EP2494534B1 - Safety communication system for signaling system states - Google Patents
Safety communication system for signaling system states Download PDFInfo
- Publication number
- EP2494534B1 EP2494534B1 EP10784684.2A EP10784684A EP2494534B1 EP 2494534 B1 EP2494534 B1 EP 2494534B1 EP 10784684 A EP10784684 A EP 10784684A EP 2494534 B1 EP2494534 B1 EP 2494534B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- pulse
- evaluation unit
- communication system
- modulated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 title claims description 29
- 230000011664 signaling Effects 0.000 title claims description 8
- 238000011156 evaluation Methods 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 3
- 230000000873 masking effect Effects 0.000 claims 1
- 230000006870 function Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 3
- 230000015654 memory Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B26/00—Alarm systems in which substations are interrogated in succession by a central station
- G08B26/005—Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade
Definitions
- the present invention relates to a security communication system having an evaluation unit and a number of subscribers connected in series, each having a sensor, and a method for signaling system states.
- a critical system condition e.g. an emergency signal
- the present invention proposes a security communication system according to claim 1, which comprises an evaluation unit comprises, to which a number of subscribers connected in series is connected.
- the evaluation unit has a signal output, a signal input, a ground connection and a device for providing a predetermined signal for the subscribers.
- the subscribers each have a signal input, a signal output, a ground connection for a reference potential, a sensor and an electronic circuit.
- Each electronic circuit is configured to modulate the predetermined signal to signal the system status represented by the output of the respective sensor.
- the evaluation unit is designed to evaluate the modulated predetermined signal and to control a safety function in response to the evaluation result.
- the sensor may be, for example, an emergency stop switch, a temperature sensor, a pressure sensor, a step mat, a photoelectric barrier and a protective grid.
- the output signal of a sensor indicates a critical or a non-critical system state.
- a critical system status causes the evaluation unit to trigger a safety function.
- the predetermined signal is modulated by the subscribers such that the evaluation unit in response to the modulated predetermined signal or which can locate those subscribers who have signaled a critical system condition.
- the electronic circuit of each subscriber comprises a logic module and at least one transistor, wherein the transistor can be controlled by the logic module.
- the transistor is arranged between the signal input to the signal output of the respective subscriber and adapted to modulate the predetermined signal applied to the signal input and to transmit via the signal output to the evaluation unit or a downstream subscriber.
- the electronic circuit can furthermore be designed to obtain a supply voltage for the subscriber directly from the predetermined signal present at the signal input (21, 31, 41), so that no separate auxiliary power has to be provided.
- the electronic circuit expediently comprises a second transistor with which the signal input can be switched to the reference potential.
- the logic module of the electronic circuit is preferably equipped with an internal function monitoring, wherein over the second transistor signaling of an error condition can take place by the predetermined signal pulled to the reference potential and thus no longer transmitted to the input of the evaluation.
- the predetermined signal contains a signal pulse whose pulse length depends on the number of subscribers connected in series.
- steps c) and e) provide for this that each participant modulates the signal pulse of the predetermined signal as a function of the system state of its sensor.
- each subscriber preferably modulates the signal pulse of the predetermined signal according to their position in the security communication system.
- Each participant preferably modulates the signal pulse at the point assigned to it within the signal pulse and / or preferably with an individual modulation signal.
- the predetermined signal may include a start pulse and a first pause preceding the signal pulse. Furthermore, the signal pulse may include an end pulse followed by a second pause which is longer in time than the first pause.
- the steps a) to 9) are repeated cyclically or at predetermined times, whereby the switching states of the participants can be transmitted cyclically or at the predetermined times to the evaluation unit.
- a configuration phase is run through in which the evaluation unit determines the number of subscribers within the security communication system and in which the subscribers determine their position within the security communication system.
- the security communication system according to the invention is distinguished from known security systems by a localizability of all in the security communication system participants who signal a critical system state. By automatically determining the number and position of the participants, such a security communication system is particularly easy to extend.
- the shape and frequency of the predetermined signal have sufficient robustness to spurious emissions so that security communication systems with line lengths greater than 1 km in length are possible.
- the cycle times of the signal transmission are sufficiently short for more than 20 subscribers to meet the requirements of safety technology for automation systems.
- Security communication system 1 illustrated by way of example may be an emergency shutdown circuit which has an evaluation unit 10 and, for example, three subscribers 20, 30 and 40 connected in series, which are distributed, for example, in a field to a wide-area automation system.
- the participants 20, 30, 40 are also referred to below as Notausticianen, each having an emergency stop button 23, 33, 43 as a sensor with which a safety function can be requested on an equal basis.
- the series-connected participants 20, 30, 40 form a subscriber chain.
- the emergency stop switches 23, 33, 43 are each connected to an electronic circuit 24, 34, 44, which provide a secure electronic coupling to the emergency stop circuit for each emergency stop.
- the evaluation unit 10 has a signal output 11 and a signal input 12, to which the three Notausticianen 20, 30 and 40 are connected in series.
- the emergency cutouts are interconnected via signal inputs 21, 31, 41 and signal outputs 22, 32, 42 provided by the electronic circuits 24, 34, 44, respectively.
- the evaluation unit 10 may have not shown further signal outputs and signal inputs to which further Notausticianen not shown are connected in series, which form additional parallel subscriber chains.
- the evaluation unit 10 In order for the emergency units to be able to signal in particular the actuation of the respective emergency stop switch of the evaluation unit 10, the evaluation unit 10 generates a predetermined signal UA (see FIG Fig. 4 ) output at the signal output 11.
- This signal UA can essentially be embodied as a binary voltage signal which is varied between a high and a low level, wherein the low level preferably corresponds to the reference potential GND at a ground terminal 15 of the evaluation unit 10.
- the voltage signal UA serves to transmit information between the emergency units and the evaluation unit and advantageously also provides a supply voltage for the electronic circuits 24, 34, 44 and / or for the sensors.
- the circuits 24, 34, 44 of the Notausticianen 20, 30, 40 of the emergency stop circuit 1 are constructed identically, so that in the FIG. 2 only the diagram of the emergency unit 20 is exemplified.
- the diagram illustrates in particular the structure of the circuit 24 in detail.
- the circuit 24 comprises a signal input 21, a signal output 22 and a logic module 210, which can preferably be realized by a microcontroller or alternatively by an FPGA, CPLD or an ASIC.
- the emergency stop switch 23 is connected via two channels to the logic module 210 via ports P8 and P9 as well as ports P11 and P12.
- all two-channel emergency stop switches available on the market are basically suitable, i.
- both emergency stop switches with two NC or two NO contacts, as well as an NC / NO pair can be used for the emergency stop unit.
- the appropriately used switch type must be set only by soft or hardware means to the logic device 210.
- other sensor types such as running mats, temperature and pressure sensors, light barriers, protective grids, etc., can also be connected to an emergency stop unit.
- several sensors can be connected via an emergency stop unit via different ports of the logic module 210.
- the circuit 24 comprises a transistor 220 and optionally a transistor 260, which are connected with their respective gate terminal to the logic device 210.
- the transistor 220 is between the signal input 21 and the Signal output 22 is connected, while the transistor 260 is connected between the signal input 21 and the ground terminal 25.
- the second transistor 260 could also be connected between the signal output 22 and the ground connection 25.
- the logic module 210 controls the transistors 220 and 260 in such a way that the voltage signal UA applied to the signal input 21, which is the predetermined signal, can be modulated by the transistor 220 and output to the signal output 22.
- the voltage signal UA at the input 21 can be pulled to the reference potential of the ground terminal 25, whereby all participants of Notausschalt Vietnamesees, ie the evaluation unit 10 and the other following in the series circuit Notausticianen 33, 43 an error condition can be signaled.
- the electronic circuit 24 further has a diode 231 and a capacitor 232 which are connected in series between the signal input 21 and the ground terminal 25 to the reference potential GND and provide a power supply for the logic device 210 via a supply device 233.
- the supply device 233 may be designed as a switched-mode power supply or as a voltage regulator.
- a constant supply voltage of eg 3.3 V or 5 V can be obtained for the logic module, so that in a preferred manner no additional line for an auxiliary power of Notausticianen 20, 30, 40th in an emergency stop circuit is required.
- the power supply does not take place in this case via the signal lines, so that the diode 231 and the capacitor 232 can be omitted in favor of an additional connection.
- the function of the emergency stop circuit 1 and the individual emergency units connected in series will be described below with reference to FIGS FIGS. 3 to 5 illustrated signal-time diagrams for different operating conditions explained.
- the emergency shutdown circuit 1 is basically suitable for use with a large number of emergency units distributed along a route of a spatially extended automation system and connected in series with one another.
- the emergency shutdown circuit 1 allows for easy expandability with additional emergency disengaging units that may be inserted, for example, between the emergency shutdown unit 30 and the emergency shutdown unit 40.
- the safety function of the emergency stop circuit is guaranteed from a connected emergency stop unit.
- each start-up of the emergency stop circuit 1 first passes through a configuration phase in which the number of connected Notausticianen 20, 30, 40 is determined by the evaluation unit 10 and determine the Notausticianen their position in the series circuit.
- the transistor 220 of a respective emergency unit is initially disabled, so that the in FIG. 3 shown configuration signals at the signal inputs 21, 31, 41 of the respective Notausticianen initially not be forwarded to the signal outputs 22, 32, 42.
- FIG. 3 are the voltage waveforms of the generated during the configuration phase configuration signals UAk, UBk, UCk and UDk, which abut each of the signal inputs 21, 31, 41 of the emergency unit 20, 30 and 40 and the signal input 12 of the evaluation unit 10 is shown.
- the configuration signal UAk is generated by the evaluation unit and transmitted via the signal output 11 to the input 21 of the first emergency stop unit 20.
- the configuration signal UAk is generated for example by a microcontroller in the evaluation unit 10 and follows a predetermined pulse sequence with respect to a system clock.
- a first energy pulse 311 is initially applied to the signal output 11, which remains present for a period of three clock cycles Tb and essentially serves to supply the emergency output units.
- the signal UAk is reset for one clock, so that a signal pause 312 follows the energy pulse 311. Subsequently, a signal pulse 313 is sent over the duration of a clock followed by a second pause 314 of two clocks.
- the first emergency unit 20 is awakened by the energy pulse 311.
- the voltage signal UAk delivered by the evaluation unit 10 lies between the input 21 and the Ground connection 25. It provides a charging current over the duration of the three clocks, which flows in the flow direction through the diode 231.
- the capacitor 232 is charged during this time and thus provides the supply voltage for the supply device 233 and the microcontroller 210, in particular during the signal pauses.
- the microcontroller of the emergency unit 20 thus begins its operation and recognizes via a signal detection device, which is formed from the voltage divider of the resistors 241 and 242, consequently the individual subsequent signal pulse 313 before the second break 314.
- the emergency unit 20 registers itself as the first participant in the series connection of the emergency stop circuit 1 to the evaluation unit 10th
- the evaluation unit 10 initially detects no input voltage at its own signal input 12 and concludes that at least one emergency shutdown unit is connected in the emergency shutdown circuit.
- the evaluation unit 10 outputs a second energy pulse 321 via the signal output 11, which is followed, after a break 322, by a second signal pulse 323, which is three clocks wide.
- the first emergency stop unit 20 receives at its signal input 21 the energy pulse 321 and the signal pulse 323 of the signal UAk and outputs these pulses through the now open transistor 220 to the signal output 22 as a second signal UBk, wherein the second signal UBk modulated by the emergency stop unit 20 so is that the signal pulse 323 is hidden during a clock Tb.
- the second signal UBk contains thus a high level 3231, a low level 3232 and a second high level 3233.
- the second emergency stop unit 30 consequently receives at its signal input 31 the voltage signal UBk, which identifies the energy pulse 321 and subsequently the high level 3231, the low level 3232 and the second high level 3233.
- the voltage signal UBk thus corresponds to the modulated signal UAk, which has been generated by the evaluation unit 10.
- the emergency unit 30 is now activated by the energy pulse 321 and recognizes itself as a second party, i. as a second emergency stop unit 30 in the emergency stop circuit.
- the evaluation unit 10 further detects no input signal at its signal input 12 and outputs a third energy pulse 331 via the signal output 11, followed by a signal pause 332 and a third signal pulse 333.
- the third signal pulse 333 is widened compared to the previous cycle second signal pulse 323 by a further two clocks, and thus comprises a total of a width of 5 clocks Tb.
- the Notausticianen 20 and 30 respectively give a modulated signal UBk or UCk (see Fig. 3 ) via their respective signal output 22, 32.
- the first emergency stop unit 20 modulates the signal UAk such that the signal pulse 333 is hidden during a clock Tb.
- the second signal UBk thus contains a high level and a low level of the length Tb and a second high level 333 'of three times the length of Tb.
- the second emergency stop unit 30 receives the signal UBk and modulates its signal pulse 333 'such that the signal pulse 333' is hidden during a clock Tb.
- the signal UCk thus contains a high level 3333, a low level 3334 and a second high level 3335 each of the clock length Tb.
- the third emergency stop unit 40 receives the signal UCk and recognizes itself as the third emergency stop unit 40 in the emergency stop circuit, while the evaluation unit 10 continues to receive no input signal at its signal input 12.
- the evaluation unit 10 sends in its signal UAk another energy pulse 341 and a fourth signal pulse 343, which is extended compared to the third signal pulse 331 again by two clocks Tb, and thus comprises a total width of seven clocks Tb.
- the transmitted signal UAk is modulated and forwarded by each emergency stop unit 20, 30, and 40.
- each emergency unit modulates the signal UAk in such a way, for example, that each emergency shutdown unit inserts a low level of length Tb into the signal pulse 343, ie that one clock in each case is faded out within the signal pulse 343.
- the signals UBk, UCk and UDk respectively modulated by the emergency cutouts 20, 30 and 40 are in Fig. 3 shown.
- the signal UDk is output, which contains the energy pulse 341 as well as the signal pulse 343 modulated by all three emergency cutouts, which contains four high levels 3431, 3433, 3435 and 3437, each by a low level from each other are separated.
- the evaluation unit 10 now receives at its signal input 12 from the emergency stop unit 40 passed signal UDk and thus registers a total of three emergency cutouts 20, 30, 40 connected to the emergency stop circuit and thus completes the configuration phase.
- the configuration phase can also be repeated several times until stable communication is established.
- time profiles of the differential voltages (UAk-UBk), (UBk-UCk) and (UCk-UDk) shows in which time intervals, the capacitors 323 of Notausticianen 20, 30 and 40 are charged.
- the emergency disbursements their respective position in a subscriber chain could be manually set, which are coded for example by DIP switches or stored in a non-volatile memory.
- the number of existing Notausticianen can be set or stored on or in the evaluation unit 10.
- the configuration phase after the startup of the emergency stop circuit is replaced in this case by an initialization phase, during which the participants are supplied with energy at the same time. For this purpose, for example, a long energy pulse is provided.
- a configuration phase can be triggered manually, after which the configuration data of the emergency stop circuit is stored in the nonvolatile memories of the users, so that after each further commissioning, only the initialization phase has to be run through.
- FIG. 4 represents the normal operation of the emergency stop circuit 1 under the condition that no emergency stop switch 23, 33, 43 has been operated.
- the evaluation unit 10 After the completion of the configuration phase, the evaluation unit 10 generates an exemplary, cyclical, predetermined signal UA, which is output via the signal output 11 to the first emergency stop unit 20.
- the temporal waveform of the signal UA is in the FIG. 4 shown above.
- the signal UA contains in each cycle a start pulse 410 having the width of a clock Tb, followed by a pause or low level 420 of length Tb.
- the pause 420 is followed by a signal pulse 430 whose length depends on the number of emergency cutouts present in the emergency stop circuit.
- the signal pulse 430 contains in each case two clocks Tb for each emergency stop unit connected to the emergency stop circuit 1 and an additional end pulse 437 of length Tb.
- the emergency stop unit 20 receives the above-described signal UA at the signal input 21 in each cycle and modulates the signal pulse 430, for example, such that during predetermined clocks the signal pulse 430 is hidden.
- the signal pulse 430 is modulated by means of the transistor 70 in such a way that the signal pulse 430 starts with a high level 431 of length Tb, followed by a low level 432, that is to say a hidden section, of length Tb.
- the modulated signal UA is now transmitted as a signal UB to the emergency stop unit 30.
- the emergency stop unit 30 thus receives the start pulse 410, the pause 420 and the modulated signal pulses 431, 432 and 430 '.
- the emergency unit 30 merely modulates the signal pulse 430 'of the received signal UB in a manner similar to the emergency unit 20.
- the signal pulse 430' is modulated to start at a high level of length Tb which is a low level or hidden portion of the length Tb connects.
- the emergency stop unit 40 thus receives the start pulse 410, the pause 420 and the signal pulse modulated by the upstream emergency units 20 and 30.
- the emergency unit 40 merely modulates the signal pulse 430 "of the received signal UC in a manner similar to the emergency units 20 and 30.
- the signal pulse 430" is modulated to start with a high level of length Tb. which is followed by a low level or hidden portion of the length Tb.
- the remainder of the signal pulse 430 ", which only contains the end pulse 437, is not modulated,
- the modulated signal UC now becomes the evaluation unit 10 as the signal UD. transfer.
- the signal pulse 430 initially generated by the evaluation unit 10 now comprises three high levels 431, 433 and 435 corresponding to the number of emergency units present and the end pulse 437 which are each separated by a hidden section.
- the evaluation unit 10 recognizes from the received signal DU that no emergency stop switch has been actuated.
- the difference signals (UA-UB), (UB-UC) and (UC-UD) show at which time intervals the capacitors 90 of the emergency cut-off units 20, 30 and 40 are recharged. To recharge the power supply, the signal pulse is used in each case, which is hidden during the transfer or during the modulation by the respective emergency unit.
- the FIG. 5 shows the signal-time diagrams in the event that the first and third Notaustician 20 and 40 at time t3 report an actuated emergency stop, while the second emergency unit 30 of the series circuit sends no emergency stop signal.
- the time t3 can be understood to mean that the evaluation unit 10 has already transmitted a plurality of signals UA, wherein no actuation of an emergency stop switch has been signaled until the time t3 of the evaluation unit 10.
- the evaluation unit 10 further generates the in FIG. 4 described cyclic, predetermined signal UA, which is output via the signal output 11 to the first emergency stop unit 20.
- the temporal waveform of the signal UA is in the FIG. 5 shown above and corresponds to that in the FIG. 4 represented signal.
- the emergency shutdown unit 20 receives the already described signal UA at the signal input 21 in the current cycle and modulates the signal pulse 530, which corresponds to the signal pulse 430 of the in Fig. 4 shown signal UA, such that the operation of the emergency switch 23 of the evaluation unit 10 can be signaled.
- the in Fig. 5 represented signal pulses 530 are modulated by means of the transistor 70 such that the received signal pulse 530 starts with two low levels 531, 532, which have the length 2Tb.
- the signal pulse 530 in the emergency off unit 20 is blanked out for the time of a double clock length Tb.
- the remainder of the signal pulse 530, which is in Fig. 5 denoted by 530 ' is not modulated.
- the modulated signal UA is now transmitted as a signal UB to the emergency stop unit 30.
- the emergency stop unit 30 thus receives the start pulse 510, the pause 520 and the modulated signal pulse resulting from the low levels 531 and 532 and the high level 530 '. Since the emergency unit 30 does not have to signal an emergency stop signal, it modulates the signal pulse 530 'of the received signal UB in the same way as in the example which is based on the FIG. 4 has been explained.
- the signal pulse 530 ' is therefore modulated so that it starts with a high level 533 of length Tb, followed by a low level 534 and hidden portion of the length Tb.
- the remainder of the signal pulse 530 ' which is in Fig. 4 is not modulated, the modulated signal UB is now transmitted as a signal UC to the emergency unit 40.
- the emergency stop unit 40 thus receives the start pulse 510, the break 520 and the signal pulse modulated by the upstream emergency units 20 and 30.
- the emergency unit 40 only modulates the signal pulse 530 "of the received signal UC, in such a way that the actuation of the emergency stop switch 43 can be signaled
- the signal pulse 530" is modulated in such a way that it has two low levels 535 and 536 or two blanked sections each of length Tb begins.
- the remainder of the signal pulse 530 ", which only contains the end pulse 537, is not modulated,
- the modulated signal UC is now transmitted as the signal UD to the evaluation unit 10.
- the signal pulse 530 initially generated by the evaluation unit 10 now comprises a high level 533 and the end pulse 537.
- the evaluation unit 10 recognizes from the low levels 531, 532 and 535, 536 of the received signal UD that the emergency stop switches 23 and 43 of the emergency shutdown units 20 and 40 have been operated.
- the configuration phase could initially be followed by a reporting phase, which is not shown in the figures.
- the emergency dispensers 20, 30, 40 of the evaluation unit 10 only signal whether or not the security function has to be activated at all.
- the evaluation unit 10 sends a cyclical, predetermined signal to the first emergency stop unit 20 via its signal output 11.
- This signal comprises a characteristic start pulse, which preferably differs from the starting pulse of the operating mode, for example in the width, followed by a signal pulse having a predetermined width.
- the predetermined width the signal pulse is preferably not dependent on the number of Notausticianen in a subscriber circle in the reporting phase.
- All Notausticianen 20, 30, 40 receive the predetermined signal at its signal input 21, 31, 41 and forward this non-modulated to the subsequent participants, unless an emergency stop button has been pressed. If one of the emergency units is to have a critical system status, i. an actuated emergency stop switch, are signaled, the received signal can be modulated by hiding a predetermined position in the signal pulse. During the reporting phase, all emergency units are assigned the same position in the signal pulse for signaling. The signaling of one or more critical system states by one or more participants is thus OR-linked.
- the evaluation unit 10 is therefore only signaled in this reporting phase, if any critical system state, i. an actuated emergency stop switch is present and whether the safety function is to be activated.
- the emergency stop circuit is set by the evaluation unit 10 into the operating mode described above.
- the evaluation unit determines in the method described above which emergency shutdown unit signals an actuated emergency stop switch.
- the reporting phase offers shorter cycle times compared to the above-described operating mode, as long as no actuated emergency stop switch is signaled. This is particularly advantageous for a large number of emergency units in the subscriber chain.
- the evaluation unit 10 receives at least no complete signal UD at its signal input 12. In response to an incompletely received signal UD, the evaluation unit 10 can also trigger a safety-based function and signal an error.
- the microcontroller 210 of the emergency units 20, 30, 40 can additionally determine an internal malfunction, for example a failed channel of a two-channel connected emergency stop switch, independently. Such an error can be signaled by an emergency stop unit, for example the emergency stop unit 20, of the evaluation unit 10 in that the transistor 260 of the electronic circuit 24 short-circuits the signal input 21 to the ground terminal 25.
- the evaluation unit 10 thus receives an incomplete signal UD and closes from the transmitted short-circuit signal to a faulty signal UD and can then trigger a safety-related function and / or an error signal.
- a second signal recognition device comprising the resistors 251 and 250 may be provided at the signal output 22, 32, 42 of an emergency stop unit 20, 30, 40.
Landscapes
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Alarm Systems (AREA)
Description
Die vorliegende Erfindung betrifft ein Sicherheits-Kommunikationssystem mit einer Auswerteeinheit und einer Anzahl in Reihe geschalteter Teilnehmer mit je einem Sensor sowie ein Verfahren zum Signalisieren von Systemzuständen.The present invention relates to a security communication system having an evaluation unit and a number of subscribers connected in series, each having a sensor, and a method for signaling system states.
Ein solches Sicherheits-kommunikationssystem ist in
Zur Abwendung von Gefahren für Menschen, Maschinen und Anlagen in der Automatisierungstechnik sind in der Regel Notausschalter und/oder andere Sensoren an entsprechenden Einrichtungen vorgesehen, mit denen die Maschinen oder Anlagen abgeschaltet und in einen sicheren Zustand versetzt werden können. Bei räumlich ausgedehnten Anlagen oder Automatisierungssystemen ist es zudem erforderlich, mehrere Sensoren, zum Beispiel Notausschalter, Temperatursensoren, Drucksensoren, Trittmatten, Lichtschranken und dergleichen bereitzustellen, um eine optimale Erreichbarkeit im Gefahrenfall zu gewährleisten.To avert danger to people, machinery and equipment in automation usually emergency stop and / or other sensors are provided at appropriate facilities with which the machinery or equipment can be switched off and put in a safe state. In spatially extended systems or automation systems, it is also necessary to provide several sensors, such as emergency stop button, temperature sensors, pressure sensors, floor mats, light barriers and the like, to ensure optimum accessibility in the event of danger.
Der Erfindung liegt die Aufgabe zugrunde, ein Sicherheits-Kommunikationssystem sowie ein Verfahren bereitzustellen, mit denen ein Signal für einen kritischen Systemzustand, z.B. ein Notaussignal, zuverlässig signalisiert und die Quelle eines Signals eindeutig lokalisiert werden kann.It is an object of the present invention to provide a security communication system and a method by which a signal for a critical system condition, e.g. an emergency signal, reliably signaled and the source of a signal can be clearly located.
Zur Lösung dieser Aufgabe schlägt die vorliegende Erfindung ein Sicherheits-Kommunikationssystem nach Anspruch 1 vor, welches eine Auswerteeinheit umfasst, an welcher eine Anzahl von in Reihe geschalteten Teilnehmern angeschlossen ist.To solve this problem, the present invention proposes a security communication system according to
Die Auswerteeinheit weist einen Signalausgang, einen Signaleingang, einen Masseanschluss und eine Einrichtung zum Bereitstellen eines vorbestimmten Signals für die Teilnehmer auf.The evaluation unit has a signal output, a signal input, a ground connection and a device for providing a predetermined signal for the subscribers.
Die Teilnehmer weisen jeweils einen Signaleingang, einen Signalausgang, einen Masseanschluss für ein Bezugspotential, einen Sensor sowie eine elektronische Schaltung auf. Jede elektronische Schaltung ist zum Modulieren des vorbestimmten Signals ausgebildet, um den Systemzustand zu signalisieren, welcher durch das Ausgangssignal des jeweiligen Sensors dargestellt wird.The subscribers each have a signal input, a signal output, a ground connection for a reference potential, a sensor and an electronic circuit. Each electronic circuit is configured to modulate the predetermined signal to signal the system status represented by the output of the respective sensor.
Die Auswerteeinheit ist zum Auswerten des modulierten vorbestimmten Signals und zum Steuern einer Sicherheitsfunktion unter Ansprechen auf das Auswerteergebnis ausgebildet.The evaluation unit is designed to evaluate the modulated predetermined signal and to control a safety function in response to the evaluation result.
Bei dem Sensor kann es sich zum Beispiel um einen Notausschalter, einen Temperatursensor, einen Drucksensor, eine Trittmatte, eine Lichtschranke und ein Schutzgitter handeln. Das Ausgangssignal eines Sensors zeigt einen kritischen oder einen unkritischen Systemzustand an. Ein kritischer Systemzustand führt dazu, dass die Auswerteeinheit eine Sicherheitsfunktion auslöst. Vorteilhafter Weise wird das vorbestimmte Signal von den Teilnehmern derart moduliert, dass die Auswerteeinheit unter Ansprechen auf das modulierte vorbestimmte Signal den oder die diejenigen Teilnehmer lokalisieren kann, welche einen kritischen Systemzustand signalisiert haben.The sensor may be, for example, an emergency stop switch, a temperature sensor, a pressure sensor, a step mat, a photoelectric barrier and a protective grid. The output signal of a sensor indicates a critical or a non-critical system state. A critical system status causes the evaluation unit to trigger a safety function. Advantageously, the predetermined signal is modulated by the subscribers such that the evaluation unit in response to the modulated predetermined signal or which can locate those subscribers who have signaled a critical system condition.
Eine vorteilhafte Ausbildungsform sieht vor, dass die elektronische Schaltung jedes Teilnehmers einen Logikbaustein und wenigstens einen Transistor umfasst, wobei der Transistor durch den Logikbaustein ansteuerbar ist. Der Transistor ist zwischen dem Signaleingang dem Signalausgang des jeweiligen Teilnehmers angeordnet und dazu ausgebildet, das am Signaleingang anliegende vorbestimmte Signal zu modulieren und über den Signalausgang an die Auswerteeinheit oder einen nachgeschalteten Teilnehmer zu übertragen.An advantageous embodiment provides that the electronic circuit of each subscriber comprises a logic module and at least one transistor, wherein the transistor can be controlled by the logic module. The transistor is arranged between the signal input to the signal output of the respective subscriber and adapted to modulate the predetermined signal applied to the signal input and to transmit via the signal output to the evaluation unit or a downstream subscriber.
Die elektronische Schaltung kann weiterhin dazu ausgebildet sein, eine Versorgungsspannung für den Teilnehmer direkt aus dem am Signaleingang (21, 31, 41) anliegenden vorbestimmten Signal zu gewinnen, so dass keine separate Hilfsenergie bereitgestellt werden muss.The electronic circuit can furthermore be designed to obtain a supply voltage for the subscriber directly from the predetermined signal present at the signal input (21, 31, 41), so that no separate auxiliary power has to be provided.
Die elektronische Schaltung umfasst zweckmäßiger Weise einen zweiten Transistor, mit dem der Signaleingang auf das Bezugpotential schaltbar ist.The electronic circuit expediently comprises a second transistor with which the signal input can be switched to the reference potential.
Der Logikbaustein der elektronischen Schaltung ist bevorzugt mit einer internen Funktionsüberwachung ausgestattet, wobei über den zweiten Transistor eine Signalisierung eines Fehlerzustands erfolgen kann, indem das vorbestimmte Signal auf das Bezugspotential gezogen und somit nicht mehr zum Eingang der Auswerteeinheit übertragen wird.The logic module of the electronic circuit is preferably equipped with an internal function monitoring, wherein over the second transistor signaling of an error condition can take place by the predetermined signal pulled to the reference potential and thus no longer transmitted to the input of the evaluation.
Das oben genannte technische Problem wird ferner durch die Verfahrensschritte des Anspruchs 6 gelöst.The above technical problem is further solved by the method steps of claim 6.
Demgemäß wird ein Verfahren zum Signalisieren von Systemzuständen mehrerer in Reihe geschalteter Teilnehmer eines Sicherheits-Kommunikationssystems zur Verfügung gestellt.Accordingly, a method for signaling system states of multiple serially connected subscribers of a security communication system is provided.
Damit jeder Teilnehmer gegebenenfalls die Aktivierung eines Sensors signalisieren kann, enthält das vorbestimmte Signal einen Signalimpuls, dessen Impulslänge von der Anzahl der in Reihe geschalteten Teilnehmer abhängt.In order for each participant to signal the activation of a sensor, the predetermined signal contains a signal pulse whose pulse length depends on the number of subscribers connected in series.
Zweckmäßigerweise sehen die Schritte c) und e) hierfür vor, dass jeder Teilnehmer den Signalimpuls des vorbestimmten Signals in Abhängigkeit des Systemzustands seines Sensors moduliert.Conveniently, steps c) and e) provide for this that each participant modulates the signal pulse of the predetermined signal as a function of the system state of its sensor.
Um den Teilnehmer, welcher einen kritischen Systemzustand signalisiert hat, lokalisieren zu können, moduliert jeder Teilnehmer den Signalimpuls des vorbestimmten Signals bevorzugt entsprechend ihrer Position in dem Sicherheits-Kommunikationssystem. Vorzugsweise moduliert jeder Teilnehmer den Signalimpuls an der ihr zugewiesenen Stelle innerhalb des Signalimpulses und/oder vorzugweise mit einem individuellen Modulationssignal.In order to be able to locate the subscriber who has signaled a critical system state, each subscriber preferably modulates the signal pulse of the predetermined signal according to their position in the security communication system. Each participant preferably modulates the signal pulse at the point assigned to it within the signal pulse and / or preferably with an individual modulation signal.
Damit die Teilnehmer das vorbestimmte Signal sicher erkennen können, kann das vorbestimmte Signal einen Startimpuls und eine erste Pause aufweisen, die dem Signalimpuls vorausgehen. Weiterhin kann der Signalimpuls einen Endimpuls enthalten, welchem eine zweite Pause folgt, welche zeitlich länger als die erste Pause ist.In order for the subscribers to be able to reliably recognize the predetermined signal, the predetermined signal may include a start pulse and a first pause preceding the signal pulse. Furthermore, the signal pulse may include an end pulse followed by a second pause which is longer in time than the first pause.
Um eine Überwachung einer Anlage während des gesamten Betriebs gewährleisten zu können, werden die Schritte a) bis 9) zyklisch oder zu vorbestimmten Zeitpunkten wiederholt, wodurch die Schaltzustände der Teilnehmer zyklisch oder zu den vorbestimmten Zeitpunkten an die Auswerteeinheit übermittelt werden können.To be able to ensure monitoring of a system during the entire operation, the steps a) to 9) are repeated cyclically or at predetermined times, whereby the switching states of the participants can be transmitted cyclically or at the predetermined times to the evaluation unit.
Zweckmäßiger Weise wird vor Ausführung des Schrittes a) eine Konfigurationsphase durchlaufen, in welcher die Auswerteeinheit die Anzahl der Teilnehmer innerhalb des Sicherheits-Kommunikationssystems ermittelt und in welcher die Teilnehmer ihre Position innerhalb des Sicherheits-Kommunikationssystems ermitteln.Expediently, before the execution of step a), a configuration phase is run through in which the evaluation unit determines the number of subscribers within the security communication system and in which the subscribers determine their position within the security communication system.
Das erfindungsgemäße Sicherheits-Kommunikationssystem zeichnet sich gegenüber bekannten Sicherheitssystemen durch eine Lokalisierbarkeit aller in dem Sicherheits-Kommunikationssystem Teilnehmer aus, die einen kritischen Systemzustand signalisieren. Durch die automatische Ermittlung von Anzahl und Position der Teilnehmer ist ein solches Sicherheits-Kommunikationssystem besonders einfach erweiterbar.The security communication system according to the invention is distinguished from known security systems by a localizability of all in the security communication system participants who signal a critical system state. By automatically determining the number and position of the participants, such a security communication system is particularly easy to extend.
Die Form und die Frequenz des vorbestimmten Signals weisen eine ausreichende Robustheit gegenüber Störeinstrahlungen auf, so dass Sicherheits-Kommunikationssysteme mit Leitungslängen von mehr als 1 km Länge möglich sind. Die Zykluszeiten der Signalübertragung sind für mehr als 20 Teilnehmer ausreichend kurz, um den Anforderungen der Sicherheitstechnik für Automatisierungsanlagen zu genügen.The shape and frequency of the predetermined signal have sufficient robustness to spurious emissions so that security communication systems with line lengths greater than 1 km in length are possible. The cycle times of the signal transmission are sufficiently short for more than 20 subscribers to meet the requirements of safety technology for automation systems.
Die Erfindung wird nachfolgend anhand einer beispielhaften Ausführungsform unter Bezugnahme der beigefügten Zeichnungen detailliert beschrieben. In den Zeichnungen zeigen:
- Fig. 1
- einen Notausschaltreis mit drei Notauseinheiten und einer Auswerteeinheit,
- Fig. 2
- ein schematisches Schaltbild einer Notauseinheit mit einem an einer elektronischen Schaltung angekoppelten Notausschalter,
- Fig. 3
- ein Signal-Zeitdiagramm des Notausschaltkreises während einer automatischen Konfigurationsphase,
- Fig. 4
- ein Signal-Zeitdiagramm des Notausschaltkreises während eines normalen Arbeitsbetriebs, d.h. wenn kein Notausschalter geschaltet ist, und
- Fig. 5
- ein Signal-Zeitdiagramm des Notausschaltkreises bei zwei von drei aktivierten.
- Fig. 1
- an emergency stop circuit with three emergency units and an evaluation unit,
- Fig. 2
- a schematic diagram of an emergency unit with a coupled to an electronic circuit emergency stop switch,
- Fig. 3
- a signal-time diagram of the emergency stop circuit during an automatic configuration phase,
- Fig. 4
- a signal-time diagram of the emergency stop circuit during a normal working operation, ie when no emergency stop switch is switched, and
- Fig. 5
- a signal-time diagram of the emergency stop circuit at two of three activated.
Das in der
Wie aus der
Die Auswerteeinheit 10 weist einen Signalausgang 11 und einen Signaleingang 12 auf, an denen die drei Notauseinheiten 20, 30 und 40 in Reihe angeschlossen sind.The
Die Notauseinheiten sind untereinander jeweils über Signaleingänge 21, 31, 41 und Signalausgänge 22, 32, 42 verschaltet, die von den elektronischen Schaltungen 24, 34, 44 bereitgestellt sind.The emergency cutouts are interconnected via
Die Auswerteeinheit 10 kann nicht dargestellte weitere Signalausgänge und Signaleingänge aufweisen, an denen weitere nicht dargestellte Notauseinheiten jeweils in Reihe anschließbar sind, die zusätzliche parallele Teilnehmerketten bilden.The
Damit die Notauseinheiten insbesondere die Betätigung des jeweiligen Notausschalters der Auswerteeinheit 10 signalisieren können, erzeugt die Auswerteeinheit 10 ein vorbestimmtes Signal UA (siehe
Die Schaltungen 24, 34, 44 der Notauseinheiten 20, 30, 40 des Notausschaltkreises 1 sind identisch aufgebaut, so dass in der
Die Schaltung 24 umfasst einen Signaleingang 21, einen Signalausgang 22 sowie einen Logikbaustein 210, der bevorzugt durch einen Mikrokontroller oder alternativ durch einen FPGA, CPLD bzw. ein ASIC realisiert werden kann.The
Der Notausschalter 23 ist über Ports P8 und P9 sowie Ports P11 und P12 zweikanalig an dem Logikbaustein 210 angeschlossen. Für eine solche zweikanalige und somit sichere Anbindung an die Schaltung sind alle auf dem Markt erhältlichen zweikanaligen Notausschalter grundsätzlich geeignet, d.h. es können prinzipiell sowohl Notausschalter mit zwei Öffnern oder zwei Schließern, als auch einem Öffner/Schließer-Paar für die Notauseinheit verwendet werden. Der entsprechend verwendete Schaltertyp muss lediglich durch Soft- oder Hardwaremittel an dem Logikbaustein 210 eingestellt werden. Alternativ können auch andere Sensortypen, wie Trittmatten, Temperatur- und Drucksensoren, Lichtschranken, Schutzgitter usw. an einer Notauseinheit angeschlossen werden. Des Weiteren können an einer Notauseinheit mehrere Sensoren über verschiedene Ports des Logikbausteins 210 angeschlossen werden.The
Die Schaltung 24 umfasst einen Transistor 220 und optional einen Transistor 260, die mit ihrem jeweiligen Gateanschluss mit dem Logikbaustein 210 verbunden sind. Der Transistor 220 ist zwischen dem Signaleingang 21 und dem Signalausgang 22 geschaltet, während der Transistor 260 zwischen dem Signaleingang 21 und dem Masseanschluss 25 geschaltet ist. Alternativ könnte der zweite Transistor 260 auch zwischen dem Signalausgang 22 und dem Masseanschluss 25 geschaltet sein. Der Logikbaustein 210 steuert die Transistoren 220 und 260 derart an, dass das am Signaleingang 21 anliegende Spannungssignal UA, welches das vorbestimmte Signal ist, durch den Transistor 220 moduliert und auf den Signalausgang 22 ausgegeben werden kann. Mittels des Transistors 260 kann das Spannungssignal UA am Eingang 21 auf das Bezugspotential des Masseanschluss 25 gezogen werden, wodurch allen Teilnehmern des Notausschaltkreises, d.h. der Auswerteeinheit 10 und den anderen in der Reihenschaltung nachfolgenden Notauseinheiten 33, 43 ein Fehlerzustand signalisiert werden kann.The
Die elektronische Schaltung 24 verfügt des Weiteren über eine Diode 231 und einen Kondensator 232, die zwischen dem Signaleingang 21 und dem Masseanschluss 25 mit dem Bezugspotential GND in Reihe geschaltet sind und über eine Versorgungseinrichtung 233 eine Spannungsversorgung für den Logikbaustein 210 bereitstellen. Beispielsweise kann die Versorgungseinrichtung 233 als Schaltnetzteil oder als Spannungsregler ausgeführt sein.The
Aus einem zwischen 0 V und 24 V variierenden Signal am Signaleingang 21 kann eine konstante Versorgungsspannung von z.B. 3,3 V oder 5 V für den Logikbaustein gewonnen werden, so dass in bevorzugter Weise keine zusätzliche Leitung für eine Hilfsenergie der Notauseinheiten 20, 30, 40 in einem Notausschaltkreis erforderlich ist.From a signal varying between 0 V and 24 V at the
Alternativ kann aber auch eine zusätzliche Leitung die Versorgungsspannung zu den Notauseinheiten und diesen zugeordneten Notausschalter führen. Die Energieversorgung erfolgt in diesem Fall nicht über die Signalleitungen, so dass die Diode 231 und der Kondensator 232 zu Gunsten eines zusätzlichen Anschlusses entfallen können.Alternatively, however, can also lead an additional line, the supply voltage to the Notauseinheiten and this associated emergency stop. The power supply does not take place in this case via the signal lines, so that the
Die Funktion des Notausschaltkreises 1 sowie der einzelnen in Reihe geschalteten Notauseinheiten wird im Folgenden unter Bezugnahme der in den
Bei jeder Inbetriebnahme durchläuft der Notausschaltkreis 1 zunächst eine Konfigurationsphase, in der die Anzahl der angeschlossenen Notauseinheiten 20, 30, 40 durch die Auswerteeinheit 10 ermittelt wird und die Notauseinheiten ihre Position in der Reihenschaltung ermitteln. Zu Beginn dieser Konfigurationsphase ist der Transistor 220 einer jeweiligen Notauseinheit zunächst gesperrt, so dass die in
In der
Zum Zeitpunkt t1 zunächst ein erster Energieimpuls 311 auf den Signalausgang 11 gegeben, der über eine Dauer von drei Takten Tb anliegen bleibt und im Wesentlichen zur Versorgung der Notauseinheiten dient. Das Signal UAk wird für einen Takt zurückgesetzt, so dass eine Signalpause 312 auf den Energieimpuls 311 folgt. Im Anschluss wird ein Signalimpuls 313 über die Dauer eines Takts gesendet, auf den eine zweite Pause 314 von zwei Takten folgt.At time t1, a
Mit Blick auf die
Die Auswerteeinheit 10 erkennt unterdessen an ihrem eigenen Signaleingang 12 zunächst keine Eingangsspannung und schließt daraus, dass mindestens eine Notauseinheit in dem Notausschaltkreis angeschlossen ist.Meanwhile, the
Demzufolge wird von der Auswerteeinheit 10 ein zweiter Energieimpuls 321 über den Signalausgang 11 ausgegeben, auf den nach einer Pause 322 nun ein zweiter Signalimpuls 323 folgt, der drei Takte breit ist. Die erste Notauseinheit 20 empfängt an ihrem Signaleingang 21 den Energieimpuls 321 und den Signalimpuls 323 des Signals UAk und gibt diese Impulse durch den nunmehr geöffneten Transistor 220 auf den Signalausgang 22 als zweites Signal UBk aus, wobei das zweite Signal UBk durch die Notauseinheit 20 derart moduliert wird, dass der Signalimpuls 323 während eines Takts Tb ausgeblendet wird. Das zweite Signal UBk enthält somit einen High-Pegel 3231, einen Low-Pegel 3232 und einen zweiten High-Pegel 3233.Accordingly, the
Die zweite Notauseinheit 30 empfängt folglich an ihrem Signaleingang 31 das Spannungssignal UBk, das den Energieimpuls 321 und nachfolgend den High-Pegel 3231, den Low-Pegel 3232 und den zweiten High-Pegel 3233 ausweist. Das Spannungssignal UBk entspricht somit dem modulierten Signal UAk, welches von der Auswerteeinheit 10 erzeugt worden ist. Die Notauseinheit 30 wird nunmehr durch den Energieimpuls 321 aktiviert und erkennt sich selbst als zweiten Teilnehmer, d.h. als zweite Notauseinheit 30 in dem Notausschaltkreis.The second
Die Auswerteeinheit 10 erkennt weiterhin kein Eingangssignal an ihrem Signaleingang 12 und gibt einen dritten Energieimpuls 331 über den Signalausgang 11 aus, auf den eine Signalpause 332 und ein dritter Signalimpuls 333 folgt. Der dritte Signalimpuls 333 ist gegenüber dem vorhergehenden Zyklus gesendeten zweiten Signalimpuls 323 um weitere zwei Takte verbreitert, und umfasst also insgesamt eine Breite von 5 Takten Tb.The
Die Notauseinheiten 20 und 30 geben jeweils ein moduliertes Signal UBk bzw. UCk (siehe
Die dritte Notauseinheit 40 empfängt das Signal UCk und erkennt sich selbst als dritte Notauseinheit 40 im Notausschaltkreis, während die Auswerteeinheit 10 weiterhin kein Eingangssignal an ihrem Signaleingang 12 empfängt.The third
Die Auswerteeinheit 10 sendet in ihrem Signal UAk einen weiteren Energieimpuls 341 und einen vierten Signalimpuls 343 aus, der gegenüber dem dritten Signalimpuls 331 abermals um zwei Takte Tb verlängert ist, und somit eine Breite von insgesamt sieben Takten Tb umfasst. Das gesendete Signal UAk wird von jeder Notauseinheit 20, 30, und 40 moduliert und weitergeleitet. Hierbei moduliert jede Noteinheit das Signal UAk beispielsweise derart, dass jede Notauseinheit einen Low-Pegel der Länge Tb in den Signalimpuls 343 einfügt, d. h. dass jeweils ein Takt innerhalb des Signalimpulses 343 ausgeblendet wird. Die von den Notauseinheiten 20, 30 und 40 entsprechend modulierten Signale UBk, UCk bzw. UDk sind in
Die Auswerteeinheit 10 empfängt nunmehr an ihrem Signaleingang 12 das von der Notauseinheit 40 weitergereichte Signal UDk und registriert somit insgesamt drei an dem Notausschaltkreis angeschlossene Notauseinheiten 20, 30, 40 und schließt damit die Konfigurationsphase ab.The
Schlägt die Konfiguration des Notausschaltkreises durch den Einfluss elektromagnetischer Störungen fehl, so kann die Konfigurationsphase auch mehrmals durchlaufen werden bis eine stabile Kommunikation etabliert ist.If the configuration of the emergency stop circuit fails due to the influence of electromagnetic interference, the configuration phase can also be repeated several times until stable communication is established.
An den in der
Alternativ könnte an den Teilnehmern, d.h. im vorliegenden Beispiel den Notauseinheiten, deren jeweilige Position in einer Teilnehmerkette manuell eingestellt werden, die zum Beispiel durch DIP-Schalter codiert oder in einem nicht flüchtigen Speicher abgelegt werden. In gleicher Weise kann die Anzahl der vorhandenen Notauseinheiten an oder in der Auswerteeinheit 10 eingestellt bzw. gespeichert werden. Die Konfigurationsphase nach der Inbetriebnahme des Notausschaltkreises wird in diesem Fall durch eine Initialisierungsphase ersetzt, während der die Teilnehmer gleichzeitig mit Energie versorgt werden. Hierzu wird zum Beispiel ein langer Energieimpuls bereitgestellt. Bevorzugt kann nach einer ersten Inbetriebnahme eine Konfigurationsphase manuell ausgelöst werden, nach der die Konfigurationsdaten des Notausschaltkreises in den nicht flüchtigen Speichern der Teilnehmer abgelegt wird, so dass nach jeder weiteren Inbetriebnahme nur noch die Initialisierungsphase durchlaufen werden muss.Alternatively, at the subscribers, ie in the present example, the emergency disbursements, their respective position in a subscriber chain could be manually set, which are coded for example by DIP switches or stored in a non-volatile memory. In the same way, the number of existing Notauseinheiten can be set or stored on or in the
Nach dem Beenden der Konfigurationsphase generiert die Auswerteeinheit 10 ein beispielhaftes, zyklisches, vorbestimmtes Signal UA, das über den Signalausgang 11 an die erste Notauseinheit 20 ausgegeben wird. Der zeitliche Signalverlauf des Signals UA ist in der
Die Notauseinheit 20 empfängt in jedem Zyklus das oben beschriebene Signal UA am Signaleingang 21 und moduliert den Signalimpuls 430 beispielsweise derart, dass während vorbestimmter Takte der Signalimpuls 430 ausgeblendet wird.The
Im vorliegenden Beispiel wird der Signalimpuls 430 mittels des Transistors 70 derart moduliert, dass der Signalimpuls 430 mit einem High-Pegel 431 der Länge Tb beginnt, dem sich ein Low-Pegel 432, also ein ausgeblendeter Abschnitt, der Länge Tb anschließt. Der Rest des Signalimpulses 430, der in
Die Notauseinheit 40 empfängt somit den Startimpuls 410, die Pause 420 und den von den vorgeschalteten Noteinheiten 20 und 30 modulierten Signalimpuls. Im vorliegenden Beispiel moduliert die Notauseinheit 40 lediglich den Signalimpuls 430" des empfangenen Signals UC, und zwar in ähnlicher Weise wie die Noteinheiten 20 und 30. Hierzu wird der Signalimpuls 430" derart moduliert, dass er mit einem High-Pegel der Länge Tb beginnt, dem sich ein Low-Pegel bzw. ausgeblendeter Abschnitt der Länge Tb anschließt. Der Rest des Signalimpulses 430" , der nur noch den Endimpuls 437 enthält, wird nicht moduliert. Das modulierte Signal UC wird nunmehr als Signal UD zur Auswerteeinheit 10. übertragen. Der anfangs von der Auswerteeinheit 10 erzeugte Signalimpuls 430 umfasst nunmehr drei High-Pegel 431, 433 und 435 entsprechend der Anzahl vorhandener Noteinheiten sowie den Endimpuls 437. die jeweils durch einen ausgeblendeten Abschnitt voneinander getrennt sind. Die Auswerteeinheit 10 erkennt anhand des empfangenen Signals DU, dass kein Notausschalter betätigt worden ist. Aus den Differenzsignalen (UA-UB), (UB-UC) und (UC-UD) wird ersichtlich, zu welchen Zeitintervallen die Kondensatoren 90 der Notauseinheiten 20, 30 und 40 nachgeladen werden. Zum Nachladen der Energieversorgung wird jeweils der Signalimpuls verwendet, der bei der Weitergabe bzw. bei der Modulation durch die jeweilige Notauseinheit ausgeblendet wird.The
Die
Die Auswerteeinheit 10 generiert weiterhin das in
Die Notauseinheit 20 empfängt in aktuellen Zyklus das bereits beschriebene Signal UA am Signaleingang 21 und moduliert den Signalimpuls 530, der dem Signalimpuls 430 des in
Die Notauseinheit 40 empfängt somit den Startimpuls 510, die Pause 520 und den von den vorgeschalteten Noteinheiten 20 und 30 modulierten Signalimpuls. Die Notauseinheit 40 moduliert lediglich den Signalimpuls 530" des empfangenen Signals UC, und zwar derart, dass die Betätigung des Notausschalters 43 signalisiert werden kann. Hierzu wird der Signalimpuls 530" derart moduliert, dass er mit zwei Low-Pegel 535 und 536 bzw. zwei ausgeblendeten Abschnitten mit jeweils der Länge Tb beginnt. Der Rest des Signalimpulses 530", der nur noch den Endimpuls 537 enthält, wird nicht moduliert. Das modulierte Signal UC wird nunmehr als Signal UD zur Auswerteeinheit 10 übertragen.The
Der anfangs von der Auswerteeinheit 10 erzeugte Signalimpuls 530 umfasst nunmehr einen High-Pegel 533 und den Endimpuls 537. Die Auswerteeinheit 10 erkennt anhand der Low-Pegel 531, 532 und 535, 536 des empfangenen Signals UD, dass die Notausschalter 23 und 43 der Notauseinheiten 20 bzw. 40 betätigt worden sind.The
Anstelle des zuvor beschriebenen Verfahrens könnte auf die Konfigurationsphase zunächst eine Meldephase folgen, die in den Figuren nicht dargestellt ist. Innerhalb dieser Meldephase signalisieren die Notauseinheiten 20, 30, 40 der Auswerteeinheit 10 lediglich, ob überhaupt die Sicherheitsfunktion aktiviert werden muss oder nicht.Instead of the method described above, the configuration phase could initially be followed by a reporting phase, which is not shown in the figures. Within this reporting phase, the
Die Auswerteeinheit 10 sendet zu diesem Zweck über ihren Signalausgang 11 wiederum ein zyklisches, vorbestimmtes Signal an die erste Notauseinheit 20 aus. Dieses Signal umfasst einen charakteristischen Startimpuls, der sich vorzugsweise von dem Startimpuls des Arbeitsbetriebs z.B. in der Breite unterscheidet, auf den ein Signalimpuls mit einer vorbestimmten Breite folgt. Die vorbestimmte Breite des Signalimpulses ist in der Meldephase bevorzugt nicht von der Anzahl der Notauseinheiten in einem Teilnehmerkreis abhängig.For this purpose, the
Alle Notauseinheiten 20, 30, 40 empfangen das vorbestimmte Signal an ihrem Signaleingang 21, 31, 41 und leiten dieses nichtmoduliert an die nachfolgenden Teilnehmer weiter, sofern kein Notausschalter betätigt worden ist. Soll von einer der Notauseinheiten ein kritischer Systemzustand, d.h. ein betätigter Notausschalter, signalisiert werden, so kann das empfangene Signal durch Ausblenden einer vorbestimmten Position im Signalimpuls moduliert werden. Während der Meldephase ist allen Notauseinheiten dieselbe Position im Signalimpuls zur Signalisierung zugeordnet. Die Signalisierung eines oder mehrerer kritischer Systemzustände durch einen oder mehreren Teilnehmer erfolgt somit ODER-verknüpft.All
Der Auswerteeinheit 10 wird in dieser Meldephase somit nur signalisiert, ob überhaupt ein kritischer Systemzustand, d.h. ein betätigter Notausschalter vorliegt und ob die Sicherheitsfunktion aktiviert werden soll.The
Sobald eine Notauseinheit 20, 30, 40 einen betätigten Notausschalter signalisiert, wird der Notausschaltkreis von der Auswerteeinheit 10 in den zuvor beschriebenen Arbeitsbetrieb versetzt. Von der Auswerteeinheit wird in dem zuvor beschrieben Verfahren festgestellt, welche Notauseinheit einen betätigten Notausschalter signalisiert.As soon as an
Die Meldephase bietet gegenüber dem zuvor beschriebenen Arbeitsbetrieb kürzere Zykluszeiten, solange kein betätigter Notausschalter signalisiert wird. Dieses ist insbesondere bei einer großen Anzahl von Notauseinheiten in der Teilnehmerkette vorteilhaft.The reporting phase offers shorter cycle times compared to the above-described operating mode, as long as no actuated emergency stop switch is signaled. This is particularly advantageous for a large number of emergency units in the subscriber chain.
Treten Fehler beispielsweise durch Kurzschlüsse oder durch Leitungsunterbrechungen in dem Notausschaltkreis 1 auf, so empfängt die Auswerteeinheit 10 an ihrem Signaleingang 12 zumindest kein vollständiges Signal UD. Unter Ansprechen auf ein unvollständig empfangenes Signal UD kann die Auswerteeinheit 10 ebenfalls eine sicherheitsbasierte Funktion auslösen und einen Fehler signalisieren.If errors occur, for example, as a result of short circuits or line breaks in the
Die Mikrocontroller 210 der Notauseinheiten 20, 30, 40 können zusätzlich eine interne Fehlfunktion, zum Beispiel einen ausgefallenen Kanal eines zweikanalig angeschlossenen Notausschalters, selbständig feststellen. Ein solcher Fehler kann von einer Notauseinheit, beispielsweise der Notauseinheit 20, der Auswerteeinheit 10 dadurch signalisiert werden, dass der Transistors 260 der elektronischen Schaltung 24 den Signaleingang 21 mit dem Masseanschluss 25 kurzschließt. Die Auswerteeinheit 10 empfängt somit ein unvollständiges Signal UD und schließt aus dem übertragenen Kurzschlusssignal auf ein fehlerhaftes Signal UD und kann darauf hin eine sicherheitsgerichtete Funktion und/oder ein Fehlersignal auslösen. Zur Kontrolle eines modulierten Signals kann am Signalausgang 22, 32, 42 einer Notauseinheit 20, 30, 40 eine zweite Signalerkennungseinrichtung vorgesehen sein, welche die Widerstände 251 und 250 umfasst.The
Claims (11)
- A safety communication system (1) for providing a safety function, comprising:an evaluation unit (10) and connected thereto a plurality of subscriber devices (20, 30, 40) which are connected in series; whereinthe evaluation unit (10) has a signal output (11), a signal input (12), a ground connection (15), and means for providing a predefined signal for the first subscriber device, the predefined signal including a signal pulse of a pulse length that depends on the number of subscriber devices connected in series;the subscriber devices (20, 30, 40) each include a signal input (21, 31, 41), a signal output (22, 32, 42), a ground connection (25, 35, 45) for a reference potential, a sensor (23, 33, 43), and an electronic circuit (24, 34, 44); whereineach electronic circuit (24, 34, 44) is adapted to modulate the signal pulse of the predefined signal according to its position in the safety communication system and to transmit the modulated predefined signal via the signal output to the next downstream subscriber device, or at the end of the series to the evaluation unit (10) in order to signal a critical or non-critical system state which is represented by the output signal of the respective sensor; and whereinthe evaluation unit is adapted to evaluate the modulated predefined signal and to control a safety function in response to the evaluation result.
- The safety communication system according to claim 1, characterized in that based on the modulated predefined signal the evaluation unit (10) is capable to localize the subscriber device or those subscriber devices which have signaled a critical system state.
- The safety communication system according to claim 2, characterized in that the electronic circuit (24, 34, 44) of each subscriber device includes a logic device (60) and at least one transistor (220), wherein the transistor (210) is controllable by the logic device (210) and is arranged between the signal input (21, 31, 41) and the signal output (22, 32, 42) of the respective subscriber device, and is adapted to modulate the predefined signal applied to the signal input (21, 31, 41) and to transfer it via the signal output (22, 32, 42) to the evaluation unit (10) or to a downstream subscriber device.
- The safety communication system according to claim 3, characterized in that each electronic circuit (24, 34, 44) is adapted to be capable to obtain a supply voltage from the predefined signal applied to the signal input (21, 31, 41).
- The safety communication system according to claim 3 or 4, characterized in that each electronic circuit (24, 34, 44) comprises a second transistor (260) by means of which the signal input (21, 31, 42) is connectable to the reference potential (25, 35, 45).
- A method for signaling at least one system state of a safety communication system (1) which comprises an evaluation unit (10) and a plurality of subscriber devices (20, 30, 40) connected in series, wherein each subscriber device has associated therewith at least one sensor, comprising the steps of:a) generating, in the evaluation unit (10), a predefined signal (UA), wherein the predefined signal includes a signal pulse whose pulse length depends on the number of subscriber devices connected in series;b) outputting the predefined signal (UA) from the evaluation unit (10) to the first subscriber device (20) of the safety communication system;c) modulating the signal pulse of the received predefined signal in the first subscriber device (10) according to the position thereof in the safety communication system and based on the output signal provided by a sensor (23) that is associated with the first subscriber device, and outputting the modulated predefined signal to a further subscriber device (30);d) modulating the signal pulse of the received modulated predefined signal in the further subscriber device (30) according to the position thereof in the safety communication system and in response to the state signal which is provided by a sensor (33) associated with the further subscriber device, and outputting the modulated predefined signal to a further subscriber device;e) repeating step d) in function of the number of subscriber devices in the safety communication system;f) outputting the modulated predefined signal (UD) from the last subscriber device (40) of the safety communication system to the evaluation unit (10);g) evaluating, in the evaluation unit, the received modulated predefined signal, and controlling a safety function if a critical system state was signaled by at least one subscriber device.
- The method according to claim 6, characterized in that the predefined signal includes a start pulse and a first pause preceding the signal pulse, and the signal pulse includes a final pulse which is followed by a second pause which is longer in time than the first pause.
- The method according to claim 6 or 7, characterized in that the received predefined signal or the received modulated predefined signal is modulated by masking out the signal pulse at least at one predetermined point for a predetermined time.
- The method according to claim 8, characterized in that the masked-out portion of the signal pulse is used to generate a supply voltage of the subscriber device.
- The method according to any of claims 6 to 7, characterized in that steps a) through g) are repeated cyclically.
- The method according to any of claims 6 to 8, characterized in that prior to step a) a configuration phase is performed in which the evaluation unit (10) determines the number of subscriber devices (20, 30, 40) within the safety communication system and in which the subscriber devices identify their position within the safety communication system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200910050692 DE102009050692B4 (en) | 2009-10-26 | 2009-10-26 | Security communication system for signaling system states |
PCT/EP2010/006503 WO2011054458A1 (en) | 2009-10-26 | 2010-10-25 | Safety communication system for signaling system states |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2494534A1 EP2494534A1 (en) | 2012-09-05 |
EP2494534B1 true EP2494534B1 (en) | 2014-12-03 |
Family
ID=43480802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10784684.2A Active EP2494534B1 (en) | 2009-10-26 | 2010-10-25 | Safety communication system for signaling system states |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2494534B1 (en) |
DE (1) | DE102009050692B4 (en) |
WO (1) | WO2011054458A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014208709A1 (en) | 2014-05-09 | 2015-11-12 | Smiths Heimann Gmbh | SAFETY DEVICE |
GB2551501A (en) | 2016-06-17 | 2017-12-27 | Sumitomo Chemical Co | Nanoparticles |
EP3482380B1 (en) * | 2016-07-07 | 2024-09-18 | UTC Fire & Security EMEA BVBA | Sensor data transmission system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1981001624A1 (en) * | 1979-12-05 | 1981-06-11 | M Muldrey | Condition monitoring system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2836760C2 (en) * | 1978-08-23 | 1983-11-17 | Dr. Alfred Ristow GmbH & Co, 7500 Karlsruhe | Electronic remote monitoring system |
DE3008450C2 (en) * | 1980-03-05 | 1986-09-18 | Georg Prof. Dr. 8012 Ottobrunn Färber | Sequential transmission system for addressless connection of several participants to a control center |
ATE116464T1 (en) * | 1988-10-06 | 1995-01-15 | Siemens Ag | METHOD FOR THE ENERGY-SAVING OPERATION OF HAZARD DETECTORS IN A HAZARD ALARM SYSTEM. |
ATE132996T1 (en) * | 1990-04-03 | 1996-01-15 | Siemens Ag | DEVICE FOR CONNECTING FURTHER ELEMENTS TO AN ALREADY EXISTING PRIMARY REPORTING LINE |
DE19643013C1 (en) * | 1996-10-18 | 1998-02-12 | Telefunken Microelectron | Data transmission system for automobile decentralised control system |
DE19742716C5 (en) * | 1997-09-26 | 2005-12-01 | Phoenix Contact Gmbh & Co. Kg | Control and data transmission system and method for transmitting safety-related data |
AT412315B (en) * | 2002-01-17 | 2004-12-27 | Bernecker & Rainer Ind Elektro | INSTALLATION FOR THE TRANSFER OF DATA |
-
2009
- 2009-10-26 DE DE200910050692 patent/DE102009050692B4/en active Active
-
2010
- 2010-10-25 EP EP10784684.2A patent/EP2494534B1/en active Active
- 2010-10-25 WO PCT/EP2010/006503 patent/WO2011054458A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1981001624A1 (en) * | 1979-12-05 | 1981-06-11 | M Muldrey | Condition monitoring system |
Also Published As
Publication number | Publication date |
---|---|
DE102009050692B4 (en) | 2011-12-01 |
DE102009050692A1 (en) | 2011-04-28 |
EP2494534A1 (en) | 2012-09-05 |
WO2011054458A1 (en) | 2011-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1493064B1 (en) | Device for the error-proof switching off of an electric consumer, particularly in industrial production plants | |
EP1269274B2 (en) | Safety switching unit and method for setting an operational mode of a safety switching unit | |
EP0007579B1 (en) | Circuit arrangement for monitoring the state of signalling systems, especially traffic light signalling systems | |
DE102011016137A1 (en) | Safety circuit arrangement for fail-safe switching on or off of a dangerous system | |
DE2447721C3 (en) | Monitoring circuit for a vehicle | |
DE2442066B2 (en) | Method and circuit arrangement for remote control of electrical devices | |
DE69231311T2 (en) | Optoelectronic barrier | |
DE1945420B2 (en) | Digital integration synchronization switching network | |
DE3322242A1 (en) | DEVICE FOR FUNCTION MONITORING OF ELECTRONIC DEVICES, IN PARTICULAR MICROPROCESSORS | |
DE102016118004A1 (en) | Communication system for current-modulated data transmission via a current loop | |
EP2494534B1 (en) | Safety communication system for signaling system states | |
DE10127054B4 (en) | Method for monitoring a voltage supply of a control device in a motor vehicle | |
DE2338882A1 (en) | PROCEDURE AND REMOTE CONTROL SYSTEM FOR SWITCHING ELECTRICAL CONSUMERS ON AND OFF | |
DE3840493C1 (en) | ||
DE10045651B4 (en) | Safety relay | |
EP2127992B1 (en) | Circuit for monitoring the end position switches of a four wire three phase drive for points | |
DE4107668C2 (en) | Safety relay | |
EP2515553B1 (en) | Security communication system for signalling system conditions | |
DE2443143C2 (en) | Method for monitoring electrical circuits | |
DE2552414B2 (en) | PROCEDURE FOR OPERATING A MONITORING ARRANGEMENT | |
DE2842350C2 (en) | Circuit arrangement for monitoring clock pulse trains | |
DE3610246A1 (en) | MONITORING SYSTEM | |
EP0173076B1 (en) | Supervising device for thyristors | |
DE102008049662A1 (en) | Method and device for checking asynchronous transmission of control signals | |
DE1513297B2 (en) | CIRCUIT ARRANGEMENT FOR DETECTION OF L OR O SIGNAL ERRORS FOR AT LEAST ONE TWO-CHANNEL CONTROL CIRCUIT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120425 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130805 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140612 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 699753 Country of ref document: AT Kind code of ref document: T Effective date: 20141215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010008418 Country of ref document: DE Effective date: 20150108 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20141203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150303 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150403 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150403 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010008418 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
26N | No opposition filed |
Effective date: 20150904 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20151030 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20151022 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151025 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20151025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151025 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 699753 Country of ref document: AT Kind code of ref document: T Effective date: 20151025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101025 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230424 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231227 Year of fee payment: 14 |