EP2513669A1 - Systeme et procede de geo-localisation par hybridation d'un systeme de navigation par satellite et d'un systeme de collecte de donnees - Google Patents

Systeme et procede de geo-localisation par hybridation d'un systeme de navigation par satellite et d'un systeme de collecte de donnees

Info

Publication number
EP2513669A1
EP2513669A1 EP10788054A EP10788054A EP2513669A1 EP 2513669 A1 EP2513669 A1 EP 2513669A1 EP 10788054 A EP10788054 A EP 10788054A EP 10788054 A EP10788054 A EP 10788054A EP 2513669 A1 EP2513669 A1 EP 2513669A1
Authority
EP
European Patent Office
Prior art keywords
transmission
data collection
geolocation
equipment
satellite navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP10788054A
Other languages
German (de)
English (en)
Inventor
Thibaud Calmettes
Michel Monnerat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2513669A1 publication Critical patent/EP2513669A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/09Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing processing capability normally carried out by the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station

Definitions

  • the present invention relates in the first place to a geo-location system implementing the hybridization of a satellite navigation system and a data collection system.
  • the present invention provides for combining a portion of signals from a satellite navigation system with measurement elements made by a data collection system for the purpose of geographically locating an object accurately, in a rapid manner and economically from an energy point of view.
  • One of the objectives of the invention is to maximize the autonomy of the claimed geo-location system by minimizing the acquisition and processing operations performed by means located on the object to be located. According to the invention, indeed, a maximum of operation is performed by remote elements, belonging to the data collection system.
  • data collection devices equip, for example, an animal population D1, weather buoys D2, or a fleet of fishing vessels D3.
  • the measurements made by these devices are encapsulated in transmitted messages, via suitable transmitting devices, to satellites S.
  • Said satellites S return these messages, possibly modified, and possibly accompanied by measurements on the received signal, to R receiving stations on the ground.
  • the latter send the messages to ground stations G which have suitable processing means, allowing, for example, to approximately locate the objects of a study or monitoring.
  • the ground stations G can transmit information messages to a user network U.
  • the geo-location of an object by a collection system data alone is insufficient because too imprecise.
  • the accuracy of such systems is only 300 meters to 500 meters, because of their intrinsic defects, including internal clocks too inaccurate, and the reduced number of measurements.
  • GNSS Global Navigation Satellites System
  • GPS Global Positioning System
  • Glonass system Glonass system
  • Galileo system the capabilities of a satellite navigation system, or GNSS for Global Navigation Satellites System according to the acronym English, such as the GPS (Global Positioning System), the Glonass system or soon the Galileo system.
  • To implement a satellite navigation system it is necessary to equip the object to locate means for acquiring signals transmitted by the satellites of the navigation system. These signals must be decoded by means associated with the aforementioned acquisition means in order to calculate the position of the object.
  • These means consist of a receiver or a beacon, such as a GPS receiver or a GPS beacon.
  • the geo-location by a satellite navigation system involves the decoding of signals from said satellite navigation system, such as the GPS system.
  • Decoding a complete GPS signal can take about 30 seconds to a minute to calculate a first point.
  • the GPS beacon used to acquire and decode the GPS signal, and installed on the object to geo-locate is supplied with voltage, which affects the autonomy of said GPS beacon.
  • the entire GPS signal must be readable. If, due to the poor quality of the reception, a part of the GPS signal is missing, no geolocation is possible. This disadvantage is reflected in a sensitivity, that is to say a reception capacity, potentially insufficient geo-location systems implementing a satellite navigation system.
  • beacons GPS receivers for example, which digitize without processing said GPS signals and send them back to satellites, so that the geo-location calculation is performed by means external, typically one or more ground stations.
  • this solution has two major disadvantages: first, it involves a significant amount of flow since the entire GPS signal is returned; on the other hand, according to this solution, the object to follow or to monitor, and in any case to geo-locate, does not know its position.
  • the objective of the present invention is first of all to improve the performance of geolocation systems, particularly in terms of sensitivity.
  • Another object of the invention is to allow a simplification of receiving means equipping objects to geo-locate, in particular to minimize their energy consumption and, consequently, to increase their autonomy.
  • the present invention does not imply a significant increase in the amount of output to the satellites S.
  • the subject of the invention is a method of geo-localization of equipment comprising the following steps:
  • said measurements on the transmission of messages contain a measurement of the date of reception, by relay means, remote from the equipment, of the messages transmitted by the transmission means of said data collection system.
  • the method according to the invention may comprise the combination of said measurement of the date of receipt, and a date of transmission of said message by the transmission means, so as to calculate the propagation distance between the equipment and the relay means of the data collection system.
  • the date of transmission of said message by the transmitting means is determined by an ambiguity survey according to the possible propagation distances between the equipment and the relay means of the collection system. of data, given the position of said relay means at the time of receipt of said message.
  • the determination of said transmission date can use an estimate of the time elapsed between the realization of the code phase measurements and the transmission of the message via the data collection system to reduce the raising range of the data. ambiguity.
  • said measurements on the transmission of messages contain a Doppler measurement, that is to say the difference between the transmission frequency of the messages by the transmission means and the frequency of reception of said messages by the relay means. of the system of collecting these same messages.
  • the method according to the invention may comprise a step of determining the absolute position of the satellite navigation system satellite (s) at the origin of said positioning information, comprising associating said code phase measurements with an identifier. characteristic of the satellite having transmitted said positioning information concerned, said identifier making it possible to determine the absolute position of the satellite or satellites of the satellite navigation system by consulting the ephemeris relating to the satellite navigation system concerned.
  • the method according to the invention may comprise a step of determining the absolute position of the satellite or satellites of the satellite navigation system at the origin of said positioning information, comprising the resolution of the position of one or more satellites by comparing a set of possible positions determined according to the ephemeris of the satellite navigation system concerned with geo-location information specific to said data collection system.
  • an equipment geo-location system may comprise means for receiving, on said equipment, positioning information from a satellite navigation system, said positioning information containing at least one code phase measurement, and transmission means, located on said equipment and belonging to a data collection system, for transmitting messages containing said code phase measurements, as well as measurements on the transmission of messages, performed by measurement means belonging to said data collection system, and in that it is capable of implementing the method according to the invention described above.
  • such a geolocation system may comprise relay means and processing means remote from said equipment and belonging to said data collection system, comprising respectively a satellite network and a ground station network.
  • the equipment supplies current to said positioning information receiving means only for a time necessary and sufficient to perform said code phase measurements on the signals from the satellite navigation system.
  • the system according to the invention can send back to the equipment a message including its geolocation.
  • the system according to the invention continuously broadcasts to a user network the absolute time given by the satellite navigation system.
  • FIG. 1 represents the operating principle of a data collection system.
  • Figure 1 shows an operating diagram for describing a data collection system known from the state of the art. This diagram can also serve as a support for the description of the invention.
  • the basic principle of the invention is to hybridize a data collection system and a satellite navigation system.
  • the objects to be located, D1, D2, D3, comprise not only beacons equipped with means for making measurements, belonging to the data collection system, as well as beacons able to receive signals from satellites belonging to a satellite navigation system, but above all, the means of the data collection and the means for receiving signals from satellites belonging to a satellite navigation system are able to cooperate in order to provide precise geo-location of said objects, in a reduced time, in particular with regard to the calculation from the first point.
  • the system according to the invention is designed so that a minimum of processing is performed by the means equipping objects to locate.
  • the means able to receive the signals from the satellite navigation system do not need to decode the entirety of the signals, which will be titled for the rest of this description positioning information from the satellite navigation system.
  • most satellite navigation systems namely the GPS system and the Galileo system, emit signals comprising a field commonly called code phase, corresponding to an extremely regular clock top, to which the positioning signal is sent. It is not a date, or a "GPS time", but only a top.
  • the GPS system and the Galileo system emit signals comprising a code phase field or equivalent.
  • the means for receiving the positioning information can be content to acquire only the code phase included in said positioning information.
  • the system according to the invention then works in "masked time", that is to say that are not the means for receiving the positioning information that is used, but means of the data collection system, and in particular the means hosted by one or more ground stations G.
  • knowing the code phase the positioning consists only in the ambiguity of this measurement, the size of the ambiguity survey depending on the length of the code on which the phase measurement is performed. Depending on the satellite positioning system used, this ambiguity can be 1 millisecond, 4 milliseconds or 10 milliseconds.
  • said means hosted by one or more ground stations G will combine the code phase read in the positioning information with data from the data collection system. data.
  • These means therefore constitute means for combining said code phases and information corresponding to parts of messages containing measurements made for the data collection system, by means of beacons comprising measuring instruments and means for measuring data.
  • transmission of messages containing the measurements to satellites S.
  • satellites S make the link between the objects to be located, tracked or studied, and a network of ground stations by relaying to said ground stations G, via reception means R, the messages containing the measurements.
  • the system according to the invention has the code phase positioning information, and messages containing the measurements, issued by the data collection system means equipping the object to geo-locate.
  • the code phase is "tagged" when it is retransmitted to the collection system, that is to say it comprises a characteristic identifier of the satellite transmitting the positioning signal, it It is enough to search for this satellite in the ephemerides relating to the satellite navigation system concerned to know its position as a function of time.
  • a second possibility is to "solve" the position of the satellites by proceeding with elimination, from geo-location data intrinsic to the data collection system. By combining these data with the ephemeris data relating to the satellite navigation system concerned, we find the position of the satellites whose positioning information has been received.
  • the object to be located D1, D2, D3 comprising means for taking measurements and means for sending messages containing the measurements to satellites S is configured so that the date of the measurements, corresponding to a date determined according to an internal clock located on the object to be located, is included in the message containing the measurements.
  • the satellites S being able to know the universal time, for example the "GPS time", it is then possible to go back to the universal time seen by the object to locate D1, D2, D3; it suffices to determine the propagation time of the messages containing the measurements, from the object to be located D1, D2, D3 to the satellites S, with a better accuracy than the residual ambiguity on the code phase measurement.
  • the universal time for example the "GPS time”
  • the messages containing the measurements sent to the satellites S do not include a date of the measurements, it is possible to solve the universal time seen by the object to locate D1, D2, D3 by analysis of the possibilities, phase of code per code phase, in a time interval of typically 10 seconds preceding the date of receipt of the message containing the measurements by assuming that the measurement means of the data collection system and the associated transmission means equipping the object to locate D1, D2, D3 have not taken more than 10 seconds to send a message containing the measurements and the code phase from the moment the means for receiving the positioning information of the object to locate D1, D2 , D3 received a positioning signal from which they acquired said code phase.
  • the invention may comprise a Doppler measurement step of the frequency difference between the transmission of the message containing the measurements and its reception by the satellite S. This measurement makes it possible to locate the object to be geo-localized on a spherical hyperboloid centered on the satellite S and whose characteristic is given by the Doppler measurement.
  • the main advantage of the invention is that it allows the precise geo-location of objects by coupling a data collection system with a satellite navigation system.
  • the system according to the invention requires a minimum of processing time by the means equipping said objects, in favor of processing carried out in "masked time" by remote equipment, typically ground stations of the data collection system.
  • the system according to the invention only requires the acquisition of the code phase of the positioning information from satellites of the satellite navigation system.
  • the acquisition of the code phase conventionally requires only about a millisecond of processing time. If we compare with the more than 30 seconds that GPS receivers nowadays take to acquire GPS signals, decode GPS time and consult the ephemeris, we notice energy savings and thus the gain in autonomy for these systems.
  • the complex processes and in particular the determination of the universal time seen by the objects to be geo-localized are carried out by remote means such as ground stations of the data collection system.
  • system according to the invention may comprise means for returning objects to geo-locate their position once it is calculated.
  • system according to the invention may also comprise means for broadcasting data to a network of users, for example universal time such as GPS time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

La présente invention concerne en premier lieu un système de géo-localisation mettant en œuvre l'hybridation d'un système de navigation par satellite et d'un système de collecte de données. Le système selon l'invention nécessite un minimum de temps de traitement par les moyens équipant les objets géo-localiser, au profit de traitements effectués en « temps masqué » par des équipements distants, typiquement des stations sol du système de collecte de données. A cette fin, le système selon l'invention ne nécessite l'acquisition que de la phase de code des informations de positionnement issues du système de navigation par satellites

Description

Système et procédé de géo-localisation par hybridation d'un système de navigation par satellite et d'un système de collecte de données
La présente invention concerne en premier lieu un système de géo-localisation mettant en œuvre l'hybridation d'un système de navigation par satellite et d'un système de collecte de données.
En particulier, la présente invention prévoit de combiner une partie de signaux issus d'un système de navigation par satellites avec des éléments de mesures effectuées par un système de collecte de données dans le but de localiser géographiquement avec précision un objet, de manière rapide et économique d'un point de vue énergétique.
L'un des objectifs de l'invention est de maximiser l'autonomie du système de géo-localisation revendiqué en réduisant au maximum les opérations d'acquisition et de traitement effectuées par des moyens situés sur l'objet à localiser. Selon l'invention, en effet, un maximum d'opération est effectué par des éléments distants, appartenant au système de collecte de données.
De nombreux systèmes de collecte de données sont aujourd'hui utilisés à des fins diverses : étude de la faune, de l'environnement, balise de détresse pour bateau, système de surveillance du trafic maritime ...etc. Le système Argos, qui fonctionne depuis 1979, en est un exemple bien connu. Il existe cependant d'autres systèmes de collecte de données tels que le système AIS, Automatic Identification System selon l'acronyme anglais, ou le système SAR, Search And Rescue selon l'acronyme anglais, par exemple. Le principe de fonctionnement d'un système de collecte de données est représenté de manière générale sur la figure 1 .
Ainsi, sur le schéma de la figure 1 , des dispositifs de collecte de données équipent, par exemple, une population animale D1 , des bouées météorologiques D2, ou une flotte de bateaux de pêche D3. Les mesures effectuées par ces dispositifs sont encapsulées dans des messages émis, par l'intermédiaire de dispositifs émetteurs adaptés, vers des satellites S. Lesdits satellites S renvoient ces messages, éventuellement modifiés, et éventuellement accompagnés de mesures sur le signal reçu, vers des stations de réception R au sol. Ces dernières font parvenir les messages à des stations sol G qui présentent des moyens de traitement adaptés, permettant, par exemple, de localiser approximativement les objets d'une étude ou d'une surveillance. Après traitement des messages transmis par les satellites S et les stations de réception R, les stations sol G peuvent émettre des messages d'informations vers un réseau d'utilisateurs U. Cependant, la géo-localisation d'un objet par un système de collecte de données seul est insuffisante car trop imprécise. La précision de tels systèmes n'est que de 300 mètres à 500 mètres, du fait de leurs défauts intrinsèques, et notamment d'horloges internes trop peu précises, et du nombre réduit de mesures.
Par ailleurs, il est connu que pour connaître la position d'un objet à la surface de la Terre, il est possible d'exploiter les capacités d'un système de navigation par satellites, ou GNSS pour Global Navigation Satellites System selon l'acronyme anglais, tel que le système GPS (Global Positioning System selon l'acronyme anglais), le système Glonass ou bientôt le système Galiléo. Pour mettre en œuvre un système de navigation par satellites, il est nécessaire d'équiper l'objet à localiser de moyens d'acquisition de signaux émis par les satellites du système de navigation. Ces signaux doivent être décodés par des moyens associés aux moyens d'acquisition précités afin de calculer la position de l'objet. Ces moyens consistent en un récepteur ou une balise, tels qu'un récepteur GPS ou une balise GPS.
La mise en œuvre de tels moyens de géo-localisation présente plusieurs inconvénients.
Tout d'abord, la géo-localisation par un système de navigation par satellites implique le décodage des signaux issus dudit système de navigation par satellites, tel que le système GPS. Le décodage d'un signal GPS complet peut prendre environ 30 secondes à une minute pour le calcul d'un premier point. Durant ces 30 secondes, la balise GPS servant à acquérir et décoder le signal GPS, et installée sur l'objet à géo-localiser, est alimentée en tension, ce qui affecte l'autonomie de ladite balise GPS. Par ailleurs, pendant ces 30 secondes à une minute, il faut bénéficier d'un ciel clair, et plus précisément, d'un nombre suffisant - au moins 4 - de satellites visibles. Ceci est d'emblée quasiment impossible lorsque l'on cherche à suivre une population d'animaux amphibies. De plus, pour que ce type de système parvienne à géo-localiser un objet, l'intégralité du signal GPS doit être lisible. Si, du fait d'une mauvaise qualité de la réception, il manque une partie du signal GPS, aucune géolocalisation n'est possible. Cet inconvénient se traduit par une sensibilité, c'est-à-dire d'une capacité de réception, potentiellement insuffisante des systèmes de géo-localisation mettant en œuvre un système de navigation par satellites.
Pour pallier ces problèmes, certains développements actuels mènent à la conception de balises, réceptrices de signaux GPS par exemple, qui numérisent sans les traiter lesdits signaux GPS et les renvoient vers des satellites, afin que le calcul de géo-localisation soit effectué par des moyens externes, typiquement une ou des stations sol. Mais cette solution présente deux importants désavantages : tout d'abord, elle implique un débit montant important puisque l'intégralité du signal GPS est renvoyé ; d'autre part, selon cette solution, l'objet à suivre ou à surveiller, et en tout cas à géo-localiser, ne connaît pas sa position.
Ainsi, l'objectif de la présente invention est d'abord d'améliorer les performances des systèmes de géo-localisation, notamment en termes de sensibilité. Un autre objectif de l'invention est de permettre une simplification des moyens de réception équipant les objets à géo-localiser, en vue notamment de minimiser leur consommation en énergie et, par voie de conséquence, d'augmenter leur autonomie. Pour atteindre ces objectifs, la présente invention n'implique pas d'augmentation significative du débit montant vers les satellites S.
A cet effet, l'invention a pour objet un procédé de géo-localisation d'un équipement comprenant les étapes suivantes :
• la réception, par des moyens de réception situés sur ledit équipement, d'informations de positionnement issues d'un système de navigation par satellites, lesdites informations de positionnement contenant au moins une mesure de phase de code ;
• la transmission de messages, par des moyens de transmission situés sur l'équipement et appartenant à un système de collecte de données, lesdits messages contenant lesdites mesures de phase de code, et des mesures sur la transmission des messages, effectuées par des moyens de mesure appartenant audit système de collecte de données ;
« la combinaison, par des moyens de traitement distants de l'équipement et appartenant audit système de collecte de données, desdites mesures de phase de code et desdites mesures sur la transmission des messages, de manière à géo-localiser ledit équipement.
De manière préférée, lesdites mesures sur la transmission des messages contiennent une mesure de la date de réception, par des moyens relais, distants de l'équipement, des messages transmis par les moyens de transmission dudit système de collecte de données
Avantageusement, le procédé selon l'invention peut comprendre la combinaison de ladite mesure de la date de réception, et d'une date d'émission dudit message par les moyens de transmission, de manière à calculer la distance de propagation entre l'équipement et les moyens relais du système de collecte de données.
Selon un mode de mise en œuvre du procédé, la date d'émission dudit message par les moyens de transmissions est déterminée par un lever d'ambiguïté d'après les distances de propagation possibles entre l'équipement et les moyens relais du système de collecte de données, compte-tenu de la position desdits moyens relais au moment de la réception dudit message.
Avantageusement, la détermination de ladite date d'émission peut utiliser une estimation du temps écoulé entre la réalisation des mesures de phase de code et l'émission du message par l'intermédiaire du système de collecte de données pour réduire le domaine de lever d'ambiguïté.
Avantageusement, lesdites mesures sur la transmission des messages contiennent une mesure de Doppler, c'est-à-dire de l'écart entre la fréquence d'émission des messages par les moyens de transmission et la fréquence de réception desdits messages par les moyens relais du système de collecte de ces mêmes messages. Avantageusement, le procédé selon l'invention peut comporter une étape de détermination de la position absolue du ou des satellites du système de navigation par satellites à l'origine desdites informations de positionnement, comprenant l'association desdites mesures de phase de code à un identifiant caractéristique du satellite ayant émis lesdites informations de positionnement concernées, ledit identifiant permettant la détermination de la position absolue du ou des satellites du système de navigation par satellites par la consultation des éphémérides relatives au système de navigation par satellites concerné.
Avantageusement, le procédé selon l'invention peut comporter une étape de détermination de la position absolue du ou des satellites du système de navigation par satellites à l'origine desdites informations de positionnement, comprenant la résolution de la position d'un ou plusieurs satellites par comparaison d'un ensemble de positions possibles déterminées en fonction des éphémérides du système de navigation par satellites concerné avec des informations de géo-localisation propres audit système de collecte de données. Selon l'invention, un système de géo-localisation d'un équipement peut comprendre des moyens de réception, situés sur ledit équipement, d'informations de positionnement issues d'un système de navigation par satellites, lesdites informations de positionnement contenant au moins une mesure de phase de code, et des moyens de transmission, situés sur ledit équipement et appartenant à un système de collecte de données, pour émettre des messages contenant lesdites mesures de phase de code, ainsi que des mesures sur la transmission des messages, effectuées par des moyens de mesure appartenant audit système de collecte de données, et en ce qu'il est susceptible de mettre en œuvre le procédé selon l'invention, décrit précédemment.
Avantageusement, un tel système de géo-localisation peut comprendre des moyens relais et des moyens de traitement, distants dudit équipement et appartenant audit système de collecte de données, comprenant respectivement un réseau de satellites et un réseau de stations sol. Avantageusement, l'équipement alimente en courant ledit moyen de réception d'informations de positionnement uniquement pendant une durée nécessaire et suffisante pour effectuer lesdites mesures de phase de code sur les signaux issus du système de navigation par satellites.
Avantageusement, le système selon l'invention peut renvoyer vers l'équipement un message comportant sa géo-localisation.
Selon un mode de mise en œuvre, le système selon l'invention diffuse en continu à un réseau d'utilisateurs le temps absolu donné par le système de navigation par satellites.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de l'unique dessin annexé, figure 1 , qui représente le principe de fonctionnement d'un système de collecte de données.
La figure 1 présente un schéma de fonctionnement permettant de décrire un système de collecte de données connu de l'état de la technique. Ce schéma peut également servir de support à la description de l'invention.
Le principe général de fonctionnement d'un système de collecte de données selon l'état de la technique a déjà été décrit rapidement en introduction.
Comme décrit également précédemment, des systèmes connus de géo-localisation permettent de localiser assez précisément tout objet situé à la surface de la Terre, équipé d'une balise apte à décoder les signaux émis par des satellites du système de navigation par satellites concerné. Comme cela a été expliqué, ces systèmes présentent pour défauts principaux de nécessiter un temps important de décodage et de traitement, par la balise embarquée par le sujet à localiser, et de connaître une sensibilité réduite.
Le principe fondamental de l'invention consiste à hybrider un système de collecte de données et un système de navigation par satellites. En d'autres termes, selon l'invention, les objets à localiser, D1 , D2, D3, comportent non seulement des balises équipées de moyens pour effectuer des mesures, appartenant au système de collecte de données, ainsi que des balises aptes à recevoir des signaux issus de satellites appartenant à un système de navigation par satellites, mais surtout, les moyens du système de collecte de données et les moyens pour recevoir des signaux issus de satellites appartenant à un système de navigation par satellites sont aptes à coopérer en vue de fournir une géo-localisation précise desdits objets, en un temps réduit, en particulier en ce qui concerne le calcul du premier point.
Pour cela, le système selon l'invention est conçu pour qu'un minimum de traitements soit effectué par les moyens équipant les objets à localiser. En particulier, selon l'invention, les moyens aptes à recevoir les signaux issus du système de navigation par satellites n'ont pas besoin de décoder l'intégralité des signaux, que l'on intitulera pour la suite de la présente description informations de positionnement, issus du système de navigation par satellite. En effet, la plupart des systèmes de navigation par satellites, à savoir le système GPS et le système Galiléo, émettent des signaux comprenant un champ couramment appelé phase de code, correspondant à un top d'horloge extrêmement régulier, auquel le signal de positionnement est envoyé. Il ne s'agit pas d'une date, ou d'un « temps GPS », mais uniquement d'un top. Le système GPS comme le système Galiléo émettent des signaux comprenant un champ de type phase de code ou équivalent.
Selon l'invention, les moyens de réception des informations de positionnement peuvent se contenter de n'acquérir que la phase de code incluse dans lesdites informations de positionnement. Pour retrouver ensuite le « temps GPS », et la position des satellites du système de navigation par satellites ayant émis les informations de positionnement, le système selon l'invention travaille ensuite en « temps masqué », c'est-à-dire que ce ne sont pas les moyens de réception des informations de positionnement qui sont mis à contribution, mais des moyens du système de collecte de données, et en particulier des moyens hébergés par une ou des stations sol G. En effet, connaissant la phase de code, le positionnement ne consiste plus qu'au lever d'ambiguïté sur cette mesure, la taille du lever d'ambiguïté dépendant de la longueur du code sur lequel est effectuée la mesure de phase. Selon le système de positionnement par satellite utilisé, cette ambiguïté peut être de 1 milliseconde, 4 millisecondes ou 10 millisecondes.
Afin de lever cette ambiguïté, lesdits moyens hébergés par une ou des stations sol G vont combiner la phase de code lue dans les informations de positionnement avec des données issues du système de collecte de données. Ces moyens constituent de ce fait des moyens pour combiner lesdites phases de code et des informations correspondant à des parties de messages contenant des mesures effectuées pour le système de collecte de données, par l'intermédiaire de balises comportant des instruments de mesures et des moyens d'émissions de messages contenant les mesures vers des satellites S. Ces satellites S, comme cela a été expliqué, font le lien entre les objets à localiser, suivis ou étudiés, et un réseau de stations sol en relayant vers lesdites stations sol G, via des moyens de réception R, les messages contenant les mesures.
Comme cela est connu, pour géo-localiser un objet, il suffit de connaître la position des satellites du système de navigation par satellites concerné dont les informations de positionnement ont été reçu par l'objet à géo-localiser, ainsi que le temps universel, typiquement le « temps GPS », de ces signaux. Pour y parvenir, comme on l'a vu, le système selon l'invention dispose de la phase de code des informations de positionnement, et de messages contenant les mesures, émis par les moyens du système de collecte de données équipant l'objet à géo-localiser.
Suivant le cas de figure, il existe plusieurs façons de mettre en œuvre l'invention. Pour retrouver la position des satellites du système de navigation par satellites à l'origine des informations de positionnement, il existe au moins les deux possibilités suivantes. Tout d'abord, dans le cas où la phase de code est « taguée » lorsqu'elle est retransmise au système de collecte, c'est-à-dire qu'elle comporte un identifiant caractéristique du satellite émetteur du signal de positionnement, il suffit de rechercher ce satellite dans les éphémérides relatives au système de navigation par satellite concerné pour connaître sa position en fonction du temps. Une deuxième possibilité consiste à « résoudre » la position des satellites en procédant par élimination, à partir de données de géo-localisation intrinsèques au système de collecte de données. En croisant ces données avec les données des éphémérides relatives au système de navigation par satellites concerné, on retrouve la position des satellites dont des informations de positionnement ont été reçus.
Pour retrouver le temps universel, par exemple le « temps GPS », il existe également plusieurs méthodes, qui peuvent être combinées. Dans un premier cas, l'objet à localiser D1 , D2, D3 comportant des moyens pour effectuer des mesures et des moyens pour émettre des messages contenant les mesures vers des satellites S est configuré de tel sorte que la date des mesures, correspondant à une date déterminé en fonction d'une horloge interne situé sur l'objet à localiser, est inclus dans le message contenant les mesures. Les satellites S étant aptes à connaître le temps universel, par exemple le « temps GPS », il est alors possible de remonter au temps universel vu par l'objet à localiser D1 , D2, D3 ; il suffit en effet de déterminer le temps de propagation des messages contenant les mesures, de l'objet à localiser D1 , D2, D3 aux satellites S, avec une précision meilleure que l'ambiguïté résiduelle sur la mesure de phase de code.
Dans un second cas, si les messages contenant les mesures émis vers les satellites S ne comportent pas de date des mesures, il est possible de résoudre le temps universel vu par l'objet à localiser D1 , D2, D3 par analyse des possibilités, phase de code par phase de code, dans un intervalle de temps de typiquement 10 secondes précédant la date de réception du message contenant les mesures en postulant que les moyens de mesure du système de collecte de données et les moyens d'émissions associés équipant l'objet à localiser D1 , D2, D3 n'ont pas mis plus de 10 secondes pour envoyer un message contenant les mesures et la phase de code à partir du moment où les moyens de réception des informations de positionnement de l'objet à localiser D1 , D2, D3 ont reçu un signal de positionnement dont ils ont acquis ladite phase de code.
En tout état de cause, s'il y a ambiguïté, ou pour vérifier la validité du calcul, l'invention peut comprendre une étape de mesure Doppler de l'écart en fréquence entre l'émission du message contenant les mesures et sa réception par le satellite S. Cette mesure permet en effet de situer l'objet à géo-localiser sur un hyperboloïde sphérique centré sur le satellite S et dont la caractéristique est donnée par la mesure Doppler.
Il faut noter que, de manière classique, dans le cas où plusieurs satellites du système de navigation par satellites sont visibles de l'objet à géo-localiser, on peut mettre en œuvre un procédé de triangulation. Ainsi, il n'y a pas d'ambigûité sur la position de l'objet à géo-localiser à partir de quatre satellites du système de navigation par satellite visibles. En dessous de quatre satellites visibles, il est possible par exemple de mettre en œuvre la méthode explicitée ci-dessus de mesure Doppler par une mesure du signal de collecte, et donc de remplacer un satellite du système de navigation par un satellite du système de collecte pour l'établissement du point, c'est-à-dire géo-localiser l'objet.
En résumé, l'invention a pour principal avantage de permettre la géo-localisation précise d'objets par couplage d'un système de collecte de données avec un système de navigation par satellites. Le système selon l'invention nécessite un minimum de temps de traitement par les moyens équipant lesdits objets, au profit de traitements effectués en « temps masqué » par des équipements distants, typiquement des stations sol du système de collecte de données. A cette fin, notamment, le système selon l'invention ne nécessite l'acquisition que de la phase de code des informations de positionnement issues des satellites du système de navigation par satellites. L'acquisition de la phase de code ne nécessite, classiquement, qu'environ une milliseconde de temps de traitement. Si l'on compare avec les plus de 30 secondes que prennent aujourd'hui les récepteurs GPS pour acquérir les signaux GPS, décoder le temps GPS et consulter les éphémérides, on s'aperçoit des économies d'énergie et donc du gain en autonomie pour ces systèmes. Dans le système selon l'invention, les traitements complexes et notamment la détermination du temps universel vu par les objets à géo-localiser sont effectués par des moyens distants tels que des stations sol du système de collecte de données.
A titre optionnel, on peut noter que le système selon l'invention peut comporter des moyens pour renvoyer vers les objets à géo-localiser leur position une fois que celle-ci est calculée. Le système selon l'invention peut également comprendre des moyens pour diffuser vers un réseau d'utilisateurs des données, par exemple le temps universel tel que le temps GPS.

Claims

REVENDICATIONS
Procédé de géo-localisation d'un équipement comprenant les étapes suivantes :
• la réception, par des moyens de réception situés sur ledit équipement (D1 ,D2,D3), d'informations de positionnement issues d'un système de navigation par satellites, lesdites informations de positionnement contenant au moins une mesure de phase de code ;
• la transmission de messages, par des moyens de transmission situés sur l'équipement et appartenant à un système de collecte de données, lesdits messages contenant lesdites mesures de phase de code, et des mesures sur la transmission des messages, effectuées par des moyens de mesure appartenant audit système de collecte de données ;
• la combinaison, par des moyens de traitement (G) distants de l'équipement et appartenant audit système de collecte de données, desdites mesures de phase de code et desdites mesures sur la transmission des messages, de manière à géo-localiser ledit équipement (D1 ,D2,D3).
Procédé de géo-localisation selon la revendication 1 , caractérisé en ce que lesdites mesures sur la transmission des messages contiennent une mesure de la date de réception, par des moyens relais (S), distants de l'équipement, des messages transmis par les moyens de transmission dudit système de collecte de données
Procédé de géo-localisation selon la revendication 2, caractérisé en ce qu'il comprend la combinaison de ladite mesure de la date de réception, et d'une date d'émission dudit message par les moyens de transmission, de manière à calculer la distance de propagation entre l'équipement (D1 ,D2,D3) et les moyens relais (S) du système de collecte de données. Procédé de géo-localisation selon la revendication 3, caractérisé en ce que la date d'émission dudit message par les moyens de transmissions est déterminée par un lever d'ambiguïté d'après les distances de propagation possibles entre l'équipement (D1 ,D2,D3) et les moyens relais (S) du système de collecte de données, compte- tenu de la position desdits moyens relais (S) au moment de la réception dudit message.
Procédé de géo-localisation selon l'une quelconque des revendications 3 à 4, caractérisé en ce que la détermination de ladite date d'émission utilise une estimation du temps écoulé entre la réalisation des mesures de phase de code et l'émission du message par l'intermédiaire du système de collecte de données pour réduire le domaine de lever d'ambiguïté.
Procédé de géo-localisation selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdites mesures sur la transmission des messages contiennent une mesure de Doppler, c'est-à-dire de l'écart entre la fréquence d'émission des messages par les moyens de transmission et la fréquence de réception desdits messages par les moyens relais (S) du système de collecte de ces mêmes messages.
Procédé de géo-localisation selon la revendication 1 , caractérisé en ce qu'il comporte une étape de détermination de la position absolue du ou des satellites du système de navigation par satellites à l'origine desdites informations de positionnement, comprenant l'association desdites mesures de phase de code à un identifiant caractéristique du satellite ayant émis lesdites informations de positionnement concernées, ledit identifiant permettant la détermination de la position absolue du ou des satellites du système de navigation par satellites par la consultation des éphémérides relatives au système de navigation par satellites concerné. Procédé de géo-localisation selon l'une des revendications 1 à 7, caractérisé en ce qu'il comporte une étape de détermination de la position absolue du ou des satellites du système de navigation par satellites à l'origine desdites informations de positionnement, comprenant la résolution de la position d'un ou plusieurs satellites par comparaison d'un ensemble de positions possibles déterminées en fonction des éphémérides du système de navigation par satellites concerné avec des informations de géo-localisation propres audit système de collecte de données.
Système de géo-localisation d'un équipement caractérisé en ce qu'il comprend des moyens de réception, situés sur ledit équipement (D1 ,D2,D3), d'informations de positionnement issues d'un système de navigation par satellites, lesdites informations de positionnement contenant au moins une mesure de phase de code, et des moyens de transmission, situés sur ledit équipement (D1 ,D2,D3) et appartenant à un système de collecte de données, pour émettre des messages contenant lesdites mesures de phase de code, ainsi que des mesures sur la transmission des messages, effectuées par des moyens de mesure appartenant audit système de collecte de données, et en ce qu'il est susceptible de mettre en œuvre le procédé selon l'une quelconque des revendications 1 à 8.
10. Système de géo-localisation selon la revendication 9, caractérisé en ce qu'il comprend des moyens relais (S) et des moyens de traitement
(G), distants dudit équipement (D1 ,D2,D3) et appartenant audit système de collecte de données, comprenant respectivement un réseau de satellites (S) et un réseau de stations sol (G).
1 1 . Système de géo-localisation selon l'une des revendications 9 à 10, caractérisé en ce que l'équipement (D1 ,D2,D3) alimente en courant ledit moyen de réception d'informations de positionnement uniquement pendant une durée nécessaire et suffisante pour effectuer lesdites mesures de phase de code sur les signaux issus du système de navigation par satellites.
12. Système de géo-localisation selon l'une des revendications 9 à 1 1 , caractérisé en ce qu'il renvoie vers l'équipement (D1 ,D2,D3) un message comportant sa géo-localisation.
13. Système de géo-localisation selon l'une des revendications 9 à 12, caractérisé en ce qu'il diffuse en continu à un réseau d'utilisateurs (U) le temps absolu donné par le système de navigation par satellites.
EP10788054A 2009-12-15 2010-12-01 Systeme et procede de geo-localisation par hybridation d'un systeme de navigation par satellite et d'un systeme de collecte de donnees Ceased EP2513669A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0906061A FR2953941B1 (fr) 2009-12-15 2009-12-15 Systeme et procede de geo-localisation par hybridation d'un systeme de navigation par satellite et d'un systeme de collecte de donnees
PCT/EP2010/068610 WO2011073031A1 (fr) 2009-12-15 2010-12-01 Systeme et procede de geo-localisation par hybridation d'un systeme de navigation par satellite et d'un systeme de collecte de donnees

Publications (1)

Publication Number Publication Date
EP2513669A1 true EP2513669A1 (fr) 2012-10-24

Family

ID=42697285

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10788054A Ceased EP2513669A1 (fr) 2009-12-15 2010-12-01 Systeme et procede de geo-localisation par hybridation d'un systeme de navigation par satellite et d'un systeme de collecte de donnees

Country Status (5)

Country Link
US (1) US20120319896A1 (fr)
EP (1) EP2513669A1 (fr)
CA (1) CA2784081A1 (fr)
FR (1) FR2953941B1 (fr)
WO (1) WO2011073031A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884298A1 (fr) * 2013-12-13 2015-06-17 Advanced Digital Broadcast S.A. Procédé et système distribué pour objets volants suivis au moyen de dispositifs électroniques grand public

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080174484A1 (en) * 2007-01-23 2008-07-24 Katz Daniel A Location Recording System

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408178B1 (en) * 1999-03-29 2002-06-18 Ericsson Inc. Systems and methods for resolving GPS pseudo-range ambiguity
US6453237B1 (en) * 1999-04-23 2002-09-17 Global Locate, Inc. Method and apparatus for locating and providing services to mobile devices
US6560536B1 (en) * 1999-07-12 2003-05-06 Eagle-Eye, Inc. System and method for rapid telepositioning
FR2823857B1 (fr) * 2001-04-23 2006-11-24 Agence Spatiale Europeenne Procede de determination de la position d'une balise emettrice
US6674398B2 (en) * 2001-10-05 2004-01-06 The Boeing Company Method and apparatus for providing an integrated communications, navigation and surveillance satellite system
US8217838B2 (en) * 2008-03-20 2012-07-10 Skybitz, Inc. System and method for using data phase to reduce position ambiguities

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080174484A1 (en) * 2007-01-23 2008-07-24 Katz Daniel A Location Recording System

Also Published As

Publication number Publication date
WO2011073031A1 (fr) 2011-06-23
FR2953941B1 (fr) 2012-01-27
FR2953941A1 (fr) 2011-06-17
CA2784081A1 (fr) 2011-06-23
US20120319896A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
EP2444823B1 (fr) Procédé et système de géo-localisation d'une radio-balise dans un système d'alerte
EP3306272B1 (fr) Procédé de localisation ponctuelle d'un véhicule évoluant sur une trajectoire contrainte et système associé
EP2566069B1 (fr) Procédé de détection de messages de type "Système d'Identification Automatique" pour surveillance de navires et de bouées par satellite.
EP1804071A1 (fr) Procédé d'optimisation des traitements de données de localisation en présence de plusieurs constellations de positionnement par satellites
EP1876466B1 (fr) Dispositif de génération de messages, d'intégrité signalant des stations de surveillance nominales, dégradées ou inactives de systèmes de navigation par satellites
EP1804399B1 (fr) Procédé de synchronisation de stations de base d'un réseau de communication céllulaire terrestre
EP1503220A2 (fr) Détermination de positions de terminaux mobiles à l'aide de données d'assistance transmises sur requète
EP2386875A1 (fr) Système distribué de mesure de distance pour la localisation d'un satellite géostationnaire
EP2333582B1 (fr) Procédé de détection de fraude sur la transmission d'informations de position par un dispositif mobile
EP2920608A1 (fr) Procede d'estimation du niveau d'erreur de mesures de geolocalisation par satellites et de controle de la fiabilite de ces estimations et dispositif associe
EP3179276B1 (fr) Procédés et dispositifs de validation de synchronisation entre un récepteur de géolocalisation et un satellite émetteur
EP2331983A1 (fr) Procédé pour optimiser une acquisition d'un signal à spectre étalé provenant d'un satellite par un récepteur mobile
EP1544636A1 (fr) Dispositif de determination par filtrage de données d'integrité d'un système d'augmentation, pour un terminal mobile
FR2858510A1 (fr) Determination de positions de terminaux mobiles a l'aide de donnees d'assistance transmises sur requete
FR2823857A1 (fr) Procede de determination de la position d'une balise emettrice
WO2011073031A1 (fr) Systeme et procede de geo-localisation par hybridation d'un systeme de navigation par satellite et d'un systeme de collecte de donnees
WO2007010047A1 (fr) Procede, dispositif et systeme de positionnement par relais pulse multi synchrone multi-source
EP1560037A2 (fr) Procédé de factorisation de datation de pseudo distance dans un contexte d'assisted GNSS
FR2888941A1 (fr) Equipement mobile, procede et systeme de positionnement d'un equipement mobile
EP2201401A1 (fr) Procede et systeme de gestion et detection des multitrajets dans un systeme de navigation
FR2903191A1 (fr) Procede de determination d'informations de navigation communes pour des regions disposant de groupes differents de stations de surveillance de satellites de systeme de navigation par satellite
EP2259643B1 (fr) Procédé de transmission d'informations de position par un dispositif mobile
WO2018083160A1 (fr) Procédés de détermination de la position d'une balise de géolocalisation, produit programme d'ordinateur, balise, station de base et dispositif de calcul de position correspondants
FR3136065A1 (fr) Procédé et système de localisation d’un nœud mobile par mesures radio utilisant une carte de visibilité

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20171130