EP2516375A1 - Method for preparing acrolein from glycerol or glycerine - Google Patents

Method for preparing acrolein from glycerol or glycerine

Info

Publication number
EP2516375A1
EP2516375A1 EP10808909A EP10808909A EP2516375A1 EP 2516375 A1 EP2516375 A1 EP 2516375A1 EP 10808909 A EP10808909 A EP 10808909A EP 10808909 A EP10808909 A EP 10808909A EP 2516375 A1 EP2516375 A1 EP 2516375A1
Authority
EP
European Patent Office
Prior art keywords
glycerol
silica
dioxide
varies
acrolein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10808909A
Other languages
German (de)
French (fr)
Inventor
Sébastien PAUL
Benjamin Katryniok
Franck Dumeignil
Mickaël CAPRON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Lille 1 Sciences et Technologies
Adisseo France SAS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Lille 1 Sciences et Technologies
Adisseo France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Lille 1 Sciences et Technologies, Adisseo France SAS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2516375A1 publication Critical patent/EP2516375A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/18Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by addition of thiols to unsaturated compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/28Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0341Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/22Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/52Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition by dehydration and rearrangement involving two hydroxy groups in the same molecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/12After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/34Reaction with organic or organometallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a catalytic process for producing acrolein by dehydration of glycerol or glycerine and the applications of such a process.
  • Glycerol is understood to mean a purified or non-purified glycerol, preferably derived from biomass, and in particular a highly purified or partially purified glycerol. Purified glycerol has a purity greater than or equal to 98%, obtained by distillation of glycerine.
  • Glycerin is understood to mean, in particular, a glycerine of natural origin, resulting from the hydrolysis of vegetable oils and animal fats, or a glycerine of synthetic origin, derived from petroleum, more or less purified or refined, or else crude .
  • biodiesel is a fuel produced from vegetal oil or oil.
  • Diester ® (or EMVH, Methyl Esters of Vegetable Oils) is a biodiesel produced by transesterification of triglycerides present in oilseed liquids, especially vegetable oils of paolo, rapeseed and sunflower, by methanol, and approximately co-produced, and following the processes envisaged, 100 kg of glycerol per ton of diester ® .
  • the non-lipid fraction of the raw material used, the cake, is mainly used in animal feed.
  • moisturizers in pharmacy in suppositories and syrups or in cosmetology in moisturizers, glycerin soaps, toothpastes,
  • plasticizers or lubricants in the chemical industry.
  • Acrolein and acrylic acid are traditionally produced by gas phase oxidation of propylene by oxygen in the presence of catalysts based on molybdenum and / or bismuth oxides.
  • the acrolein thus obtained can either be directly integrated into a two-step process for producing acrylic acid or be used as a synthesis intermediate.
  • the production of these two monomers is therefore closely related to propylene, which is, in essence, manufactured by steam cracking or catalytic cracking of petroleum fractions.
  • acrolein the simplest unsaturated aldehyde, and acrylic acid are huge because these monomers are used in the composition of many mass products.
  • acrolein, highly reactive compound by its structure has many applications, including as a synthesis intermediate. It is especially used as a key intermediate in the synthesis of D, L-methionine and its hydroxy-analogue derivative, 2-hydroxy-4-methylthiobutanoic acid (HMTBA).
  • HMTBA 2-hydroxy-4-methylthiobutanoic acid
  • the object of the present invention resides in the implementation of robust, active, selective and regenerable catalysts, making it possible to produce acrolein directly from glycerol or glycerin, in particular from biomass, according to the reaction:
  • the invention further relates to an application of this reaction to the synthesis of aldehyde-3- (methylthio) propionic acid (MMP), 2-hydroxy-4-methylthiobutyronitrile (HMTBN), methionine and its analogs such as 2-hydroxy-4-methylthiobutanoic acid (HMTBA), esters of HMTBA such as isopropyl ester, 2-oxo-4-methylthiobutanoic acid, from acrolein.
  • MMP aldehyde-3- (methylthio) propionic acid
  • HMTBN 2-hydroxy-4-methylthiobutyronitrile
  • methionine and its analogs
  • 2-hydroxy-4-methylthiobutanoic acid HMTBA
  • esters of HMTBA such as isopropyl ester, 2-oxo-4-methylthiobutanoic acid, from acrolein.
  • Methionine, HMTBA and analogs thereof are used in animal nutrition, and in their synthetic industrial processes, acrolein is generally obtained by oxidation of propylene and / or propane.
  • the oxidation of propylene to acrolein by air in the presence of water is partial, and the product resulting crude, based on acrolein, also contains unreacted propylene and propane, water and by-products of the oxidation reaction, including acids, aldehydes and alcohols
  • glycerol also called glycerin
  • This weakly selective reaction is accompanied by the formation of numerous by-products, including acetaldehyde and hydroxyacetone, in addition to the total oxidation products CO and C0 2 . It is therefore essential to control, through the action of a catalyst, the conversion reaction of glycerol to acrolein to overcome a subsequent energetic costly separation and a complex acrolein purification process.
  • Tsukuda et al. (Cat Comm (2007), 8, 1349), Chai et al. fAppl. Catal. A (2009), 353, 213) and Ning et al. (Catalyst (2008), 29, 212) describe processes for the catalytic dehydration of glycerol to acrolein in the gas phase, which use highly acidic catalysts in the form of a heteropoly acid supported on silica, activated charcoal or oxide. of zirconium.
  • Dubois et al. (WO 2009/127889) disclose a process for the dehydration of glycerol using as catalyst heteropolyanionic acid alkaline salts. We note in these the coke formation on the surface of the catalyst very quickly poisons the catalyst and that it is often necessary to regenerate the catalyst so as to find a satisfactory catalytic activity.
  • the present invention provides a process for the preparation of acrolein from glycerol or crude glycerin, by catalytic dehydration of glycerol in the presence of a catalyst which, while allowing to convert all of the starting glycerol , both can be very easily regenerated and has excellent acrolein selectivity as well as a long shelf life.
  • this catalyst consists of at least one inorganic acid and a silica modified with zirconium dioxide, titanium dioxide or tungsten trioxide or any combination of these oxides.
  • the inorganic acid according to the invention is chosen from heteropolyacids (HPA) and preferably from phosphotungstic acid, silicotungstic acid and phosphomolybdic acid, and their heterosubstituted compounds.
  • HPA heteropolyacids
  • the HPA of the invention are based on tungsten.
  • heteropolyacids are atomic oxygen-metal structures well known to those skilled in the art, generally consisting of a nucleus of atoms of a single element or of different elements, for example chosen from those of groups I-VIII of Periodic Table of the Elements, silicon and phosphorus being preferred, around which are distributed symmetrically peripheral atoms of a single element or different elements, often selected from molybdenum, tungsten, vanadium, niobium, tantalum and others metals.
  • HPA is the acid form of heteropolyanions, especially those of Keggin type and those of Dawson type. In the name HPA according to the invention, said heteropolyanions are included.
  • H 4 PMonVO 40 is a heterosubstituted HPA H 3 PMoi 2 VO 40 .
  • the silica of this invention is selected from amorphous silicas or more favorably from mesoporous silicas such as commercially available SBA-15, SBA-16, MCM-41 or KIT-6 then modified with zirconia.
  • the heteropoly acid is supported on the modified silica.
  • the catalyst is obtained by modifying the silica with dioxide of zirconium followed by calcination at high temperature and then impregnation of the support with the inorganic acid.
  • the support may be prepared in various ways, such as impregnation, grafting, coprecipitation, hydrothermal synthesis, which are techniques well known to those skilled in the art.
  • a procedure for the preparation of mesoporous silica has been described by Kleitz et al. (Chem Corn (2003) 17 2136), Zhao et al. Science (1998) 279, 548).
  • a procedure for modifying silica with zirconium dioxide has been described by Gutiérrez et al. (Catal. (2007), 249, 140) and Kostova et al. 'Catal. Today (2001), 65, 217).
  • the catalyst defined above may furthermore meet the following preferential characteristics, considered alone or in combination: the zirconium dioxide / silica mass ratio varies from 0.02 to 5, more advantageously it varies from 0.05 to 1,
  • the Ti / silica mass ratio varies from 0.02 to 5, more preferably from 0.05 to 1,
  • the mass ratio trioxide of W / silica varies from 0.02 to 5, more advantageously it varies from 0.05 to 1,
  • the weight ratio of Zr dioxide / Ti dioxide / silica ranges from 0.02 / 0.02 / 1 to 2/2/1, more preferably it ranges from 0.05 / 0.05 / 1 to 1/1/1 ,
  • 0.02 / 0.02 / 1 to 2/2/1 more preferably it ranges from 0.05 / 0.05 / 1 to 1/1/1,
  • the weight ratio Ti dioxide / W trioxide / silica ranges from 0.02 / 0.02 / 1 to 2/2/1, more preferably it ranges from 0.05 / 0.05 / 1 to 1/1/1 ,
  • the weight ratio of Zr dioxide / Ti dioxide / W trioxide / silica ranges from 0.02 / 0.02 / 0.02 / 1 to 2/2/2/1, more preferably it varies from 0.05 / 0 , 05 / 0.05 / 1 to 1/1/1/1,
  • the calcining temperature of the support varies from 50 to 1200 ° C, more preferably from 450 to 750 ° C,
  • the inorganic acid / support mass ratio varies from 0.02 to 5, more preferably it ranges from 0.05 to 1.
  • the catalyst of the invention has the advantage of being easily regenerated, and this without the dehydration yield or acrolein selectivity are affected.
  • an object of the invention resides in the process described above wherein the catalyst is regenerated.
  • various process technologies can be used, namely fixed bed, fluidized bed or circulating fluidized bed.
  • regeneration of the catalyst can be separated from the reaction. It can for example be done ex situ by conventional regeneration methods, such as combustion under air or with a gaseous mixture containing molecular oxygen.
  • the regeneration can also be done in situ because the temperatures and pressures at which the regeneration is done are close to the reaction conditions of the process.
  • glycerol or glycerine starting which may be in pure form or partially purified or in solution, in particular aqueous.
  • aqueous solution of glycerol is used.
  • the glycerol concentration is preferably at least 1% by weight, at most it varies from 5 to 50% by weight and preferably between 10 and 30% by weight.
  • the concentration of glycerol must not be too high in order to avoid the parasitic reactions which hinder the yield of acrolein, such as the formation of glycerol ethers or acetalization reactions between acrolein produced and non-glycerol. converted.
  • the glycerol solution must not be too diluted, because of a prohibitive energy cost induced by the evaporation of water. In any case, it is easy to adjust the concentration of the glycerol solution by partially or completely recycling the water produced by the reaction in question.
  • Another subject of the invention is a process for producing 3-aldehyde (methylthio) propionic acid (MMP), 2-hydroxy-4-methylthiobutyronitrile (HMTBN), methionine or its abovementioned analogs from acrolein, according to which acrolein is obtained by a process described above.
  • MMP 3-aldehyde
  • HMTBN 2-hydroxy-4-methylthiobutyronitrile
  • methionine or its abovementioned analogs from acrolein, according to which acrolein is obtained by a process described above.
  • the acrolein produced by the aforementioned process may contain impurities different from the traditional process, both in terms of their quantity and nature.
  • acrolein directly obtained according to the invention or after purification it is reacted with methyl mercaptan (MSH) to produce aldehyde-3- (methylthio) propionic (or MMP).
  • MMP aldehyde-3- (methylthio) propionic
  • HMTBN 2-hydroxy-4- (methylthio) butyronitrile
  • HMTBA hydroxy-analogue
  • the dehydration reaction of the glycerol is carried out on the catalyst, at atmospheric pressure, in a fixed-bed tubular reactor with a diameter of 15 mm and a length of 120 mm.
  • the reactor is placed in an oven which maintains the catalyst at the reaction temperature, typically 275 ° C.
  • the mass of catalyst charged to the reactor is 0.3 g (about 1 mL).
  • the reactor is fed with a flow rate of 1.5 g / h of 10% by weight aqueous solution of glycerol.
  • the aqueous glycerol solution is vaporized on an inert solid in the presence of a helium flow rate of 30 ml / min.
  • the glycerol / water / nitrogen molar relative proportions are 1.1 / 50.7 / 48.1.
  • the calculated contact time is of the order of 0.7 s or a GHSV of 6000 h "1.
  • the contact time and the GHSV are defined as follows:
  • GHSV Glycerol volume flow / catalyst volume
  • Total flow rate at 275 ° C volume flow rate of glycerol + volume flow rate of water + volume flow rate of the inert gas.
  • the products are condensed in a refrigerated trap using a cryostat bath.
  • the traps contain an initial mass of known water.
  • the trapping time is one hour and the feed rate is not interrupted during the hourly trap changes.
  • the products formed are analyzed by gas phase chromatography as well as high performance liquid.
  • the main products of the reaction are analyzed by liquid chromatography (THERMO HyperRez column, 250 mm, particles of 8 ⁇ ) with a TH ERMO SpectraSystem chromatograph equipped with an RI detector (THERMO Surveyor plus).
  • the products qua ntified in this analysis are: acrolein, acetol, allyl alcohol and glycerol.
  • Figure 1 shows a comparison of acrolein yield by
  • Figure 2 shows a comparison of the yield of acrolein over time, with the catalyst 30SiW-20Zr-SBA15-650 before regeneration (Example 1a) and after regeneration (Example 3).
  • the time indicated for each point is the end of a trapping period of one hour.
  • the example relates to different silicas which have a specific surface area ranging from 250 m 2 / g to 700 m 2 / g, and whose pore size ranges from 5 nm to 12 nm.
  • SBA-15 type silica support is obtained either commercially or prepared according to the procedure described in the literature (see, for example, Zhao et al., Science (1998), 279, 548). An example of synthesis is given below:
  • KIT-6 type silica support is obtained either commercially or prepared according to a procedure described in the literature (see, for example, Kleitz et al., Chem Corn (2003), 17, 2136). An example of synthesis is given below:
  • CARIACT-Q.10 silica support is commercially obtained from Fuji Silysia Chemical LTD (Japan). It is a mesoporous silica of hexagonal structure.
  • the silica supports are then modified by grafting with zirconium dioxide (zirconia) according to a method described in the literature by Gutierrez et al., J. Catal. (2007), 249, 140.
  • the standard procedure for preparing a 20% zirconia support is as follows:
  • silica is calcined in air at 650 ° C. for 3 hours.
  • the supports are then impregnated with silicotungstic acid.
  • the procedure for preparing a catalyst at 20% by weight of acid is as follows: 0.8 g of carrier is suspended in 20 ml of distilled water. A solution of 0.2 g of silicotungstic acid H 4 SiWnO 40 in 2 ml of distilled water is added to the suspension, then the solva nt is totally evaporated.
  • X silicotungstic acid content (in% by mass in the final catalyst).
  • Y zirconium dioxide content (in% by mass of the final support);
  • Example 1b I nfluence of the zirconium dioxide content
  • Example 1d Influence of the temperature of calcination Table ld
  • the catalysts of the comparative example are based on silicas of CariACT Q10 type (Fuji Silysia Chemical LTD), SBA-15 and KIT-6 impregnated with 20% by weight of silicotungstic acid H 4 SiWnO 40 (SiW).
  • the catalysts are referenced as follows:
  • the catalyst 30SiW-20Zr-SBA15- 650 is regenerated under a stream of air at 275 ° C. for 2 h (air flow: 25 ml / min). After regeneration, the catalyst is tested under the same operating conditions as before regeneration.
  • the catalyst 30SiW-20Zr-SBA15-650 is therefore regenerable over a short time and without loss of activity or selectivity. Not only is the 30SiW-20Zr-SBA15-650 catalyst active and selective, but it is also fully and easily regenerable.

Abstract

The invention relates to a method for preparing acrolein from glycerol or glycerine, according to which the glycerol or glycerine is dehydrated in the presence of a catalyst that consists of least one silica modified by zirconium dioxide, titanium dioxide or tungsten trioxide or any combination of said oxides, and a heteropolyacid. Said method can be used for the production of 3-(methylthio)propionaldehyde (MMP), 2-hydroxy-4(methylthio)butyronitrile (HMTBN), methionine or analogue substances thereof, using acrolein.

Description

PROCEDE DE PREPARATION D' ACROLEINE A PARTIR DE GLYCEROL OU DE GLYCERINE  PROCESS FOR THE PREPARATION OF ACROLEIN FROM GLYCEROL OR GLYCERIN
La présente invention concerne un procédé catalytique de fabrication d'acroléine par déshydratation du glycérol ou de glycérine et les applications d'un tel procédé. The present invention relates to a catalytic process for producing acrolein by dehydration of glycerol or glycerine and the applications of such a process.
On entend par glycérol, un glycérol purifié ou non, de préférence issu de la biomasse, et notamment un glycérol hautement purifié ou partiellement purifié. Un glycérol purifié possède une pureté supérieure ou égale à 98%, obtenue par distillation de glycérine. On entend par glycérine, notamment, une glycérine d'origine naturelle, issue de l'hydrolyse d'huiles végétales et de graisses animales, ou une glycérine d'origine synthétique, issue du pétrole, plus ou moins purifiée ou raffinée, ou bien brute. Ainsi, dans la suite de la description, on se réfère principalement à la conversion d'un glycérol ou d'une glycérine issue de la biomasse, mais l'invention n'y est bien entendu pas limitée et son intérêt s'étend à tous glycérol et glycérine, quels que soient leur origine et leur degré de pureté.  Glycerol is understood to mean a purified or non-purified glycerol, preferably derived from biomass, and in particular a highly purified or partially purified glycerol. Purified glycerol has a purity greater than or equal to 98%, obtained by distillation of glycerine. Glycerin is understood to mean, in particular, a glycerine of natural origin, resulting from the hydrolysis of vegetable oils and animal fats, or a glycerine of synthetic origin, derived from petroleum, more or less purified or refined, or else crude . Thus, in the remainder of the description, reference is made mainly to the conversion of a glycerol or a glycerin from biomass, but the invention is of course not limited and its interest extends to all glycerol and glycerin, whatever their origin and degree of purity.
L'épuisement progressif des énergies fossiles conduit les industriels à envisager l'utilisation de matières premières renouvelables issues de la biomasse pour la production de ca rburants. Dans ce contexte, le biodiesel est un carburant produit à pa rtir d'huile végéta le ou a nimale.  The gradual depletion of fossil fuels is leading industrialists to consider the use of renewable raw materials from biomass for the production of fuels. In this context, biodiesel is a fuel produced from vegetal oil or oil.
Ce produit jouit d'une aura verte en raison d'un bilan C02 nettement favorable par rapport aux énergies fossiles. Le diester® (ou EMVH, Esters Méthyliques d'Huiles Végétales) est un biodiesel fabriqué par transestérification des triglycérides présents dans les liquides oléagineux, notamment les huiles végétales de pa lme, colza et tournesol, par du méthanol, et coproduit approximativement, et suivant les procédés envisagés, 100 kg de glycérol par tonne de diester®. La pa rtie non lipidique de la matière première utilisée, les tourtea ux, est principalement mise à profit da ns l'a limentation animale. This product has a green aura because of a C0 2 balance clearly favorable compared to fossil fuels. Diester ® (or EMVH, Methyl Esters of Vegetable Oils) is a biodiesel produced by transesterification of triglycerides present in oilseed liquids, especially vegetable oils of paolo, rapeseed and sunflower, by methanol, and approximately co-produced, and following the processes envisaged, 100 kg of glycerol per ton of diester ® . The non-lipid fraction of the raw material used, the cake, is mainly used in animal feed.
Ce biodiesel est utilisé en mélange dans le gazole. Les directives européennes 2001/77/EC et 2003/30/EC, qui seront appliquées da ns un futur proche, projettent d'introduire 7% en 2010 et 10% à l'horizon 2015 de diester® dans les gazoles. Cette augmentation substantielle de la quantité de biodiesel produit va générer des quantités importantes de glycérol équivalentes à plusieurs centaines de milliers de tonnes/an. This biodiesel is used as a mixture in diesel fuel. The European directives 2001/77 / EC and 2003/30 / EC, which will be applied in the near future, plan to introduce 7% in 2010 and 10% by 2015 of diester ® in gas oils. This substantial increase in the amount of biodiesel produced will generate significant amounts of glycerol equivalent to several hundred thousand tons / year.
Quelques 1500 utilisations du glycérol sont déjà répertoriées, pa rmi lesquelles les suivantes illustrent à titre d'exemples sa présence da ns de nombreuses et diverses formulations : Some 1,500 uses of glycerol are already listed, the following examples of which illustrate its presence in many and varied formulations:
hydratants en pharmacie (dans les suppositoires et les sirops) ou en cosmétologie dans les crèmes hydratantes, les savons à la glycérine, les dentifrices,  moisturizers in pharmacy (in suppositories and syrups) or in cosmetology in moisturizers, glycerin soaps, toothpastes,
- solvants dans l'industrie alimentaire,  - solvents in the food industry,
plastifiants ou lubrifiants da ns l'industrie chimique.  plasticizers or lubricants in the chemical industry.
Ces applications s'avéreront nettement insuffisa ntes pour absorber les quantités de glycérol qui seront produites avec les biodiesels et bien qu'en progression, le marché conventionnel du glycérol (savons, pharmacie, ...) ne pourra pas non plus absorber un tel surplus. Il est donc vital de trouver de nouvelles applications permetta nt de valoriser de très gros volumes de glycérol.  These applications will prove to be clearly insufficient to absorb the quantities of glycerol that will be produced with biodiesels and although progressing, the conventional glycerol market (soaps, pharmacy, ...) will not be able to absorb such a surplus either. . It is therefore vital to find new applications that can be used to recover very large volumes of glycerol.
Devant ce constat, de nombreux débouchés ont été étudiés ces dernières années (voir M. Pagliaro et al., Angew. Chem. Int. Ed. (2007) 46, 4434 - 4440 ainsi que M. Pagliaro, M. Rossi: The Future of Glycerol, RSC Publishing, Cambridge (2008)), avec, en particulier, les six voies de valorisation suivantes :  In the light of this observation, numerous outlets have been studied in recent years (see M. Pagliaro et al., Angew Chem., Int., Ed., (2007) 46, 4434-4440, and M. Pagliaro, M. Rossi: The Future. of Glycerol, RSC Publishing, Cambridge (2008)), with, in particular, the following six valuation routes:
conversion en 1,3-propanediol et en 1,2-propanediol, notamment utilisés comme monomères de base dans la synthèse des polyesters et polyuréthanes,  conversion to 1,3-propanediol and 1,2-propanediol, especially used as basic monomers in the synthesis of polyesters and polyurethanes,
conversion en monoesters pour la chimie des lubrifiants,  conversion to monoesters for lubricant chemistry,
- conversion en polyglycérols qui sont employés en tant qu'agents émulsifiants, additifs alimentaires,  - conversion to polyglycerols which are used as emulsifying agents, food additives,
conversion en acroléine (par déshydratation) et acide acrylique (par déshydratation et oxydation),  conversion to acrolein (by dehydration) and acrylic acid (by dehydration and oxidation),
valorisation directe en tant qu'additifs pour l'alimentation animale. L'acroléine et l'acide acrylique sont traditionnellement produits par oxydation ménagée en phase gazeuse du propylène par l'oxygène de l'air en présence de catalyseurs à base d'oxydes de molybdène et/ou bismuth. L'acroléine ainsi obtenue peut soit être directement intégrée dans un procédé en deux étapes de fabrication d'acide acrylique, soit être utilisée comme intermédiaire de synthèse. La production de ces deux monomères est donc étroitement liée au propylène q u i est, en substance, fabriqué par vapocraquage ou craquage catalytique de coupes pétrolières.  direct processing as additives for animal feed. Acrolein and acrylic acid are traditionally produced by gas phase oxidation of propylene by oxygen in the presence of catalysts based on molybdenum and / or bismuth oxides. The acrolein thus obtained can either be directly integrated into a two-step process for producing acrylic acid or be used as a synthesis intermediate. The production of these two monomers is therefore closely related to propylene, which is, in essence, manufactured by steam cracking or catalytic cracking of petroleum fractions.
Les marchés de l'acroléine, le plus simple des aldéhydes insaturés, et de l'acide acrylique sont gigantesques car ces monomères entrent dans la composition de nombreux produits de masse. Par ailleurs, l'acroléine, composé hautement réactif de par sa structure, trouve de nombreuses applications, notamment comme intermédiaire de synthèse. Elle est tout particulièrement utilisée comme intermédiaire clé entrant dans la synthèse de la D,L-méthionine et de son dérivé hydroxy-analogue, l'acide 2-hydroxy-4méthylthiobutanoïque (HMTBA). Ces additifs alimentaires sont massivement employés car ils entrent dans la composition de compléments alimentaires indispensables à la croissance des animaux (volailles, porcs, ruminants, poissons, ...). Dans un certain nombre de cas, il peut être profitable de pouvoir augmenter, voire d'assurer les capacités de production des unités industrielles existantes en diversifiant la matière première engagée. Il apparaît donc tout particulièrement intéressant de pouvoir augmenter la productivité en acroléine, tout en réduisant la dépendance vis-à-vis de cette ressource fossile qu'est le propylène. The markets for acrolein, the simplest unsaturated aldehyde, and acrylic acid are gigantic because these monomers are used in the composition of many mass products. Furthermore, acrolein, highly reactive compound by its structure, has many applications, including as a synthesis intermediate. It is especially used as a key intermediate in the synthesis of D, L-methionine and its hydroxy-analogue derivative, 2-hydroxy-4-methylthiobutanoic acid (HMTBA). These food additives are widely used because they are part of the composition of food supplements essential for the growth of animals (poultry, pigs, ruminants, fish, ...). In a certain number of cases, it may be profitable to be able to increase or even ensure the production capacities of existing industrial units by diversifying the raw material involved. It therefore seems particularly interesting to be able to increase the productivity of acrolein, while reducing the dependence on this fossil resource that is propylene.
L'objet de la présente invention réside dans la mise en œuvre de catalyseurs robustes, actifs, sélectifs et régénérables, permettant de produire de l'acroléine directement à partir de glycérol ou de glycérine, notamment issue de la biomasse, selon la réaction :  The object of the present invention resides in the implementation of robust, active, selective and regenerable catalysts, making it possible to produce acrolein directly from glycerol or glycerin, in particular from biomass, according to the reaction:
HO-CH2-CH(OH)-CH2-OH - CH2=CH-CHO + 2H20 HO-CH 2 -CH (OH) -CH 2 -OH-CH 2 = CH-CHO + 2H 2 O
Cette alternative permet ainsi de disposer d'un procédé compétitif de synthèse d'acroléine non dépendant de la ressource pétrolière propylène à partir d'une autre matière première renouvelable. This alternative thus makes it possible to have a competitive process for the synthesis of acrolein which is not dependent on the propylene petroleum resource from another renewable raw material.
Cette possibilité est particulièrement avantageuse pour la synthèse de méthionine ou de ses analogues, comme son hydroxy-analogue (HMTBA), directement à partir de la biomasse.  This possibility is particularly advantageous for the synthesis of methionine or its analogs, such as its hydroxy-analogue (HMTBA), directly from the biomass.
Ainsi, l'invention se rapporte en outre à une application de cette réaction à la synthèse de l'aldéhyde-3-(méthylthio)propionique (M MP), du 2-hydroxy-4- méthylthiobutyronitrile (HMTBN), de la méthionine et ses analogues tels que l'acide 2-hydroxy-4méthylthiobutanoïque (HMTBA), les esters du HMTBA comme l'ester isopropylique, l'acide 2-oxo-4méthylthiobutanoïque, à partir d acroléine.  Thus, the invention further relates to an application of this reaction to the synthesis of aldehyde-3- (methylthio) propionic acid (MMP), 2-hydroxy-4-methylthiobutyronitrile (HMTBN), methionine and its analogs such as 2-hydroxy-4-methylthiobutanoic acid (HMTBA), esters of HMTBA such as isopropyl ester, 2-oxo-4-methylthiobutanoic acid, from acrolein.
La méthionine, le HMTBA et les analogues de celui-ci, sont utilisés en nutrition animale, et dans leurs procédés industriels de synthèse, l'acroléine est généralement obtenue par oxydation du propylène et/ou du propane. L'oxydation du propylène en acroléine par l'air en présence d'eau est partielle, et le produit brut résultant, à base d'acroléine, contient aussi du propylène et du propane n'ayant pas réagi, de l'eau et des sous-produits de la réaction d'oxydation, notamment des acides, aldéhydes et alcools Methionine, HMTBA and analogs thereof are used in animal nutrition, and in their synthetic industrial processes, acrolein is generally obtained by oxidation of propylene and / or propane. The oxidation of propylene to acrolein by air in the presence of water is partial, and the product resulting crude, based on acrolein, also contains unreacted propylene and propane, water and by-products of the oxidation reaction, including acids, aldehydes and alcohols
Il est connu depuis longtemps que le glycérol (appelé aussi glycérine) se décompose pour donner de l'acroléine lorsqu'il est porté à des températures supérieures à 280°C. Cette réaction faiblement sélective s'accompagne de la formation de nombreux sous-produits dont l'acétaldéhyde, l'hydroxyacétone, en plus des produits d'oxydation totale CO et C02. Il est donc indispensable de contrôler, grâce à l'action d'un catalyseur, la réaction de transformation du glycérol en acroléine pour s'affranchir d'une séparation postérieure énergétiquement coûteuse et d'un procédé de purification de l'acroléine complexe. It has long been known that glycerol (also called glycerin) decomposes to give acrolein when heated to temperatures above 280 ° C. This weakly selective reaction is accompanied by the formation of numerous by-products, including acetaldehyde and hydroxyacetone, in addition to the total oxidation products CO and C0 2 . It is therefore essential to control, through the action of a catalyst, the conversion reaction of glycerol to acrolein to overcome a subsequent energetic costly separation and a complex acrolein purification process.
De nombreux chercheurs universitaires et industriels se sont penchés sur cette réaction. Il a notamment été envisagé d'utiliser de l'eau supercritique comme milieu réactionnel, qui permet de se placer dans un milieu acide en jouant sur la température et la pression du milieu réactionnel et donc de faire l'économie de l'usage d'un catalyseur. Cependant, l'utilisation de solvant supercritique à l'échelle industrielle demeure difficile pour un procédé continu en raison de l'infrastructure particulièrement lourde qu'elle exige (autoclaves fonctionnant sous très haute pression et résistants dans un milieu particulièrement corrosif).  Many academic and industrial researchers have examined this reaction. It has in particular been envisaged to use supercritical water as a reaction medium, which makes it possible to place itself in an acidic medium by varying the temperature and pressure of the reaction medium and thus to save the use of a catalyst. However, the use of supercritical solvent on an industrial scale remains difficult for a continuous process because of the particularly heavy infrastructure that it requires (autoclaves operating under very high pressure and resistant in a particularly corrosive environment).
En revanche, la mise en place d'un procédé continu en phase gazeuse et à pression atmosphérique devient envisageable si un système catalytique performant, sélectif et résistant est identifié et mis en œuvre. Devant l'intérêt grandissant de cette alternative, la littérature fait état d'un grand nombre d'études relatives à l'utilisation de systèmes catalytiques basés sur des hétéropolyacides phospho- ou silico-tungstiques supportés, des oxydes mixtes et des zéolithes, utilisables pour des procédés continus ou discontinus en phase liquide ou en phase gaz.  On the other hand, the implementation of a continuous process in the gas phase and at atmospheric pressure becomes possible if a high-performance, selective and resistant catalytic system is identified and implemented. Given the growing interest of this alternative, the literature reports a large number of studies relating to the use of catalytic systems based on supported phospho- or silico-tungstic heteropolyacids, mixed oxides and zeolites, usable for continuous or discontinuous processes in the liquid phase or in the gas phase.
Ainsi, Tsukuda et al. (Cat. Comm. (2007), 8, 1349), Chai et al. fAppl. Catal. A (2009), 353, 213) et Ning et al. (i. Catal. (2008), 29, 212) décrivent des procédés de déshydratation catalytique du glycérol en acroléine en phase gazeuse, lesquels mettent en œuvre des catalyseurs fortement acides sous forme d'hétéropolyacide supporté sur silice, sur charbon actif ou sur oxyde de zirconium. Dubois et al. (WO 2009/127889) proposent un procédé de déshydratation de glycérol en utilisant comme catalyseur des sels alcalins acides hétéropolyanioniques. On note dans ces travaux que la formation de coke à la surface du catalyseur empoisonne très rapidement ce dernier et qu'il est ainsi souvent nécessaire de régénérer le catalyseur de façon à retrouver une activité catalytique satisfaisante. Thus, Tsukuda et al. (Cat Comm (2007), 8, 1349), Chai et al. fAppl. Catal. A (2009), 353, 213) and Ning et al. (Catalyst (2008), 29, 212) describe processes for the catalytic dehydration of glycerol to acrolein in the gas phase, which use highly acidic catalysts in the form of a heteropoly acid supported on silica, activated charcoal or oxide. of zirconium. Dubois et al. (WO 2009/127889) disclose a process for the dehydration of glycerol using as catalyst heteropolyanionic acid alkaline salts. We note in these the coke formation on the surface of the catalyst very quickly poisons the catalyst and that it is often necessary to regenerate the catalyst so as to find a satisfactory catalytic activity.
Par rapport aux procédés connus, la présente invention apporte un procédé de préparation d'acroléine à partir de glycérol ou de glycérine brute, par déshydratation catalytique du glycérol en présence d'un catalyseur qui, tout en permettant de convertir la totalité du glycérol de départ, à la fois peut être très facilement régénéré et possède une excellente sélectivité en acroléine ainsi qu'une longue durée de vie.  Compared to the known processes, the present invention provides a process for the preparation of acrolein from glycerol or crude glycerin, by catalytic dehydration of glycerol in the presence of a catalyst which, while allowing to convert all of the starting glycerol , both can be very easily regenerated and has excellent acrolein selectivity as well as a long shelf life.
Les auteurs de l'invention ont découvert que ce catalyseur consistait en au moins un acide inorganique et une silice modifiée par du dioxyde de zirconium, du dioxyde de titane ou du trioxyde de tungstène ou toute combinaison de ces oxydes.  The inventors of the invention have discovered that this catalyst consists of at least one inorganic acid and a silica modified with zirconium dioxide, titanium dioxide or tungsten trioxide or any combination of these oxides.
L'acide inorganique selon invention est choisi parmi les hétéropolyacides (HPA) et à titre préférence parmi l'acide phosphotungstique, l'acide silicotungstique et l'acide phosphomolybdique, et leurs hétérosubstitués. De préférence, les HPA de l'invention sont à base de tungstène.  The inorganic acid according to the invention is chosen from heteropolyacids (HPA) and preferably from phosphotungstic acid, silicotungstic acid and phosphomolybdic acid, and their heterosubstituted compounds. Preferably, the HPA of the invention are based on tungsten.
Les hétéropolyacides (HPA) sont des structures atomiques oxygéno- métalliques bien connues de l'homme du métier, généralement constituées par un noyau d'atomes d'un seul élément ou de différents éléments, par exemple choisis parmi ceux des Groupes l-VIII du Tableau Périodique des Eléments, le silicium et le phosphore étant préférés, autour duquel sont répartis symétriquement des atomes périphériques d'un seul élément ou de différents éléments, souvent choisis parmi le molybdène, le tungstène, le vanadium, le niobium, le tantale et autres métaux. Les HPA sont la forme acide d'hétéropolyanions, notamment ceux de type Keggin et ceux de type Dawson. Dans l'appellation HPA selon l'invention, on inclut lesdits hétéropolyanions. Par hétérosubstitué d'un HPA, on entend selon l'invention, des HPA dans la structure desquels un ou plusieurs atomes ont été substitués par d'autres atomes, ainsi H4PMonVO40 est un hétérosubstitué du HPA H3PMoi2VO40. The heteropolyacids (HPA) are atomic oxygen-metal structures well known to those skilled in the art, generally consisting of a nucleus of atoms of a single element or of different elements, for example chosen from those of groups I-VIII of Periodic Table of the Elements, silicon and phosphorus being preferred, around which are distributed symmetrically peripheral atoms of a single element or different elements, often selected from molybdenum, tungsten, vanadium, niobium, tantalum and others metals. HPA is the acid form of heteropolyanions, especially those of Keggin type and those of Dawson type. In the name HPA according to the invention, said heteropolyanions are included. According to the invention, HPA-substituted heterosubstituted HPAs in the structure of which one or more atoms have been substituted by other atoms, thus H 4 PMonVO 40 is a heterosubstituted HPA H 3 PMoi 2 VO 40 .
La silice de cette invention est choisie parmi les silices amorphes ou plus favorablement parmi les silices mésoporeuses telles que les SBA-15, SBA-16, MCM-41 ou KIT-6 disponibles dans le commerce puis modifiée par de la zircone.  The silica of this invention is selected from amorphous silicas or more favorably from mesoporous silicas such as commercially available SBA-15, SBA-16, MCM-41 or KIT-6 then modified with zirconia.
Selon une variante de l'invention, l'hétéropolyacide est supporté sur la silice modifiée.  According to a variant of the invention, the heteropoly acid is supported on the modified silica.
Ainsi, le catalyseur est obtenu par modification de la silice par du dioxyde de zirconium suivie d'une calcination à haute température puis par imprégnation du support par l'acide inorganique. Thus, the catalyst is obtained by modifying the silica with dioxide of zirconium followed by calcination at high temperature and then impregnation of the support with the inorganic acid.
Le support peut être préparé de diverses façons, telle qu'imprégnation, greffage, coprécipitation, synthèse hydrothermale, qui sont des techniques bien connues de l'homme du métier. Une procédure de préparation de silice mésoporeuse a été décrite par Kleitz et al. (Chem. Corn. (2003) 17 2136), Zhao et al. /'Science (1998) 279, 548). Une procédure de modification de la silice par le dioxyde de zirconium a été décrite par Gutiérrez et al. (i. Catal. (2007), 249, 140) ainsi que Kostova et al. 'Catal. Today (2001), 65, 217).  The support may be prepared in various ways, such as impregnation, grafting, coprecipitation, hydrothermal synthesis, which are techniques well known to those skilled in the art. A procedure for the preparation of mesoporous silica has been described by Kleitz et al. (Chem Corn (2003) 17 2136), Zhao et al. Science (1998) 279, 548). A procedure for modifying silica with zirconium dioxide has been described by Gutiérrez et al. (Catal. (2007), 249, 140) and Kostova et al. 'Catal. Today (2001), 65, 217).
Le catalyseur défini précédemment peut en outre répondre aux caractéristiques préférentielles ci-dessous, considérées seules ou en combinaison : le rapport massique dioxyde de zirconium/silice varie de 0,02 à 5, plus avantageusement il varie de 0,05 à 1,  The catalyst defined above may furthermore meet the following preferential characteristics, considered alone or in combination: the zirconium dioxide / silica mass ratio varies from 0.02 to 5, more advantageously it varies from 0.05 to 1,
le rapport massique dioxyde de Ti/silice varie de 0,02 à 5, plus avantageusement il varie de 0,05 à 1,  the Ti / silica mass ratio varies from 0.02 to 5, more preferably from 0.05 to 1,
le rapport massique trioxyde de W/silice varie de 0,02 à 5, plus avantageusement il varie de 0,05 à 1,  the mass ratio trioxide of W / silica varies from 0.02 to 5, more advantageously it varies from 0.05 to 1,
le rapport massique dioxyde de Zr/dioxyde de Ti/silice varie de 0,02/0,02/1 à 2/2/1, plus avantageusement il varie de 0,05/0,05/1 à 1/1/1,  the weight ratio of Zr dioxide / Ti dioxide / silica ranges from 0.02 / 0.02 / 1 to 2/2/1, more preferably it ranges from 0.05 / 0.05 / 1 to 1/1/1 ,
le rapport massique dioxyde de Zr/trioxyde de W/silice varie de the mass ratio of Zr dioxide / W trioxide / silica varies from
0,02/0,02/1 à 2/2/1, plus avantageusement il varie de 0,05/0,05/1 à 1/1/1, 0.02 / 0.02 / 1 to 2/2/1, more preferably it ranges from 0.05 / 0.05 / 1 to 1/1/1,
le rapport massique dioxyde de Ti/trioxyde de W/silice varie de 0,02/0,02/1 à 2/2/1, plus avantageusement il varie de 0,05/0,05/1 à 1/1/1,  the weight ratio Ti dioxide / W trioxide / silica ranges from 0.02 / 0.02 / 1 to 2/2/1, more preferably it ranges from 0.05 / 0.05 / 1 to 1/1/1 ,
le rapport massique dioxyde de Zr/dioxyde de Ti/trioxyde de W/silice varie de 0,02/0,02/0,02/1 à 2/2/2/1, plus avantageusement il varie de 0,05/0,05/0,05/1 à 1/1/1/1,  the weight ratio of Zr dioxide / Ti dioxide / W trioxide / silica ranges from 0.02 / 0.02 / 0.02 / 1 to 2/2/2/1, more preferably it varies from 0.05 / 0 , 05 / 0.05 / 1 to 1/1/1/1,
la température de calcination du support varie de 50 à 1200°C, plus avantageusement de 450 à 750°C,  the calcining temperature of the support varies from 50 to 1200 ° C, more preferably from 450 to 750 ° C,
le rapport massique acide inorganique/support varie de 0,02 à 5, plus avantageusement, il varie de 0,05 à 1.  the inorganic acid / support mass ratio varies from 0.02 to 5, more preferably it ranges from 0.05 to 1.
Comme dit précédemment et comme les exemples ci-après l'illustrent, le catalyseur de l'invention présente l'intérêt de pouvoir être régénéré facilement, et ceci sans que le rendement de la déshydratation, ni la sélectivité en acroléine ne soient affectés. Ainsi, un objet de l'invention réside dans le procédé décrit ci- dessus dans lequel le catalyseur est régénéré. Lorsque la réaction de conversion du glycérol en acroléine est menée en phase gazeuse, différentes technologies de procédé peuvent être utilisées, à savoir en lit fixe, en lit fluidisé ou en lit fluidisé circulant. Dans les deux premiers procédés, la régénération du catalyseur peut être séparée de la réaction. Elle peut par exemple se faire ex situ par les méthodes de régénération conventionnelles, comme la combustion sous air ou avec un mélange gazeux contenant de l'oxygène moléculaire. Selon le procédé de l'invention, la régénération peut également se faire in situ car les températures et pressions auxquelles se fait la régénération sont voisines des conditions réactionnelles du procédé. As said above and as the examples below illustrate, the catalyst of the invention has the advantage of being easily regenerated, and this without the dehydration yield or acrolein selectivity are affected. Thus, an object of the invention resides in the process described above wherein the catalyst is regenerated. When the conversion reaction of glycerol to acrolein is conducted in the gas phase, various process technologies can be used, namely fixed bed, fluidized bed or circulating fluidized bed. In the first two processes, regeneration of the catalyst can be separated from the reaction. It can for example be done ex situ by conventional regeneration methods, such as combustion under air or with a gaseous mixture containing molecular oxygen. According to the process of the invention, the regeneration can also be done in situ because the temperatures and pressures at which the regeneration is done are close to the reaction conditions of the process.
Un autre avantage du procédé de l'invention réside dans la forme du glycérol ou glycérine de départ qui peut être sous forme pure ou partiellement purifiée ou en solution, notamment aqueuse. Avantageusement, on utilise une solution aqueuse de glycérol. En solution aqueuse, la concentration du glycérol est de préférence d'au moins 1% massique, au mieux elle varie de 5 à 50% massique et de préférence entre 10 et 30% en masse. Avantageusement, la concentration en glycérol ne doit pas être trop élevée dans le but d'éviter les réactions parasites qui grèvent le rendement en acroléine, comme la formation des éthers de glycérol ou des réactions d'acétalisation entre l'acroléine produite et le glycérol non converti. Par ailleurs, la solution de glycérol ne doit pas être trop diluée, en raison d'un coût énergétique rédhibitoire induit par l'évaporation de l'eau. Dans tous les cas, il est aisé d'ajuster la concentration de la solution de glycérol en recyclant partiellement ou totalement l'eau produite par la réaction considérée.  Another advantage of the process of the invention resides in the form of glycerol or glycerine starting which may be in pure form or partially purified or in solution, in particular aqueous. Advantageously, an aqueous solution of glycerol is used. In aqueous solution, the glycerol concentration is preferably at least 1% by weight, at most it varies from 5 to 50% by weight and preferably between 10 and 30% by weight. Advantageously, the concentration of glycerol must not be too high in order to avoid the parasitic reactions which hinder the yield of acrolein, such as the formation of glycerol ethers or acetalization reactions between acrolein produced and non-glycerol. converted. In addition, the glycerol solution must not be too diluted, because of a prohibitive energy cost induced by the evaporation of water. In any case, it is easy to adjust the concentration of the glycerol solution by partially or completely recycling the water produced by the reaction in question.
Un autre objet de l'invention est un procédé de fabrication de l'aldéhyde- 3(méthylthio)propionique (MMP), du 2-hydroxy-4-méthylthiobutyronitrile (HMTBN), de la méthionine ou de ses analogues précités à partir d'acroléine, selon lequel l'acroléine est obtenue par un procédé décrit ci-dessus. Comparativement au procédé conventionnel de fabrication de l'acroléine par oxydation ménagée du propylène, l'acroléine produite selon le procédé susmentionné peut contenir des impuretés différentes du procédé traditionnel, tant sous l'angle de leur quantité que de leur nature. Selon l'utilisation envisagée, la synthèse de l'acide acrylique ou de la méthionine ou de ses analogues, il pourra être envisagé de purifier l'acroléine selon les techniques connues de l'homme de l'art, par exemple celle décrite dans le document WO2008/006977A au nom de la Demanderesse.  Another subject of the invention is a process for producing 3-aldehyde (methylthio) propionic acid (MMP), 2-hydroxy-4-methylthiobutyronitrile (HMTBN), methionine or its abovementioned analogs from acrolein, according to which acrolein is obtained by a process described above. Compared with the conventional process for producing acrolein by mild oxidation of propylene, the acrolein produced by the aforementioned process may contain impurities different from the traditional process, both in terms of their quantity and nature. Depending on the use envisaged, the synthesis of acrylic acid or of methionine or of its analogues, it may be envisaged to purify acrolein according to the techniques known to those skilled in the art, for example that described in US Pat. WO2008 / 006977A in the name of the Applicant.
Ainsi, une fois l'acroléine directement obtenue selon l'invention ou après purification, elle est mise en réaction avec du méthylmercaptan (MSH) pour produire l'aldéhyde-3-(méthylthio)propionique (ou M M P). Dans une étape suivante, le M M P est mis en contact avec de l'acide cyanhydrique pour produire le 2-hydroxy-4-(méthylthio)butyronitrile (HMTBN). Après synthèse du HMTBN, diverses étapes réactionnelles conduisent à la méthionine et ses analogues dont l'hydroxy-analogue (HMTBA). Toutes ces étapes à compter de la synthèse de l'acroléine sont bien connues de l'homme du métier. Thus, once acrolein directly obtained according to the invention or after purification, it is reacted with methyl mercaptan (MSH) to produce aldehyde-3- (methylthio) propionic (or MMP). In a next step, the MMP is contacted with hydrogen cyanide to produce 2-hydroxy-4- (methylthio) butyronitrile (HMTBN). After synthesis of HMTBN, various reaction steps lead to methionine and its analogs including the hydroxy-analogue (HMTBA). All these steps from the synthesis of acrolein are well known to those skilled in the art.
La présente invention est maintenant décrite plus en détail et illustrée avec les exemples et figures ci-après sans toutefois en limiter la portée.  The present invention is now described in more detail and illustrated with the examples and figures below without limiting its scope.
Les conditions réactionnelles et les méthodes de calcul utilisées pour déterminer la conversion et la sélectivité en acroléine sont décrites ci-après.  The reaction conditions and calculation methods used to determine the conversion and selectivity to acrolein are described below.
La réaction de déshydratation du glycérol est conduite sur le catalyseur, à pression atmosphérique, dans un réacteur tubulaire à lit fixe de diamètre 15 mm et de longueur 120 mm. Le réacteur est placé dans un four qui permet de maintenir le catalyseur à la température de réaction, typiquement 275°C. La masse de catalyseur chargé dans le réacteur est de 0,3 g (environ 1 mL). Le réacteur est alimenté avec un débit de 1,5 g/h de solution aqueuse à 10% en masse de glycérol. La solution aqueuse de glycérol est vaporisée sur un solide inerte en présence d'un débit d'hélium de 30 mL/min. Les proportions relatives molaires glycérol / eau / azote sont de 1,1 / 50,7 / 48,1. Le temps de contact calculé est de l'ordre de 0,7 s soit une GHSV de 6000 h"1. Le temps de contact et la GHSV sont définis comme suit : The dehydration reaction of the glycerol is carried out on the catalyst, at atmospheric pressure, in a fixed-bed tubular reactor with a diameter of 15 mm and a length of 120 mm. The reactor is placed in an oven which maintains the catalyst at the reaction temperature, typically 275 ° C. The mass of catalyst charged to the reactor is 0.3 g (about 1 mL). The reactor is fed with a flow rate of 1.5 g / h of 10% by weight aqueous solution of glycerol. The aqueous glycerol solution is vaporized on an inert solid in the presence of a helium flow rate of 30 ml / min. The glycerol / water / nitrogen molar relative proportions are 1.1 / 50.7 / 48.1. The calculated contact time is of the order of 0.7 s or a GHSV of 6000 h "1. The contact time and the GHSV are defined as follows:
GHSV = Débit volumique du glycérol / volume de catalyseur  GHSV = Glycerol volume flow / catalyst volume
Temps de contact = Volume catalyseur / débit volumique total ;  Contact time = Catalyst volume / total volume flow;
Débit volumique total à 275°C = débit volumique du glycérol + débit volumique de l'eau + débit volumique du gaz inerte.  Total flow rate at 275 ° C = volume flow rate of glycerol + volume flow rate of water + volume flow rate of the inert gas.
Après réaction, les produits sont condensés dans un piège réfrigéré à l'aide d'un bain cryostaté. Pour un meilleur piégeage, les pièges contiennent une masse initiale d'eau connue. La durée de piégeage est d'une heure et le débit d'alimentation n'est pas interrompu pendant les changements de pièges effectués toutes les heures.  After reaction, the products are condensed in a refrigerated trap using a cryostat bath. For better trapping, the traps contain an initial mass of known water. The trapping time is one hour and the feed rate is not interrupted during the hourly trap changes.
Les produits formés sont analysés par chromatographie en phase gaz ainsi que liquide haute performance.  The products formed are analyzed by gas phase chromatography as well as high performance liquid.
Les principaux produits de la réaction sont analysés par chromatographie liquide (colonne THERMO HyperRez, 250 mm, particules de 8 μιη) avec un chromatographe TH ERMO SpectraSystem muni d'un détecteur RI (THERMO Surveyor plus). Les produits qua ntifiés lors de cette analyse sont : l'acroléine, l'acétol, l'a lcool allylique et le glycérol. The main products of the reaction are analyzed by liquid chromatography (THERMO HyperRez column, 250 mm, particles of 8 μιη) with a TH ERMO SpectraSystem chromatograph equipped with an RI detector (THERMO Surveyor plus). The products qua ntified in this analysis are: acrolein, acetol, allyl alcohol and glycerol.
La conversion en glycérol, la sélectivité en acroléine et les rendements en différents produits sont définis comme suit :  The conversion to glycerol, the acrolein selectivity and the yields of different products are defined as follows:
Conversion en glycérol 'C (%) = 100 x (l- débit molaire de glycérol restant / débit molaire de glycérol introduit) ;  Conversion to glycerol C (%) = 100 x (1 molar flow rate of remaining glycerol / molar flow of glycerol introduced);
Sélectivité en acroléine 'S' (%) = 100 x (débit molaire d'acroléine produite / débit molaire de glycérol aya nt réagi) ;  Selectivity for acrolein 'S' (%) = 100 x (molar rate of acrolein produced / molar flow rate of glycerol previously reacted);
Rendement en acroléine ' ?' (%) = 100 x débit molaire de produit X / débit molaire de glycérol introduit.  Achievement in acrolein '?' (%) = 100 x molar rate of product X / molar flow rate of glycerol introduced.
L'invention est ci-après illustrée à travers les exemples suivants qui en donnent les détails et les avantages par rapport à l'art antérieur et à l'appui des figures selon lesquelles :  The invention is hereinafter illustrated by the following examples which give the details and the advantages over the prior art and in support of the figures according to which:
La Figure 1 représente une comparaison du rendement en acroléine a près Figure 1 shows a comparison of acrolein yield by
24h pour les catalyseurs 20SiW-CARiACT et 20SÏW-SBA15 (Exem ple 2) et 20SÏW- 20Zr-SBA15-650 (Exemple la). 24h for catalysts 20SiW-CARiACT and 20SW-SBA15 (Example 2) and 20SW-20Zr-SBA15-650 (Example la).
La Figure 2 représente une com pa raison du rendement en acroléine au cours du tem ps, avec le catalyseur 30SiW-20Zr-SBA15-650 avant régénération (Exemple la) et après régénération (Exemple 3). Le tem ps indiqué pou r chaque point est celui de la fin d'un piégeage d'une durée d'une heure.  Figure 2 shows a comparison of the yield of acrolein over time, with the catalyst 30SiW-20Zr-SBA15-650 before regeneration (Example 1a) and after regeneration (Example 3). The time indicated for each point is the end of a trapping period of one hour.
Exemple 1 : prépa ration et caractérisation de catalyseurs supportés sur silice modifiée par greffage de zircone, selon l'invention EXAMPLE 1 Preparation and Characterization of Catalysts Supported on Zirconia-Engraved Silica Modified According to the Invention
Modification de la silice :  Modification of the silica:
L'exem ple porte sur différentes silices qui présentent une surface spécifique variant de 250 m2/g à 700 m2/g, et dont la taille des pores va rie de 5 nm à 12 nm. The example relates to different silicas which have a specific surface area ranging from 250 m 2 / g to 700 m 2 / g, and whose pore size ranges from 5 nm to 12 nm.
1) Le support silice de type SBA-15 est obtenu soit com mercia lement, soit préparé selon la procédure décrite da ns la littérature (voir pa r exemple Zhao et al., Science (1998), 279, 548). Un exem ple de synthèse en est donné ci-dessous :  1) The SBA-15 type silica support is obtained either commercially or prepared according to the procedure described in the literature (see, for example, Zhao et al., Science (1998), 279, 548). An example of synthesis is given below:
3,2 g de polyéthylèneglycol (5800 g/mol) sont dissous dans une solution contenant 101 mL d'eau distillée et 8,7 mL d'acide chlorhydrique (37%) à 45°C. 6,5 g de tétraéthyl-ortho-silicate (99,9%) sont ensuite ajoutés. La solution est laissée sous agitation pendant 24 h et ensuite transférée dans un autoclave téfloné. L'autoclave contenant la solution est ensuite chauffé à 140°C pendant 24 h. La silice SBA-15 est obtenue par filtration. Après séchage à 100°C, la silice est calcinée sous air à 550°C pendant 3 h. 3.2 g of polyethylene glycol (5800 g / mol) are dissolved in a solution containing 101 ml of distilled water and 8.7 ml of hydrochloric acid (37%) at 45 ° C. 6.5 g of tetraethyl orthosilicate (99.9%) are then added. The solution is stirred for 24 h and then transferred to a Teflon autoclave. The autoclave containing the solution is then heated at 140 ° C for 24 hours. SBA-15 silica is obtained by filtration. After drying at 100 ° C., the silica is calcined under air at 550 ° C. for 3 hours.
C'est une silice mésoporeuse de structure hexagonale.  It is a mesoporous silica of hexagonal structure.
2) Le support silice de type KIT-6 est obtenu soit commercialement, soit préparé selon une procédure décrite dans la littérature (voir par exemple Kleitz et al., Chem. Corn. (2003), 17, 2136). Un exemple de synthèse est donné ci-dessous :  2) The KIT-6 type silica support is obtained either commercially or prepared according to a procedure described in the literature (see, for example, Kleitz et al., Chem Corn (2003), 17, 2136). An example of synthesis is given below:
9 g de polyéthylèneglycol (5800 g/mol) sont dissous dans une solution contenant 325 mL d'eau distillée et 18 mL d'acide chlorhydrique (32%) à 35°C. 9 g de n-Butanol (99%) et 6,5 g de tétraéthyl-ortho-silicate (99,9%) sont ensuite ajoutés. La solution est laissée sous agitation pendant 24 h avant d'être transférée dans un autoclave téfloné. L'autoclave contenant la solution est chauffé à 100°C pendant 24 h. La silice KIT-6 est obtenue par filtration. Après séchage à 100°C, la silice est calcinée sous air à 550°C pendant 3 h.  9 g of polyethylene glycol (5800 g / mol) are dissolved in a solution containing 325 ml of distilled water and 18 ml of hydrochloric acid (32%) at 35 ° C. 9 g of n-butanol (99%) and 6.5 g of tetraethyl orthosilicate (99.9%) are then added. The solution is stirred for 24 hours before being transferred to a Teflon autoclave. The autoclave containing the solution is heated at 100 ° C for 24 hours. KIT-6 silica is obtained by filtration. After drying at 100 ° C., the silica is calcined under air at 550 ° C. for 3 hours.
C'est une silice mésoporeuse de structure cubique.  It is a mesoporous silica of cubic structure.
3) Le support silice de type CARiACT-Q.10 est obtenu commercialement chez Fuji Silysia Chemical LTD (Japon). C'est une silice mésoporeuse de structure hexagonale.  3) CARIACT-Q.10 silica support is commercially obtained from Fuji Silysia Chemical LTD (Japan). It is a mesoporous silica of hexagonal structure.
Les supports silice sont ensuite modifiés par greffage par de dioxyde de zirconium (zircone) selon une méthode décrite dans la littérature par Gutierrez et coll., J. Catal. (2007), 249, 140. La procédure standard pour la préparation d'un support à 20% de zircone est la suivante :  The silica supports are then modified by grafting with zirconium dioxide (zirconia) according to a method described in the literature by Gutierrez et al., J. Catal. (2007), 249, 140. The standard procedure for preparing a 20% zirconia support is as follows:
A un gel de 0,8 g de silice et de 20 mL d'éthanol (extra dry) sont ajoutés 0,76 g d'isopropylate de zirconium (70%). Le gel est ensuite laissé sous agitation jusqu'à évaporation totale du substrat liquide. Après séchage à 100°C la silice est calcinée sous air à 650°C pendant 3 h.  To a gel of 0.8 g of silica and 20 ml of ethanol (extra dry) are added 0.76 g of zirconium isopropoxide (70%). The gel is then left stirring until complete evaporation of the liquid substrate. After drying at 100 ° C., the silica is calcined in air at 650 ° C. for 3 hours.
Les supports sont ensuite imprégnés par de l'acide silicotungstique. La procédure pour la préparation d'un catalyseur à 20% en masse d'acide est la suivante : 0,8 g de support est mis en suspension dans 20 mL d'eau distillée. Une solution de 0,2 g d'acide silicotungstique H4SiWnO40 dans 2 mL d'eau distillée est ajoutée à la suspension, puis le solva nt est totalement évaporé. The supports are then impregnated with silicotungstic acid. The procedure for preparing a catalyst at 20% by weight of acid is as follows: 0.8 g of carrier is suspended in 20 ml of distilled water. A solution of 0.2 g of silicotungstic acid H 4 SiWnO 40 in 2 ml of distilled water is added to the suspension, then the solva nt is totally evaporated.
Les catalyseurs sont référencés dans la suite du texte de la façon suivante : The catalysts are referenced in the rest of the text as follows:
X SiW-V Zr-Sup-r X SiW-V Zr-Sup-r
Avec :  With:
X = teneur en acide silicotungstique (en % en masse dans le catalyseur final) ; X = silicotungstic acid content (in% by mass in the final catalyst);
Y = teneur en dioxyde de zirconium (en % en masse du support final) ; Y = zirconium dioxide content (in% by mass of the final support);
Sup = type de silice (KIT6 = KIT-6, SBA15 = SBA-15, CARiACT = CARiACT-QlO) ; T = température de calcination en °C.  Sup = silica type (KIT6 = KIT-6, SBA15 = SBA-15, CARiACT = CARiACT-Q10); T = calcination temperature in ° C.
Exemple la : I nfluence de la teneur en hétéropolyacide (HPA) EXAMPLE 1 Influence of the Heteropolyacid (HPA) Content
Tableau la Table la
Exemple lb : I nfluence de la teneur en dioxyde de zirconium Example 1b: I nfluence of the zirconium dioxide content
Tableau lb Table lb
1-5 h 24-25 h 30-31 h1-5 h 24-25 h 30-31 h
Catalyseur Catalyst
C/% S/% R/% C/% S/% R/% C/% S/% R/% 0SiW-0Zr-SBA15-650 84 83 70 41 57 24 - - - 0SiW-10Zr-SBA15-650 87 77 67 62 69 43 69 55 38 0SiW-20Zr-SBA15-650 96 74 71 78 88 69 66 87 57 0SiW-40Zr-SBA15-650 90 65 59 60 44 26 40 63 25 Exemple le : I nfluence du support C /% S /% R /% C /% S /% R /% C /% S /% R /% 0SiW-0Zr-SBA15-650 84 83 70 41 57 24 - - - 0SiW-10Zr-SBA15-650 87 77 67 62 69 43 69 55 38 0SiW-20Zr-SBA15-650 96 74 71 78 88 69 66 87 57 0SiW-40Zr-SBA15-650 90 65 59 60 44 26 40 63 25 Example: I nfluence of support
Tableau le Table the
Exemple ld : I nfluence de la température de ca lcination Tableau ld Example 1d: Influence of the temperature of calcination Table ld
Exemple 2 : préparation et caractérisation du catalyseur de type silice non- modifiée (comparatif de l'art antérieur) Example 2 Preparation and Characterization of the Unmodified Silica-type Catalyst (Comparative of the Prior Art)
Ces catalyseurs de l'art antérieur sont constitués de HPA supporté sur une silice non modifiée. La nature des HPA et des silices non modifiées sont les mêmes que celles de l'Exemple 1.  These catalysts of the prior art consist of HPA supported on an unmodified silica. The nature of the HPAs and unmodified silicas are the same as those of Example 1.
Les catalyseurs de l'exemple comparatif sont à base de silice de type CARiACT Q10 (Fuji Silysia Chemical LTD), SBA-15 et KIT-6 imprégnés avec 20% en masse d'acide silicotungstique H4SiWnO40 (SiW). Les catalyseurs sont référencés de la façon suivante :The catalysts of the comparative example are based on silicas of CariACT Q10 type (Fuji Silysia Chemical LTD), SBA-15 and KIT-6 impregnated with 20% by weight of silicotungstic acid H 4 SiWnO 40 (SiW). The catalysts are referenced as follows:
SiW-Sup  SiW-Sup
Avec :  With:
X = teneur en acide silicotungstique (en % en masse dans le catalyseur final) ; Sup = type de silice (KIT6 = KIT-6, SBA15 = SBA-15, CARiACT = CARiACT-QlO). X = silicotungstic acid content (in% by mass in the final catalyst); Sup = silica type (KIT6 = KIT-6, SBA15 = SBA-15, CARiACT = CARiACT-Q10).
Tableau 2 Table 2
Par ailleurs, on sait, selon le document WO2007/058221, que l'acide silicotungstique supporté sur silice, Q.10-SÏW30 (30% d'acide silicotungstique), qui fait aussi l'objet de l'article de Tsukuda et al. (2007) précité, présente les mêmes performances catalytiques que l'acide silicotungstique supporté sur silice, Q.10- SiW20 (20% d'acide silicotungstique). Furthermore, it is known from WO2007 / 058221 that silicotungstic acid supported on silica, Q 10 -SIN30 (30% silicotungstic acid), which is also the subject of the article by Tsukuda et al. . (2007) supra, has the same catalytic performance as silicotungstic acid supported on silica, Q.10-SiW20 (20% silicotungstic acid).
Exemple 3 : Régénération du cata lyseur Example 3: Regeneration of the catalyst
Après 97 heures sous mélange réactionnel, le catalyseur 30SiW-20Zr-SBA15- 650 selon l'invention est régénéré sous flux d'air à 275°C pendant 2 h (débit air : 25mL/min). Après régénération, le catalyseur est testé da ns les mêmes conditions opératoires qu'avant la régénération.  After 97 hours under a reaction mixture, the catalyst 30SiW-20Zr-SBA15- 650 according to the invention is regenerated under a stream of air at 275 ° C. for 2 h (air flow: 25 ml / min). After regeneration, the catalyst is tested under the same operating conditions as before regeneration.
Les résultats obtenus sont présentés dans le tableau 3 suivant :  The results obtained are shown in Table 3 below:
La régénération sous air à 275°C a permis au catalyseur 30SiW-20Zr-SBA15- Regeneration under air at 275 ° C allowed the catalyst 30SiW-20Zr-SBA15-
650 de retrouver son rendement initial. Le catalyseur 30SiW-20Zr-SBA15-650 selon l'invention est donc régénérable sur un temps court et sans perte d'activité ni de sélectivité. Non seulement, le catalyseur 30SiW-20Zr-SBA15-650 est actif et sélectif mais il est éga lement entièrement et facilement régénérable. 650 to regain its initial return. The catalyst 30SiW-20Zr-SBA15-650 according to the invention is therefore regenerable over a short time and without loss of activity or selectivity. Not only is the 30SiW-20Zr-SBA15-650 catalyst active and selective, but it is also fully and easily regenerable.

Claims

REVENDICATIONS
1. Procédé de préparation d'acroléine à partir de glycérol ou de glycérine, caractérisé en ce qu'on réalise la déshydratation du glycérol ou glycérine en présence d'un catalyseur consistant en au moins un hétéropolyacide et une silice modifiée par du dioxyde de zirconium, dioxyde de titane ou trioxyde de tungstène ou toute combinaison de ces oxydes. A process for the preparation of acrolein from glycerol or glycerine, characterized in that the dehydration of glycerol or glycerin is carried out in the presence of a catalyst consisting of at least one heteropoly acid and a silica modified with zirconium dioxide. , titanium dioxide or tungsten trioxide or any combination of these oxides.
2. Procédé selon la revendication 1, caractérisé en ce que l'hétéropolyacide est supporté sur un support comprenant au moins une silice modifiée par du dioxyde de zirconium, dioxyde de titane ou trioxyde de tungstène ou toute combinaison de ces oxydes.  2. Method according to claim 1, characterized in that the heteropoly acid is supported on a support comprising at least one silica modified with zirconium dioxide, titanium dioxide or tungsten trioxide or any combination of these oxides.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le rapport massique dioxyde de Zr/silice varie de 0,02 à 5, plus avantageusement il varie de 0,05 à 1.  3. Method according to claim 1 or 2, characterized in that the weight ratio of Zr dioxide / silica ranges from 0.02 to 5, more preferably it ranges from 0.05 to 1.
4. Procédé selon la revendication 1 ou 2, caractérisé en ce que le rapport massique dioxyde de Ti/silice varie de 0,02 à 5, plus avantageusement il varie de 0,05 à 1.  4. Method according to claim 1 or 2, characterized in that the Ti / silica mass ratio varies from 0.02 to 5, more preferably it ranges from 0.05 to 1.
5. Procédé selon la revendication 1 ou 2, caractérisé en ce que le rapport massique trioxyde de W/silice varie de 0,02 à 5, plus avantageusement il varie de 0,05 à 1.  5. Method according to claim 1 or 2, characterized in that the weight ratio trioxide of W / silica varies from 0.02 to 5, more preferably it varies from 0.05 to 1.
6. Procédé selon la revendication 1 ou 2, caractérisé en ce que le rapport massique dioxyde de Zr/dioxyde de Ti/silice varie de 0,02/0,02/1 à 2/2/1, plus avantageusement il varie de 0,05/0,05/1 à 1/1/1.  6. Method according to claim 1 or 2, characterized in that the mass ratio of Zr dioxide / Ti dioxide / silica ranges from 0.02 / 0.02 / 1 to 2/2/1, more preferably it varies from 0 , 05 / 0.05 / 1 to 1/1/1.
7. Procédé selon la revendication 1 ou 2, caractérisé en ce que le rapport massique dioxyde de Zr/trioxyde de W/silice varie de 0,02/0,02/1 à 2/2/1, plus avantageusement il varie de 0,05/0,05/1 à 1/1/1.  7. Method according to claim 1 or 2, characterized in that the mass ratio of Zr dioxide / W trioxide / silica ranges from 0.02 / 0.02 / 1 to 2/2/1, more preferably it varies from 0 , 05 / 0.05 / 1 to 1/1/1.
8. Procédé selon la revendication 1 ou 2, caractérisé en ce que le rapport massique dioxyde de Ti/trioxyde de W/silice varie de 0,02/0,02/1 à 2/2/1, plus avantageusement il varie de 0,05/0,05/1 à 1/1/1.  8. Method according to claim 1 or 2, characterized in that the mass ratio of Ti dioxide / W trioxide / silica ranges from 0.02 / 0.02 / 1 to 2/2/1, more preferably it varies from 0 , 05 / 0.05 / 1 to 1/1/1.
9. Procédé selon la revendication 1 ou 2, caractérisé en ce que le rapport massique dioxyde de Zr/dioxyde de Ti/trioxyde de W/silice varie de 0,02/0,02/0,02/1 à 2/2/2/1, plus avantageusement il varie de 0,05/0,05/0,05/1 à 1/1/1/1.  9. Process according to claim 1 or 2, characterized in that the mass ratio of Zr dioxide / Ti dioxide / W trioxide / silica ranges from 0.02 / 0.02 / 0.02 / 1 to 2/2 / 2/1, more preferably it ranges from 0.05 / 0.05 / 0.05 / 1 to 1/1/1/1.
10. Procédé selon la revendication 2 ou 9, caractérisé en ce que le rapport massique hétéropolyacide/support varie de 0,02 à 5, plus avantageusement il varie de 0,05 à 1. 10. The method of claim 2 or 9, characterized in that the mass ratio heteropolyacid / support varies from 0.02 to 5, more preferably it ranges from 0.05 to 1.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'hétéropolyacide est à base de tungstène. 11. Process according to any one of Claims 1 to 10, characterized in that the heteropoly acid is based on tungsten.
12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que le glycérol est en solution aqueuse, en une concentration d'au moins 1% en poids.  12. Method according to any one of claims 1 to 11, characterized in that the glycerol is in aqueous solution at a concentration of at least 1% by weight.
13. Procédé selon la revendication 12, caractérisé en ce que la concentration de la solution aqueuse en glycérol varie de 5 à 50% en poids, de préférence de 10 à 30%.  13. The method of claim 12, characterized in that the concentration of the aqueous glycerol solution varies from 5 to 50% by weight, preferably from 10 to 30%.
14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le catalyseur est régénéré.  14. Process according to any one of Claims 1 to 13, characterized in that the catalyst is regenerated.
15. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que la réaction de déshydratation est réalisée en phase gazeuse.  15. Method according to one of claims 1 to 14, characterized in that the dehydration reaction is carried out in the gas phase.
16. Procédé selon la revendication 15, caractérisé en ce que la réaction de déshydratation est réalisée dans un réacteur à lit fixe, à lit fluidisé ou à lit fluidisé circulant.  16. The method of claim 15, characterized in that the dehydration reaction is carried out in a fixed bed reactor, fluidized bed or circulating fluidized bed.
17. Procédé de fabrication de l'aldéhyde-3-(méthylthio)propionique (M M P), du 2-hydroxy-4-méthylthiobutyronitrile (HMTBN), de la méthionine, de l'acide 2-hydroxy-4-méthylthiobutanoïque (HMTBA), des esters du HMTBA et de l'acide 2-oxo-4-méthylthiobutanoïque, à partir d'acroléine, caractérisé en ce qu'il comprend le procédé selon l'une quelconque des revendications 1 à 16.  17. Process for producing aldehyde-3- (methylthio) propionic acid (MMP), 2-hydroxy-4-methylthiobutyronitrile (HMTBN), methionine, 2-hydroxy-4-methylthiobutanoic acid (HMTBA) , esters of HMTBA and 2-oxo-4-methylthiobutanoic acid, from acrolein, characterized in that it comprises the process according to any one of claims 1 to 16.
EP10808909A 2009-12-21 2010-12-21 Method for preparing acrolein from glycerol or glycerine Withdrawn EP2516375A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0959276A FR2954312B1 (en) 2009-12-21 2009-12-21 PROCESS FOR THE PREPARATION OF ACROLEIN BY CATALYTIC DEHYDRATION OF GLYCEROL OR GLYCERIN
PCT/FR2010/052855 WO2011083254A1 (en) 2009-12-21 2010-12-21 Method for preparing acrolein from glycerol or glycerine

Publications (1)

Publication Number Publication Date
EP2516375A1 true EP2516375A1 (en) 2012-10-31

Family

ID=42340662

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10808909A Withdrawn EP2516375A1 (en) 2009-12-21 2010-12-21 Method for preparing acrolein from glycerol or glycerine

Country Status (9)

Country Link
US (1) US8604234B2 (en)
EP (1) EP2516375A1 (en)
JP (1) JP2013515044A (en)
KR (1) KR20120097540A (en)
CN (1) CN102695694A (en)
BR (1) BR112012014883A2 (en)
FR (1) FR2954312B1 (en)
TW (1) TW201130791A (en)
WO (1) WO2011083254A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939791B1 (en) 2008-12-16 2011-01-14 Adisseo France Sas PROCESS FOR THE PREPARATION OF ACROLEIN FROM GLYCEROL OR CRUDE GLYCERIN
FR2961507B1 (en) * 2010-06-17 2016-03-04 Adisseo France Sas PROCESS FOR THE PREPARATION OF ACROLEIN FROM GLYCEROL OR GLYCERIN
WO2015168683A1 (en) 2014-05-02 2015-11-05 University Of Tennessee Research Foundation Novel glycerol dehydration methods and products thereof
CN106008188B (en) * 2016-05-30 2018-05-29 浙江工业大学 A kind of glycerin catalytic dehydration prepares the new method of methacrylaldehyde
CN115197769A (en) * 2022-08-23 2022-10-18 广州诺拜因化工有限公司 Polyester type high-temperature chain oil for high-temperature-resistant non-coking artificial board continuous press

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882052B1 (en) * 2005-02-15 2007-03-23 Arkema Sa PROCESS FOR THE DEHYDRATION OF GLYCEROL IN ACROLEIN
WO2007058221A1 (en) 2005-11-15 2007-05-24 Nippon Shokubai Co., Ltd. Process for dehydration of polyhydric alcohols
TW200811086A (en) * 2006-07-11 2008-03-01 Adisseo Ireland Ltd Process for preparing 2-hydroxy-4-(methylthio)butyronitrile and methionine
US8076509B2 (en) * 2006-12-01 2011-12-13 Nippon Shokubai Co., Ltd. Process for producing acrylic acid
DE102007004351A1 (en) * 2007-01-29 2008-07-31 Evonik Degussa Gmbh Solid catalyst for production of acrolein by dehydration of glycerol, contains a tungsten compound and a promoter selected from various metal compounds and-or montmorillonite or acid zeolite
DE102007004350A1 (en) * 2007-01-29 2008-07-31 Evonik Degussa Gmbh Regenerating a tungsten catalyst, especially for converting glycerol to acrolein, comprises exposing the catalyst to an oxidizing or reducing atmosphere
JP2008266165A (en) * 2007-04-17 2008-11-06 Nippon Shokubai Co Ltd Method for producing acrolein
FR2920767B1 (en) * 2007-09-06 2009-12-18 Arkema France REACTIVE GLYCEROL VAPORIZATION PROCESS
WO2009127889A1 (en) 2008-04-16 2009-10-22 Arkema France Process for manufacturing acrolein from glycerol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011083254A1 *

Also Published As

Publication number Publication date
FR2954312B1 (en) 2012-02-10
FR2954312A1 (en) 2011-06-24
KR20120097540A (en) 2012-09-04
JP2013515044A (en) 2013-05-02
TW201130791A (en) 2011-09-16
BR112012014883A2 (en) 2018-03-27
CN102695694A (en) 2012-09-26
US20120330049A1 (en) 2012-12-27
WO2011083254A1 (en) 2011-07-14
US8604234B2 (en) 2013-12-10

Similar Documents

Publication Publication Date Title
EP2365954B1 (en) Method for preparing acrolein from glycerol or glycerine
EP2582652B1 (en) Process for preparing acrolein from glycerol or glycerin
EP2385092B1 (en) Flexible method for transforming ethanol into middle distillates
EP2912005B1 (en) Method for directly synthesising unsaturated aldehydes from alcohol mixtures
FR2882052A1 (en) Manufacturing acrolein, useful as intermediate for synthesis of methionine and acrylic acid, by dehydration of glycerol in the presence of molecular oxygen at outside the flammability range
FR3001728A1 (en) PROCESS FOR PREPARING OLEFIN BY CATALYTIC CONVERSION OF AT LEAST ONE ALCOHOL
EP2516375A1 (en) Method for preparing acrolein from glycerol or glycerine
CA2931704C (en) Method for dehydrating a mixture containing ethanol and isopropanol
FR2931820A1 (en) PROCESS FOR THE PRODUCTION OF ACROLEIN BY DEHYDRATION OF GLYCEROL
EP3074368B1 (en) Method for dehydrating a mixture containing ethanol and n-propanol
EP2632883B1 (en) Process for obtaining acrolein by catalytic dehydration of glycerol or glycerin
EP2055382B1 (en) Use of an IM-5 based catalyst for transforming alcohols having at least two carbon atoms from the base of diesel fuels
FR2991318A1 (en) PROCESS FOR THE PRODUCTION OF SHORT ALCOHOLS IN THE PRESENCE OF A CATALYST BASED ON TUNGSTEN ALUMINA
FR3019545A1 (en) PROCESS FOR THE DIRECT SYNTHESIS OF (METH) ACROLEIN FROM ETHERS AND / OR ACETALS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120524

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140822

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150106