EP2494175B1 - Method for the control and regulation of an internal combustion engine - Google Patents

Method for the control and regulation of an internal combustion engine Download PDF

Info

Publication number
EP2494175B1
EP2494175B1 EP10771023.8A EP10771023A EP2494175B1 EP 2494175 B1 EP2494175 B1 EP 2494175B1 EP 10771023 A EP10771023 A EP 10771023A EP 2494175 B1 EP2494175 B1 EP 2494175B1
Authority
EP
European Patent Office
Prior art keywords
pressure
common rail
rail
rail system
emergency operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10771023.8A
Other languages
German (de)
French (fr)
Other versions
EP2494175A1 (en
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP2494175A1 publication Critical patent/EP2494175A1/en
Application granted granted Critical
Publication of EP2494175B1 publication Critical patent/EP2494175B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0275Arrangement of common rails
    • F02M63/0285Arrangement of common rails having more than one common rail
    • F02M63/0295Arrangement of common rails having more than one common rail for V- or star- or boxer-engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • F02D2041/223Diagnosis of fuel pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D2041/3881Common rail control systems with multiple common rails, e.g. one rail per cylinder bank, or a high pressure rail and a low pressure rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure

Definitions

  • the invention relates to a method for controlling and regulating an internal combustion engine with a separate A-side and an independent B-side common rail system, in which in normal operation in each common rail system of the rail pressure via a low-pressure suction throttle as the first pressure actuator in a rail pressure control loop is regulated and at the same time the rail pressure is acted upon via a high-pressure side pressure control valve as a second pressure actuator with a rail pressure disturbance by a pressure control valve volume flow is removed from the rail into a fuel tank via the high-pressure side pressure control valve.
  • a rail pressure control loop comprises a reference junction for determining a control deviation, a pressure regulator for calculating a control signal, the controlled system and a software filter in the feedback branch for calculating the actual rail pressure from the raw values of the rail pressure.
  • the control deviation is calculated from the target rail pressure to the actual rail pressure.
  • the controlled system comprises the pressure actuator, the rail and the injectors for injecting the fuel into the combustion chambers of the internal combustion engine.
  • FIG. 1 shows the DE 103 30 466 B3 a corresponding common rail system, wherein the pressure regulator accesses via the actuating signal to a suction throttle arranged on the low pressure side.
  • the inlet cross-section to the high-pressure pump and thus the delivered fuel volume are determined via the suction throttle.
  • the actual rail pressure is the relevant input variable.
  • a defective rail pressure sensor or an error in the signal detection of the rail pressure causes a wrong actual rail pressure and causes a faulty control of both the suction throttle as the first pressure actuator and the pressure control valve as a second pressure actuator.
  • An error protection in case of failure of the rail pressure sensor is not shown in the specified reference.
  • a passive pressure relief valve is provided as a protective measure against too high a rail pressure, for example after a cable break in the power supply to the suction throttle. If the rail pressure exceeds a critical value, for example 2400 bar, the pressure relief valve opens. The fuel is then discharged from the rail into the fuel tank via the opened pressure relief valve.
  • a pressure level which depends on the injection quantity and the engine speed. At idle, this pressure level is about 900 bar, while at full load it is about 700 bar.
  • the invention is therefore based on the object in an internal combustion engine with a separate A-side and an independent B-side common rail system together with passive pressure relief valve and pressure control valve to make the control of the rail pressure safer.
  • a first emergency operation is set for the A-side common rail system, while the error-free B-side common rail system continues to be used normal operation remains set.
  • the A-side pressure control valve and the A-side intake throttle are actuated as a function of the same default size in the A-side common rail system. If the rail pressure sensor and additionally the pressure control valve fail in the A-side common rail system, a second emergency operation is set for the A-side common rail system.
  • the suction throttle is then controlled in the A-side common rail system in such a way that the rail pressure increases successively until the response of the passive pressure relief valve. If the A-side common rail system is error-free and the errors occur in the B-side common rail system, the procedure is analogous.
  • the invention provides in one embodiment that is set by setting the second emergency operation for the A-side common rail system, the target rail pressure of the error-free B-side common rail system to a constant emergency service rail pressure. If, on the other hand, the second emergency mode is set for the B-side common rail system, then the nominal rail pressure of the fault-free A-side common rail system is set to the emergency service rail pressure in an analogous manner.
  • the energization duration of the injectors is calculated via an injector map as a function of a desired injection quantity and the actual rail pressure.
  • the actual rail pressure on the A side is switched as a function of the ignition sequence to the B-side actual rail pressure as the input variable of the injector map.
  • a target map rail pressure is used instead of the A-side actual rail pressure.
  • a rail pressure average is set as the input parameter for the injector map.
  • the rail pressure mean value is set to, for example, 800 bar. This pressure value corresponds to the mean value of the pressure range which occurs when the passive pressure relief valve is open.
  • the rail pressure can still be set with a sufficient approximation using the pressure control valve. Since in this case the energization duration of the injectors is calculated with high accuracy, the contribution of the affected rail to the engine power is, with insignificantly higher emission values, maximum.
  • the pressure control valve thus allows redundancy in case of failure of the rail pressure sensor.
  • the second emergency operation can still be represented by Absteuem the fuel via the passive pressure relief valve stable engine operation. There is therefore a double redundancy.
  • FIG. 1 shows a system diagram of an electronically controlled internal combustion engine 1 in V-arrangement with a stand-alone common rail system on the A-side and a stand-alone common rail system on the B-side.
  • the A-side and B-side common rail systems are identically constructed and hydraulically separated from each other.
  • the components of the A-side are at the reference numeral with the suffix A and the components of the B-side marked with the suffix B at the reference numerals.
  • the common rail system on the A side comprises as mechanical components a low-pressure pump 3A for conveying fuel from a fuel tank 2, a low-pressure side suction throttle 4A as a first pressure actuator for influencing the volume flow, a high-pressure pump 5A, a rail 6A and injectors 7A for injection of fuel in the combustion chambers of the internal combustion engine 1.
  • the common rail system can also be designed with Agreement arrivedn, then for example in the injector 7A a single memory is integrated as an additional buffer volume.
  • a passive pressure relief valve 9A is provided, which opens, for example, at a rail pressure of 2400 bar and abgrest the fuel from the rail 6A in the fuel tank 2 in the open state.
  • the A-side common rail system is supplemented by an electrically controllable pressure control valve 11A, via which an adjustable volume flow is diverted into the tank. This volume flow will be referred to in the text as pressure control valve volume flow.
  • the internal combustion engine 1 is controlled via an electronic engine control unit 10 (ECU), which contains the usual components of a microcomputer system, for example a microprocessor, I / O components, buffers and memory components (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 1 operating data in maps / curves are applied. About this calculates the electronic control unit 10 from the input variables, the output variables.
  • ECU electronic engine control unit 10
  • B-side rail pressure pCR (B) B-side rail pressure pCR
  • a size ON are shown as inputs to the electronic engine control unit 10.
  • the A-side rail pressure pCR (A) is detected by an A-side rail pressure sensor 8A and the B-side rail pressure pCR (B) by a B-side rail pressure sensor 8B.
  • the size ON is representative of the other input signals, for example for an engine speed or for a performance request of the operator.
  • the illustrated outputs of the electronic engine control unit 10 are a PWM signal PWMSD (A) for driving the A-side intake throttle 4A, a power-determining signal ve (A) for driving the A-side injectors 7A, a PWM signal PWMSD (B) for driving the B-side suction throttle 4B, a power-determining signal ve (B) for driving the B-side injectors 7B, a PWM signal PWMDV (A) for driving the A-side pressure control valve 11A, a PWM signal PWMDV (B) for driving the B-side pressure regulating valve 11 B and a size OFF.
  • the latter is representative of the other control signals for controlling the internal combustion engine 1, for example, a control signal for controlling an EGR valve.
  • Characteristic feature of the illustrated embodiment is the independent control of the A-side rail pressure pCR (A) from the B-side rail pressure pCR (B).
  • FIG. 12 shows the A-side rail pressure control loop 12A for controlling the A-side rail pressure pCR (A) and the B-side rail pressure control loop 12B.
  • the A-side rail pressure control loop and the B-side rail pressure control loop are constructed identically, so that the description of the A-side rail pressure control loop 12A also applies to the B-side rail pressure control loop.
  • the input values of the A-side rail pressure control circuit 12A are: a target rail pressure pSL, a target consumption VVb, a rail pressure disturbance VSTG (A), the engine speed nMOT, a signal NB1 (A), a signal NB2 (A) , an emergency operating current value iNB and a quantity E1.
  • Size E1 comprises a basic PWM frequency, the battery voltage and the ohmic resistance of the intake throttle coil with supply line, which are included in the calculation of the PWM signal.
  • the signal NB1 (A) corresponds to the first emergency operation, which is set at a defective A-side rail pressure sensor and non-defective A-side pressure control valve of the A-side common rail system.
  • the signal NB2 (A) corresponds to the second emergency operation, which is set at a defective A-side rail pressure sensor and at the same time defective A-side pressure control valve of the A-side common rail system.
  • the output of the A-side rail pressure control circuit 12A is the raw value of the A-side rail pressure pCR (A). The further description initially takes place for normal operation, in which the switches S1A and S2A are in the position 1.
  • the actual rail pressure pIST (A) is calculated by means of a filter 13A. Also from the raw values of the rail pressure pCR (A), a dynamic rail pressure pDYN (A) is calculated via a filter 18A, which is included in the calculation of the control variable of the pressure control valve.
  • the filter 18A has a smaller one Phase delay as the filter 13A.
  • the actual rail pressure pIST (A) is compared with the desired rail pressure pSL, resulting in a control deviation ep (A).
  • a pressure regulator 14A calculates its manipulated variable, which corresponds to a regulator volume flow VR (A) with the physical unit liters / minute.
  • the calculated nominal consumption VVb and the rail pressure disturbance VSTG (A) are added at a summation point B.
  • the setpoint consumption VVb is calculated as a function of a desired injection quantity and the engine speed ( Fig. 3 ).
  • the result of the addition corresponds to an unlimited A-side target volume flow VSLu (A), which is the input of a function block 15A.
  • the limitation limits the unlimited volumetric flow VSLu (A) as a function of the engine speed nMOT and calculates an electric current iKL (A) via the pump characteristic.
  • the pump characteristic is designed in such a way that a decreasing current iKL (A) is assigned to an increasing nominal volume flow. Since, in normal operation, the switch S2A is in the position 1, the set current iSL (A) corresponds to the current iKL (A) calculated via the function block 15A.
  • the target current iSL (A) is an input of the calculation PWM signal 16A.
  • a PWM signal PWMSD (A) is calculated as a function of the desired current iSL (A), with which the solenoid of the A-side suction throttle is then driven.
  • the path of the magnetic core is changed, whereby the flow rate of the A-side high-pressure pump is influenced freely.
  • the A-side suction throttle is normally open and is acted upon with increasing PWM value in the direction of the closed position.
  • the A-side suction throttle, the A-side high-pressure pump and the A-side rail are combined in the unit 17A.
  • the control of the A-side intake throttle can be subordinated to a current control loop, in which the Saugdrosselstrom is detected as a controlled variable.
  • the A-side rail pressure pCR (A) generated by the high-pressure pump in the A-side rail is then detected via the A-side rail pressure sensor. This closes the A-side rail pressure control loop.
  • the value of a leakage volume flow VLKG is applied. This is calculated via a leakage map 19 as a function of the desired injection quantity QSL and the engine speed nMOT.
  • the desired injection quantity QSL in turn, can either be calculated via a characteristic map as a function of the power requirement or corresponds to the manipulated variable of a speed controller.
  • the unlimited nominal volume flow VSLu (A) is calculated from the sum of the output value of the switch S1A, the target consumption VVb and the rail pressure disturbance variable VSTG (A). The latter is calculated in the first emergency operation.
  • the second emergency mode NB2 (A) is set.
  • the switch S1A assumes the position 1 and the switch S2A changes to the position 2.
  • the setpoint current iSL (A) corresponds to an emergency operating current value iNB.
  • the emergency operating current value iNB is in this case selected so that it reliably opens the passive pressure limiting valve, here: the A-side pressure limiting valve (FIG. Fig. 1 : 9A) is coming.
  • iNB 0.4 A
  • the first emergency mode NB1 (B) is set for the B-side common rail system, ie the switch S1 B changes to position 2
  • the second emergency operation NB2 (B) for the B-side common rail system is then set by the switch S1B in the position 1 and the switch S2B in the position 2 is redirected. See also the FIG. 5 ,
  • FIG. 3 is shown as a block diagram of the A-side rail pressure control loop 12A with a controller 20A.
  • the A-side pressure regulating valve volume flow VDRV (A) is set.
  • the controller for the B-side pressure regulating valve is identical to the controller 20A, so that the description for the controller 20A also applies to the control of the B-side pressure regulating valve.
  • the inputs of the controller 20A are: the engine speed nMOT, the target injection amount QSL or a target torque MSL, the first emergency operation NB1 (A), the size E1 for the conversion of the PWM signal PWMDV (A), and a quantity E2.
  • the desired injection quantity QSL is either calculated via a characteristic map as a function of the power requirement or corresponds to the manipulated variable of a speed controller.
  • the physical unit of the target injection amount QSL is mm 3 / stroke.
  • the setpoint torque MSL is used instead of the set injection quantity QSL.
  • the outputs of the controller 20A are the pressure control valve volume flow VDRV (A), the target consumption VVb, and the rail pressure disturbance VSTG (A).
  • the target consumption VVb and the rail pressure disturbance VSTG (A) are input to the A-side rail pressure control circuit 12A.
  • the target consumption VVb which is an input of the rail pressure control loop 12A.
  • the desired volume flow VSLDV (A) of the pressure regulating valve is an input of a pressure regulating valve map 22A.
  • the second input represents the A-side actual rail pressure pIST (A) because the switch S5A is in the 1 position.
  • a desired current iSLDV (A) of the pressure regulating valve 11A is then calculated and converted into the duty cycle PWMDV (A) by means of a PWM calculation 23A, with which the pressure regulating valve 11A is actuated.
  • the conversion can be subordinated to a current control, current control loop 25A with filter 24A, in which the controlled variable corresponds to the adjusting the pressure regulating valve 11A electrical current.
  • the output signal of the pressure regulating valve 11A corresponds to the pressure regulating valve volume flow VDRV (A), that is to say the fuel volume flow which is diverted from the A-side rail into the fuel tank.
  • the first emergency operation NB1 (A) is set for the A-side common rail system, whereby the switches S3A, S4A and S5A in the position Change 2.
  • a setpoint emergency operating volume flow VSLNB is now an input variable of the pressure control valve characteristic map 22A.
  • the target emergency operating volume flow VSLNB is calculated via an emergency operating characteristic map 27 as a function of the desired injection quantity QSL and the engine speed nMOT.
  • the emergency operating map 27 is designed in such a way that a pressure regulating valve volume flow VDRV (A) greater than zero (VDRV (A)> 0 liter / minute) is diverted from the rail into the fuel tank over the entire operating range of the internal combustion engine.
  • VDRV (A) 0 liter / minute
  • VDRV (A) 0 liter / minute
  • the setpoint emergency operating volume flow is VSLNB both the default size for the high pressure side arranged, A-side pressure control valve 11A and for the low pressure side arranged, A-side intake throttle in the rail pressure control loop 12A.
  • the second input of the pressure control valve map 22A is now the target rail pressure pSL since the switch S5A is in the 2 position.
  • the setpoint current iSLDV (A) for the pressure regulating valve is therefore calculated via the pressure regulating valve characteristic map 22A as a function of the setpoint rail pressure pSL and the set emergency operating volume flow VSLNB.
  • the conversion into the pressure regulating valve volume flow VDRV (A) then takes place as described above.
  • the FIG. 4 shows in a block diagram the A-side rail pressure control loop 12A, the B-side rail pressure control loop 12B and an injector 28.
  • this calculation again shows the calculation 26, via which, depending on the target injection quantity QSL and the engine speed nMOT the target consumption VVb is calculated for the two rail pressure control loops.
  • the input variables of the block diagram are the desired torque MSL, the engine speed nMOT, the target injection quantity QSL, the ignition sequence ZF, a pressure pA and a pressure pB.
  • the output variables of the block diagram are the energization duration BD for controlling the injectors, the A-side rail pressure pCR (A) and the B-side rail pressure pCR (B).
  • the reference variable of the A-side rail pressure control loop 12A corresponds to the target rail pressure pSL.
  • the command value of the B-side rail pressure control loop 12B also corresponds to the target rail pressure pSL.
  • the desired rail pressure pSL corresponds to the nominal map rail pressure pSLKF calculated via the map 29.
  • the energization duration BD is calculated via the injector map 28.
  • the first input is the target injection quantity QSL.
  • the second input variable is the pressure pINJ, which in turn corresponds to the pressure pA or pB depending on the position of the switch S7.
  • Switched is the Switch S7 via the ignition sequence ZF.
  • the pressure pA corresponds to the A-side actual rail pressure pIST (A) and the pressure pB corresponds to the B-side actual rail pressure pIST (B). In the FIG. 6 this corresponds to the current number 1.
  • the first emergency operation NB1 (A) is set for the A-side common rail system.
  • the pressure pA for the injector map 28 corresponds to the desired map rail pressure pSLKF.
  • the pressure pB also corresponds to the B-side actual rail pressure pIST (B) when the B-side common rail system is faultless, that is, the B-side rail pressure sensor and the B-side pressure control valve are not defective. In the FIG. 6 this corresponds to the sequential number 2. The reverse case is in the FIG. 6 shown under the serial number 3.
  • the second emergency operation NB2 (A) is set for the A-side common rail system.
  • the pressure pA for the injector map 28 is set to the rail pressure mean value pM, for example 800 bar. Since the B-side common rail system operates without errors, the pressure pB continues to correspond to the B-side actual rail pressure pIST (B). In the FIG. 6 this corresponds to the sequential number 7. If the A-side common rail system is in NB2 (A) in the second emergency mode, after opening the A-side pressure relief valve ( Fig. 1 : 9A) a rail pressure in the range of 700 bar to 900 bar.
  • the B-side common rail system is in normal operation, its rail pressure pCR (B) can be ⁇ 2000 bar.
  • pNB 1500 bar.
  • the switch S6B is reversed to the position 2. See also the FIG. 5 in which switch S6B either maintains position 1 or changes to position 2 when the option is used.
  • the pressure pA and the pressure pB for the injector map 28 are set to the rail pressure mean value pM. This case is in the FIG. 6 shown as a serial number 16.

Abstract

Disclosed is a method for the control and regulation of an internal combustion engine (1), comprising an independent common rail system on the A-side and an independent common rail system on the B-side. During normal operation, the rail pressure (pCR(A), pCR(B)) is controlled in each common rail system via a low pressure-side suction throttle (4A, 4B) as the first pressure-adjusting element in a rail pressure control loop and, at the same time, the rail pressure (pCR(A), pCR(B)) is subjected to a rail pressure disturbance variable via a high pressure-side pressure control valve (11A, 11B) as a second pressure-adjusting element, by means of which a pressure control valve volume flow is redirected via the high pressure-side pressure control valve (11A, 11B) from the rail (6A, 6B) into a fuel tank (2). The method is characterized in that a first emergency operation is implemented for the common rail system in question when a defective rail pressure sensor (8A, 8B) and a non-defective pressure control valve (11A, 11B) have been detected in said common rail system, while a second emergency operation is implemented for the common rail system in question when a defective rail pressure sensor (8A, 8B) and simultaneously a defective pressure control valve (11A, 11B) have been detected in said common rail system, and wherein the normal operation is implemented for the other, non-defective common rail system.

Description

Die Erfindung betrifft ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine mit einem eigenständigen A-seitigen und einem eigenständigen B-seitigen Common-Railsystem, bei dem im Normalbetrieb in jedem Common-Railsystem der Raildruck über eine niederdruckseitige Saugdrossel als erstes Druckstellglied in einem Raildruck-Regelkreis geregelt wird und gleichzeitig der Raildruck über ein hochdruckseitiges Druckregelventil als zweites Druckstellglied mit einer Raildruck-Störgröße beaufschlagt wird, indem über das hochdruckseitige Druckregelventil ein Druckregelventil-Volumenstrom aus dem Rail in einen Kraftstofftank abgesteuert wird.The invention relates to a method for controlling and regulating an internal combustion engine with a separate A-side and an independent B-side common rail system, in which in normal operation in each common rail system of the rail pressure via a low-pressure suction throttle as the first pressure actuator in a rail pressure control loop is regulated and at the same time the rail pressure is acted upon via a high-pressure side pressure control valve as a second pressure actuator with a rail pressure disturbance by a pressure control valve volume flow is removed from the rail into a fuel tank via the high-pressure side pressure control valve.

Bei einer Brennkraftmaschine mit Common-Railsystem wird die Güte der Verbrennung maßgeblich über das Druckniveau im Rail bestimmt. Zur Einhaltung der gesetzlichen Emissionsgrenzwerte wird daher der Raildruck geregelt. Typischerweise umfasst ein Raildruck-Regelkreis eine Vergleichsstelle zur Bestimmung einer Regelabweichung, einen Druckregler zum Berechnen eines Stellsignals, die Regelstrecke und ein Softwarefilter im Rückkopplungszweig zur Berechnung des Ist-Raildrucks aus den Rohwerten des Raildrucks. Berechnet wird die Regelabweichung aus dem Soll-Raildruck zum Ist-Raildruck. Die Regelstrecke umfasst das Druckstellglied, das Rail und die Injektoren zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine. So zeigt beispielweise die DE 103 30 466 B3 ein entsprechendes Common-Railsystem, bei dem der Druckregler über das Stellsignal auf eine niederdruckseitig angeordnete Saugdrossel zugreift. Über die Saugdrossel wiederum wird der Zulaufquerschnitt zur Hochdruckpumpe und damit das geförderte Kraftstoffvolumen festgelegt.In an internal combustion engine with common rail system, the quality of the combustion is largely determined by the pressure level in the rail. In order to comply with the statutory emission limit values, the rail pressure is therefore regulated. Typically, a rail pressure control loop comprises a reference junction for determining a control deviation, a pressure regulator for calculating a control signal, the controlled system and a software filter in the feedback branch for calculating the actual rail pressure from the raw values of the rail pressure. The control deviation is calculated from the target rail pressure to the actual rail pressure. The controlled system comprises the pressure actuator, the rail and the injectors for injecting the fuel into the combustion chambers of the internal combustion engine. For example, shows the DE 103 30 466 B3 a corresponding common rail system, wherein the pressure regulator accesses via the actuating signal to a suction throttle arranged on the low pressure side. In turn, the inlet cross-section to the high-pressure pump and thus the delivered fuel volume are determined via the suction throttle.

Aus der nicht vorveröffentlichten DE 10 2009 031 527.6 ist ebenfalls ein Common-Railsystem mit Druckregelung des Raildrucks über eine niederdruckseitige Saugdrossel als erstes Druckstellglied bekannt. Ergänzend ist bei diesem Common-Railsystem ein hochdruckseitiges Druckregelventil als zweites Druckstellglied vorgesehen, über welches ein Druckregelventil-Volumenstrom aus dem Rail in den Kraftstofftank abgesteuert wird. Über die Ansteuerung des Druckregelventils wird eine Konstantleckage mit zum Beispiel 2 Liter/Minute im Schwachlastbereich nachgebildet. Im Normalbetriebsbereich hingegen wird kein Kraftstoff aus dem Rail abgesteuert. Bestimmt wird der Druckregelventil-Volumenstrom anhand eines Soll-Volumenstroms mit einem statischen und einem dynamischen Anteil. Bei der Berechnung des dynamischen Anteils und bei der Berechnung des Stellsignals für den Raildruck-Regelkreis ist der Ist-Raildruck die maßgebliche Eingangsgröße. Ein defekter Rail-Drucksensor oder ein Fehler in der Signalerfassung des Raildrucks verursacht einen falschen Ist-Raildruck und bewirkt eine fehlerhafte Ansteuerung sowohl der Saugdrossel als erstes Druckstellglied als auch des Druckregelventils als zweites Druckstellglied. Eine Fehlerabsicherung bei Ausfall des Rail-Drucksensors ist bei der angegebenen Fundstelle nicht aufgezeigt.From the not pre-published DE 10 2009 031 527.6 is also a common rail system with pressure control of the rail pressure via a low-pressure side suction throttle known as a first pressure actuator. In addition, with this common rail system one high-pressure side pressure control valve provided as a second pressure actuator, via which a pressure control valve volume flow is removed from the rail in the fuel tank. By controlling the pressure control valve, a constant leakage with, for example, 2 liters / minute in the low load range is simulated. In the normal operating range, however, no fuel is removed from the rail. The pressure regulating valve volumetric flow is determined on the basis of a nominal volumetric flow with a static and a dynamic component. When calculating the dynamic component and when calculating the control signal for the rail pressure control loop, the actual rail pressure is the relevant input variable. A defective rail pressure sensor or an error in the signal detection of the rail pressure causes a wrong actual rail pressure and causes a faulty control of both the suction throttle as the first pressure actuator and the pressure control valve as a second pressure actuator. An error protection in case of failure of the rail pressure sensor is not shown in the specified reference.

Aus der DE 10 2006 040 441 B3 ist ein Common-Railsystem mit Druckregelung bekannt, bei dem als Schutzmaßnahme vor einem zu hohen Raildruck, zum Beispiel nach einem Kabelbruch in der Stromzuführung zur Saugdrossel, ein passives Druckbegrenzungsventil vorgesehen ist. Überschreitet der Raildruck einen kritischen Wert, zum Beispiel 2400 bar, so öffnet das Druckbegrenzungsventil. Über das geöffnete Druckbegrenzungsventil wird dann der Kraftstoff aus dem Rail in den Kraftstofftank abgeleitet. Bei geöffnetem Druckbegrenzungsventil stellt sich im Rail ein Druckniveau ein, welches von der Einspritzmenge und der Motordrehzahl abhängt. Bei Leerlauf beträgt dieses Druckniveau ca. 900 bar, während es bei Volllast ca. 700 bar beträgt.From the DE 10 2006 040 441 B3 is a common rail system with pressure control is known in which a passive pressure relief valve is provided as a protective measure against too high a rail pressure, for example after a cable break in the power supply to the suction throttle. If the rail pressure exceeds a critical value, for example 2400 bar, the pressure relief valve opens. The fuel is then discharged from the rail into the fuel tank via the opened pressure relief valve. When the pressure relief valve is open in the rail, a pressure level, which depends on the injection quantity and the engine speed. At idle, this pressure level is about 900 bar, while at full load it is about 700 bar.

Aus der DE 10 2007 034 317 A1 ist eine Brennkraftmaschine mit einem eigenständigen A-seitigen und einem eigenständigen B-seitigen Common-Railsystem bekannt, welche identisch aufgebaut sind. Die beiden Common-Railsysteme sind hydraulisch voneinander entkoppelt und erlauben daher eine unabhängige Regelung des A-seitigen sowie B-seitigen Raildrucks. Über die getrennte Regelung werden die Druckschwankungen in den Rails verringert. Eine korrekte Raildruck-Regelung setzt einen fehlerfrei arbeitenden Rail-Drucksensor voraus. Der Ausfall eines Rail-Drucksensors oder beider Rail-Drucksensoren verursacht bei dem angegebenen System einen nicht definierten Zustand der Druckregelung und kann einen kritischen Zustand der Brennkraftmaschine bewirken, da keine Fehlerabsicherung aufgezeigt ist.From the DE 10 2007 034 317 A1 is an internal combustion engine with a standalone A-side and a standalone B-side common rail system known which are identical. The two common rail systems are hydraulically decoupled from each other and therefore allow independent control of the A-side and B-side rail pressure. The separate control reduces pressure fluctuations in the rails. Correct rail pressure control requires a faultless rail pressure sensor. The failure of a rail pressure sensor or both rail pressure sensors caused in the specified system an undefined state of the pressure control and can cause a critical condition of the internal combustion engine, since no Fehlerabsicherung is shown.

Der Erfindung liegt daher die Aufgabe zugrunde, bei einer Brennkraftmaschine mit einem eigenständigen A-seitigen und einem eigenständigen B-seitigen Common-Railsystem nebst passivem Druckbegrenzungsventil und Druckregelventil die Regelung des Raildrucks sicherer zu gestalten.The invention is therefore based on the object in an internal combustion engine with a separate A-side and an independent B-side common rail system together with passive pressure relief valve and pressure control valve to make the control of the rail pressure safer.

Gelöst wird diese Aufgabe durch ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine mit den Merkmalen von Anspruch 1. Die Ausgestaltungen sind in den Unteransprüchen dargestellt.This object is achieved by a method for controlling and regulating an internal combustion engine with the features of claim 1. The embodiments are shown in the subclaims.

Wurde beispielsweise im A-seitigen Common-Railsystem ein defekter A-seitiger Rail-Drucksensor und ein nicht defektes Druckregelventil erkannt, so wird für das A-seitige Common-Railsystem ein erster Notbetrieb gesetzt, während für das fehlerfreie B-seitige Common-Railsystem weiterhin der Normalbetrieb gesetzt bleibt. Im ersten Notbetrieb werden im A-seitigen Common-Railsystem das A-seitige Druckregelventil und die A-seitige Saugdrossel in Abhängigkeit derselben Vorgabegröße angesteuert. Fallen im A-seitigen Common-Railsystem der Rail-Drucksensor und zusätzlich das Druckregelventil aus, so wird für das A-seitige Common-Railsystem ein zweiter Notbetrieb gesetzt. Im zweiten Notbetrieb wird dann im A-seitigen Common-Railsystem die Saugdrossel in der Art angesteuert, dass sich der Raildruck sukzessiv bis zum Ansprechen des passiven Druckbegrenzungsventils erhöht. Ist das A-seitige Common-Railsystem fehlerfrei und treten die Fehler im B-seitigen Common-Railsystem auf, wird in analoger Weise vorgegangen.If, for example, a defective A-side rail pressure sensor and a non-defective pressure control valve were detected in the A-side common rail system, then a first emergency operation is set for the A-side common rail system, while the error-free B-side common rail system continues to be used normal operation remains set. In the first emergency operation, the A-side pressure control valve and the A-side intake throttle are actuated as a function of the same default size in the A-side common rail system. If the rail pressure sensor and additionally the pressure control valve fail in the A-side common rail system, a second emergency operation is set for the A-side common rail system. In the second emergency operation, the suction throttle is then controlled in the A-side common rail system in such a way that the rail pressure increases successively until the response of the passive pressure relief valve. If the A-side common rail system is error-free and the errors occur in the B-side common rail system, the procedure is analogous.

Zur Verbesserung der Laufruhe im zweiten Notbetrieb sieht die Erfindung in einer Ausgestaltung vor, dass mit Setzen des zweiten Notbetriebs für das A-seitige Common-Railsystem der Soll-Raildruck des fehlerfreien B-seitigen Common-Railsystems auf einen konstanten Notbetriebsraildruck gesetzt wird. Wird hingegen der zweite Notbetrieb für das B-seitige Common-Railsystem gesetzt, so wird in analoger Weise der Soll-Raildruck des fehlerfreien A-seitigen Common-Railsystems auf den Notbetriebsraildruck gesetzt.To improve the smoothness in the second emergency operation, the invention provides in one embodiment that is set by setting the second emergency operation for the A-side common rail system, the target rail pressure of the error-free B-side common rail system to a constant emergency service rail pressure. If, on the other hand, the second emergency mode is set for the B-side common rail system, then the nominal rail pressure of the fault-free A-side common rail system is set to the emergency service rail pressure in an analogous manner.

Im Normalbetrieb wird die Bestromungsdauer der Injektoren über ein Injektorkennfeld in Abhängigkeit einer Soll-Einspritzmenge und des Ist-Raildrucks berechnet. Hierbei wird vom A-seitigen Ist-Raildruck in Abhängigkeit der Zündfolge auf den B-seitigen Ist-Raildruck als Eingangsgröße des Injektorkennfelds umgeschaltet. Wird nun der erste Notbetrieb für das A-seitige Common-Railsystem bei fehlerfreiem B-seitigen Common-Railsystem gesetzt, so wird anstelle des A-seitigen Ist-Raildrucks ein Soll-Kennfeldraildruck verwendet. Mit Setzen des ersten Notbetriebs für das B-seitige Common-Railsystem und fehlerfreiem A-seitigen Common-Railsystem wird anstelle des B-seitigen Ist-Raildrucks der Soll-Kennfeldraildruck als Eingangsgröße verwendet. Mit Setzen des zweiten Notbetriebs für das A-seitige Common-Railsystem wird ein Raildruck-Mittelwert als Eingangsgröße für das Injektorkennfeld gesetzt. Der Raildruck-Mittelwert wird zum Beispiel auf 800 bar festgesetzt. Dieser Druckwert entspricht dem Mittelwert desjenigen Druckbereichs, welcher sich bei geöffnetem passiven Druckbegrenzungsventil einstellt.In normal operation, the energization duration of the injectors is calculated via an injector map as a function of a desired injection quantity and the actual rail pressure. In this case, the actual rail pressure on the A side is switched as a function of the ignition sequence to the B-side actual rail pressure as the input variable of the injector map. Now becomes the first emergency operation for the A-side common rail system with error-free B-side common rail system is set, so instead of the A-side actual rail pressure, a target map rail pressure is used. By setting the first emergency operation for the B-side common rail system and the faultless A-side common rail system, instead of the B-side actual rail pressure, the target map rail pressure is used as the input. By setting the second emergency operation for the A-side common rail system, a rail pressure average is set as the input parameter for the injector map. The rail pressure mean value is set to, for example, 800 bar. This pressure value corresponds to the mean value of the pressure range which occurs when the passive pressure relief valve is open.

Im ersten Notbetrieb kann mithilfe des Druckregelventils der Raildruck noch mit hinreichender Näherung eingestellt werden. Da in diesem Fall auch die Bestromungsdauer der Injektoren mit hoher Genauigkeit berechnet wird, ist der Beitrag des betroffenen Rails zur Motorleistung, bei unwesentlich höheren Emissionswerten, maximal. Das Druckregelventil ermöglicht damit eine Redundanz bei Ausfall des Rail-Drucksensors. Im zweiten Notbetrieb kann durch das Absteuem des Kraftstoffs über das passive Druckbegrenzungsventil immer noch ein stabiler Motorbetrieb dargestellt werden. Es liegt daher eine doppelte Redundanz vor.In the first emergency operation, the rail pressure can still be set with a sufficient approximation using the pressure control valve. Since in this case the energization duration of the injectors is calculated with high accuracy, the contribution of the affected rail to the engine power is, with insignificantly higher emission values, maximum. The pressure control valve thus allows redundancy in case of failure of the rail pressure sensor. In the second emergency operation can still be represented by Absteuem the fuel via the passive pressure relief valve stable engine operation. There is therefore a double redundancy.

In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:

Figur 1
ein Systemschaubild,
Figur 2
die Raildruck-Regelkreise,
Figur 3
den A-seitigen Raildruck-Regelkreis mit Steuerung des Druckregelventils,
Figur 4
die Raildruck-Regelkreise mit einem Injektorkennfeld,
Figur 5
eine erste Tabelle und
Figur 6
eine zweite Tabelle.
In the figures, a preferred embodiment is shown. Show it:
FIG. 1
a system diagram,
FIG. 2
the rail pressure control circuits,
FIG. 3
the A-side rail pressure control loop with control of the pressure control valve,
FIG. 4
the rail pressure control circuits with an injector map,
FIG. 5
a first table and
FIG. 6
a second table.

Die Figur 1 zeigt ein Systemschaubild einer elektronisch gesteuerten Brennkraftmaschine 1 in V-Anordnung mit einem eigenständigen Common-Railsystem auf der A-Seite und einem eigenständigen Common-Railsystem auf der B-Seite. Das A-seitige und das B-seitige Common-Railsystem sind identisch aufgebaut und hydraulisch voneinander getrennt. In der weiteren Beschreibung sind die Komponenten der A-Seite bei den Bezugszeichen mit dem Zusatz A gekennzeichnet und die Komponenten der B-Seite bei den Bezugszeichen mit dem Zusatz B gekennzeichnet.The FIG. 1 shows a system diagram of an electronically controlled internal combustion engine 1 in V-arrangement with a stand-alone common rail system on the A-side and a stand-alone common rail system on the B-side. The A-side and B-side common rail systems are identically constructed and hydraulically separated from each other. In the further description, the components of the A-side are at the reference numeral with the suffix A and the components of the B-side marked with the suffix B at the reference numerals.

Das Common-Railsystem auf der A-Seite umfasst als mechanische Komponenten eine Niederdruckpumpe 3A zur Förderung von Kraftstoff aus einem Kraftstofftank 2, eine niederdruckseitig angeordnete Saugdrossel 4A als erstes Druckstellglied zur Beeinflussung des Volumenstroms, eine Hochdruckpumpe 5A, ein Rail 6A und Injektoren 7A zum Einspritzen von Kraftstoff in die Brennräume der Brennkraftmaschine 1. Optional kann das Common-Railsystem auch mit Einzuspeichern ausgeführt sein, wobei dann zum Beispiel im Injektor 7A ein Einzelspeicher als zusätzliches Puffervolumen integriert ist. Als Schutz vor einem unzulässig hohen Druckniveau im Rail 6A ist ein passives Druckbegrenzungsventil 9A vorgesehen, welches zum Beispiel bei einem Raildruck von 2400 bar öffnet und im geöffneten Zustand den Kraftstoff aus dem Rail 6A in den Kraftstofftank 2 absteuert. Ergänzt wird das A-seitige Common-Railsystem durch ein elektrisch ansteuerbares Druckregelventil 11A, über welches ein einstellbarer Volumenstrom in den Tank abgesteuert wird. Dieser Volumenstrom wird im weiteren Text als Druckregelventil-Volumenstrom bezeichnet.The common rail system on the A side comprises as mechanical components a low-pressure pump 3A for conveying fuel from a fuel tank 2, a low-pressure side suction throttle 4A as a first pressure actuator for influencing the volume flow, a high-pressure pump 5A, a rail 6A and injectors 7A for injection of fuel in the combustion chambers of the internal combustion engine 1. Optionally, the common rail system can also be designed with einzuspeichern, then for example in the injector 7A a single memory is integrated as an additional buffer volume. As a protection against an inadmissibly high pressure level in the rail 6A, a passive pressure relief valve 9A is provided, which opens, for example, at a rail pressure of 2400 bar and absteuert the fuel from the rail 6A in the fuel tank 2 in the open state. The A-side common rail system is supplemented by an electrically controllable pressure control valve 11A, via which an adjustable volume flow is diverted into the tank. This volume flow will be referred to in the text as pressure control valve volume flow.

Gesteuert wird die Brennkraftmaschine 1 über ein elektronisches Motorsteuergerät 10 (ECU), welches die üblichen Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM) beinhaltet. In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Über diese berechnet das elektronische Steuergerät 10 aus den Eingangsgrößen die Ausgangsgrößen. In der Figur 1 sind als Eingangsgrößen des elektronischen Motorsteuergeräts 10 exemplarisch ein A-seitiger Raildruck pCR(A), ein B-seitiger Raildruck pCR(B) und eine Größe EIN dargestellt. Der A-seitige Raildruck pCR(A) wird durch einen A-seitigen Rail-Drucksensor 8A und der B-seitige Raildruck pCR(B) durch einen B-seitigen Rail-Drucksensor 8B erfasst. Die Größe EIN steht stellvertretend für die weiteren Eingangssignale, beispielsweise für eine Motordrehzahl oder für einen Leistungswunsch des Bedieners. Die dargestellten Ausgangsgrößen des elektronischen Motorsteuergeräts 10 sind ein PWM-Signal PWMSD(A) zur Ansteuerung der A-seitigen Saugdrossel 4A, ein leistungsbestimmendes Signal ve(A) zur Ansteuerung der A-seitigen Injektoren 7A, ein PWM-Signal PWMSD(B) zur Ansteuerung der B-seitigen Saugdrossel 4B, ein leistungsbestimmendes Signal ve(B) zur Ansteuerung der B-seitigen Injektoren 7B, ein PWM-Signal PWMDV(A) zur Ansteuerung des A-seitigen Druckregelventils 11A, ein PWM-Signal PWMDV(B) zur Ansteuerung des B-seitigen Druckregelventils 11 B und eine Größe AUS. Letztere steht stellvertretend für die weiteren Stellsignale zur Steuerung der Brennkraftmaschine 1, beispielsweise ein Stellsignal zur Ansteuerung eines AGR-Ventils. Kennzeichnendes Merkmal der dargestellten Ausführungsform ist die voneinander unabhängige Regelung des A-seitigen Raildrucks pCR(A) vom B-seitigen Raildruck pCR(B).The internal combustion engine 1 is controlled via an electronic engine control unit 10 (ECU), which contains the usual components of a microcomputer system, for example a microprocessor, I / O components, buffers and memory components (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 1 operating data in maps / curves are applied. About this calculates the electronic control unit 10 from the input variables, the output variables. In the FIG. 1 For example, an A-side rail pressure pCR (A), a B-side rail pressure pCR (B), and a size ON are shown as inputs to the electronic engine control unit 10. The A-side rail pressure pCR (A) is detected by an A-side rail pressure sensor 8A and the B-side rail pressure pCR (B) by a B-side rail pressure sensor 8B. The size ON is representative of the other input signals, for example for an engine speed or for a performance request of the operator. The illustrated outputs of the electronic engine control unit 10 are a PWM signal PWMSD (A) for driving the A-side intake throttle 4A, a power-determining signal ve (A) for driving the A-side injectors 7A, a PWM signal PWMSD (B) for driving the B-side suction throttle 4B, a power-determining signal ve (B) for driving the B-side injectors 7B, a PWM signal PWMDV (A) for driving the A-side pressure control valve 11A, a PWM signal PWMDV (B) for driving the B-side pressure regulating valve 11 B and a size OFF. The latter is representative of the other control signals for controlling the internal combustion engine 1, for example, a control signal for controlling an EGR valve. Characteristic feature of the illustrated embodiment is the independent control of the A-side rail pressure pCR (A) from the B-side rail pressure pCR (B).

Die Figur 2 zeigt den A-seitigen Raildruck-Regelkreis 12A zur Regelung des A-seitigen Raildrucks pCR(A) und den B-seitigen Raildruck-Regelkreis 12B. Der A-seitige Raildruck-Regelkreis und der B-seitige Raildruck-Regelkreis sind identisch aufgebaut, sodass die Beschreibung des A-seitigen Raildruck-Regelkreises 12A auch für den B-seitigen Raildruck-Regelkreis gilt.The FIG. 2 FIG. 12 shows the A-side rail pressure control loop 12A for controlling the A-side rail pressure pCR (A) and the B-side rail pressure control loop 12B. The A-side rail pressure control loop and the B-side rail pressure control loop are constructed identically, so that the description of the A-side rail pressure control loop 12A also applies to the B-side rail pressure control loop.

Die Eingangsgrößen des A-seitigen Raildruck-Regelkreises 12A sind: ein Soll-Raildruck pSL, ein Soll-Verbrauch VVb, eine Raildruck-Störgröße VSTG(A), die Motordrehzahl nMOT, ein Signal NB1(A), ein Signal NB2(A), ein Notbetriebsstromwert iNB und eine Größe E1. Unter der Größe E1 sind eine PWM-Grundfrequenz, die Batteriespannung und der ohmsche Widerstand der Saugdrosselspule mit Zuleitung zusammengefasst, welche in die Berechnung des PWM-Signals mit eingehen. Das Signal NB1(A) entspricht dem ersten Notbetrieb, welcher bei einem defekten A-seitigen Rail-Drucksensor und nicht defektem A-seitigen Druckregelventil des A-seitigen Common-Railsystems gesetzt wird. Das Signal NB2(A) entspricht dem zweiten Notbetrieb, welcher bei einem defekten A-seitigen Rail-Drucksensor und gleichzeitig defektem A-seitigen Druckregelventil des A-seitigen Common-Railsystems gesetzt wird. Die Ausgangsgröße des A-seitigen Raildruck-Regelkreises 12A ist der Rohwert des A-seitigen Raildrucks pCR(A). Die weitere Beschreibung erfolgt zunächst für den Normalbetrieb, bei dem die Schalter S1A und S2A sich in der Stellung 1 befinden.The input values of the A-side rail pressure control circuit 12A are: a target rail pressure pSL, a target consumption VVb, a rail pressure disturbance VSTG (A), the engine speed nMOT, a signal NB1 (A), a signal NB2 (A) , an emergency operating current value iNB and a quantity E1. Size E1 comprises a basic PWM frequency, the battery voltage and the ohmic resistance of the intake throttle coil with supply line, which are included in the calculation of the PWM signal. The signal NB1 (A) corresponds to the first emergency operation, which is set at a defective A-side rail pressure sensor and non-defective A-side pressure control valve of the A-side common rail system. The signal NB2 (A) corresponds to the second emergency operation, which is set at a defective A-side rail pressure sensor and at the same time defective A-side pressure control valve of the A-side common rail system. The output of the A-side rail pressure control circuit 12A is the raw value of the A-side rail pressure pCR (A). The further description initially takes place for normal operation, in which the switches S1A and S2A are in the position 1.

Aus den Rohwerten des Raildrucks pCR(A) wird mittels eines Filters 13A der Ist-Raildruck pIST(A) berechnet. Ebenfalls aus den Rohwerten des Raildrucks pCR(A) wird über ein Filter 18A ein dynamischer Raildruck pDYN(A) berechnet, welcher in die Berechnung der Ansteuergröße des Druckregelventils mit eingeht. Das Filter 18A besitzt einen geringeren Phasenverzug als das Filter 13A. An einem Summationspunkt A wird dann der Ist-Raildruck pIST(A) mit dem Soll-Raildruck pSL verglichen, woraus eine Regelabweichung ep(A) resultiert. Aus der Regelabweichung ep(A) berechnet ein Druckregler 14A seine Stellgröße, welche einem Regler-Volumenstrom VR(A) mit der physikalischen Einheit Liter/Minute entspricht. Zum Regler-Volumenstrom VR(A) werden an einem Summationspunkt B der berechnete Soll-Verbrauch VVb und die Raildruck-Störgröße VSTG(A) addiert. Berechnet wird der Soll-Verbrauch VVb in Abhängigkeit einer Soll-Einspritzmenge und der Motordrehzahl (Fig. 3). Die Raildruck-Störgröße VSTG(A) ist im Normalbetrieb null (VSTG(A)=0 Liter/Minute). Das Ergebnis der Addition entspricht einem unbegrenzten A-seitigen Soll-Volumenstrom VSLu(A), welcher die Eingangsgröße eines Funktionsblocks 15A ist. Im Funktionsblock 15A sind eine Begrenzung und eine Pumpen-Kennlinie zusammengefasst. Über die Begrenzung wird der unbegrenzte Soll-Volumenstrom VSLu(A) in Abhängigkeit der Motordrehzahl nMOT limitiert und über die Pumpen-Kennlinie ein elektrischer Strom iKL(A) berechnet. Die Pumpen-Kennlinie ist in der Form ausgeführt, dass einem zunehmenden Soll-Volumenstrom ein abnehmender Strom iKL(A) zugeordnet wird. Da im Normalbetrieb der Schalter S2A sich in der Stellung 1 befindet, entspricht der Soll-Strom iSL(A) dem über den Funktionsblock 15A berechneten Strom iKL(A). Der Soll-Strom iSL(A) ist eine Eingangsgröße der Berechnung PWM-Signal 16A. Über die Berechnung 16A wird in Abhängigkeit des Soll-Stroms iSL(A) ein PWM-Signal PWMSD(A) berechnet, mit welchem dann die Magnetspule der A-seitigen Saugdrossel angesteuert wird. Dadurch wird der Weg des Magnetkerns verändert, wodurch der Förderstrom der A-seitigen Hochdruckpumpe frei beeinflusst wird. Aus Sicherheitsgründen ist die A-seitige Saugdrossel stromlos offen und wird mit zunehmendem PWM-Wert in Richtung der Schließstellung beaufschlagt. Die A-seitige Saugdrossel, die A-seitige Hochdruckpumpe und das A-seitige Rail sind in der Einheit 17A zusammengefasst. Der Ansteuerung der A-seitigen Saugdrossel kann ein StromRegelkreis unterlagert sein, bei welchem der Saugdrosselstrom als Regelgröße erfasst wird. Der von der Hochdruckpumpe im A-seitigen Rail erzeugte A-seitige Raildruck pCR(A) wird dann über den A-seitigen Rail-Drucksensor erfasst. Damit ist der A-seitige Raildruck-Regelkreis geschlossen.From the raw values of the rail pressure pCR (A), the actual rail pressure pIST (A) is calculated by means of a filter 13A. Also from the raw values of the rail pressure pCR (A), a dynamic rail pressure pDYN (A) is calculated via a filter 18A, which is included in the calculation of the control variable of the pressure control valve. The filter 18A has a smaller one Phase delay as the filter 13A. At a summation point A, the actual rail pressure pIST (A) is compared with the desired rail pressure pSL, resulting in a control deviation ep (A). From the control deviation ep (A), a pressure regulator 14A calculates its manipulated variable, which corresponds to a regulator volume flow VR (A) with the physical unit liters / minute. For the regulator volume flow VR (A), the calculated nominal consumption VVb and the rail pressure disturbance VSTG (A) are added at a summation point B. The setpoint consumption VVb is calculated as a function of a desired injection quantity and the engine speed ( Fig. 3 ). The rail pressure disturbance VSTG (A) is zero during normal operation (VSTG (A) = 0 liters / minute). The result of the addition corresponds to an unlimited A-side target volume flow VSLu (A), which is the input of a function block 15A. In function block 15A a limitation and a pump characteristic are summarized. The limitation limits the unlimited volumetric flow VSLu (A) as a function of the engine speed nMOT and calculates an electric current iKL (A) via the pump characteristic. The pump characteristic is designed in such a way that a decreasing current iKL (A) is assigned to an increasing nominal volume flow. Since, in normal operation, the switch S2A is in the position 1, the set current iSL (A) corresponds to the current iKL (A) calculated via the function block 15A. The target current iSL (A) is an input of the calculation PWM signal 16A. By way of the calculation 16A, a PWM signal PWMSD (A) is calculated as a function of the desired current iSL (A), with which the solenoid of the A-side suction throttle is then driven. As a result, the path of the magnetic core is changed, whereby the flow rate of the A-side high-pressure pump is influenced freely. For safety reasons, the A-side suction throttle is normally open and is acted upon with increasing PWM value in the direction of the closed position. The A-side suction throttle, the A-side high-pressure pump and the A-side rail are combined in the unit 17A. The control of the A-side intake throttle can be subordinated to a current control loop, in which the Saugdrosselstrom is detected as a controlled variable. The A-side rail pressure pCR (A) generated by the high-pressure pump in the A-side rail is then detected via the A-side rail pressure sensor. This closes the A-side rail pressure control loop.

Wird nun ein defekter A-seitiger Rail-Drucksensor (Fig. 1: 8A) erkannt, so ist eine korrekte Berechnung der Regelabweichung ep(A) und des Regler-Volumenstroms VR(A) nicht mehr möglich. Es wird daher der erste Notbetrieb für das A-seitige Common-Railsystem gesetzt, wenn gleichzeitig das A-seitige Druckregelventil nicht defekt ist. Die weitere Erklärung erfolgt gemeinsam mit der Figur 5, in welcher die Schalterstellungen für die einzelnen Betriebszustände dargestellt sind. Im ersten Notbetrieb NB1 (A) des A-seitigen Common-Railsystems wird der Schalter S1A von der Stellung 1 in die Stellung 2 umgesteuert, während der Schalter S2A unverändert in der Stellung 1 verbleibt. In der Stellung 2 des Schalters S1A ist der Druckregler 14A nicht mehr bestimmend. Am Ausgang des Schalters S1A liegt nunmehr entweder der Wert null (0 Liter/Minute) oder optional -wie dargestellt- der Wert eines Leckagevolumenstroms VLKG an. Berechnet wird dieser über ein Leckage-Kennfeld 19 in Abhängigkeit der Soll-Einspritzmenge QSL und der Motordrehzahl nMOT. Die Soll-Einspritzmenge QSL wiederum kann entweder über ein Kennfeld in Abhängigkeit des Leistungswunsches berechnet werden oder entspricht der Stellgröße eines Drehzahlreglers. Im ersten Notbetrieb NB1 (A) berechnet sich der unbegrenzte Soll-Volumenstrom VSLu(A) aus der Summe von Ausgangswert des Schalters S1A, dem Soll-Verbrauch VVb und der Raildruck-Störgröße VSTG(A). Letztere wird im ersten Notbetrieb berechnet. Die genauere Erklärung erfolgt in Verbindung mit der Figur 3.Will now a defective A-side rail pressure sensor ( Fig. 1 : 8A), a correct calculation of the control deviation ep (A) and the controller volumetric flow VR (A) is no longer possible. It is therefore set the first emergency operation for the A-side common rail system, if at the same time the A-side pressure control valve is not defective. The further explanation will be given together with the FIG. 5 in which the switch positions for the individual operating states are shown. In the first emergency operation NB1 (A) of the A-side common rail system, the switch S1A is reversed from the position 1 to the position 2, while the switch S2A remains unchanged in the position 1. In position 2 of the switch S1A, the pressure regulator 14A is no longer determinative. At the output of the switch S1A, either the value zero (0 liter / minute) or, optionally, as shown, the value of a leakage volume flow VLKG is applied. This is calculated via a leakage map 19 as a function of the desired injection quantity QSL and the engine speed nMOT. The desired injection quantity QSL, in turn, can either be calculated via a characteristic map as a function of the power requirement or corresponds to the manipulated variable of a speed controller. In the first emergency operation NB1 (A), the unlimited nominal volume flow VSLu (A) is calculated from the sum of the output value of the switch S1A, the target consumption VVb and the rail pressure disturbance variable VSTG (A). The latter is calculated in the first emergency operation. The more detailed explanation is in connection with the FIG. 3 ,

Wird im A-seitigen Common-Railsystem ein defekter Rail-Drucksensor und gleichzeitig ein defektes Druckregelventil erkannt, so wird der zweite Notbetrieb NB2(A) gesetzt. Mit Setzen des zweiten Notbetriebs NB2(A) nimmt der Schalter S1A die Stellung 1 ein und der Schalter S2A wechselt in die Stellung 2. Siehe hierzu auch Figur 5. In der Stellung 2 des Schalters S2A entspricht der Soll-Strom iSL(A) einem Notbetriebsstromwert iNB. Der Notbetriebsstromwert iNB wird hierbei so gewählt, dass es zuverlässig zu einem Öffnen des passiven Druckbegrenzungsventils, hier: des A-seitigen Druckbegrenzungsventils (Fig. 1: 9A) kommt. Wird die A-seitige Saugdrossel -wie zuvor beschrieben- in negativer Logik angesteuert, so wird als Notbetriebsstromwert ein Konstantwert, zum Beispiel iNB=0 A, ausgegeben. Da nunmehr die A-seitige Saugdrossel vollständig geöffnet ist, erhöht sich der A-seitige Raildruck pCR(A) sukzessive, bis das A-seitige Druckbegrenzungsventil anspricht. Öffnet das A-seitige Druckbegrenzungsventil, so stellt sich im A-seitigen Rail ein Raildruck pCR(A) ein, welcher vom Betriebspunkt der Brennkraftmaschine abhängig ist. Im Leerlauf zum Beispiel pCR(A)=900 bar und bei Volllast pCR(A)=700 bar. Im Mittel also ein Raildruck von 800 bar. Dieser mittlere Raildruck ist eine sehr gute Näherung für den Notbetrieb. Ein Öffnen des passiven A-seitigen Druckbegrenzungsventils kann aber auch dann hervorgerufen werden, wenn der Notbetriebsstromwert iNB auf einen etwas größeren Wert, zum Beispiel iNB=0.4 A, gesetzt wird. Dies hat den Vorteil, dass durch die größere Kraftstoff-Drosselung der Kraftstoff beim Absteuem in den Kraftstofftank weniger stark erwärmt wird.If a defective rail pressure sensor and at the same time a defective pressure control valve are detected in the A-side common rail system, the second emergency mode NB2 (A) is set. By setting the second emergency operation NB2 (A), the switch S1A assumes the position 1 and the switch S2A changes to the position 2. See also FIG. 5 , In position 2 of the switch S2A, the setpoint current iSL (A) corresponds to an emergency operating current value iNB. The emergency operating current value iNB is in this case selected so that it reliably opens the passive pressure limiting valve, here: the A-side pressure limiting valve (FIG. Fig. 1 : 9A) is coming. If the A-side intake throttle is actuated in negative logic as described above, a constant value, for example, iNB = 0 A, is output as the emergency operating current value. Since now the A-side intake throttle is fully opened, the A-side rail pressure pCR (A) increases successively until the A-side pressure relief valve responds. Opens the A-side pressure relief valve, so sets in the A-side rail a rail pressure pCR (A), which is dependent on the operating point of the internal combustion engine. At idle, for example, pCR (A) = 900 bar and at full load pCR (A) = 700 bar. On average, a rail pressure of 800 bar. This mean rail pressure is a very good approximation for emergency operation. However, an opening of the passive A-side pressure limiting valve can also be caused if the emergency operating current value iNB is set to a somewhat greater value, for example iNB = 0.4 A, is set. This has the advantage that the fuel is less strongly heated by Absteuem in the fuel tank by the larger fuel throttling.

Wird im B-seitigen Common-Railsystem ein defekter Rail-Drucksensor und ein nicht defektes Druckregelventil erkannt, so wird der erste Notbetrieb NB1(B) für das B-seitige Common-Railsystem gesetzt, d. h., der Schalter S1 B wechselt in die Stellung 2. Bei gleichzeitig defektem B-seitigen Rail-Drucksensor und B-seitigem Druckregelventil wird dann der zweite Notbetrieb NB2(B) für das B-seitige Common-Railsystem gesetzt, indem der Schalter S1B in die Stellung 1 und der Schalter S2B in die Stellung 2 umgesteuert wird. Siehe hierzu ebenfalls die Figur 5.If a defective rail pressure sensor and a non-defective pressure control valve are detected in the B-side common rail system, then the first emergency mode NB1 (B) is set for the B-side common rail system, ie the switch S1 B changes to position 2 With the B-side rail pressure sensor and the B-side pressure control valve simultaneously defective, the second emergency operation NB2 (B) for the B-side common rail system is then set by the switch S1B in the position 1 and the switch S2B in the position 2 is redirected. See also the FIG. 5 ,

In der Figur 3 ist als Blockschaltbild der A-seitige Raildruck-Regelkreis 12A mit einer Steuerung 20A dargestellt. Über die Steuerung 20A wird der A-seitige Druckregelventil-Volumenstrom VDRV(A) eingestellt. Die Steuerung für das B-seitige Druckregelventil ist identisch zur Steuerung 20A, sodass die Beschreibung zur Steuerung 20A auch für die Steuerung des B-seitigen Druckregelventils gilt. Die Eingangsgrößen der Steuerung 20A sind: die Motordrehzahl nMOT, die Soll-Einspritzmenge QSL oder ein Soll-Moment MSL, der erste Notbetrieb NB1 (A), die Größe E1 für die Umrechnung des PWM-Signals PWMDV(A) und eine Größe E2. Unter der Größe E2 sind der Soll-Raildruck pSL, der A-seitige Ist-Raildruck pIST(A) und der A-seitige dynamische Raildruck pDYN(A) zusammengefasst. Die Soll-Einspritzmenge QSL wird entweder über ein Kennfeld in Abhängigkeit des Leistungswunsches berechnet oder entspricht der Stellgröße eines Drehzahlreglers. Die physikalische Einheit der Soll-Einspritzmenge QSL ist mm3/Hub. Bei einer momentenbasierten Struktur wird anstelle der Soll-Einspritzmenge QSL das Soll-Moment MSL verwendet. Die Ausgangsgrößen der Steuerung 20A sind der Druckregelventil-Volumenstrom VDRV(A), der Soll-Verbrauch VVb und die Raildruck-Störgröße VSTG(A). Der Soll-Verbrauch VVb und die Raildruck-Störgröße VSTG(A) sind Eingangsgrößen des A-seitigen Raildruck-Regelkreises 12A.In the FIG. 3 is shown as a block diagram of the A-side rail pressure control loop 12A with a controller 20A. Via the controller 20A, the A-side pressure regulating valve volume flow VDRV (A) is set. The controller for the B-side pressure regulating valve is identical to the controller 20A, so that the description for the controller 20A also applies to the control of the B-side pressure regulating valve. The inputs of the controller 20A are: the engine speed nMOT, the target injection amount QSL or a target torque MSL, the first emergency operation NB1 (A), the size E1 for the conversion of the PWM signal PWMDV (A), and a quantity E2. Under the size E2 of the target rail pressure pSL, the A-side actual rail pressure pIST (A) and the A-side dynamic rail pressure pDYN (A) are summarized. The desired injection quantity QSL is either calculated via a characteristic map as a function of the power requirement or corresponds to the manipulated variable of a speed controller. The physical unit of the target injection amount QSL is mm 3 / stroke. In a torque-based structure, the setpoint torque MSL is used instead of the set injection quantity QSL. The outputs of the controller 20A are the pressure control valve volume flow VDRV (A), the target consumption VVb, and the rail pressure disturbance VSTG (A). The target consumption VVb and the rail pressure disturbance VSTG (A) are input to the A-side rail pressure control circuit 12A.

Die weitere Beschreibung erfolgt zunächst für den Normalbetrieb, bei dem sich die Schalter S3A, S4A und S5A jeweils in der Stellung 1 befinden. Siehe hierzu ebenfalls die Figur 5, in welcher die Schalterstellungen für die Betriebszustände dargestellt sind. Anhand der Motordrehzahl nMOT, der Soll-Einspritzmenge QSL und der Größe E2 wird über eine Berechnung 21A ein Soll-Volumenstrom VSLDV(A) für das Druckregelventil 11A berechnet. In der Berechnung 21A sind die Berechnung eines statischen Volumenstroms, eines dynamischen Volumenstroms, die Addition der beiden Volumenströme und die Begrenzung in Abhängigkeit des A-seitigen Ist-Raildrucks pIST(A) zusammengefasst. Ebenfalls anhand der Motordrehzahl nMOT und der Soll-Einspritzmenge QSL wird über die Berechnung 26 der Soll-Verbrauch VVb berechnet, welcher eine Eingangsgröße des Raildruck-Regelkreises 12A ist. Der Soll-Volumenstrom VSLDV(A) des Druckregelventils ist eine Eingangsgröße eines Druckregelventil-Kennfelds 22A. Die zweite Eingangsgröße stellt der A-seitige Ist-Raildruck pIST(A) dar, da der Schalter S5A in der Stellung 1 ist. In Abhängigkeit der beiden Eingangsgrößen wird dann ein Soll-Strom iSLDV(A) des Druckregelventils 11A berechnet und über eine PWM-Berechnung 23A in die Einschaltdauer PWMDV(A) umgerechnet, mit welcher das Druckregelventil 11A angesteuert wird. Der Umrechnung kann eine Stromregelung, Stromregelkreis 25A mit Filter 24A unterlagert sein, in welchem die Regelgröße dem sich am Druckregelventil 11A einstellenden elektrischen Strom entspricht. Das Ausgangssignal des Druckregelventils 11A entspricht dem Druckregelventil-Volumenstrom VDRV(A), also demjenigen Kraftstoffvolumenstrom, welcher aus dem A-seitigen Rail in den Kraftstofftank abgesteuert wird.The further description initially takes place for normal operation, in which the switches S3A, S4A and S5A are each in the position 1. See also the FIG. 5 , in which the switch positions for the operating states are shown. On the basis of the engine speed nMOT, the target injection quantity QSL and the size E2, a desired volume flow VSLDV (A) for the pressure regulating valve 11A is calculated via a calculation 21A. In the calculation 21A, the calculation of a static Volume flow, a dynamic volume flow, the addition of the two volume flows and the limitation in dependence on the A-side actual rail pressure pIST (A) summarized. Also based on the engine speed nMOT and the target injection quantity QSL is calculated via the calculation 26, the target consumption VVb, which is an input of the rail pressure control loop 12A. The desired volume flow VSLDV (A) of the pressure regulating valve is an input of a pressure regulating valve map 22A. The second input represents the A-side actual rail pressure pIST (A) because the switch S5A is in the 1 position. Depending on the two input variables, a desired current iSLDV (A) of the pressure regulating valve 11A is then calculated and converted into the duty cycle PWMDV (A) by means of a PWM calculation 23A, with which the pressure regulating valve 11A is actuated. The conversion can be subordinated to a current control, current control loop 25A with filter 24A, in which the controlled variable corresponds to the adjusting the pressure regulating valve 11A electrical current. The output signal of the pressure regulating valve 11A corresponds to the pressure regulating valve volume flow VDRV (A), that is to say the fuel volume flow which is diverted from the A-side rail into the fuel tank.

Wird nun ein defekter A-seitiger Rail-Drucksensor und ein nicht defektes A-seitiges Druckregelventil erkannt, so wird der erste Notbetrieb NB1(A) für das A-seitige Common-Railsystem gesetzt, wodurch die Schalter S3A, S4A und S5A in die Stellung 2 wechseln. In der Stellung 2 des Schalters S3A ist anstelle des Soll-Volumenstroms VSLDV(A) nunmehr ein Soll-Notbetriebsvolumenstrom VSLNB eine Eingangsgröße des Druckregelventil-Kennfelds 22A. Berechnet wird der Soll-Notbetriebsvolumenstrom VSLNB über ein Notbetriebskennfeld 27 in Abhängigkeit der Soll-Einspritzmenge QSL und der Motordrehzahl nMOT. Das Notbetriebskennfeld 27 ist in der Form ausgeführt, dass im gesamten Betriebsbereich der Brennkraftmaschine ein Druckregelventil-Volumenstrom VDRV(A) größer null (VDRV(A) > 0 Liter/Minute) aus dem Rail in den Kraftstofftank abgesteuert wird. Unter Betriebsbereich der Brennkraftmaschine ist der Drehzahlbereich zwischen der Startdrehzahl (Leerlaufdrehzahl) bis zur Abregeldrehzahl oder zwischen einem Leerlaufmoment und einem Maximalmoment zu verstehen. Der Soll-Notbetriebsvolumenstrom VSLNB ist jetzt auch eine Eingangsgröße des Raildruck-Regelkreises 12A, da der Schalter S4A die Stellung 2 einnimmt und damit die Raildruck-Störgröße VSTG(A) dem Soll-Notbetriebsvolumenstrom VSLNB entspricht (VSTG(A)=VSLNB). Mit anderen Worten: Bei defektem A-seitigen Rail-Drucksensor und nicht defektem A-seitigen Druckregelventil ist der Soll-Notbetriebsvolumenstrom VSLNB sowohl die Vorgabegröße für das hochdruckseitig angeordnete, A-seitige Druckregelventil 11A als auch für die niederdruckseitig angeordnete, A-seitige Saugdrossel im Raildruck-Regelkreis 12A. Die zweite Eingangsgröße des Druckregelventil-Kennfelds 22A ist jetzt der Soll-Raildruck pSL, da der Schalter S5A die Stellung 2 einnimmt. Der Soll-Strom iSLDV(A) für das Druckregelventil wird über das Druckregelventil-Kennfeld 22A daher in Abhängigkeit des Soll-Raildrucks pSL und des Soll-Notbetriebsvolumenstroms VSLNB berechnet. Die Umsetzung in den Druckregelventil-Volumenstrom VDRV(A) erfolgt dann, wie zuvor beschrieben.If now a defective A-side rail pressure sensor and a non-defective A-side pressure control valve is detected, the first emergency operation NB1 (A) is set for the A-side common rail system, whereby the switches S3A, S4A and S5A in the position Change 2. In position 2 of the switch S3A, instead of the set volume flow VSLDV (A), a setpoint emergency operating volume flow VSLNB is now an input variable of the pressure control valve characteristic map 22A. The target emergency operating volume flow VSLNB is calculated via an emergency operating characteristic map 27 as a function of the desired injection quantity QSL and the engine speed nMOT. The emergency operating map 27 is designed in such a way that a pressure regulating valve volume flow VDRV (A) greater than zero (VDRV (A)> 0 liter / minute) is diverted from the rail into the fuel tank over the entire operating range of the internal combustion engine. Under operating range of the internal combustion engine is the speed range between the starting speed (idle speed) to Abregeldrehzahl or between an idle torque and a maximum torque to understand. The setpoint emergency operating volume flow VSLNB is now also an input variable of the rail pressure control loop 12A, since the switch S4A assumes the position 2 and thus the rail pressure disturbance variable VSTG (A) corresponds to the setpoint emergency operating volume flow VSLNB (VSTG (A) = VSLNB). In other words: If the A-side rail pressure sensor is defective and the A-side pressure control valve is not defective, the setpoint emergency operating volume flow is VSLNB both the default size for the high pressure side arranged, A-side pressure control valve 11A and for the low pressure side arranged, A-side intake throttle in the rail pressure control loop 12A. The second input of the pressure control valve map 22A is now the target rail pressure pSL since the switch S5A is in the 2 position. The setpoint current iSLDV (A) for the pressure regulating valve is therefore calculated via the pressure regulating valve characteristic map 22A as a function of the setpoint rail pressure pSL and the set emergency operating volume flow VSLNB. The conversion into the pressure regulating valve volume flow VDRV (A) then takes place as described above.

Wird im A-seitigen Common-Railsystem der zweite Notbetrieb NB2(A) gesetzt, so hat dies für die Schalter S3A, S4A und S5A keine Auswirkung. Diese verbleiben in der Stellung 2, siehe hierzu die Figur 5.If the second emergency mode NB2 (A) is set in the A-side common rail system, this has no effect on the switches S3A, S4A and S5A. These remain in position 2, see the FIG. 5 ,

Die Figur 4 zeigt in einem Blockschaltbild den A-seitigen Raildruck-Regelkreis 12A, den B-seitigen Raildruck-Regelkreis 12B und ein Injektorkennfeld 28. Aus Gründen der Vollständigkeit ist bei dieser Darstellung nochmals die Berechnung 26 dargestellt, über welche in Abhängigkeit der Soll-Einspritzmenge QSL und der Motordrehzahl nMOT der Soll-Verbrauch VVb für die beiden Raildruck-Regelkreise berechnet wird. Die Eingangsgrößen des Blockschaltbilds sind das Soll-Moment MSL, die Motordrehzahl nMOT, die Soll-Einspritzmenge QSL, die Zündfolge ZF, ein Druck pA und ein Druck pB. Die Ausgangsgrößen des Blockschaltbilds sind die Bestromungsdauer BD zur Ansteuerung der Injektoren, der A-seitige Raildruck pCR(A) und der B-seitige Raildruck pCR(B). Die weitere Beschreibung erfolgt gemeinsam mit der Figur 6, in welcher die unterschiedlichen Fehlermöglichkeiten für die beiden Rail-Drucksensoren und die beiden Druckregelventile dargestellt sind.The FIG. 4 shows in a block diagram the A-side rail pressure control loop 12A, the B-side rail pressure control loop 12B and an injector 28. For the sake of completeness, this calculation again shows the calculation 26, via which, depending on the target injection quantity QSL and the engine speed nMOT the target consumption VVb is calculated for the two rail pressure control loops. The input variables of the block diagram are the desired torque MSL, the engine speed nMOT, the target injection quantity QSL, the ignition sequence ZF, a pressure pA and a pressure pB. The output variables of the block diagram are the energization duration BD for controlling the injectors, the A-side rail pressure pCR (A) and the B-side rail pressure pCR (B). The further description is done together with the FIG. 6 , in which the different possibilities of error for the two rail pressure sensors and the two pressure control valves are shown.

Zunächst wird die Funktion des Blockschaltbilds im Normalbetrieb beschrieben, in welchem die Schalter S6A und S6B sich in der Stellung 1 befinden. Im Normalbetrieb entspricht die Führungsgröße des A-seitigen Raildruck-Regelkreises 12A dem Soll-Raildruck pSL. Die Führungsgröße des B-seitigen Raildruck-Regelkreises 12B entspricht ebenfalls dem Soll-Raildruck pSL. Der Soll-Raildruck pSL wiederum entspricht dem über das Kennfeld 29 berechneten Soll-Kennfeldraildruck pSLKF. Die Bestromungsdauer BD wird über das Injektorkennfeld 28 berechnet. Die erste Eingangsgröße ist die Soll-Einspritzmenge QSL. Die zweite Eingangsgröße ist der Druck pINJ, der wiederum je nach Stellung des Schalters S7 dem Druck pA oder pB entspricht. Umgeschaltet wird der Schalter S7 über die Zündfolge ZF. Im Normalbetrieb entspricht der Druck pA dem A-seitigen Ist-Raildruck pIST(A) und der Druck pB den B-seitigen Ist-Raildruck pIST(B). In der Figur 6 entspricht dies der laufenden Nummer 1.First, the function of the block diagram in normal operation will be described, in which the switches S6A and S6B are in the position 1. In normal operation, the reference variable of the A-side rail pressure control loop 12A corresponds to the target rail pressure pSL. The command value of the B-side rail pressure control loop 12B also corresponds to the target rail pressure pSL. The desired rail pressure pSL, in turn, corresponds to the nominal map rail pressure pSLKF calculated via the map 29. The energization duration BD is calculated via the injector map 28. The first input is the target injection quantity QSL. The second input variable is the pressure pINJ, which in turn corresponds to the pressure pA or pB depending on the position of the switch S7. Switched is the Switch S7 via the ignition sequence ZF. In normal operation, the pressure pA corresponds to the A-side actual rail pressure pIST (A) and the pressure pB corresponds to the B-side actual rail pressure pIST (B). In the FIG. 6 this corresponds to the current number 1.

Wird ein defekter A-seitiger Rail-Drucksensor bei nicht defektem A-seitigen Druckregelventil erkannt, so wird der erste Notbetrieb NB1 (A) für das A-seitige Common-Railsystem gesetzt. Im ersten Notbetrieb NB1 (A) des A-seitigen Common-Railsystems entspricht der Druck pA für das Injektorkennfeld 28 dem Soll-Kennfeldraildruck pSLKF. Der Druck pB entspricht weiterhin dem B-seitigen Ist-Raildruck pIST(B), wenn das B-seitige Common-Railsystem fehlerfrei ist, also der B-seitige Rail-Drucksensor und das B-seitige Druckregelventil nicht defekt sind. In der Figur 6 entspricht dies der laufenden Nummer 2. Der umgekehrte Fall ist in der Figur 6 unter der laufenden Nummer 3 abgebildet. Sind der Rail-Drucksensor und gleichzeitig das Druckregelventil des A-seitigen Common-Railsystems defekt, so wird der zweite Notbetrieb NB2(A) für das A-seitige Common-Railsystem gesetzt. Im zweiten Notbetrieb NB2(A) wird der Druck pA für das Injektorkennfeld 28 auf den Raildruck-Mittelwert pM, zum Beispiel 800 bar, gesetzt. Da das B-seitige Common-Railsystem fehlerfrei arbeitet, entspricht der Druck pB weiterhin dem B-seitigen Ist-Raildruck pIST(B). In der Figur 6 entspricht dies der laufenden Nummer 7. Ist das A-seitige Common-Railsystem im zweiten Notbetrieb NB2(A), stellt sich nach Öffnen des A-seitigen Druckbegrenzungsventil (Fig. 1: 9A) ein Raildruck im Bereich von 700 bar bis 900 bar ein. Ist das B-seitige Common-Railsystem im Normalbetrieb, so kann dessen Raildruck pCR(B) ≈ 2000 bar betragen. Der Druckunterschied der beiden Rails kann Drehschwingungen der Brennkraftmaschine verursachen. Daher ist in einer Option vorgesehen, dass die Führungsgröße des intakten Common-Railsystems auf einen Notbetriebsraildruck pNB, zum Beispiel pNB=1500 bar, umgeschaltet wird. Für den zuvor geschilderten Fall wird daher der Schalter S6B in die Stellung 2 umgesteuert. Siehe hierzu ebenfalls die Figur 5, in welcher der Schalter S6B entweder die Stellung 1 beibehält oder bei Anwendung der Option in die Stellung 2 wechselt.If a faulty A-side rail pressure sensor is detected with the A-side pressure control valve not defective, then the first emergency operation NB1 (A) is set for the A-side common rail system. In the first emergency operation NB1 (A) of the A-side common rail system, the pressure pA for the injector map 28 corresponds to the desired map rail pressure pSLKF. The pressure pB also corresponds to the B-side actual rail pressure pIST (B) when the B-side common rail system is faultless, that is, the B-side rail pressure sensor and the B-side pressure control valve are not defective. In the FIG. 6 this corresponds to the sequential number 2. The reverse case is in the FIG. 6 shown under the serial number 3. If the rail pressure sensor and at the same time the pressure control valve of the A-side common rail system are defective, then the second emergency operation NB2 (A) is set for the A-side common rail system. In the second emergency operation NB2 (A), the pressure pA for the injector map 28 is set to the rail pressure mean value pM, for example 800 bar. Since the B-side common rail system operates without errors, the pressure pB continues to correspond to the B-side actual rail pressure pIST (B). In the FIG. 6 this corresponds to the sequential number 7. If the A-side common rail system is in NB2 (A) in the second emergency mode, after opening the A-side pressure relief valve ( Fig. 1 : 9A) a rail pressure in the range of 700 bar to 900 bar. If the B-side common rail system is in normal operation, its rail pressure pCR (B) can be ≈ 2000 bar. The pressure difference between the two rails can cause torsional vibrations of the internal combustion engine. Therefore, it is provided in an option that the reference variable of the intact common rail system is switched to an emergency service rail pressure pNB, for example pNB = 1500 bar. For the case described above, therefore, the switch S6B is reversed to the position 2. See also the FIG. 5 in which switch S6B either maintains position 1 or changes to position 2 when the option is used.

Sind beide Common-Railsysteme im zweiten Notbetrieb, so werden der Druck pA und der Druck pB für das Injektorkennfeld 28 auf den Raildruck-Mittelwert pM gesetzt. Dieser Fall ist in der Figur 6 als laufende Nummer 16 abgebildet.If both common rail systems are in the second emergency mode, then the pressure pA and the pressure pB for the injector map 28 are set to the rail pressure mean value pM. This case is in the FIG. 6 shown as a serial number 16.

Bezugszeichenreference numeral

11
BrennkraftmaschineInternal combustion engine
22
KraftstofftankFuel tank
3A, B3A, B
NiederdruckpumpeLow pressure pump
4A, B4A, B
Saugdrossel, niederdruckseitigSuction choke, low pressure side
5A, B5A, B
Hochdruckpumpehigh pressure pump
6A, B6A, B
RailRail
7A, B7A, B
Injektorinjector
8A, B8A, B
Rail-DrucksensorRail pressure sensor
9A, B9A, B
Druckbegrenzungsventil, passivPressure relief valve, passive
1010
elektronisches Steuergerät (ECU)electronic control unit (ECU)
11A, B11A, B
Druckregelventil, hochdruckseitigPressure control valve, high pressure side
12A, B12A, B
Raildruck-RegelkreisRail pressure control circuit
13A, B13A, B
Filterfilter
14A, B14A, B
Druckreglerpressure regulator
15A, B15A, B
Funktionsblockfunction block
16A, B16A, B
Berechnung PWM-SignalCalculation PWM signal
17A, B17A, B
Einheit (Saugdrossel, Hochdruckpumpe und Rail)Unit (suction throttle, high-pressure pump and rail)
18A, B18A, B
Filterfilter
1919
Leckage-KennfeldLeakage map
20A, B20A, B
Steuerungcontrol
21A, B21A, B
Berechnung (Soll-Volumenstrom Druckregelventil)Calculation (set flow rate pressure control valve)
22A, B22A, B
Druckregelventil-KennfeldPressure control valve map
23A, B23A, B
Berechnung PWM-SignalCalculation PWM signal
24A, B24A, B
Filterfilter
25A, B25A, B
Stromregelkreis (Druckregelventil)Current control circuit (pressure control valve)
2626
Berechnung (Soll-Verbrauch)Calculation (target consumption)
2727
NotbetriebskennfeldNotbetriebskennfeld
2828
InjektorkennfeldInjektorkennfeld
2929
Kennfeldmap

Claims (10)

  1. Method for the control and regulation of an internal combustion engine (1), comprising an independent A-side common rail system and an independent B-side common rail system, in which method, during normal operation, the rail pressure (pCR(A), pCR(B)) is controlled in each common rail system by means of a low-pressure-side suction throttle (4A, 4B) as the first pressure-adjusting element in a rail pressure control loop (12A, 12B) and, at the same time, a rail pressure disturbance variable is applied to the rail pressure (pCR(A), pCR(B)) by means of a high-pressure-side pressure control valve (11A, 11B) as a second pressure-adjusting element by a pressure control valve volume flow (VDRV(A), VDRV(B)) being redirected by means of the high-pressure-side pressure control valve (11A, 11B) from the rail (6A, 6B) into a fuel tank (2), in which method first emergency operation (NB1(A), NB1(B)) is set for the common rail system in question when a defective rail pressure sensor (8A, 8B) and a non-defective pressure control valve (11A, 11B) are identified in this common rail system, a second emergency operation (NB2(A), NB2(B)) is set for the common rail system in question when a defective rail pressure sensor (8A, 8B) and at the same time a defective pressure control valve (11A, 11B) are identified in this common rail system, and in which method normal operation continues to be set for the other, non-defective common rail system.
  2. Method according to Claim 1, characterized in that, during first emergency operation (NB1(A), NB1(B)), the high-pressure-side pressure control valve (11A, 11B) and the low-pressure-side suction throttle (4A, 4B) are driven as a function of the same prespecified variable in the common rail system in question.
  3. Method according to Claim 2, characterized in that the prespecified variable corresponds to a setpoint emergency operation volume flow (VSLNB) which is calculated by means of an emergency operation characteristic diagram (27) as a function of a setpoint injection quantity (QSL) and the engine rotation speed (nMOT).
  4. Method according to Claim 3, characterized in that the emergency operation characteristic diagram (27) is designed in the form that, over the entire operating range of the internal combustion engine (1), a pressure control valve volume flow (VDRV(A), VDRV(B)) is redirected from the rail (6A, 6B) into the fuel tank (2).
  5. Method according to Claim 1, characterized in that, during second emergency operation (NB2(A), NB2(B)), the suction throttle (4A, 4B) is driven in the common rail system in question in such a way that the rail pressure (pCR(A), pCR(B)) is successively increased until a passive pressure-limiting valve (9A, 9B) responds.
  6. Method according to Claim 5, characterized in that, when second emergency operation (NB2(A)) is set for the A-side common rail system, the setpoint rail pressure (pSL) of the non-defective B-side common rail system is set to an emergency operation rail pressure (pNB), or when second emergency operation (NB2(B)) is set for the B-side common rail system, the setpoint rail pressure (pSL) of the non-defective A-side common rail system is set to the emergency operation rail pressure (pNB).
  7. Method according to one of the preceding claims, characterized in that, during normal operation, a changeover is made from the A-side actual rail pressure (pIST(A)), as a function of the ignition sequence (ZF), to the B-side actual rail pressure (pIST(B)) as an input variable for an injector characteristic diagram (28) for calculating a current-supply duration (BD) of the injector (7A, 7B), in that, when first emergency operation (NB1(A)) is set for the A-side common rail system and with a non-defective B-side common rail system instead of the A-side actual rail pressure (pIST(A)), a setpoint characteristic diagram rail pressure (pSLKF) is set as the input variable, and in that when first emergency operation (NB1(B)) is set for the B-side common rail system and with a non-defective A-side common rail system instead of the B-side actual rail pressure (pIST(B)), the setpoint characteristic diagram rail pressure (pSLKF) is set as an input variable.
  8. Method according to Claim 7, characterized in that, when second emergency operation (NB2(A)) is set for the A-side common rail system, a rail pressure average value (pM) is set as the input variable for the injector characteristic diagram (28), and when second emergency operation (NB2(B)) is set for the B-side common rail system, the rail pressure average value (pM) is set as the input variable for the injector characteristic diagram (28).
  9. Method according to Claims 7 and 8, characterized in that the second input variable of the injector characteristic diagram (28) corresponds to the setpoint injection quantity (QSL) which is calculated by means of a rotation speed controller as its actuating variable.
  10. Method according to Claims 7 and 8, characterized in that the setpoint injection quantity (QSL) corresponds to an accelerator pedal position.
EP10771023.8A 2009-10-30 2010-10-20 Method for the control and regulation of an internal combustion engine Active EP2494175B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009051390.6A DE102009051390B4 (en) 2009-10-30 2009-10-30 Method for controlling and regulating an internal combustion engine
PCT/EP2010/006418 WO2011050920A1 (en) 2009-10-30 2010-10-20 Method for the control and regulation of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2494175A1 EP2494175A1 (en) 2012-09-05
EP2494175B1 true EP2494175B1 (en) 2013-12-25

Family

ID=43125509

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10771023.8A Active EP2494175B1 (en) 2009-10-30 2010-10-20 Method for the control and regulation of an internal combustion engine

Country Status (5)

Country Link
US (1) US8886439B2 (en)
EP (1) EP2494175B1 (en)
CN (1) CN102762843B (en)
DE (1) DE102009051390B4 (en)
WO (1) WO2011050920A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009050468B4 (en) * 2009-10-23 2017-03-16 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
DE102009050469B4 (en) * 2009-10-23 2015-11-05 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
FI123271B (en) * 2011-06-23 2013-01-31 Waertsilae Finland Oy Fuel injection systems
DE102012203097B3 (en) * 2012-02-29 2013-04-11 Continental Automotive Gmbh Method for determining error of pressure measured by pressure sensor in pressure accumulator for storing fluid in automobile, involves determining two three-tuples of pressures and of time period
DE102014204115A1 (en) * 2014-03-06 2015-09-10 Robert Bosch Gmbh Emergency mode for a piston engine in an aircraft
DE102015209377B4 (en) * 2015-05-21 2017-05-11 Mtu Friedrichshafen Gmbh Injection system for an internal combustion engine and internal combustion engine with such an injection system
CN105822447B (en) * 2016-05-23 2018-09-21 中国第一汽车股份有限公司无锡油泵油嘴研究所 The rail pressure double excitation control method of common rail system
DE102019202004A1 (en) * 2019-02-14 2020-08-20 Mtu Friedrichshafen Gmbh Method for operating an injection system of an internal combustion engine, an injection system for an internal combustion engine and an internal combustion engine with such an injection system
DE102019112754B4 (en) * 2019-05-15 2021-06-24 Man Energy Solutions Se Method and control device for operating a common rail fuel supply system
US11459972B1 (en) * 2021-09-22 2022-10-04 Caterpillar Inc. Monitoring system for identifying an engine bank with a malfunctioning fuel injector

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4335171C1 (en) * 1993-10-15 1995-05-04 Daimler Benz Ag Fuel injection system for a multi-cylinder diesel internal combustion engine
US6024064A (en) * 1996-08-09 2000-02-15 Denso Corporation High pressure fuel injection system for internal combustion engine
DE19651671C2 (en) 1996-12-12 2001-10-04 Daimler Chrysler Ag Control of an injection system for a multi-cylinder internal combustion engine
DE19757594C2 (en) * 1997-12-23 2002-11-28 Siemens Ag Method and device for monitoring the function of a pressure regulator
DE10157641C2 (en) * 2001-11-24 2003-09-25 Mtu Friedrichshafen Gmbh Method for controlling an internal combustion engine
DE10330466B3 (en) 2003-07-05 2004-10-21 Mtu Friedrichshafen Gmbh Regulation method for IC engine with common-rail fuel injection system has pulse width modulation signal frequency switched between 2 values dependent on engine speed
DE102006040441B3 (en) 2006-08-29 2008-02-21 Mtu Friedrichshafen Gmbh Method for identifying opening of passive pressure limiting valve, involves supplying fuel from common-rail system in fuel tank, where load shedding is identified
JP4605129B2 (en) 2006-09-19 2011-01-05 株式会社デンソー Fuel pressure control device
DE102007034217A1 (en) * 2007-07-23 2009-02-05 Siemens Ag Appliance units e.g. mobile C-base systems, control device, has computer-algebra system formed as C-base system, which transfers image data and parameter values to host computer in real time
DE102007034317A1 (en) 2007-07-24 2009-01-29 Robert Bosch Gmbh Internal combustion engine with several cylinders
DE102009031527B3 (en) 2009-07-02 2010-11-18 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
DE102009050469B4 (en) * 2009-10-23 2015-11-05 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
DE102009050467B4 (en) * 2009-10-23 2017-04-06 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
DE102009050468B4 (en) * 2009-10-23 2017-03-16 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine

Also Published As

Publication number Publication date
WO2011050920A1 (en) 2011-05-05
CN102762843B (en) 2015-12-16
US20120215424A1 (en) 2012-08-23
DE102009051390A1 (en) 2011-05-05
CN102762843A (en) 2012-10-31
DE102009051390B4 (en) 2015-10-22
EP2494175A1 (en) 2012-09-05
US8886439B2 (en) 2014-11-11

Similar Documents

Publication Publication Date Title
EP2494175B1 (en) Method for the control and regulation of an internal combustion engine
DE102009050468B4 (en) Method for controlling and regulating an internal combustion engine
DE102009050467B4 (en) Method for controlling and regulating an internal combustion engine
DE102006049266B3 (en) Method for recognizing opened passive pressure-relief-valve, which deviates fuel from common-railsystem into fuel tank, involves regulating the rail pressure, in which actuating variable is computed from rail-pressure offset
DE102006040441B3 (en) Method for identifying opening of passive pressure limiting valve, involves supplying fuel from common-rail system in fuel tank, where load shedding is identified
DE10162989C1 (en) Circuit for regulating injection system fuel pump, derives adaptive component of desired delivery volume from integral component if integral component above threshold for defined time
EP2491236B1 (en) Method for the open-loop control and closed-loop control of an internal combustion engine
EP3298260B1 (en) Injection system for an internal combustion engine and internal combustion engine having such an injection system
DE10210684A1 (en) Method and device for monitoring a torque of a drive unit of a vehicle
EP1446568B1 (en) Method for controlling an internal combustion engine
DE102007057452A1 (en) Fuel system operating method for internal-combustion engine of motor vehicle, involves changing conveyor capability of fuel pump, and assigning determined value of actuating variable to limitation pressure of pressure limiting device
EP3033513A1 (en) Method for the injector-specific diagnosis of a fuel injection device and internal combustion engine having a fuel injection device
EP2984324A1 (en) Method for operating a common rail system of a motor vehicle having a redundant rail pressure sensor
DE10345311B4 (en) Method for operating an internal combustion engine, and computer program, electrical storage medium, control and / or regulating device and internal combustion engine
DE102019001677B4 (en) Method for predicting the condition of an injector
DE102017222152B4 (en) Method for determining a learning range of an opening duration of an injection valve
DE102005047350A1 (en) Method for controlling internal combustion engine, involves determination of actual variable based on lambda value which is compared to set-point variable whereby an error is identified when corrective value changes abruptly
WO2019030245A1 (en) Method for operating an internal combustion engine having an injection system, injection system designed to carry out a method of this type, and internal combustion engine having an injection system of this type
EP2044317B1 (en) Method for determining an error in a fuel metering unit for fuel injection system
DE102007035718A1 (en) Method for controlling pre-supply pressure of common rail fuel system of internal combustion engine, lying high-pressure pump against pressure side, where pre-supply pressure comprises pre-supply pump
WO2020165333A1 (en) Method for operating an injection system of an internal combustion engine, an injection system for an internal combustion engine, and an internal combustion engine comprising such an injection system
DE102011080986A1 (en) Common-rail control device for fuel injection system in e.g. watercraft, has control units that supplies different motor control signals as respective filtered, and unfiltered variable signals to actuator connection in switch unit
DE102019003815B4 (en) Method for monitoring an injector for mechanical damage
EP1126150B1 (en) Method and device for controlling the smooth running of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130716

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 646792

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010005778

Country of ref document: DE

Effective date: 20140213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140428

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005778

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

26N No opposition filed

Effective date: 20140926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005778

Country of ref document: DE

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141020

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101020

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 646792

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161020

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161024

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171020

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20211018

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010005778

Country of ref document: DE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231020

Year of fee payment: 14