a, 53b to the lateral surface 2a of the storage mass 2. The interposition of the guide bracket does not change the freedom of movement of the bending spring 40 relative to the lateral surface 2a, but the buckling spring no longer slides over the lateral surface 2a, but in the guide elements 51a, 51b. The guide elements 51a, 51b engage over the buckling spring on the sliding areas and provide an engagement surface on which a belt of a belt drive can be mounted. When using a corresponding guide bracket so the benefits of the buckling spring can be used without the need to dispense with an attacking on the lateral surface belt drive. The guide elements 51a, 51b comprise at their outer end faces stops 52a, 52b, which limit an axial compression of the bending spring.

Figur 4 zweigt eine Schrägansicht einer weiteren Ausführungsform des erfindungsgemäßen Rotationswärmetauschers 1, wobei in dieser Figur lediglich ein als Knickfeder 40 ausgebildetes Druckfederelement und zugehörige Dichtelemente 31a, 31b dargestellt sind. Figur 4 soll noch einmal eine Knickfeder "als solche" im nicht eingespannten Zustand veranschaulichen. Die Knickfeder umfasst einen Beuge- oder Knickbereich 42, an welchen sich Gleitbereiche 41a, 41b anschließen, an welche sich wiederrum die Anschläge 43a, 43b anschließen. In dem gezeigten, nicht vorgespannten Zustand der Knickfeder sind die Anschläge nicht in Kontakt mit den Dichtelemente 31a, 31b - der Kontakt und damit die Kraftübertragung kommt erst bei der Ein- bzw. Vorspannung der Knickfeder (auf Mantelfläche 2a oder in dem Führungsbügel) durch die Gehäusestirnflächen zustande. FIG. 4 an oblique view of a further embodiment of the rotary heat exchanger 1 according to the invention branches, in this figure, only one designed as a bending spring 40 compression spring element and associated sealing elements 31a, 31b are shown. FIG. 4 should again illustrate a buckling spring "as such" in the non-clamped state. The buckling spring comprises a bending or bending region 42, which is adjoined by sliding regions 41a, 41b, to which in turn the stops 43a, 43b join. In the shown, non-prestressed state of the buckling spring, the stops are not in contact with the sealing elements 31a, 31b - the contact and thus the power transmission is only at the input or bias of the buckling spring (on lateral surface 2a or in the guide bracket) through the Case end faces.

Claims (10)

  1. A rotary heat exchanger (1) including:
    a housing (4),
    a circular cylindrical storage mass (2) rotating in the housing about an axis (A) with a plurality of flow passages (3) and first and second cylinder end surfaces (10, 20),
    wherein housing end surfaces (4a, 4b) of the housing (4) overlap the cylinder end surfaces (10, 20) at their entire periphery at least slightly with a spacing (S), so that a gap is formed between the cylinder end surfaces (10, 20) and the housing end surface, (4a, 4b) and inlet surfaces (11, 21) and outlet surfaces (12, 22) associated with one another are exposed, and
    a peripheral seal (30), which is arranged on the peripheral surface (2a) of the storage mass (2) and includes at least two sealing profiles (31 a, 31 b), which are in contact with the housing end surfaces (4a, 4b) and the peripheral surface (2a) and thus seal the storage mass (2) with respect to the housing (4),
    characterised in that the peripheral seal (30) includes a plurality of compression spring elements (40), which are slidingly secured to the peripheral surface (2a) of the storage mass (2) and on whose ends directed towards the housing end surfaces an abutment (43a, 43b) is formed, by means of which the sealing profiles (31 a, 31 b) are pressed by the restoring force of the compression spring elements (40) against the housing end surfaces (4a, 4b), and
    that the peripheral seal (30) includes a plurality of peripheral supports (44a, 44b, 32a, 32b, 33a, 33b), which hold the sealing profiles (31 a, 31 b) in contact with the peripheral surface so that lifting of the sealing profiles (31 a, 31 b) away from the peripheral surface (2a) is prevented.
  2. A rotary heat exchanger (1) as claimed in claim 1, characterised in that the compression spring elements (40) are constructed in the form of constant force springs with as flat as possible a spring characteristic in the sealing section, which exerts an axially acting restoring force on the sealing profiles (31 a, 31 b) via the abutments (43a, 43b).
  3. A rotary heat exchanger (1) as claimed in claim 2, characterised in that the constant force springs are constructed in the form of arched springs, whereby each arched spring (40) has a respective peripheral support (44a, 44b) at its ends directed towards the housing end surfaces in the form of a pressure region, wherein the pressure regions (44a, 44b) exert a radial force on the sealing profile (31 a, 31 b) and press the sealing profiles (31 a, 31 b) against the peripheral surface (2a).
  4. A rotary heat exchanger (1) as claimed in claim 3, characterised in that the peripheral seal (30) includes a plurality of guide brackets (50) secured on the peripheral surface (2a), wherein each guide bracket (50) has at least one guide element (51 a, 51 b), in which an arched spring (40) is slidingly guided.
  5. A rotary heat exchanger (1) as claimed in claim 4, characterised in that the guide elements (51 a, 51 b) flatly engage over the arched springs (40) associated with the guide bracket (50) and provide a respective engagement surface for a drive belt.
  6. A rotary heat exchange (1) as claimed in claim 4 or 5, characterised in that the guide elements (51 a, 51 b) of the guide brackets (50) have respective abutments (52a, 52b), which limit the axial compression of the arched springs.
  7. A rotary heat exchanger (1) as claimed in one of claims 1 to 6, characterised in that at least one sealing profile (31 a, 31 b) of the peripheral seal (30) is of open construction so that a gap is defined between the ends of the sealing profile.
  8. A rotary heat exchanger (1) as claimed in claim 7, characterised in that an auxiliary seal is fastened in the gap to the peripheral surface (2a), which ensures a seal towards the housing end surfaces (4a, 4b).
  9. A rotary heat exchanger (1) as claimed in one of claims 1 - 8, characterised in that at least one peripheral support (32a, 32b) is constructed in the form of a ring, which is guided in the form of a core in a sealing profile (31 a, 31 b) and is connected at at least one point to the sealing profile (31 a, 31 b).
  10. A rotary exchanger (1) as claimed in claim 9, characterised in that the thermal coefficient of expansion of the peripheral support (32a, 32b) substantially corresponds to the coefficient of thermal expansion of the storage mass (2).
EP20110164602 2011-05-03 2011-05-03 Rotary heat exchanger with improved surrounding seal Not-in-force EP2520891B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20110164602 EP2520891B1 (en) 2011-05-03 2011-05-03 Rotary heat exchanger with improved surrounding seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20110164602 EP2520891B1 (en) 2011-05-03 2011-05-03 Rotary heat exchanger with improved surrounding seal

Publications (2)

Publication Number Publication Date
EP2520891A1 EP2520891A1 (en) 2012-11-07
EP2520891B1 true EP2520891B1 (en) 2013-07-24

Family

ID=44675416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110164602 Not-in-force EP2520891B1 (en) 2011-05-03 2011-05-03 Rotary heat exchanger with improved surrounding seal

Country Status (1)

Country Link
EP (1) EP2520891B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108224600A (en) * 2016-12-21 2018-06-29 苏州昆拓热控系统股份有限公司 A kind of air conditioner and its compressor assembly method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681208A (en) * 1947-12-30 1954-06-15 Jarvis C Marble Sealing means for rotary air preheaters
GB1348375A (en) * 1970-05-28 1974-03-13 Ramsay F R F Rotary regenerative heat exchanger
US4173252A (en) * 1972-11-20 1979-11-06 Nissan Motor Co., Ltd. Seal for a rotary regenerative heat exchanger
FR2207267B1 (en) * 1972-11-22 1976-01-30 Bennes Marrel
JPS55131693A (en) * 1979-04-03 1980-10-13 Nissan Motor Co Ltd Structure of seal for rotary heat accumulating type heat exchanger

Also Published As

Publication number Publication date
EP2520891A1 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
EP1394363B1 (en) Variable guide vane system for a turbine unit
DE3016148C2 (en) High pressure shaft seal
DE102015201403B4 (en) Backstop and transfer case with such a backstop
EP0568909B1 (en) Rotating disc obturator for steam turbine
DE102008048801B3 (en) Support element i.e. disk-like support plate, for clutch device arranged between engine and transmission of motor vehicle, has segments arranged at periphery of plate, separated by radial gaps and associated to respective support units
DE3609618A1 (en) BEARING HOLDER
EP1794457B1 (en) Vane cell pump
DE69921404T2 (en) Sealing arrangement with automatic clearance adjustment
EP3350463A1 (en) Rotary bearing
EP2435664A2 (en) Clearance control system, turbomachine and method for adjusting a running clearance between a rotor and a casing of a turbomachine
DE102011000309B4 (en) Brushless motor and method of making same
EP3819510A1 (en) Roller bearing arrangement
EP2850719A1 (en) Stator arrangement for an electrical machine
EP2520891B1 (en) Rotary heat exchanger with improved surrounding seal
EP3091188A1 (en) Flow engine with a sealing arrangement
WO2007137781A1 (en) Gear pump, in particular for a steering servo unit
WO2019121627A1 (en) Clamping ring having a clamping section
AT509333B1 (en) STOCK ASSEMBLY WITH TWO PENDULUM ROLLER BEARINGS
EP3171117A1 (en) Regenerative heat exchanger with improved sealing frame
EP3526482B1 (en) Clutch device
DE102011082461A1 (en) Stator housing for electric motor used in e.g. hybrid vehicle, has stretching region whose elastic extendable portion is connected to housing portion in circumferential direction
DE102010042818A1 (en) Rotor e.g. inner rotor, for use with stator of e.g. wind generator, has air-gap surface whose radial distance from axis is variable, where surface of rotor mounted in stator exhibits curvature varying from curvature of unassembled rotor
DE102009041125B4 (en) Gas dynamic pressure wave machine
DE4113738A1 (en) CELL WHEEL LOCK WITH A SEALING ARRANGEMENT BETWEEN THE CELL WHEEL SIDE WASHER AND THE RELEVANT BEARING COVER
EP3542065B1 (en) Side channel compressor with sealing arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 623685

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011001078

Country of ref document: DE

Effective date: 20130919

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20130724

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131124

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001078

Country of ref document: DE

Effective date: 20140425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150503

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140531

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110503

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 623685

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190425

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210531

Year of fee payment: 11

Ref country code: NO

Payment date: 20210521

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210519

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011001078

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220504

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201