EP2494161B1 - System and method for controlling the cooling circuit of an internal-combustion engine - Google Patents

System and method for controlling the cooling circuit of an internal-combustion engine Download PDF

Info

Publication number
EP2494161B1
EP2494161B1 EP10787855.5A EP10787855A EP2494161B1 EP 2494161 B1 EP2494161 B1 EP 2494161B1 EP 10787855 A EP10787855 A EP 10787855A EP 2494161 B1 EP2494161 B1 EP 2494161B1
Authority
EP
European Patent Office
Prior art keywords
temperature
combustion engine
internal combustion
engine
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10787855.5A
Other languages
German (de)
French (fr)
Other versions
EP2494161A1 (en
Inventor
Guy-Michel Cloarec
Antoine Saint-Marcoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2494161A1 publication Critical patent/EP2494161A1/en
Application granted granted Critical
Publication of EP2494161B1 publication Critical patent/EP2494161B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/33Cylinder head temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/46Engine parts temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/48Engine room temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/162Controlling of coolant flow the coolant being liquid by thermostatic control by cutting in and out of pumps

Definitions

  • the technical field of the invention is the thermal management of an internal combustion engine, and more particularly the management of the cooling system as a function of the temperature of the internal combustion engine.
  • the invention makes it possible to improve the thermal management of the engine by the use of observers, especially in a context of discontinuity in the flow of the coolant.
  • the fuel consumption and pollutant production of an internal combustion engine is influenced by its operating temperature.
  • it is important to control the temperature of an internal combustion engine so that it is at an optimum level during operation, especially during start-up.
  • the temperature thus measured is then not representative of the temperature inside. of the motor.
  • a cooling branch passes through a radiator for lowering the temperature of the heat transfer fluid contained in the cooling circuit.
  • Branch branch presents only a passive heat exchanger, type heater, limiting the cooling of the liquid.
  • the French patent application FR 2 908 458 describes several variants of the cooling branch and branch branch. This document notably describes how to limit or cut the circulation of the heat transfer fluid to the cooling branch, in particular to rapidly raise the temperature of an initially cold internal combustion engine.
  • the means for achieving such operation is either a thermostatic valve, an electric valve controlled by control means, or a pump driven on command. However, the control means are not explained.
  • the French patent application FR 2 912 183 discloses a control device of an internal combustion engine comprising means for determining the temperature of the exhaust gas taking into account the quality of the fuel used.
  • US patent application US 2004/0128059 describes a method for correcting the accuracy of the oil temperature measurement according to the operating phases of the internal combustion engine.
  • the French patent application FR 2 869 355 describes a management of the temperature of the coolant to improve the consumption, especially during cold starts.
  • the temperature of the heat transfer fluid at the outlet of the engine does not allow a sufficiently precise characterization of the thermal state of the engine so as to ensure thermal safety of the most fragile parts, such as the inter-cylinder, however, the thermal characterization of these parts is difficult to achieve during operation of the vehicle.
  • the French patent application FR 2 869 355 proposes a predictive model making it possible to evaluate the specific value or values of the thermal state of the engine.
  • the parameters measured may be the engine rotation speed, the engine load, and the flow rate or temperature of the heat transfer fluid entering the engine.
  • the predictive model is based on the principle that there is a non-zero flow through the main circuit and that we have, at every moment, the temperature at the engine inlet.
  • the document DE 102006009892 discloses a method and system for controlling the cooling of an internal combustion engine.
  • these specific areas are the water core cylinder in the vicinity of the combustion chamber and the intersoupape bridge.
  • the measured temperature is not representative of the temperature inside the engine, let alone , that of the specific area of interest of the engine.
  • the temperature sensor is located inside the cylinder head, it may be desirable to take this measurement into account in order to estimate more precisely the temperature of the specific zone of the engine.
  • the subject of the invention is a method for controlling a cooling circuit of an internal combustion engine according to claim 1.
  • the temperature inside the internal combustion engine can be determined by measurement, and a temperature characteristic of the thermal state of the specific zone of the internal combustion engine can be determined by applying a first model as a function of the temperature. inside the internal combustion engine.
  • the characteristic temperature of the specific zone thermal state of the internal combustion engine can be determined by application of a second model.
  • the second model is an autoregressive moving average model.
  • the specific zone whose characteristic temperature is determined may be the coolant at the cylinder head or in the vicinity of the combustion chamber.
  • the specific zone whose characteristic temperature is determined is the intersoupape bridge.
  • a control system for a heat transfer fluid cooling circuit of an internal combustion engine equipping a motor vehicle comprising an electronic control unit able to switch a means for shutting down the flow of said cooling circuit. located downstream of the internal combustion engine.
  • the electronic control unit is able to determine a temperature characteristic of the thermal state of a specific zone of the internal combustion engine by application of a model, able to compare at a temperature characteristic of the thermal state of the specific zone. of the internal combustion engine at a limit temperature and adapted to switch the means for shutting off the flow rate in a passing position as a function of the characteristic temperature of the specific zone of the thermal state of the internal combustion engine and the limit temperature.
  • the electronic control unit may comprise comparison means able to compare the temperature characteristic of the thermal state of the specific zone of the internal combustion engine with the limit temperature, the electronic control imity being able to emit a signal of controlling the flow cut-off means according to the comparison result.
  • the control system may include a determining means adapted to apply a first model to determine the temperature characteristic of the thermal state of the specific zone of the internal combustion engine as a function of the temperature of the internal combustion engine.
  • the control system may comprise a temperature sensor located inside the internal combustion engine capable of determining the temperature of the internal combustion engine.
  • the temperature sensor can be located in the cylinder head.
  • the control system may comprise a determination means able to determine the temperature characteristic of the thermal state of the internal combustion engine by applying a second model.
  • the flow cutoff means may be a drive means of the pump adapted to drive said pump on command.
  • the flow cut-off means may be a valve placed at the output of the engine.
  • the specific area is the intersoupape bridge.
  • the figure 1 illustrates a first embodiment of a control system of the cooling circuit of an internal combustion engine.
  • An internal combustion engine 1 can be seen provided with a cooling circuit comprising a main circuit 2 and a secondary circuit 3.
  • the main cooling circuit 2 comprises a means 5 for shutting off the flow connected by its inlet to the internal combustion engine 1 via a pipe 4 and its outlet to a main radiator 7 via a pipe 6.
  • the main radiator 7 is connected to the the inlet of a pump 10 via a pipe 8, the outlet of said pump 10 being connected to the internal combustion engine 1 by a pipe 11.
  • the secondary circuit 3 essentially comprises a heater 18.
  • An inlet pipe 17 is stitched between the flow cutoff means 5 and the internal combustion engine 1, and is connected to the heater 18.
  • An outlet pipe 19 is stitched between the main radiator 7 and the pump 10, and is connected to the heater 18.
  • a temperature sensor 9 is located in the internal combustion engine, upstream of the flow cut-off means 5.
  • the temperature sensor 9 is able to determine the temperature prevailing in the internal combustion engine.
  • the temperature sensor 9 is located inside the water core of the cylinder head. The location of this sensor makes it possible to characterize the gradual rise in the temperature of the heat transfer fluid when the vehicle is started.
  • the control system comprises an electronic control unit 26 comprising a means 21 for determining the thermal state of the motor connected by a connection 22 to a comparison means 23.
  • the temperature sensor 9 situated at the water core of the the yoke is connected by the connection 20 to the determining means 21.
  • the water core of the cylinder head is the set of chambers in the cylinder head and designed to allow the circulation of coolant.
  • a control means 27 of the motor is connected by the connection 28 to the determining means 21.
  • the comparison means 23 is connected by the connection 25 to the breaking means 5 of the flow.
  • the operation is described below in the case of a zero flow of the heat transfer fluid.
  • the flow of the coolant can be zero especially during a first heating or during a second heating.
  • a first heater is defined as the rise in temperature following a first start, when the engine is at a temperature equal to or substantially equal to the ambient temperature.
  • a second heater is defined as the rise in temperature following a moderate drop in the temperature of the internal combustion engine, for example, following a brief stop of the internal combustion engine.
  • a discontinuity of the cooling liquid appears during sudden changes in the flow rate and results in the appearance of abrupt thermal transitions.
  • the flow rate can suddenly change from a large flow rate to a zero flow rate and vice versa.
  • Such discontinuity can be ordered, or fortuitous.
  • Controlled discontinuity means the cases of the first heating and the second heating.
  • the ordered discontinuities also include the case of an alternation of circulations and heat transfer fluid circulation stop for regulating the temperature of the heat transfer fluid.
  • fortuitous discontinuities include failures of an organ involved in the operation of the cooling circuit of the internal combustion engine.
  • the temperature can then be determined in spite of the absence of circulation of the heat transfer fluid, and provide more precise information on the state of possible damage to the internal combustion engine.
  • the purpose of the control system is to determine a characteristic temperature of a specific area of the engine and then compare it to a limiting temperature to determine whether the flow cut-off means is to be switched to the driving position.
  • the thermal state of the engine is determined, that is to say the distribution of heat inside the engine and more particularly in at least one specific area corresponding to critical locations for the reliability of said engine.
  • the intersopeve bridge represents one of the most sensitive points to the temperature of the internal combustion engine.
  • the intersopepope bridge represents areas of low resistance in the cylinder head. More particularly, it is called jumper intersoupapes the material areas of the cylinder head between two adjacent openings.
  • the openings of the cylinder head are the openings made in particular for the valves, but also for the injector, and the spark plug.
  • the control of the internal combustion engine 1 is achieved through the cooperation of the determination means 21 and the comparison means 23. These means apply a first statistical model to data received from a control means 27 of the engine.
  • the control means 27 supplies the electronic control unit 26 with data including, in particular, the rotational speed of the internal combustion engine, the load of the internal combustion engine, the quantity of fuel injected, and / or the flow rate of the fuel. air.
  • the electronic control unit 26 also receives data relating to the temperature of the coolant determined at the cylinder head from the temperature sensor 9.
  • a zero flow of the coolant implies that the flow cut-off means is in a non-conducting position.
  • the heat transfer fluid included in the main circuit 2 does not circulate in the internal combustion engine I.
  • the coolant contained in the portion of the cooling circuit passing through the internal combustion engine 1 can flow through the secondary circuit 3 under the action of the pump 10. A major part of the heat generated by the operation of the internal combustion engine is communicated to the heat transfer fluid. However, because the heat transfer fluid passes through the heater 18, a minimum amount of the heat stored in the heat transfer fluid is dispersed. The temperature of the heat transfer fluid then increases rapidly.
  • An alternative for cutting the circulation of the heat transfer fluid may be to stop the operation of the pump 10. For this it can either disengage the pump 10, or directly control the stop of its operation.
  • the electronic control unit 26 then controls the cutoff means 5 of the flow so that the increase in the temperature of the internal combustion engine is slowed down and stopped in the vicinity of a temperature threshold.
  • the electronic control unit 26 may optionally control the pump 10.
  • the opening of the flow cutoff means 5 has the effect of circulating the coolant contained in the main circuit 2 and being at a temperature below the temperature of the internal combustion engine.
  • a portion of the heat transfer fluid from the output of the cooling circuit included in the internal combustion engine is directed into the main circuit 2 where it is cooled in the main radiator 7. From this moment, the cooling circuit is controlled in a conventional manner to maintain the internal combustion engine at the desired temperature.
  • the figure 2 illustrates the control method of the cooling circuit. This control method is applied when starting the internal combustion engine.
  • the temperature of the engine is close to the ambient temperature and the flow cutoff means 5 is in a non-conducting position.
  • the control method begins with step 29 in which the operating conditions of the internal combustion engine are determined. In particular, the rotational speed, the engine torque and the injected fuel flow rate are determined. Furthermore, in step 30, the temperature of the coolant inside the internal combustion engine is determined, more particularly at the level of the cylinder head.
  • step 31 a temperature characterizing the thermal state of a specific zone of the engine is determined by application of a first model.
  • step 32 it is determined whether the temperature characterizing the thermal state of the specific zone of the motor is greater than a stored threshold temperature. If the result is true, the process is continued at step 34 during which the flow cutoff means 5 is switched. Otherwise, the process is continued in step 35 during which the flow-off means 5 is held in the non-conducting position. The process then recommences with steps 29 and 30.
  • the figure 3 illustrates in more detail step 31 illustrated on the figure 2 .
  • step 36 several occurrences of the operating conditions of the internal combustion engine determined during step 29 described above are memorized. These occurrences are determined in succession, each being spaced from the next of a given duration.
  • the time between two occurrences is related to the acquisition speed of the sensor and the processing capabilities of the system. Generally speaking, a time between two occurrences will be considered small compared to the total duration of the temperature rise phenomenon of the internal combustion engine. For example, a measurement speed of between one measurement every two hundred milliseconds and one measurement per second will be considered.
  • the number of stored occurrences is between five and three hundred occurrences, preferably between five and thirty occurrences.
  • the acquisition time is thus between one second and one minute, preferably between one second and thirty seconds.
  • step 37 several occurrences of the temperature measurement performed in step 30 are stored.
  • the acquisition speed, the number of occurrences or the acquisition duration characterizing these measurements are the same as those characterizing the acquisition made during step 36.
  • step 38 the characteristic temperature of the thermal state of the specific zone of the internal combustion engine is determined as a function of the occurrences stored in steps 37 and 38. The method then proceeds to step 32 as illustrated. on the figure 2 and as described previously.
  • the temperature characterizing the thermal state of the specific area of the engine T ss_biais is determined by a statistical model according to the variables provided by the control means 27 of the engine and by the temperature sensor 9 located in the internal combustion engine.
  • a model is used autoregressive moving average (ARMA).
  • the temperature characterizing the thermal state of the specific area of the engine T ss bias is determined according to the speed of rotation, the load, the amount of fuel injected, and the speed of the vehicle.
  • the temperature of the coolant determined at the level of the cylinder head is considered as one of these variables. Other parameters can also be integrated.
  • the variables of the electronic control unit include the rotation speed of the internal combustion engine, the speed of the vehicle and the load of the engine.
  • the regressor corresponding to each of these variables is determined in the form of a cartography resulting from a test campaign.
  • Equation 1 shows that it is possible to determine the temperature characteristic of the thermal state of the specific area of the engine _ T ss bias directly at the end of an acquisition period.
  • a second embodiment is illustrated by the figure 4 . Similar elements of the figure 1 and some figure 4 , have the same references.
  • the temperature sensor 9 is either absent or placed in a non-optimal way not making it possible to account for the gradual temperature rise of the coolant in the internal combustion engine. In both cases, the data provided by the temperature sensor 9 are not reliable and are therefore not used to model the thermal state of the specific area of the engine. The temperature sensor 9 is therefore not represented on the figure 4 .
  • the temperature characteristic of the thermal state of the specific zone of the engine is calculated by applying a second model.
  • the second model is a statistical model to characterize the phenomenon of gradual rise in engine temperature
  • the evolution of the temperature of the material of the engine block around the combustion chamber is determined.
  • the material forming the engine block is in thermal equilibrium between the gaseous environment and the engine specific zone corresponding to the thermal state that is to be modeled.
  • material is meant all non-gaseous material capable of transmitting heat.
  • a second step the evolution of the temperature characterizing the thermal state of the specific zone of the engine is calculated.
  • the specific area of the engine corresponding to the thermal state that is to be modeled is in thermal equilibrium between the heat conveyed by matter and the heat generated by the combustion. It is called that one is in a situation of zero flow of the heat transfer fluid.
  • the equilibrium between the specific zone of the engine corresponding to the thermal state that one seeks to model and the material is governed here also by the term of Conduction Ech_Conduction previously defined.
  • the heat generated by combustion combustion is determined by a statistical model as a function of the variables provided by the motor control means 27.
  • Different models can be used such as linear, quadratic, kriging, lolimot, AR, MA or ARMA models.
  • a moving average model can be used to determine the heat generated by combustion combustion as a function, for example, of the speed, rotation, the load, the amount of fuel injected, and the air flow. Other parameters can also be integrated.
  • variables of the electronic control unit include the rotation speed of the internal combustion engine, the speed of the vehicle and the load of the engine.
  • the regressor corresponding to each of these variables is determined in the form of a cartography resulting from a test campaign.
  • the temperature characterizing the thermal state of the engine is then defined by the following equation.
  • VS p_pantet ⁇ dT ss_biais dt h combustion - Ech_Conduction in which C p_ponter represents the heat capacity of the specific zone of the engine corresponding to the thermal state that is to be modeled.
  • the thermal state of the system is governed by a system of coupled differential equations.
  • the resolution of this type of equation goes through an iterative resolution.
  • the equation system will be initialized using the instantaneous value of the ambient temperature as the temperature value T of the mat material and the temperature T ss_biais characterizing the thermal state of the specific area of the engine.
  • the system and the control method are intended to control the thermal evolution of an internal combustion engine 1 and the cooling system of such an engine, when the coolant flow rate is zero. Under such conditions, it is considered that the internal combustion engine and the environment are at the same temperature during the first moments of startup. So there is no convection, the atmosphere and the engine being at the same temperature. There is also no conduction, the thermal energy generated by combustion has not begun to spread.
  • the equation system will be initialized using the instantaneous value of the temperature measured by a temperature sensor located in the internal combustion engine as a value of the temperature of the material T mat and the temperature T ss_biais characterizing the thermal state of the specific area of the engine.
  • the internal combustion engine has a residual temperature from the previous operating period. Due to the thermal inertia of the various elements of the internal combustion engine, it can be estimated that all the elements of the internal combustion engine are at the same temperature, which temperature can be measured by a sensor located in the internal combustion engine.
  • the figure 5 illustrates the control method according to the second embodiment.
  • the control method starts with step 39 during which the operating conditions of the internal combustion engine 1 are determined. In particular, the rotational speed, the engine torque and the injected fuel flow rate are determined.
  • the method is continued in step 40 during which a temperature characterizing the thermal state of the specific zone of the engine is determined.
  • step 40 the temperature of the environment is taken into account.
  • step 41 it is determined whether the temperature characterizing the thermal state of the engine specific zone is greater than a stored threshold temperature. If the result is true, the process proceeds to step 42 in which the flow rate cutoff means is switched to the driving position. Otherwise, the method is continued in step 43 during which the flow-off means 5 is held in the non-conducting position. The process starts again at step 39.
  • the figure 6 illustrates in more detail step 40 illustrated on the figure 5 Step 40 makes it possible to determine the temperature characteristic of the thermal state of the specific zone of the motor at iteration n.
  • step 44 the convective heat exchange is determined at iteration n as a function of the material temperature at the iteration n-1 and the temperature of the environment at the iteration n-1. For this, the equation (Eq.2) is applied.
  • step 45 the material temperature is determined at the iteration n as a function of the convective heat exchange at the iteration n and the heat exchange by conduction at the iteration n. For this, the equation (Eq.4) is applied.
  • step 46 the conductive heat exchange is determined at time n as a function of the material temperature at time n-1 and as a function of the temperature characteristic of the thermal state of the specific zone of the engine at the moment n-1. For this, the equation (Eq.3) is applied.
  • step 47 several occurrences of the operating conditions of the internal combustion engine determined during step 39 described above are memorized. These occurrences are determined in succession, each being spaced from the next of a given duration. The values characterizing these measurements are the same as those defined in the description of step 36 of the first embodiment.
  • the heat generated by the combustion is also determined.
  • the heat generated by the combustion is determined according to the stored occurrences.
  • Two Determinations of the energy released during combustion are spaced in time by a duration at least equal to the acquisition duration, the acquisition duration being equal to the number of occurrences multiplied by the duration between two measurements.
  • the energy released during combustion is determined with a period at least equal to the acquisition time
  • the heat generated by the combustion is determined by applying the equation (Eq.5).
  • step 48 the temperature characterizing the thermal state of the engine specific zone at time n is determined as a function of the heat generated by the combustion at time n and as a function of the conductive heat exchange. at iteration n. For this, the equation (Eq.6) is applied,
  • a value equal to the temperature of the environment or a value equal to the last known value of the temperature characteristic of the thermal state of the zone will be considered as initialization value. specific to the editor.
  • the system and the control method of the cooling system of an internal combustion engine make it possible to accurately determine the temperature of the specific zone of the engine corresponding to the thermal state that is to be modeled. Depending on this temperature, the cooling system can be controlled so that the temperature of the internal combustion engine increases rapidly during a first start without compromising the safety of said engine. Such a control advantageously makes it possible to quickly bring the internal combustion engine to a temperature at which its fuel consumption is reduced. and pollutant emissions from unburned hydrocarbons are reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

L'invention a pour domaine technique la gestion thermique d'un moteur à combustion interne, et plus particulièrement la gestion du système de refroidissement en fonction de la température du moteur à combustion interne.The technical field of the invention is the thermal management of an internal combustion engine, and more particularly the management of the cooling system as a function of the temperature of the internal combustion engine.

L'invention permet une amélioration de la gestion thermique du moteur par l'utilisation d'observateurs, notamment dans un contexte de discontinuité du débit du fluide caloporteur.The invention makes it possible to improve the thermal management of the engine by the use of observers, especially in a context of discontinuity in the flow of the coolant.

La consommation de carburant et la production de polluants d'un moteur à combustion interne sont influencées par sa température de fonctionnement. Afin de produire des véhicules présentant une consommation en carburation réduite, il est important de réguler la temperature d'un moteur à combustion interne de façon qu'elle soit à un niveau optimal pendant le fonctionnement, notamment pendant le démarrage.The fuel consumption and pollutant production of an internal combustion engine is influenced by its operating temperature. In order to produce vehicles with reduced fuel consumption, it is important to control the temperature of an internal combustion engine so that it is at an optimum level during operation, especially during start-up.

C'est la raison pour laquelle il est d'usage de positionner le capteur de température à l'intérieur du circuit de refroidissement traversant la culasse. Si ce capteur est en plus positionné à l'intérieur de la culasse, il fournit alors une mesure pertinente de la température à l'intérieur du moteur à combustion interne, y compris pendant une phase au cours de laquelle on couperait le débit du liquide de refroidissement.This is the reason why it is customary to position the temperature sensor inside the cooling circuit passing through the cylinder head. If this sensor is additionally positioned inside the cylinder head, it then provides a relevant measurement of the temperature inside the internal combustion engine, including during a phase during which the flow of the liquid of cooling.

Si, à l'inverse, le capteur n'est pas positionné à l'intérieur de la culasse, pendant une phase de débit nul du liquide de refroidissement, la température ainsi mesurée n'est alors pas représentative de la température à l'intérieur du moteur.If, conversely, the sensor is not positioned inside the cylinder head, during a phase of zero flow of the coolant, the temperature thus measured is then not representative of the temperature inside. of the motor.

Par ailleurs, il est connu d'utiliser un circuit de refroidissement contenant deux branches. Une branche de refroidissement passe par un radiateur permettant d'abaisser la température du fluide caloporteur contenu dans le circuit de refroidissement. Une branche de dérivation ne présente qu'un échangeur passif, de type aérotherme, limitant le refroidissement du liquide.Moreover, it is known to use a cooling circuit containing two branches. A cooling branch passes through a radiator for lowering the temperature of the heat transfer fluid contained in the cooling circuit. Branch branch presents only a passive heat exchanger, type heater, limiting the cooling of the liquid.

La demande de brevet français FR 2 908 458 décrit plusieurs variantes de la branche de refroidissement et de la branche de dérivation. Ce document décrit notamment comment limiter ou couper la circulation du fluide caloporteur la branche de refroidissement, notamment pour élever rapidement la température d'un moteur à combustion interne initialement froid. Le moyen permettant d'arriver à un tel fonctionnement est soit une vanne thermostatique, soit une vanne électrique pilotée par des moyens de commande, soit une pompe entraînée sur commande. Cependant, les moyens de commande ne sont pas explicités.The French patent application FR 2 908 458 describes several variants of the cooling branch and branch branch. This document notably describes how to limit or cut the circulation of the heat transfer fluid to the cooling branch, in particular to rapidly raise the temperature of an initially cold internal combustion engine. The means for achieving such operation is either a thermostatic valve, an electric valve controlled by control means, or a pump driven on command. However, the control means are not explained.

La demande de brevet français FR 2 912 183 décrit un dispositif de commande d'un moteur à combustion interne comprenant des moyens de détermination de la température des gaz d'échappement prenant en compte la qualité du carburant utilisé.The French patent application FR 2 912 183 discloses a control device of an internal combustion engine comprising means for determining the temperature of the exhaust gas taking into account the quality of the fuel used.

La demande de brevet américain US 2004/0128059 décrit un procédé permettant de corriger la précision de la mesure de température de l'huile selon les phases de fonctionnement du moteur à combustion interne.The US patent application US 2004/0128059 describes a method for correcting the accuracy of the oil temperature measurement according to the operating phases of the internal combustion engine.

La demande internationale de brevet WO 2008/085400 décrit un moyen de commande apte à commander le système de refroidissement d'un moteur à combustion interne de façon que la température dudit moteur soit inférieure à une valeur donnée, le moyen de commande étant par ailleurs apte à déclencher un arrêt automatique,International patent application WO 2008/085400 discloses a control means adapted to control the cooling system of an internal combustion engine so that the temperature of said engine is lower than a given value, the control means being further able to trigger an automatic stop,

La demande de brevet français FR 2 869 355 décrit une gestion de la température du fluide caloporteur permettant d'améliorer la consommation, notamment lors des démarrages a froid. La température du fluide caloporteur en sortie du moteur ne permet pas de caractériser de façon suffisamment précise l'état thermique du moteur de façon à assurer à sécurité thermique des pièces les plus fragiles, telles que l'inter-cylindres, Cependant, la caractérisation thermique de ces pièces est difficilement réalisable lors du fonctionnement du véhicule.The French patent application FR 2 869 355 describes a management of the temperature of the coolant to improve the consumption, especially during cold starts. The temperature of the heat transfer fluid at the outlet of the engine does not allow a sufficiently precise characterization of the thermal state of the engine so as to ensure thermal safety of the most fragile parts, such as the inter-cylinder, however, the thermal characterization of these parts is difficult to achieve during operation of the vehicle.

La demande de brevet français FR 2 869 355 propose un modèle prédictif permettant d'évaluer la ou les valeurs spécifiques de l'état thermique du moteur. Les paramètres mesurés peuvent être la vitesse de rotation du moteur, la charge du moteur, et le débit ou la température du fluide caloporteur qui entre dans le moteur. Le modèle prédictif repose sur le principe qu'il existe un débit non nul à travers le circuit principal et que l'on dispose, à chaque instant, de la température en entrée du moteur.The French patent application FR 2 869 355 proposes a predictive model making it possible to evaluate the specific value or values of the thermal state of the engine. The parameters measured may be the engine rotation speed, the engine load, and the flow rate or temperature of the heat transfer fluid entering the engine. The predictive model is based on the principle that there is a non-zero flow through the main circuit and that we have, at every moment, the temperature at the engine inlet.

Le document US 2007/0175415 divulgue un procédé et un système d'estimation de la température d'un moteur à combustion interne.The document US 2007/0175415 discloses a method and system for estimating the temperature of an internal combustion engine.

Le document US 6394045 divulgue un dispositif de commande du refroidissement d'un moteur à combustion interne.The document US 6394045 discloses a device for controlling the cooling of an internal combustion engine.

Le document DE 102006009892 divulgue un procédé et un système de commande du refroidissement d'un moteur à combustion interne.The document DE 102006009892 discloses a method and system for controlling the cooling of an internal combustion engine.

Lors d'un débit nul du fluide caloporteur d'un moteur à combustion interne initialement froid, la température augmente rapidement et permet d'atteindre plus rapidement la plage de température optimale. La quantité d'hydrocarbures imbrûlés émise est alors réduite.During a zero flow of the heat transfer fluid of an initially cold internal combustion engine, the temperature increases rapidly and makes it possible to reach the optimum temperature range more quickly. The quantity of unburned hydrocarbons emitted is then reduced.

Toutefois, il est nécessaire de s'assurer que la température de certaines zones spécifiques du moteur reste limitée pour des raisons de fiabilité. En pratique, ces zones spécifiques sont le noyau d'eau culasse au voisinage de la chambre de combustion et le pontet intersoupape.However, it is necessary to ensure that the temperature of certain specific areas of the engine remains limited for reasons of reliability. In practice, these specific areas are the water core cylinder in the vicinity of the combustion chamber and the intersoupape bridge.

Lors d'une phase de débit nul du fluide caloporteur, pour une architecture où le capteur de température est situé à l'extérieur de la culasse, la température mesurée n'est pas représentative de la température à l'intérieur du moteur, a fortiori, de celle de la zone spécifique d'intérêt du moteur.During a phase of zero flow of the coolant, for an architecture where the temperature sensor is located outside the cylinder head, the measured temperature is not representative of the temperature inside the engine, let alone , that of the specific area of interest of the engine.

Dans une architecture où le capteur de température est situé à l'intérieur de la culasse, on peut souhaiter prendre en compte cette mesure afin d'estimer plus précisément la température de la zone spécifique du moteur.In an architecture where the temperature sensor is located inside the cylinder head, it may be desirable to take this measurement into account in order to estimate more precisely the temperature of the specific zone of the engine.

Il existe donc un besoin pour un dispositif et un procédé de commande du circuit de refroidissement d'un moteur à combustion interne qui ne dépende pas d'une mesure de température du fluide caloporteur pour estimer l'état thermique dudit moteur.There is therefore a need for a device and a method for controlling the cooling circuit of an internal combustion engine that does not depend on a temperature measurement of the coolant to estimate the thermal state of said engine.

L'objet de l'invention est un procédé de commande d'un circuit de refroidissement d'un moteur à combustion interne selon la revendication 1.The subject of the invention is a method for controlling a cooling circuit of an internal combustion engine according to claim 1.

On peut déterminer la température à l'intérieur du moteur à combustion interne par mesure, et on peut déterminer une température caractéristique de l'état thermique de la zone spécifique du moteur à combustion interne par application d'un premier modèle en fonction de la température à l'intérieur du moteur à combustion interne.The temperature inside the internal combustion engine can be determined by measurement, and a temperature characteristic of the thermal state of the specific zone of the internal combustion engine can be determined by applying a first model as a function of the temperature. inside the internal combustion engine.

On peut déterminer la température caractéristique de l'état thermique de à zone spécifique du moteur a combustion interne par application d'un deuxième modèle.The characteristic temperature of the specific zone thermal state of the internal combustion engine can be determined by application of a second model.

Le deuxième modèle est un modèle autorégressif à moyenne mobile.The second model is an autoregressive moving average model.

Dans un exemple ne faisant pas partie de l'invention, la zone spécifique dont on détermine la température caractéristique peut être le fluide caloporteur au niveau de la culasse ou au voisinage de la chambre de combustion.In an example not forming part of the invention, the specific zone whose characteristic temperature is determined may be the coolant at the cylinder head or in the vicinity of the combustion chamber.

Dans la présente invention, la zone spécifique dont on détermine la température caractéristique est le pontet intersoupape.In the present invention, the specific zone whose characteristic temperature is determined is the intersoupape bridge.

On définit un système de commande d'un circuit de refroidissement par fluide caloporteur d'un moteur à combustion interne équipant un véhicule automobile, le système de commande comprenant une unité de commande électronique apte à commuter un moyen de coupure du débit dudit circuit de refroidissement situé en aval du moteur à combustion interne.A control system for a heat transfer fluid cooling circuit of an internal combustion engine equipping a motor vehicle is defined, the control system comprising an electronic control unit able to switch a means for shutting down the flow of said cooling circuit. located downstream of the internal combustion engine.

L'unité de commande électronique est apte à déterminer une température caractéristique de l'état thermique d'une zone spécifique du moteur à combustion interne par application d'un modèle, apte à comparer à température caractéristique de l'état thermique de la zone spécifique du moteur à combustion interne à une température limite et apte à commuter le moyen de coupure du débit dans une position passante en fonction de la température caractéristique de la zone spécifique de l'état thermique du moteur à combustion interne et de la température limite.The electronic control unit is able to determine a temperature characteristic of the thermal state of a specific zone of the internal combustion engine by application of a model, able to compare at a temperature characteristic of the thermal state of the specific zone. of the internal combustion engine at a limit temperature and adapted to switch the means for shutting off the flow rate in a passing position as a function of the characteristic temperature of the specific zone of the thermal state of the internal combustion engine and the limit temperature.

L'unité de commande électronique peut comprendre un moyen de comparaison apte à comparer la température caractéristique de l'état thermique de la zone spécifique du moteur à combustion interne à la température limite, l'imité de commande électronique étant apte à émettre un signal de commande du moyen de coupure du débit en fonction du résultat de à comparaison.The electronic control unit may comprise comparison means able to compare the temperature characteristic of the thermal state of the specific zone of the internal combustion engine with the limit temperature, the electronic control imity being able to emit a signal of controlling the flow cut-off means according to the comparison result.

Le système de commande peut comprendre un moyen de détermination apte à appliquer un premier modèle afin de déterminer la température caractéristique de l'état thermique de la zone spécifique du moteur à combustion interne en fonction de la température du moteur à combustion interne.The control system may include a determining means adapted to apply a first model to determine the temperature characteristic of the thermal state of the specific zone of the internal combustion engine as a function of the temperature of the internal combustion engine.

Le système de commande peut comprendre un capteur de température situé à l'intérieur du moteur à combustion interne apte à déterminer la température du moteur à combustion interne.The control system may comprise a temperature sensor located inside the internal combustion engine capable of determining the temperature of the internal combustion engine.

Le capteur de température peut être situé dans la culasse.The temperature sensor can be located in the cylinder head.

Le système de commande peut comprendre un moyen de détermination apte à déterminer la température caractéristique de l'état thermique du moteur à combustion interne en appliquant un deuxième modèle.The control system may comprise a determination means able to determine the temperature characteristic of the thermal state of the internal combustion engine by applying a second model.

Le moyen de coupure du débit peut être un moyen d'entraînement de la pompe apte à entraîner ladite pompe sur commande.The flow cutoff means may be a drive means of the pump adapted to drive said pump on command.

Le moyen de coupure du débit peut être une vanne placée en sortie du moteur.The flow cut-off means may be a valve placed at the output of the engine.

La zone spécifique est le pontet intersoupape.The specific area is the intersoupape bridge.

D'autres buts, caractéristiques et avantages apparaîtront à la lecture de la description suivante donnée uniquement en tant qu'exemple non limitatif et faite en référence aux dessins annexés sur lesquels :

  • la figure 1 illustre les principaux éléments compris dans un premier mode de réalisation d'un système de commande du circuit de refroidissement d'un moteur à combustion interne ;
  • la figure 2 illustre les principales étapes d'un premier mode de réalisation d'un procédé de commande du circuit de refroidissement ;
  • la figure 3 illustre plus en détail une des étapes comprises dans le premier mode de réalisation d'un procédé de commande du circuit de refroidissement ;
  • la figure 4 illustre les principaux éléments compris dans un deuxième mode de réalisation d'un système de commande du circuit de refroidissement d'un moteur à combustion interne ;
  • la figure 5 illustre les principales étapes d'un deuxième mode de réalisation d'un procédé de commande du circuit de refroidissement ; et
  • la figure 6 illustre plus en détail une des étapes comprises dans le deuxième mode de réalisation d'un procédé de commande du circuit de refroidissement.
Other objects, features and advantages will appear on reading the following description given solely as a non-limitative example and with reference to the appended drawings in which:
  • the figure 1 illustrates the main elements included in a first embodiment of a control system of the cooling circuit of an internal combustion engine;
  • the figure 2 illustrates the main steps of a first embodiment of a control method of the cooling circuit;
  • the figure 3 illustrates in greater detail one of the steps included in the first embodiment of a control method of the cooling circuit;
  • the figure 4 illustrates the main elements included in a second embodiment of a control system of the cooling circuit of an internal combustion engine;
  • the figure 5 illustrates the main steps of a second embodiment of a control method of the cooling circuit; and
  • the figure 6 illustrates in more detail one of the steps included in the second embodiment of a control method of the cooling circuit.

La figure 1 illustre un premier mode de réalisation d'un système de commande du circuit de refroidissement d'un moteur à combustion interne. On peut voir un moteur à combustion interne 1 muni d'un circuit de refroidissement comprenant un circuit principal 2 et un circuit secondaire 3.The figure 1 illustrates a first embodiment of a control system of the cooling circuit of an internal combustion engine. An internal combustion engine 1 can be seen provided with a cooling circuit comprising a main circuit 2 and a secondary circuit 3.

Le circuit principal 2 de refroidissement comprend un moyen de coupure 5 du débit relié par son entrée au moteur à combustion interne 1 par une conduite 4 et par sa sortie à un radiateur principal 7 par une conduite 6. Le radiateur principal 7 est relié à l'entrée d'une pompe 10 par une conduite 8, la sortie de ladite pompe 10 étant reliée au moteur à combustion interne 1 par une conduite 11.The main cooling circuit 2 comprises a means 5 for shutting off the flow connected by its inlet to the internal combustion engine 1 via a pipe 4 and its outlet to a main radiator 7 via a pipe 6. The main radiator 7 is connected to the the inlet of a pump 10 via a pipe 8, the outlet of said pump 10 being connected to the internal combustion engine 1 by a pipe 11.

Le circuit secondaire 3 comprend essentiellement un aérotherme 18. Une conduite d'entrée 17 est piquée entre le moyen de coupure 5 du débit et le moteur à combustion interne 1, et est reliée à l'aérotherme 18. Une conduite de sortie 19 est piquée entre le radiateur principal 7 et la pompe 10, et est reliée à l'aérotherme 18.The secondary circuit 3 essentially comprises a heater 18. An inlet pipe 17 is stitched between the flow cutoff means 5 and the internal combustion engine 1, and is connected to the heater 18. An outlet pipe 19 is stitched between the main radiator 7 and the pump 10, and is connected to the heater 18.

Un capteur de température 9 est situé dans le moteur à combustion interne, en amont du moyen de coupure 5 du débit. Le capteur de température 9 est apte à déterminer la température régnant dans le moteur à combustion interne. Selon un mode de réalisation préféré, le capteur de température 9 est situé à l'intérieur du noyau d'eau de la culasse. La localisation de ce capteur permet de caractériser l'élévation progressive de la température du fluide caloporteur lors du démarrage du véhicule.A temperature sensor 9 is located in the internal combustion engine, upstream of the flow cut-off means 5. The temperature sensor 9 is able to determine the temperature prevailing in the internal combustion engine. According to a preferred embodiment, the temperature sensor 9 is located inside the water core of the cylinder head. The location of this sensor makes it possible to characterize the gradual rise in the temperature of the heat transfer fluid when the vehicle is started.

Le système de commande comprend une unité de commande électronique 26 comprenant un moyen de détermination 21 de l'état thermique du moteur relié par une connexion 22 à un moyen de comparaison 23. Le capteur de température 9 situé au niveau du noyau d'eau de la culasse est relié par la connexion 20 au moyen de détermination 21.The control system comprises an electronic control unit 26 comprising a means 21 for determining the thermal state of the motor connected by a connection 22 to a comparison means 23. The temperature sensor 9 situated at the water core of the the yoke is connected by the connection 20 to the determining means 21.

On appelle noyau d'eau de la culasse l'ensemble des chambres ménagées dans la culasse et conçues pour permettre la circulation du liquide de refroidissement.The water core of the cylinder head is the set of chambers in the cylinder head and designed to allow the circulation of coolant.

De même, un moyen de contrôle 27 du moteur est relié par la connexion 28 au moyen de détermination 21.Similarly, a control means 27 of the motor is connected by the connection 28 to the determining means 21.

En sortie, le moyen de comparaison 23 est relié par la connexion 25 au moyen de coupure 5 du débit.At the output, the comparison means 23 is connected by the connection 25 to the breaking means 5 of the flow.

Le fonctionnement est décrit ci-après dans le cas d'un débit nul du fluide caloporteur. Le débit du fluide caloporteur peut être nul notamment lors d'une première chauffe ou lors d'une deuxième chauffe.The operation is described below in the case of a zero flow of the heat transfer fluid. The flow of the coolant can be zero especially during a first heating or during a second heating.

Une première chauffe est définie comme l'élévation de température consécutive à un premier démarrage, lorsque le moteur est à une température égale ou sensiblement égale à la température ambiante.A first heater is defined as the rise in temperature following a first start, when the engine is at a temperature equal to or substantially equal to the ambient temperature.

Une deuxième chauffe est définie comme l'élévation de température consécutive à une chute modérée de la température du moteur à combustion interne, par exemple, suite à un arrêt bref du moteur à combustion interne.A second heater is defined as the rise in temperature following a moderate drop in the temperature of the internal combustion engine, for example, following a brief stop of the internal combustion engine.

Une discontinuité du liquide de refroidissement apparaît lors de variations brutales du débit et se traduit par l'apparition de brusques transitions thermiques. En d'autres termes, le débit peut passer brusquement d'un débit important à un débit nul et réciproquement.A discontinuity of the cooling liquid appears during sudden changes in the flow rate and results in the appearance of abrupt thermal transitions. In other words, the flow rate can suddenly change from a large flow rate to a zero flow rate and vice versa.

Une telle discontinuité peut être commandés, ou fortuite. Par discontinuité commandée, on entend les cas de la première chauffe et de la deuxième chauffe. Cependant, les discontinuités commandées comprennent également le cas d'une alternance de circulations et d'arrêt de circulation du fluide caloporteur destinée à réguler la température du fluide catoporteur.Such discontinuity can be ordered, or fortuitous. Controlled discontinuity means the cases of the first heating and the second heating. However, the ordered discontinuities also include the case of an alternation of circulations and heat transfer fluid circulation stop for regulating the temperature of the heat transfer fluid.

Par opposition, les discontinuités fortuites comprennent les cas de pannes d'un organe impliqué dans le fonctionnement du circuit de refroidissement du moteur à combustion interne. La température peut alors être déterminée malgré l'absence de circulation du fluide caloporteur, et renseigner de façon plus précise sur l'état d'endommagement éventuel du moteur à combustion interne.In contrast, fortuitous discontinuities include failures of an organ involved in the operation of the cooling circuit of the internal combustion engine. The temperature can then be determined in spite of the absence of circulation of the heat transfer fluid, and provide more precise information on the state of possible damage to the internal combustion engine.

Le système de commande a pour but de déterminer une température caractéristique d'une zone spécifique du moteur, puis de la comparer à une température limite afin de déterminer si le moyen de coupure 5 du débit doit être commuté en position passante. Pour cela, on détermine l'état thermique du moteur, c'est-à-dire la répartition de la chaleur à l'intérieur du moteur et plus particulièrement dans au moins une zone spécifique correspondant aux endroits critiques pour la fiabilité dudit moteur. On s'intéressera plus particulièrement à la temperature du pontet intersoupapes qui représente l'un des points les plus sensibles à la température du moteur à combustion interne. Le pontet intersoupapes représente les zones de faible résistance dans la culasse. Plus particulièrement, on appelle pontet intersoupapes les zones de matière de la culasse entre deux ouvertures adjacentes. Les ouvertures de la culasse sont les ouvertures pratiquées notamment pour les soupapes, mais également pour l'injecteur, et la bougie.The purpose of the control system is to determine a characteristic temperature of a specific area of the engine and then compare it to a limiting temperature to determine whether the flow cut-off means is to be switched to the driving position. For this, the thermal state of the engine is determined, that is to say the distribution of heat inside the engine and more particularly in at least one specific area corresponding to critical locations for the reliability of said engine. We will focus more particularly on the temperature of the intersopeve bridge which represents one of the most sensitive points to the temperature of the internal combustion engine. The intersopepope bridge represents areas of low resistance in the cylinder head. More particularly, it is called jumper intersoupapes the material areas of the cylinder head between two adjacent openings. The openings of the cylinder head are the openings made in particular for the valves, but also for the injector, and the spark plug.

Le contrôle du moteur à combustion interne 1 est réalisé grâce à la coopération du moyen de détermination 21 et du moyen de comparaison 23. Ces moyens appliquent un premier modèle statistique à des données reçues d'un moyen de contrôle 27 du moteur.The control of the internal combustion engine 1 is achieved through the cooperation of the determination means 21 and the comparison means 23. These means apply a first statistical model to data received from a control means 27 of the engine.

Le moyen de contrôle 27 fournit à l'unité de commande électronique 26 des données qui comprennent notamment la vitesse de rotation du moteur à combustion interne, la charge du moteur à combustion interne, la quantité de carburant injectée, et/ou le débit d'air.The control means 27 supplies the electronic control unit 26 with data including, in particular, the rotational speed of the internal combustion engine, the load of the internal combustion engine, the quantity of fuel injected, and / or the flow rate of the fuel. air.

L'unité de commande électronique 26 reçoit également des données relatives à la température du fluide caloporteur déterminée au niveau de la culasse, en provenance du capteur de température 9.The electronic control unit 26 also receives data relating to the temperature of the coolant determined at the cylinder head from the temperature sensor 9.

Un débit nul du liquide de refroidissement implique que le moyen de coupure 5 du débit est dans une position non passante. Le fluide caloporteur compris dans le circuit principal 2 ne circule pas dans le moteur à combustion interne I.A zero flow of the coolant implies that the flow cut-off means is in a non-conducting position. The heat transfer fluid included in the main circuit 2 does not circulate in the internal combustion engine I.

Le fluide caloporteur contenu dans la portion du circuit de refroidissement traversant le moteur à combustion interne 1 peut circuler à travers le circuit secondaire 3 sous l'action de la pompe 10. Une partie majeure de la chaleur générée par le fonctionnement du moteur à combustion interne est communiquée au fluide caloporteur. Cependant, du fait que le fluide caloporteur ne traverse que l'aérotherme 18, une quantité minimale de la chaleur emmagasinée dans le fluide caloporteur est dispersés. La température du fluide caloporteur augmente alors rapidement.The coolant contained in the portion of the cooling circuit passing through the internal combustion engine 1 can flow through the secondary circuit 3 under the action of the pump 10. A major part of the heat generated by the operation of the internal combustion engine is communicated to the heat transfer fluid. However, because the heat transfer fluid passes through the heater 18, a minimum amount of the heat stored in the heat transfer fluid is dispersed. The temperature of the heat transfer fluid then increases rapidly.

Il est également possible de placer une vanne complémentaire entre la pompe 10 et le moteur à combustion interne 1 sur la branche 11, afin d'empêcher toute circulation du liquide de refroidissement dans le moteur à combustion interne. La température du moteur à combustion interne augmente alors plus rapidement que dans le mode de réalisation précédent.It is also possible to place a complementary valve between the pump 10 and the internal combustion engine 1 on the branch 11, to prevent any circulation of the coolant in the internal combustion engine. The temperature of the internal combustion engine then increases more rapidly than in the previous embodiment.

Une alternative permettant de couper la circulation du fluide caloporteur peut être d'arrêter le fonctionnement de la pompe 10. Pour cela on peut soit débrayer la pompe 10, soit commander directement l'arrêt de son fonctionnement.An alternative for cutting the circulation of the heat transfer fluid may be to stop the operation of the pump 10. For this it can either disengage the pump 10, or directly control the stop of its operation.

L'unité de commande électronique 26 commande alors le moyen de coupure 5 du débit de façon que l'augmentation de la température du moteur à combustion interne soit ralentie et stoppée au voisinage d'un seuil de température. L'unité de commande électronique 26 peut éventuellement commander la pompe 10.The electronic control unit 26 then controls the cutoff means 5 of the flow so that the increase in the temperature of the internal combustion engine is slowed down and stopped in the vicinity of a temperature threshold. The electronic control unit 26 may optionally control the pump 10.

En effet, l'ouverture du moyen de coupure 5 du débit a pour effet de faire circuler le fluide caloporteur contenu dans le circuit principal 2 et se trouvant à une température inférieure à la température du moteur à combustion interne. De plus, une partie du fluide caloporteur provenant de la sortie du circuit de refroidissement compris dans le moteur à combustion interne est dirigée dans le circuit principal 2 où elle est refroidie dans le radiateur principal 7. A partir de ce moment, le circuit de refroidissement est contrôlé de façon classique afin de maintenir le moteur à combustion interne à la température désirée.Indeed, the opening of the flow cutoff means 5 has the effect of circulating the coolant contained in the main circuit 2 and being at a temperature below the temperature of the internal combustion engine. In addition, a portion of the heat transfer fluid from the output of the cooling circuit included in the internal combustion engine is directed into the main circuit 2 where it is cooled in the main radiator 7. From this moment, the cooling circuit is controlled in a conventional manner to maintain the internal combustion engine at the desired temperature.

La figure 2 illustre le procédé de commande du circuit de refroidissement. Ce procédé de commande est appliqué lors du démarrage du moteur à combustion interne. La température du moteur est voisine de la température ambiante et le moyen de coupure du débit 5 est dans une position non passante.The figure 2 illustrates the control method of the cooling circuit. This control method is applied when starting the internal combustion engine. The temperature of the engine is close to the ambient temperature and the flow cutoff means 5 is in a non-conducting position.

Le procédé de commande débute par l'étape 29 au cours de laquelle on détermine les conditions de fonctionnement du moteur à combustion interne. On détermine notamment, la vitesse de rotation, le couple moteur et le débit de carburant injecté. Par ailleurs, on détermine à l'étape 30 1a température du fluide caloporteur à l'intérieur du moteur à combustion interne, plus particulièrement au niveau de la culasse.The control method begins with step 29 in which the operating conditions of the internal combustion engine are determined. In particular, the rotational speed, the engine torque and the injected fuel flow rate are determined. Furthermore, in step 30, the temperature of the coolant inside the internal combustion engine is determined, more particularly at the level of the cylinder head.

Le procédé se poursuit à l'étape 31 au cours de laquelle on détermine une température caractérisant l'état thermique d'une zone spécifique du moteur par application d'un premier modèle. Au cours de l'étape 32, on détermine si la température caractérisant l'état thermique de la zone spécifique du moteur est supérieure à une température de seuil mémorisée. Si le résultat est vrai, on poursuit le procédé à l'étape 34 au cours de laquelle on commute le moyen de coupure 5 du débit. Sinon, on poursuit le procédé à l'étape 35 au cours de laquelle on maintient le moyen de coupure 5 du débit dans la position non passante. Le procédé recommence alors avec les étapes 29 et 30.The method is continued in step 31 during which a temperature characterizing the thermal state of a specific zone of the engine is determined by application of a first model. During step 32, it is determined whether the temperature characterizing the thermal state of the specific zone of the motor is greater than a stored threshold temperature. If the result is true, the process is continued at step 34 during which the flow cutoff means 5 is switched. Otherwise, the process is continued in step 35 during which the flow-off means 5 is held in the non-conducting position. The process then recommences with steps 29 and 30.

La figure 3 illustre plus en détail l'étape 31 illustrée sur la figure 2. Au cours de l'étape 36, on mémorise plusieurs occurrences des conditions de fonctionnement du moteur à combustion interne déterminées lors de l'étape 29 précédemment décrite. Ces occurrences sont déterminées en succession, chacune étant espacée de la suivante d'une durée donnée. La durée entre deux occurrences est liée à la vitesse d'acquisition du capteur et aux capacités de traitement du système. D'une manière générale, on considérera une durée entre deux occurrences petite devant la durée totale du phénomène d'élévation de la température du moteur à combustion interne. On considérera par exemple une vitesse de mesure comprise entre une mesure chaque deux cents millisecondes et une mesure par seconde.The figure 3 illustrates in more detail step 31 illustrated on the figure 2 . During step 36, several occurrences of the operating conditions of the internal combustion engine determined during step 29 described above are memorized. These occurrences are determined in succession, each being spaced from the next of a given duration. The time between two occurrences is related to the acquisition speed of the sensor and the processing capabilities of the system. Generally speaking, a time between two occurrences will be considered small compared to the total duration of the temperature rise phenomenon of the internal combustion engine. For example, a measurement speed of between one measurement every two hundred milliseconds and one measurement per second will be considered.

Le nombre d'occurrences mémorisées est compris entre cinq et trois cents occurrences, de préférence entre cinq et trente occurrences.The number of stored occurrences is between five and three hundred occurrences, preferably between five and thirty occurrences.

On peut également définir une durée d'acquisition. Le nombre d'occurrences et la durée d'acquisition sont reliés par la vitesse d'acquisition du capteur. La durée d'acquisition des occurrences doit être courte par rapport à la durée caractérisant l'évolution de la température du moteur à combustion interne pour éviter de masquer ladite révolution par un effet de moyenne. La durée d'acquisition est ainsi comprise entre une seconde et une minute, de préférence entre une seconde et trente secondes.We can also define an acquisition time. The number of occurrences and the duration of acquisition are related by the speed of acquisition of the sensor. The duration of acquisition of the occurrences must be short compared to the duration characterizing the evolution of the temperature of the internal combustion engine to avoid masking said revolution by an effect of average. The acquisition time is thus between one second and one minute, preferably between one second and thirty seconds.

De même, lors de l'étape 37, on mémorise plusieurs occurrences de la mesure de température effectuée au cours de l'étape 30. La vitesse d'acquisition, le nombre d'occurrences ou la durée d'acquisition caractérisant ces mesures sont les mêmes que celles caractérisant l'acquisition réalisée lors de l'étape 36.Similarly, during step 37, several occurrences of the temperature measurement performed in step 30 are stored. The acquisition speed, the number of occurrences or the acquisition duration characterizing these measurements are the same as those characterizing the acquisition made during step 36.

A l'étape 38, on détermine la température caractéristique de l'état thermique de la zone spécifique du moteur à combustion interne en fonction des occurrences mémorisées au cours des étapes 37 et 38. Le procédé se poursuit ensuite à l'étape 32 comme illustré sur la figure 2 et comme décrit précédemment.In step 38, the characteristic temperature of the thermal state of the specific zone of the internal combustion engine is determined as a function of the occurrences stored in steps 37 and 38. The method then proceeds to step 32 as illustrated. on the figure 2 and as described previously.

La température caractérisant l'état thermique de la zone spécifique du moteur Tss_biais est déterminée par un modèle statistique en fonction des variables fournies par le moyen de contrôle 27 du moteur et par le capteur de température 9 situé dans le moteur à combustion interne. On emploie un modèle autorégressif à moyenne mobile (ARMA).The temperature characterizing the thermal state of the specific area of the engine T ss_biais is determined by a statistical model according to the variables provided by the control means 27 of the engine and by the temperature sensor 9 located in the internal combustion engine. A model is used autoregressive moving average (ARMA).

On détermine la température caractérisant l'état thermique de la zone spécifique du moteur Tss biais en fonction de la vitesse de rotation, de la charge, de la quantité de carburant injectée, et de la vitesse du véhicule. La température du fluide caloporteur déterminée an niveau de la culasse est considérée comme une de ces variables. D'autres paramètres peuvent également être intégrés.The temperature characterizing the thermal state of the specific area of the engine T ss bias is determined according to the speed of rotation, the load, the amount of fuel injected, and the speed of the vehicle. The temperature of the coolant determined at the level of the cylinder head is considered as one of these variables. Other parameters can also be integrated.

Dans le cadre d'un modèle à moyenne mobile, la température de la zone spécifique du moteur est estimée par l'équation suivante : T ss_biais = k = 0 K 0 α k × n k

Figure imgb0001
dans laquelle

  • α(k) est un régresseur;
  • x(n-k) correspond aux différentes variables de l'unité de commande électronique ; et
  • K0 est le nombre d'occurrences sur lequel on réalise la moyenne.
In the context of a moving average model, the temperature of the specific area of the engine is estimated by the following equation: T ss_biais = Σ k = 0 K 0 α k × not - k
Figure imgb0001
in which
  • α (k) is a regressor;
  • x (nk) corresponds to the different variables of the electronic control unit; and
  • K 0 is the number of occurrences on which the average is made.

Les variables de l'unité de commande électronique comprennent la vitesse de rotation du moteur à combustion interne, la vitesse du véhicule et la charge du moteur. Le régresseur correspondant à chacune de ces variables est déterminé sous forme d'une cartographie issue d'une campagne d'essais.The variables of the electronic control unit include the rotation speed of the internal combustion engine, the speed of the vehicle and the load of the engine. The regressor corresponding to each of these variables is determined in the form of a cartography resulting from a test campaign.

Le système et le procédé de commande sont destinés à commander le refroidissement d'un moteur à combustion interne lorsque le débit du liquide de refroidissement est nul. Dans de telles conditions, l'équation 1 montre qu'il est possible de déterminer la température caractérisant l'état thermique de la zone spécifique du moteur Tss_biais directement à l'issue d'une période d'acquisition.The control system and method is for controlling the cooling of an internal combustion engine when the coolant flow rate is zero. Under such conditions, Equation 1 shows that it is possible to determine the temperature characteristic of the thermal state of the specific area of the engine _ T ss bias directly at the end of an acquisition period.

Un second mode de réalisation est illustré par la figure 4. Les éléments similaires de la figure 1 et de la figure 4, portent les mêmes références. Le capteur de température 9 est soit absent soit placé d'une façon non optimale ne permettant pas de rendre compte de l'élévation de température progressive du liquide caloporteur dans le moteur à combustion interne. Dans les deux cas, les données fournies par le capteur de température 9 ne sont pas fiables et ne sont donc pas utilisées pour modéliser l'état thermique de la zone spécifique du moteur. Le capteur de température 9 n'est donc pas représenté sur la figure 4.A second embodiment is illustrated by the figure 4 . Similar elements of the figure 1 and some figure 4 , have the same references. The temperature sensor 9 is either absent or placed in a non-optimal way not making it possible to account for the gradual temperature rise of the coolant in the internal combustion engine. In both cases, the data provided by the temperature sensor 9 are not reliable and are therefore not used to model the thermal state of the specific area of the engine. The temperature sensor 9 is therefore not represented on the figure 4 .

Dans le second mode de réalisation, on souhaite donc déterminer la température caractérisant l'état thermique de la zone spécifique du moteur sans utiliser de capteur de température.In the second embodiment, it is therefore desired to determine the temperature characterizing the thermal state of the specific area of the motor without using a temperature sensor.

Pour cela, on calcule la température caractéristique de l'état thermique de la zone spécifique du moteur par application d'un deuxième modèle. Le deuxième modèle est un modèle statistique permettant de caractériser le phénomène d'élévation progressive de la température du moteur,For this, the temperature characteristic of the thermal state of the specific zone of the engine is calculated by applying a second model. The second model is a statistical model to characterize the phenomenon of gradual rise in engine temperature,

Dans un premier temps, on détermine l'évolution de la température de la matière du bloc moteur autour de la chambre de combustion. La matière formant le bloc moteur est en équilibre thermique entre l'environnement gazeux et de la zone spécifique du moteur correspondant à l'état thermique que l'on cherche à modéliser. Par matière, on entend toute la matière non gazeuse susceptible de transmettre de la chaleur.In a first step, the evolution of the temperature of the material of the engine block around the combustion chamber is determined. The material forming the engine block is in thermal equilibrium between the gaseous environment and the engine specific zone corresponding to the thermal state that is to be modeled. By material is meant all non-gaseous material capable of transmitting heat.

Deux termes principaux régissent cet équilibre thermique. Le premier terme est un terme d'échange thermique par convection qui permet de caractériser les échanges thermiques entre la matière et l'environnement gazeux, typiquement l'atmosphère présente sous le capot du moteur. Ech_Convection = κ T Mat T out

Figure imgb0002
dans laquelle

  • k représente le coefficient de pertes thermiques de la matière,
  • TMat représente la température de la matière, et
  • Tout représente la température de l'environnement.
Two main terms govern this thermal equilibrium. The first term is a term of convective heat exchange that characterizes the heat exchange between the material and the gaseous environment, typically the atmosphere present under the hood of the engine. Ech_Convection = - κ T Mast - T out
Figure imgb0002
in which
  • k represents the coefficient of thermal losses of the material,
  • T Mat represents the temperature of the material, and
  • T out represents the temperature of the environment.

Le deuxième terme est un terme d'échange thermique par conduction qui permet de caractériser les échanges thermiques entre la zone spécifique du moteur correspondant à l'état thermique Tss_biais que l'on cherche à modéliser et la matière, typiquement le bloc moteur entourant la zone spécifique. Ech_Conduction = α T Mat T ss_biais

Figure imgb0003
dans laquelle

  • α représente le coefficient de conduction thermique de la matière ; et
  • Tss_biais représente la température caractérisant l'état thermique de la zone spécifique du moteur.
The second term is a term of thermal exchange by conduction which makes it possible to characterize the thermal exchanges between the specific engine area corresponding to the thermal state T ss_biais that one seeks to model and the material, typically the engine block surrounding the specific area. Ech_Conduction = - α T Mast - T ss_biais
Figure imgb0003
in which
  • α represents the coefficient of thermal conduction of the material; and
  • T ss_biais represents the temperature characterizing the thermal state of the specific zone of the motor.

L'évolution de la température de la matière est régie par l'équation suivante. C p_mat dT mat dt = Ech_Convection + Ech_Conduction

Figure imgb0004
dans laquelle Cp_mat représente la capacité calorifique de la matière.The evolution of the temperature of matter is governed by the following equation. VS p_mat dT mast dt = Ech_Convection + Ech_Conduction
Figure imgb0004
where C p_mat represents the heat capacity of the material.

Dans un deuxième temps, on calcule l'évolution de la température caractérisant l'état thermique de la zone spécifique du moteur. La zone spécifique du moteur correspondant à l'état thermique que l'on cherche à modéliser est en équilibre thermique entre la chaleur véhiculée par à matière et la chaleur générée par la combustion. On appelle que l'on se situe dans une situation de débit nul du fluide caloporteur. L'équilibre entre la zone spécifique du moteur correspondant à l'état thermique que l'on cherche à modéliser et la matière est régi ici aussi par le terme de conduction Ech_Conduction précédemment défini.In a second step, the evolution of the temperature characterizing the thermal state of the specific zone of the engine is calculated. The specific area of the engine corresponding to the thermal state that is to be modeled is in thermal equilibrium between the heat conveyed by matter and the heat generated by the combustion. It is called that one is in a situation of zero flow of the heat transfer fluid. The equilibrium between the specific zone of the engine corresponding to the thermal state that one seeks to model and the material is governed here also by the term of Conduction Ech_Conduction previously defined.

La chaleur générée par la combustion hcombustion est déterminée par un modèle statistique en fonction des variables fournies par le moyen de contrôle 27 du moteur. Différents modèles peuvent être employés comme les modèles linéaires, quadratiques, krigeage, lolimot, AR, MA ou ARMA.The heat generated by combustion combustion is determined by a statistical model as a function of the variables provided by the motor control means 27. Different models can be used such as linear, quadratic, kriging, lolimot, AR, MA or ARMA models.

On peut notamment utiliser un modèle à moyenne mobile (Moving Average en anglais) pour déterminer la chaleur générée par combustion hcombustion en fonction, par exemple, de la vitesse, de rotation, de la charge, de la quantité de carburant injectée, et du débit d'air. D'autres paramètres peuvent également être intégrés.In particular, a moving average model can be used to determine the heat generated by combustion combustion as a function, for example, of the speed, rotation, the load, the amount of fuel injected, and the air flow. Other parameters can also be integrated.

Sous ce formalisme, la chaleur générée par la combustion est régie par l'équation suivante : h combustion = k = 0 K 0 α k × n k

Figure imgb0005
dans laquelle

  • α(k) représente un régresseur ;
  • x(n-k) représente les différentes variables disponibles dans l'unité de commande électronique ; et
  • K0 représente le nombre d'occurrences sur lequel on réalise la moyenne.
Under this formalism, the heat generated by combustion is governed by the following equation: h combustion = Σ k = 0 K 0 α k × not - k
Figure imgb0005
in which
  • α (k) represents a regressor;
  • x (nk) represents the different variables available in the electronic control unit; and
  • K 0 represents the number of occurrences on which the average is made.

Ici encore, les variables de l'unité de commande électronique comprennent la vitesse de rotation du moteur à combustion interne, la vitesse du véhicule et la charge du moteur. Le régresseur correspondant à chacune de ces variables est déterminé sous forme d'une cartographie issue d'une campagne d'essais.Here again, the variables of the electronic control unit include the rotation speed of the internal combustion engine, the speed of the vehicle and the load of the engine. The regressor corresponding to each of these variables is determined in the form of a cartography resulting from a test campaign.

La température caractérisant l'état thermique du moteur est alors définie par l'équation suivante. C p_pantet dT ss_biais dt = h combustion Ech_Conduction

Figure imgb0006
dans laquelle Cp_ponter représente la capacité calorifique de la zone spécifique du moteur correspondant à l'état thermique que l'on cherche à modéliser.The temperature characterizing the thermal state of the engine is then defined by the following equation. VS p_pantet dT ss_biais dt = h combustion - Ech_Conduction
Figure imgb0006
in which C p_ponter represents the heat capacity of the specific zone of the engine corresponding to the thermal state that is to be modeled.

Comme on peut le voir, l'état thermique du système est régi par un système d'équations différentielles couplées. La résolution de ce type d'équations passe par une résolution par itérations.As can be seen, the thermal state of the system is governed by a system of coupled differential equations. The resolution of this type of equation goes through an iterative resolution.

La résolution par itérations du système d'équations formé par les équations Eq. 4 et Eq. 6 implique l'initialisation du système.The iterative resolution of the system of equations formed by equations Eq. 4 and Eq. 6 involves the initialization of the system.

Dans le cas d'un débit nul du liquide de refroidissement dans une situation première chauffe, le système d'équation sera initialisé en utilisant la valeur instantanée de la température ambiante comme valeur de la température de la matière Tmat et de la température Tss_biais caractérisant l'état thermique de la zone spécifique du moteur.In the case of a zero flow of the coolant in a first heated situation, the equation system will be initialized using the instantaneous value of the ambient temperature as the temperature value T of the mat material and the temperature T ss_biais characterizing the thermal state of the specific area of the engine.

En effet, le système et le procédé de commande sont destinés à commander l'évolution thermique d'un moteur à combustion interne 1 ainsi que le système de refroidissement d'un tel moteur, lorsque le débit du liquide de refroidissement est nul. Dans de telles conditions, on considère que le moteur à combustion interne et l'environnement sont à une même température, lors des premiers instants du démarrage. Il n'y a donc pas de convection, l'atmosphère et le moteur étant à la même température. Il n'y a pas non plus de conduction, l'énergie thermique générée par la combustion n'ayant pas commencée à se diffuser.Indeed, the system and the control method are intended to control the thermal evolution of an internal combustion engine 1 and the cooling system of such an engine, when the coolant flow rate is zero. Under such conditions, it is considered that the internal combustion engine and the environment are at the same temperature during the first moments of startup. So there is no convection, the atmosphere and the engine being at the same temperature. There is also no conduction, the thermal energy generated by combustion has not begun to spread.

Dans le cas d'un débit nul du liquide de refroidissement dans une situation deuxième chauffe, le système d'équation sera initialisé en utilisant la valeur instantanée de la température mesurée par un capteur de température situé dans le moteur à combustion interne ambiante comme valeur de la température de la matière Tmat et de la température Tss_biais caractérisant l'état thermique de la zone spécifique du moteur.In the case of a zero flow of coolant in a second heating situation, the equation system will be initialized using the instantaneous value of the temperature measured by a temperature sensor located in the internal combustion engine as a value of the temperature of the material T mat and the temperature T ss_biais characterizing the thermal state of the specific area of the engine.

Le moteur à combustion interne présente une température résiduelle issue de la précédente période de fonctionnement. De par l'inertie thermique des différents éléments du moteur à combustion interne, on peut estimer que tous les éléments du moteur à combustion interne sont à la même température, température qui peut être mesurée par un capteur situé dans le moteur à combustion interne.The internal combustion engine has a residual temperature from the previous operating period. Due to the thermal inertia of the various elements of the internal combustion engine, it can be estimated that all the elements of the internal combustion engine are at the same temperature, which temperature can be measured by a sensor located in the internal combustion engine.

La figure 5 illustre le procédé de commande selon le second mode de réalisation. Le procédé de commande débute par l'étape 39 au cours de laquelle on détermine les conditions de fonctionnement du moteur à combustion interne 1. On détermine notamment, la vitesse de rotation, le couple moteur et le débit de carburant injecté. Le procédé se poursuit à l'étape 40 au cours de laquelle on détermine une température caractérisant l'état thermique de la zone spécifique du moteur. Lors de l'étape 40, la température de l'environnement est prise en compte. Au cours de l'étape 41, on détermine si la température caractérisant l'état thermique de la zone spécifique du moteur est supérieure à une température de seuil mémorisée. Si le résultat est vrai, le procédé se poursuit à L'étape 42 au cours de laquelle on commute le moyen de coupure 5 du débit en position passante. Sinon, on poursuit le procédé à l'étape 43 au cours de laquelle on maintient le moyen de coupure 5 du débit en position non passante. Le procédé recommence à l'étape 39.The figure 5 illustrates the control method according to the second embodiment. The control method starts with step 39 during which the operating conditions of the internal combustion engine 1 are determined. In particular, the rotational speed, the engine torque and the injected fuel flow rate are determined. The method is continued in step 40 during which a temperature characterizing the thermal state of the specific zone of the engine is determined. In step 40, the temperature of the environment is taken into account. In step 41, it is determined whether the temperature characterizing the thermal state of the engine specific zone is greater than a stored threshold temperature. If the result is true, the process proceeds to step 42 in which the flow rate cutoff means is switched to the driving position. Otherwise, the method is continued in step 43 during which the flow-off means 5 is held in the non-conducting position. The process starts again at step 39.

La figure 6 illustre plus en détail l'étape 40 illustrée sur la figure 5, L'étape 40 permet de déterminer la température caractéristique de l'état thermique de la zone spécifique du moteur à l'itération n.The figure 6 illustrates in more detail step 40 illustrated on the figure 5 Step 40 makes it possible to determine the temperature characteristic of the thermal state of the specific zone of the motor at iteration n.

A l'étape 44, on détermine l'échange thermique par convection à l'itération n en fonction de la température de matière à l'itération n-1 et la température de l'environnement à l'itération n-1. Pour cela, l'équation (Eq. 2) est appliquée.In step 44, the convective heat exchange is determined at iteration n as a function of the material temperature at the iteration n-1 and the temperature of the environment at the iteration n-1. For this, the equation (Eq.2) is applied.

A l'étape 45, on détermine la température matière à l'itération n en fonction de l'échange thermique par convection à l'itération n et l'échange thermique par conduction à l'itération n. Pour cela, l'équation (Eq. 4) est appliquée.In step 45, the material temperature is determined at the iteration n as a function of the convective heat exchange at the iteration n and the heat exchange by conduction at the iteration n. For this, the equation (Eq.4) is applied.

A l'étape 46, on détermine l'échange thermique par conduction à l'instant n en fonction de la température de matière à l'instant n-1 et en fonction de la température caractéristique de l'état thermique de la zone spécifique du moteur à l'instant n-1. Pour cela, l'équation (Eq. 3) est appliquée.In step 46, the conductive heat exchange is determined at time n as a function of the material temperature at time n-1 and as a function of the temperature characteristic of the thermal state of the specific zone of the engine at the moment n-1. For this, the equation (Eq.3) is applied.

Au cours de l'étape 47, on mémorise plusieurs occurrences des conditions de fonctionnement du moteur à combustion interne déterminées lors de l'étape 39 précédemment décrite. Ces occurrences sont déterminées en succession, chacune étant espacée de la suivante d'une durée donnée. Les valeurs caractérisant ces mesures sont les mêmes que celles définies lors de la description de l'étape 36 du premier mode de réalisation.During step 47, several occurrences of the operating conditions of the internal combustion engine determined during step 39 described above are memorized. These occurrences are determined in succession, each being spaced from the next of a given duration. The values characterizing these measurements are the same as those defined in the description of step 36 of the first embodiment.

Au cours de l'étape 47, on détermine également la chaleur générée par la combustion. La chaleur générée par la combustion est déterminée en fonction des occurrences mémorisées. Deux déterminations de l'énergie dégagée lors de la combustion sont espacées dans le temps d'une durée au moins égale à la durée d'acquisition, la durée d'acquisition étant égale au nombre d'occurrences multiplié par la durée entre deux mesures. Ainsi l'énergie dégagée lors de la combustion est déterminée avec une période au moins égale à la durée d'acquisition,During step 47, the heat generated by the combustion is also determined. The heat generated by the combustion is determined according to the stored occurrences. Two Determinations of the energy released during combustion are spaced in time by a duration at least equal to the acquisition duration, the acquisition duration being equal to the number of occurrences multiplied by the duration between two measurements. Thus the energy released during combustion is determined with a period at least equal to the acquisition time,

La chaleur générée par la combustion est déterminée par application de l'équation (Eq. 5).The heat generated by the combustion is determined by applying the equation (Eq.5).

A l'étape 48, on détermine la température caractérisant l'état thermique de la zone spécifique du moteur à l'instant n en fonction de la chaleur générée par la combustion à l'instant n et en fonction de l'échange thermique par conduction à l'itération n. Pour cela, l'équation (Eq. 6) est appliquée,In step 48, the temperature characterizing the thermal state of the engine specific zone at time n is determined as a function of the heat generated by the combustion at time n and as a function of the conductive heat exchange. at iteration n. For this, the equation (Eq.6) is applied,

Ici encore, lors des premières itérations du procédé de commande, on considérera comme valeur d'initialisation une valeur égale à la température de l'environnement ou une valeur égale à la dernière valeur connue de la température caractéristique de l'état thermique de la zone spécifique du monteur.Here again, during the first iterations of the control method, a value equal to the temperature of the environment or a value equal to the last known value of the temperature characteristic of the thermal state of the zone will be considered as initialization value. specific to the editor.

Par ailleurs, il apparaît que le calcul de la température caractérisant l'état thermique de la zone spécifique du moteur à l'instant n nécessite la connaissance de différentes variables à l'instant n - 1 et précédents. Il apparaît ainsi que le dispositif et le procédé de commande incorporant une effet mémoire apte à restituer les différentes variables mesurées à différents instants sur simple requête.Moreover, it appears that the calculation of the temperature characterizing the thermal state of the specific zone of the engine at time n requires knowledge of different variables at time n-1 and previous. It thus appears that the device and the control method incorporating a memory effect capable of restoring the different variables measured at different times on a simple request.

Le système et le procédé de commande du système de refroidissement d'un moteur à combustion interne permettent de déterminer avec précision la température de la zone spécifique du moteur correspondant à l'état thermique que l'on cherche à modéliser. En fonction de cette température, le système de refroidissement peut être commandé de façon que la température du moteur à combustion interne augmente rapidement lors d'un premier démarrage sans pour autant compromettre la sécurité dudit moteur. Un tel contrôle permet avantageusement de porter rapidement le moteur à combustion interne à une température à laquelle sa consommation de carburant est réduite et les émissions polluantes dues aux hydrocarbures imbrûlés sont réduites.The system and the control method of the cooling system of an internal combustion engine make it possible to accurately determine the temperature of the specific zone of the engine corresponding to the thermal state that is to be modeled. Depending on this temperature, the cooling system can be controlled so that the temperature of the internal combustion engine increases rapidly during a first start without compromising the safety of said engine. Such a control advantageously makes it possible to quickly bring the internal combustion engine to a temperature at which its fuel consumption is reduced. and pollutant emissions from unburned hydrocarbons are reduced.

Claims (1)

  1. Method for controlling, during cold-starting, a circuit for cooling, by means of a heat-transfer fluid, an internal-combustion engine (1) mounted in an automobile, the cooling circuit being provided, downstream of the internal-combustion engine (1), with a means (5) for interrupting the flow able to create a discontinuity in the flow of the heat-transfer fluid through the internal-combustion engine initially in a no through-flow position, characterized in that it comprises the following steps:
    determining a characteristic temperature for the thermal condition of a specific zone in the internal-combustion engine, the valve bridge, by applying an autoregressive moving-average model depending on the temperature inside the internal-combustion engine, the speed of rotation, the load and the quantity of fuel injected into the internal-combustion engine and the speed of the vehicle and
    switching the flow interruption means (5) into a through-flow position if the characteristic temperature for the thermal condition of the valve bridge in the internal-combustion engine is higher than a maximum temperature.
EP10787855.5A 2009-10-27 2010-10-27 System and method for controlling the cooling circuit of an internal-combustion engine Active EP2494161B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957540A FR2951779B1 (en) 2009-10-27 2009-10-27 SYSTEM AND METHOD FOR CONTROLLING THE COOLING CIRCUIT OF AN INTERNAL COMBUSTION ENGINE
PCT/FR2010/052297 WO2011051618A1 (en) 2009-10-27 2010-10-27 System and method for controlling the cooling circuit of an internal-combustion engine

Publications (2)

Publication Number Publication Date
EP2494161A1 EP2494161A1 (en) 2012-09-05
EP2494161B1 true EP2494161B1 (en) 2016-08-17

Family

ID=42307925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10787855.5A Active EP2494161B1 (en) 2009-10-27 2010-10-27 System and method for controlling the cooling circuit of an internal-combustion engine

Country Status (4)

Country Link
EP (1) EP2494161B1 (en)
CN (1) CN102597449A (en)
FR (1) FR2951779B1 (en)
WO (1) WO2011051618A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6443824B2 (en) * 2017-02-21 2018-12-26 マツダ株式会社 Engine cooling system
CN110469410B (en) * 2018-05-10 2022-12-06 日立汽车系统(中国)有限公司 Cold start method, device and equipment for motor vehicle and storage medium thereof
CN109268160A (en) * 2018-08-14 2019-01-25 长安大学 A kind of lift range variable in-cylinder direct fuel-injection engine cold start controlling method
CN113297680B (en) * 2021-06-21 2023-08-08 中国航发沈阳发动机研究所 Performance trend analysis method for aviation gas engine with small bypass ratio

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2712711B2 (en) * 1990-02-16 1998-02-16 株式会社デンソー Method and apparatus for cooling internal combustion engine
FR2796987B1 (en) * 1999-07-30 2002-09-20 Valeo Thermique Moteur Sa DEVICE FOR REGULATING THE COOLING OF A MOTOR VEHICLE HEAT ENGINE
JP4193309B2 (en) * 1999-11-18 2008-12-10 トヨタ自動車株式会社 Cooling device for internal combustion engine
JP3956663B2 (en) * 2001-02-15 2007-08-08 株式会社デンソー Cooling water temperature estimation device for internal combustion engine
GB2425619B (en) * 2005-03-22 2007-05-02 Visteon Global Tech Inc Method of engine cooling
US7409928B2 (en) * 2006-01-27 2008-08-12 Gm Global Technology Operations, Inc. Method for designing an engine component temperature estimator
DE102006009892A1 (en) * 2006-03-03 2007-09-06 Audi Ag Device for controlling the coolant temperature of an internal combustion engine comprises an electrically operated coolant pump having a flow rate controlled by a unit receiving a voltage signal depending on a critical component temperature

Also Published As

Publication number Publication date
FR2951779B1 (en) 2012-04-20
EP2494161A1 (en) 2012-09-05
FR2951779A1 (en) 2011-04-29
CN102597449A (en) 2012-07-18
WO2011051618A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
FR2919677A1 (en) METHOD AND DEVICE FOR MANAGING AN INTERNAL COMBUSTION ENGINE
EP2494161B1 (en) System and method for controlling the cooling circuit of an internal-combustion engine
FR2896272A1 (en) METHOD AND DEVICE FOR CONTROLLING THE FIRST OPENING OF A THERMOSTAT REGULATING THE TEMPERATURE OF AN INTERNAL COMBUSTION ENGINE.
FR3027061B1 (en) METHOD AND DEVICE FOR NOTIFYING A COMPLETE STOP AUTHORIZATION OF AN AIRCRAFT GAS TURBINE ENGINE
WO2008135697A2 (en) Test stand for an internal combustion engine including rapid engine cooling means
FR2909714A1 (en) METHOD AND DEVICE FOR MANAGING TRAINING UNITS.
EP2932063B1 (en) Method for managing a power train implementing an estimation of the engine temperature at the end of a stop time of an element of the power train
FR2910561A1 (en) FUEL SUPPLY SYSTEM OF AN INTERNAL COMBUSTION ENGINE
FR2937092A1 (en) METHOD AND DEVICE FOR CALCULATING A SEQUENCE OF STARTING OR STOPPING AN ENGINE
FR2955356A1 (en) Method for managing diesel engine of vehicle, involves determining temperature of reaction chamber and/or temperature of exhaust gas of thermal engine using temperature module whose input magnitude is measurement magnitude
EP2310648B1 (en) Method for controlling the flow of a cooling liquid
FR2928193A1 (en) Gearbox i.e. mechanical gearbox, thermally protecting method for motor vehicle, involves carrying out intervening operation on unit of vehicle outside gearbox when temperature in gearbox exceeds critical threshold to reduce heat quantity
EP2556229B1 (en) Method for estimating the initial temperature of a mechanical member of a vehicle at the start-up of the vehicle
FR2981987A1 (en) Method for controlling motor of e.g. diesel engine of car in event of over speed detection, involves calculating set value for controlling opening of shutter so as to reduce air flow entering to degrade combustion and reduce engine speed
EP3625443B1 (en) Method for determining the transition to the zero liquid water state in an exhaust line
FR2997454A1 (en) Method for detection of ignition of mixture of propellants in combustion chamber of jet engine of rocket, involves determining ignition of mixture of propellants when reference variable has reached predetermined threshold
EP2834490B1 (en) Estimating the thermal condition of an engine
WO2018002551A1 (en) Method and system for detecting the absence of under engine protection
FR2950693A3 (en) Gas cooling device for use in conduit of test bench of internal combustion engine, has two valves arranged on two drains, where openings of valves are controlled by two control devices in upstream of flowing ramps
FR2927662A1 (en) Component i.e. exhaust line, temperature estimating device for internal combustion engine of motor vehicle, has estimating module estimating component temperature from variable reaching liquid temperature when time is elapsed to infinity
EP1475528B1 (en) System and method to control fuel injection for an combustion engine
EP3907394A1 (en) Method for thermal control of a hybrid vehicle
FR2937087A1 (en) Component's e.g. exhaust manifold, temperature estimating method for motor vehicle, involves estimating local temperature of air at level of component, and solving differential equation relative to temperature of component
WO2014067836A1 (en) Cooling management for an engine system equipped with a partial exhaust gas recirculation device
FR2980529A1 (en) FUEL INJECTION CONTROL WHEN STARTING A THERMAL ENGINE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141103

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SAINT-MARCOUX, ANTOINE

Inventor name: CLOAREC, GUY-MICHEL

INTG Intention to grant announced

Effective date: 20160415

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 821339

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010035659

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160817

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 821339

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161117

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010035659

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170518

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161117

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161027

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161027

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101027

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160817

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231025

Year of fee payment: 14

Ref country code: DE

Payment date: 20231020

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010035659

Country of ref document: DE

Owner name: NEW H POWERTRAIN HOLDING, S.L.U., ES

Free format text: FORMER OWNER: RENAULT S.A.S., BOULOGNE-BILLANCOURT, FR