EP2489039B1 - Optimierte parametrische codierung/decodierung mit niedrigem durchsatz - Google Patents

Optimierte parametrische codierung/decodierung mit niedrigem durchsatz Download PDF

Info

Publication number
EP2489039B1
EP2489039B1 EP10785120.6A EP10785120A EP2489039B1 EP 2489039 B1 EP2489039 B1 EP 2489039B1 EP 10785120 A EP10785120 A EP 10785120A EP 2489039 B1 EP2489039 B1 EP 2489039B1
Authority
EP
European Patent Office
Prior art keywords
parameters
signal
coding
decoding
decoded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10785120.6A
Other languages
English (en)
French (fr)
Other versions
EP2489039A1 (de
Inventor
Thi Minh Nguyet Hoang
Stéphane RAGOT
Balazs Kovesi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
Orange SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orange SA filed Critical Orange SA
Publication of EP2489039A1 publication Critical patent/EP2489039A1/de
Application granted granted Critical
Publication of EP2489039B1 publication Critical patent/EP2489039B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/02Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/008Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/167Audio streaming, i.e. formatting and decoding of an encoded audio signal representation into a data stream for transmission or storage purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/03Application of parametric coding in stereophonic audio systems

Definitions

  • the present invention relates to the field of coding / decoding of digital signals.
  • the coding and decoding according to the invention is particularly suitable for the transmission and / or storage of digital signals such as audio-frequency signals (speech, music or other).
  • the present invention relates to the parametric encoding / decoding of multichannel audio signals.
  • This type of coding / decoding is based on the extraction of spatial information parameters so that at decoding, these spatial characteristics can be reconstructed for the listener.
  • This type of parametric encoding applies in particular for a stereo signal.
  • a coding / decoding technique is for example described in the document Breebaart, J. and van de Par, S and Kohlrausch, A. and Schuijers, titled "Parametric Coding of Stereo Audio” in EURASIP Journal on Applied Signal Processing 2005: 9, 1305-1322 .
  • This example is repeated with reference to figures 1 and 2 describing respectively an encoder and a parametric stereo decoder.
  • the figure 1 describes an encoder receiving two audio channels, a left channel (denoted L for Left in English) and a right channel (denoted R for Right in English).
  • the channels L (n) and R (n) are processed by the blocks 101, 102 and 103, 104 respectively which perform a short-term Fourier analysis.
  • the transformed signals L [j] and R [j] are thus obtained.
  • the block 105 performs a channel reduction matrix or "Downmix” in English to obtain from the left and right signals, a sum signal, a mono signal in this case, in the frequency domain.
  • An extraction of spatial information parameters is also performed in block 105.
  • the ICLD InterChannel Level Difference
  • interchannel intensity differences characterize the energy ratios per frequency subband between the left and right channels.
  • An interchannel time lag called ICTD (for "interchannel time difference") can also be defined equivalent to ICPD.
  • An interchannel coherence parameter ICC (for " InterChannel Coherence " in English) represents inter-channel correlation.
  • the mono signal is passed in the time domain (blocks 106 to 108) after short-term Fourier synthesis (inverse FFT, windowing and OverLap-Add or OLA) and a mono coding (block 109) is realized. .
  • the stereo parameters are quantized and coded in block 110.
  • the spectrum of the signals ( L [ j ], R [ j ]) is divided according to a nonlinear frequency scale of ERB ( equivalent Rectangular Bandwidth ) or Bark type, with a number of subbands typically ranging from 20 to 34. This scale defines the values of B (k) and B (k + 1) for each subband k.
  • the settings (ICLD, ICPD, ICC) are encoded by scalar quantization possibly followed by entropy coding or differential coding.
  • the ICLD is encoded by a non-uniform quantizer (ranging from -50 to +50 dB) with differential coding; the non-uniform quantization step exploits the fact that the higher the value of the ICLD, the lower the auditory sensitivity to variations of this parameter.
  • a non-uniform quantizer ranging from -50 to +50 dB
  • the mono signal is decoded (block 201), a de-correlator is used (block 202) to produce two versions M (n) and M '(n) of the decoded mono signal. These two signals passed in the frequency domain (blocks 203 to 206) and the decoded stereo parameters (block 207) are used by the stereo synthesis (block 208) to reconstruct the left and right channels in the frequency domain. These channels are finally reconstructed in the time domain (blocks 209 to 214).
  • the document WO 2006/108464 A1 describes a technique for transmitting spatial information parameters of similar type based on a prior grouping of said parameters for two consecutive frames in time and in frequency.
  • the group of parameters requiring the lowest coding rate is chosen to be transmitted to the decoder.
  • a stereo intensity coding technique ( Intensity Stereo Coding ) consists of coding the sum (M) channel as well as the ICLD energy ratios as defined above.
  • Stereo intensity coding exploits the fact that the perception of high frequency components is mainly related to the temporal (energy) envelopes of the signal.
  • MIC Coded Pulse Modulation
  • ADPCM Adaptive Differential Coded Pulse Modulation
  • ITU-T Recommendation G.722 which uses ADPCM for Adaptive Differential Pulse Code Modulation (ADPCM).
  • ADPCM Adaptive Differential Pulse Code Modulation
  • the input signal of a G.722-type encoder is in an expanded band with a minimum bandwidth of [50-7000 Hz] with a sampling frequency of 16 kHz.
  • This signal is decomposed into two sub-bands [0-4000 Hz] and [4000-8000 Hz] obtained by decomposition of the signal by so-called quadrature mirror filters.
  • Quadrature Mirror Filters (QMF) in English then each of the subbands is separately encoded by an ADPCM encoder.
  • the low band is coded by a 6, 5 and 4 bit nested code ADPCM coding while the high band is coded by a 2 bit ADPCM coder per sample.
  • the total bit rate is 64, 56 or 48 bit / s depending on the number of bits used for decoding the low band.
  • Recommendation G.722 was first used in ISDN (Integrated Services Digital Network) and then in enhanced IP voice telephony applications in HD (High Definition) or HD voice in English.
  • a quantized signal frame according to the G.722 standard consists of 6, 5 or 4 bit low band (0-4000 Hz) and 2 high band (4000-8000 Hz) coded quantization indices. Since the transmission frequency of the scalar indices is 8 kHz in each subband, the bit rate is 64, 56 or 48 kbit / s. In the G.722 standard, the 8 bits are distributed as follows: 2 bits for the high band, 6 bits for the low band. The last or last two bits of the low band can be "stolen" or replaced by data.
  • G.722 coding operates with short 5 ms frames.
  • the spatial information represented by the ICLD or other parameters requires a bit rate (additional stereo extension) all the more important as the coding frames are short.
  • This example thus illustrates the difficulty of performing a stereo extension of an encoder such as G.722 with short frames (of 5 ms).
  • Direct encoding of the ICLD gives an additional bit rate (stereo extension) around 16 kbit / s which is already the maximum possible bit rate for the G.722 extension.
  • the present invention improves the situation.
  • the invention also applies to a parametric decoding method of a multichannel digital audio signal as in claim 5.
  • the invention also relates to an encoder as in claim 8.
  • the invention also relates to a decoder as in claim 9.
  • It also relates to a computer program comprising code instructions for implementing the steps of the encoding method as described and to a computer program comprising code instructions for implementing the steps of a decoding method. as described, when these are executed by a processor.
  • This parametric stereo encoder operates in wideband with stereo signals sampled at 16 kHz with 5 ms frames.
  • Each channel (L and R) is first pre-filtered by a high pass filter (HPF for High Pass Filter English) removing components below 50 Hz (blocks 301 and 302).
  • HPF High Pass Filter English
  • This signal is encoded (block 304) by a G.722 type encoder, as described, for example, in ITU-T Recommendation G.722, 7 kHz audio-coding within 64 kbit / s , Nov. 1988.
  • the delay introduced in the G.722 type coding is 22 samples at 16 kHz.
  • the division of the signal into frames is defined with reference to the figure 5 .
  • This figure illustrates the fact that the analysis window (solid line) of 10 ms covers the current frame of index t and the future frame of index t + 1 and the fact that a recovery of 50% is used between the window of the current frame and the window (dotted line) of the previous frame.
  • the block 311 for extracting spatial information parameters is now detailed.
  • the module 314 comprises means for obtaining the spatial information parameters of the stereo signal.
  • the parameters obtained are the interchannel intensity difference parameters, ICLD.
  • This formula amounts to combining the energy of two successive frames, which corresponds to a temporal support of 10 ms (15 ms if we count the effective temporal support of two successive windows).
  • the module 314 therefore produces a series of ICLD parameters defined previously.
  • ICLD parameters are divided into the division module 315, into several blocks.
  • the module 316 then makes a selection (St.) of a block to be encoded according to the index of the current frame to be coded.
  • the coding of these blocks at 312 is carried out for example by non-uniform scalar quantization.
  • This bit rate is therefore not too great and is sufficient to efficiently transmit the stereo parameters.
  • Two successive frames suffice in this embodiment to obtain the spatial information parameters of the multichannel signal, the length of two frames being most often the length of an analysis window for a 50% overlap frequency transformation. .
  • a shorter recovery window could be used to reduce the delay introduced.
  • the encoder may operate at other frequencies (such as 32 kHz) and with different subband cutting.
  • 37 bits are used for frames of even t- index and 40 bits for frames of odd t- indexes.
  • the coding method thus described is easily generalized in the case where the parameters are divided into more than 2 blocks.
  • the coding of the ICLD parameters is then distributed over 4 successive frames with storage of the parameters decoded in the previous frames during the decoding.
  • the calculation of the ICLD must then be modified to include more than 2 frames in the calculation of the energies ⁇ The 2 t k and ⁇ R 2 t k .
  • the encoding method thus described applies to the encoding of other parameters than the ICLD parameter.
  • the coherence parameter (ICC) can be calculated and transmitted selectively in a manner similar to the ICLD.
  • the two parameters can also be calculated and coded according to the coding method described above.
  • the figure 4 illustrates a decoder in one embodiment of the invention as well as the decoding method that it implements.
  • the portion of bit stream scalable and received from the G.722 encoder is demultiplexed and decoded by a G.722 type decoder (block 401) in 56 or 64 kbit / s mode.
  • the synthesized signal obtained corresponds to the mono signal M ( n ) in the absence of transmission errors.
  • the part of the bit stream associated with the stereo extension is also demultiplexed at block 404.
  • a second block of parameters ⁇ ICLD q [ t, k ] ⁇ k 10, ..., 19 and stored in the module 412 these decoded parameters.
  • tab_ild_q ⁇ 5 31 - 50 , - 45 , - 40 , - 35 , - 30 , - 25 , - 22 , - 19 , - 16 , - 13 , - 10 , - 8 , - 6 , - 4 , - 2 , 0 , 2 , 4 , 6 , 8 , 10 , 13 , 16 , 19 , 22 , 25 , 30 , 35 , 40 , 45 , 50
  • the parameters for each of the frequency bands are thus obtained.
  • the left and right channels L ( n ) and R ( n ) are reconstructed by inverse discrete Fourier transform (blocks 406 and 409) of the respective spectra L [ j ] and R [ j ] and addition-overlap (blocks 408 and 411) with sinusoidal windowing (blocks 407 and 410).
  • the bit rate of the stereo extension is therefore reduced and obtaining these parameters makes it possible to reconstruct a stereo signal of good quality.
  • the module 314 of the parameter extraction block of the figure 3 differs.
  • This module in this embodiment makes it possible to obtain other stereo parameters by applying a principal component analysis (PCA) such as that described in the article by Manuel Briand, David Virette and Nadine Martin entitled “Parametric coding of stereo audio based principal component analysis "published in the DAFX conference, 1991.
  • PCA principal component analysis
  • a principal component analysis is performed by subbands.
  • the left and right channels thus analyzed are then rotated to obtain a main component and a qualified environment sub component.
  • the stereo analysis produces, for each sub-band, a rotation angle parameter ( ⁇ ) and an energy ratio between the main component and the ambient signal ( PCAR which means Principal Component to Ambience Energy Ratio).
  • the stereo parameters then consist of the angle of rotation parameter and the energy ratio ( ⁇ and PCAR).
  • the figure 6 illustrates another embodiment of an encoder according to the invention.
  • this operation does not necessarily allow conservation of energy.
  • the "downmix” operation here consists of the blocks 603a, 603b, 603c and 603d for the passage in the frequency domain.
  • Blocks 603f, 603g and 603h make it possible to bring the mono signal back into the time domain in order to be coded by block 304 as for the encoder illustrated in FIG. figure 3 .
  • This offset makes it possible to synchronize the time frames of the left / right channels and those of the decoded mono signal.
  • the invention has been described here in the case of a G.722 encoder / decoder. it can obviously apply in the case of a modified G.722 encoder, for example including noise reduction mechanisms ( English) or including a scalable extension of G.722 with additional information.
  • the invention can also be applied in the case of another mono encoder than the G.722 type such as for example a G.711.1 type encoder. In the latter case, the delay T must be adjusted to take into account the delay of the G.711.1 encoder.
  • the embodiment of the invention also extends to the more general case of the coding of multichannel signals (with more than 2 audio channels) starting from a mono or even stereo downmix.
  • the coding of spatial information involves the coding and transmission of spatial information parameters.
  • the spatial information parameters of the multichannel signal then take into account the differences or the coherences between the different channels.
  • Encoders and decoders as described with reference to figures 3 , 4 and 6 can be integrated in a multimedia equipment type decoder lounge, computer or communication equipment such as a mobile phone or personal electronic diary.
  • the figure 7a represents an example of such a multimedia equipment or coding device comprising an encoder according to the invention.
  • This device comprises a PROC processor cooperating with a memory block BM having a storage and / or working memory MEM.
  • the description of the figure 3 takes the steps of an algorithm of such a computer program.
  • the computer program can also be stored on a memory medium readable by a reader of the device or downloadable in the memory space of the equipment.
  • the device comprises an input module adapted to receive a multichannel signal S m representing a sound scene, either by a communication network, or by reading a content stored on a storage medium.
  • This multimedia equipment may also include means for capturing such a multichannel signal.
  • the device comprises an output module capable of transmitting the coded spatial information parameters P c and a sum signal Ss resulting from the coding of the multichannel signal.
  • figure 7b illustrates an example of multimedia equipment or decoding device comprising a decoder according to the invention.
  • This device comprises a PROC processor cooperating with a memory block BM having a storage and / or working memory MEM.
  • the description of the figure 4 takes the steps of an algorithm of such a computer program.
  • the computer program can also be stored on a memory medium readable by a reader of the device or downloadable in the memory space of the equipment.
  • the device comprises an input module able to receive the coded spatial information parameters P c and a sum signal S s originating, for example, from a communication network. These input signals can come from a reading on a storage medium.
  • the device comprises an output module capable of transmitting a multichannel signal decoded by the decoding method implemented by the equipment.
  • This multimedia equipment may also include speaker-type reproduction means or communication means capable of transmitting this multi-channel signal.
  • Such multimedia equipment may include both the encoder and the decoder according to the invention.
  • the input signal then being the original multichannel signal and the output signal, the decoded multichannel signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Claims (9)

  1. Verfahren zur parametrischen Codierung eines mehrkanaligen audiodigitalen Signals, umfassend einen Schritt der Codierung (G.722 Cod) eines Signals, das aus einem Reduziermatrizieren von Kanälen des mehrkanaligen Signals hervorgeht, dadurch gekennzeichnet, dass es ferner die folgenden Schritte umfasst:
    - frequentielle Transformation (Fen., FFT) des mehrkanaligen Signals, um die Spektren des mehrkanaligen Signals pro Raster zu erhalten;
    - pro Raster Schneiden (D) der Spektren des mehrkanaligen Signals in eine Vielzahl von Frequenzunterbändern,
    - Erhalt von Rauminformationsparametern pro Raster von vorbestimmter Länge und pro Frequenzunterband;
    - Teilen (Div.) der Rauminformationsparameter in zwei Parameterblöcke, in denen die Parameter der verschiedenen Frequenzunterbänder verschachtelt sind;
    - Auswahl des ersten oder zweiten zu codierenden Parameterblocks unter den in dem Teilungsschritt erhaltenen beiden Blöcken, je nachdem, ob der zu codierende laufende Raster einen geraden Index oder einen ungeraden Index hat;
    - Codieren (Q) der Rauminformationsparameter des für den laufenden Raster ausgewählten Parameterblocks.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Rauminformationsparameter als das Energieverhältnis zwischen den Kanälen des mehrkanaligen Signals definiert sind.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Codierung der Rauminformationsparameter eines Parameterblocks durch nicht gleichmäßige skalare Quantifizierung erfolgt.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es ferner einen Schritt der Hauptkomponentenanalyse umfasst, um die Rauminformationsparameter zu erhalten, umfassend einen Drehwinkelparameter und ein Energieverhältnis zwischen einer Hauptkomponente und einem Raumsignal.
  5. Verfahren zur parametrischen Decodierung eines mehrkanaligen audiodigitalen Signals, umfassend einen Schritt der Decodierung (G.722 Dec) des Signals, das aus einem Reduziermatrizieren von Kanälen des mehrkanaligen Signals hervorgeht, dadurch gekennzeichnet, dass es ferner die folgenden Schritte umfasst:
    - Decodieren (Q-1) von Rauminformationsparametern, die für einen laufenden Raster von vorbestimmter Länge eines decodierten Signals empfangen werden;
    - Speichern (Mem) der decodierten Parameter für den laufenden Raster;
    - Erhalt (Comp.P) der decodierten und gespeicherten Parameter mindestens eines vorhergehenden Rasters und Verbindung dieser Parameter mit den decodierten für den laufenden Raster, wobei die decodierten und gespeicherten Parameter eines vorhergehenden Rasters und die decodierten Parameter des laufenden Rasters den verschachtelten Parametern von unterschiedlichen Frequenzunterbändern des Decodierungsfrequenzbandes entsprechen;
    - Rekonstruktion (Synth.) des mehrkanaligen Signals aus dem decodierten Signal und der Verbindung von für den laufenden Raster erhaltenen Parametern.
  6. Informatikprogramm, umfassend Codebefehle für den Einsatz der Schritte eines Codierungsverfahrens nach einem der Ansprüche 1 bis 4, wenn diese von einem Prozessor durchgeführt werden.
  7. Informatikprogramm, umfassend Codebefehle für den Einsatz der Schritte eines Decodierungsverfahrens nach Anspruch 5, wenn diese von einem Prozessor durchgeführt werden.
  8. Parametrischer Codierer eines mehrkanaligen audiodigitalen Signals, umfassend ein Codierungsmodul (304) eines Signals, das aus einem Reduziermatrizieren von Kanälen des mehrkanaligen Signals hervorgeht, dadurch gekennzeichnet, dass er ferner umfasst:
    - ein Modul zur frequentiellen Transformation (307, 310) des mehrkanaligen Signals, um die Spektren des mehrkanaligen Signals pro Raster zu erhalten;
    - ein Modul zum Schneiden (313) pro Raster der Spektren des mehrkanaligen Signals in eine Vielzahl von Frequenzunterbändern,
    - ein Modul für den Erhalt (314) von Rauminformationsparametern des mehrkanaligen Signals pro Raster von vorbestimmter Länge und pro Frequenzunterband;
    - ein Modul zum Teilen (315) der Rauminformationsparameter in zwei Parameterblöcke, in denen die Parameter der verschiedenen Frequenzunterbänder verschachtelt sind;
    - ein Modul zur Auswahl (316) des ersten oder zweiten zu codierenden Parameterblocks unter den durch das Teilungsmodul erhaltenen beiden Blöcken, je nachdem, ob der zu codierende laufende Raster einen geraden Index oder einen ungeraden Index hat;
    - ein Modul zum Codieren (312), das zum Codieren der Rauminformationsparameter des für den laufenden Raster ausgewählten Parameterblocks geeignet ist.
  9. Parametrischer Decodierer eines mehrkanaligen audiodigitalen Signals, umfassend ein Modul (401) zum Decodieren eines Signals, das aus einem Reduziermatrizieren von Kanälen des mehrkanaligen Signals hervorgeht, dadurch gekennzeichnet, dass er ferner umfasst:
    - ein Modul zum Decodieren (404) von Rauminformationsparametern, die für einen laufenden Raster von vorbestimmter Länge eines decodierten Signals empfangen werden;
    - einen Raum zum Speichern (412), um die der decodierten Parameter für den laufenden Raster zu speichern;
    - ein Modul für den Erhalt (413) der decodierten und gespeicherten Parameter mindestens eines vorhergehenden Rasters und Verbindung dieser Parameter mit den decodierten für den laufenden Raster, wobei die decodierten und gespeicherten Parameter eines vorhergehenden Rasters und die decodierten Parameter des laufenden Rasters den verschachtelten Parametern von unterschiedlichen Frequenzunterbändern des Decodierungsfrequenzbandes entsprechen;
    - ein Modul zur Rekonstruktion (414) des mehrkanaligen Signals aus dem decodierten Signal und der Verbindung von für den laufenden Raster erhaltenen Parametern.
EP10785120.6A 2009-10-15 2010-10-15 Optimierte parametrische codierung/decodierung mit niedrigem durchsatz Active EP2489039B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957254 2009-10-15
PCT/FR2010/052192 WO2011045548A1 (fr) 2009-10-15 2010-10-15 Codage/decodage parametrique bas debit optimise

Publications (2)

Publication Number Publication Date
EP2489039A1 EP2489039A1 (de) 2012-08-22
EP2489039B1 true EP2489039B1 (de) 2015-08-12

Family

ID=42109842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10785120.6A Active EP2489039B1 (de) 2009-10-15 2010-10-15 Optimierte parametrische codierung/decodierung mit niedrigem durchsatz

Country Status (7)

Country Link
US (1) US9167367B2 (de)
EP (1) EP2489039B1 (de)
JP (1) JP5752134B2 (de)
KR (1) KR101646650B1 (de)
CN (1) CN102656628B (de)
BR (1) BR112012008793B1 (de)
WO (1) WO2011045548A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102812511A (zh) * 2009-10-16 2012-12-05 法国电信公司 优化的参数立体声解码
CN103854650A (zh) * 2012-11-30 2014-06-11 中兴通讯股份有限公司 立体声音频编码的方法及装置
WO2014108738A1 (en) * 2013-01-08 2014-07-17 Nokia Corporation Audio signal multi-channel parameter encoder
EP2976768A4 (de) * 2013-03-20 2016-11-09 Nokia Technologies Oy Audiosignalcodierer mit einem mehrkanalparameterwähler
CN105474308A (zh) * 2013-05-28 2016-04-06 诺基亚技术有限公司 音频信号编码器
WO2015104447A1 (en) 2014-01-13 2015-07-16 Nokia Technologies Oy Multi-channel audio signal classifier
EP3067885A1 (de) * 2015-03-09 2016-09-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur verschlüsselung oder entschlüsselung eines mehrkanalsignals
FR3048808A1 (fr) * 2016-03-10 2017-09-15 Orange Codage et decodage optimise d'informations de spatialisation pour le codage et le decodage parametrique d'un signal audio multicanal
CN105898669B (zh) * 2016-03-18 2017-10-20 南京青衿信息科技有限公司 一种声音对象的编码方法
CN105895106B (zh) * 2016-03-18 2020-01-24 南京青衿信息科技有限公司 一种全景声编码方法
CN105895108B (zh) * 2016-03-18 2020-01-24 南京青衿信息科技有限公司 一种全景声处理方法
CN107452387B (zh) * 2016-05-31 2019-11-12 华为技术有限公司 一种声道间相位差参数的提取方法及装置
US20180213340A1 (en) * 2017-01-26 2018-07-26 W. L. Gore & Associates, Inc. High throughput acoustic vent structure test apparatus
EP3706119A1 (de) * 2019-03-05 2020-09-09 Orange Räumliche audiocodierung mit interpolation und quantifizierung der drehungen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340099A (ja) * 1997-04-11 1998-12-22 Matsushita Electric Ind Co Ltd オーディオデコーダ装置及び信号処理装置
US7006555B1 (en) * 1998-07-16 2006-02-28 Nielsen Media Research, Inc. Spectral audio encoding
JP4387001B2 (ja) * 1999-08-27 2009-12-16 三菱電機株式会社 移動局および通信方法
WO2003065353A1 (en) * 2002-01-30 2003-08-07 Matsushita Electric Industrial Co., Ltd. Audio encoding and decoding device and methods thereof
AU2003274520A1 (en) * 2002-11-28 2004-06-18 Koninklijke Philips Electronics N.V. Coding an audio signal
JP2006259291A (ja) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd オーディオエンコーダ
US7991610B2 (en) * 2005-04-13 2011-08-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Adaptive grouping of parameters for enhanced coding efficiency
CN1993733B (zh) * 2005-04-19 2010-12-08 杜比国际公司 空间音频参数量化器、去量化器及参数量化、去量化方法
WO2006126859A2 (en) * 2005-05-26 2006-11-30 Lg Electronics Inc. Method of encoding and decoding an audio signal
TWI396188B (zh) * 2005-08-02 2013-05-11 Dolby Lab Licensing Corp 依聆聽事件之函數控制空間音訊編碼參數的技術
EP1946302A4 (de) 2005-10-05 2009-08-19 Lg Electronics Inc Verfahren und vorrichtung zur signalverarbeitung und codierungs- und decodierungsverfahren und vorrichtung dafür
BRPI0707969B1 (pt) * 2006-02-21 2020-01-21 Koninklijke Philips Electonics N V codificador de áudio, decodificador de áudio, método de codificação de áudio, receptor para receber um sinal de áudio, transmissor, método para transmitir um fluxo de dados de saída de áudio, e produto de programa de computador
CN101188878B (zh) * 2007-12-05 2010-06-02 武汉大学 立体声音频信号的空间参数量化及熵编码方法和所用系统

Also Published As

Publication number Publication date
KR20120095920A (ko) 2012-08-29
BR112012008793B1 (pt) 2021-02-23
EP2489039A1 (de) 2012-08-22
KR101646650B1 (ko) 2016-08-08
JP5752134B2 (ja) 2015-07-22
CN102656628A (zh) 2012-09-05
JP2013508743A (ja) 2013-03-07
BR112012008793A2 (pt) 2020-09-15
US20120207311A1 (en) 2012-08-16
US9167367B2 (en) 2015-10-20
CN102656628B (zh) 2014-08-13
WO2011045548A1 (fr) 2011-04-21

Similar Documents

Publication Publication Date Title
EP2489039B1 (de) Optimierte parametrische codierung/decodierung mit niedrigem durchsatz
EP2374123B1 (de) Verbesserte codierung von mehrkanaligen digitalen audiosignalen
EP2374124B1 (de) Verwaltete codierung von mehrkanaligen digitalen audiosignalen
EP3427260B1 (de) Optimierte codierung und decodierung von verräumlichungsinformationen zur parametrischen codierung und decodierung eines mehrkanaligen audiosignals
EP2002424B1 (de) Vorrichtung und verfahren zur skalierbaren kodierung eines mehrkanaligen audiosignals auf der basis einer hauptkomponentenanalyse
EP2691952B1 (de) Zuweisung von bits anhand von subbändern zur quantifizierung von rauminformationsparametern für parametrische codierung
EP2656342A1 (de) Verbesserte stereoparametrische kodierung/dekodierung für gegenphasige kanäle
EP2319037B1 (de) Rekonstruktion von mehrkanal-audiodaten
EP2104936A2 (de) Transformationsverschlüsselung mit geringer verögerung unter verwendung von gewichtungsfenstern
WO2017103418A1 (fr) Traitement de réduction de canaux adaptatif pour le codage d'un signal audio multicanal
EP1692689A1 (de) Optimiertes mehrfach-codierungsverfahren
EP2979266B1 (de) Optimiertes partielles mischen von audioströmen mit subband-codierung
WO2023165946A1 (fr) Codage et décodage optimisé d'un signal audio utilisant un auto-encodeur à base de réseau de neurones
WO2011073600A1 (fr) Codage/decodage parametrique stereo avec optimisation du traitement de reduction des canaux
EP2126905B1 (de) Verfahren und Vorrichtung zur Kodierung und Dekodierung von Audiosignalen, kodiertes Audiosignal
WO2011045549A1 (fr) Decodage parametrique stereo optimise
FR2980620A1 (fr) Traitement d'amelioration de la qualite des signaux audiofrequences decodes
WO2014064379A1 (fr) Detection d'une bande de frequence predeterminee dans un contenu audio code par sous-bandes selon un codage de type modulation par impulsions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOANG, THI MINH NGUYET

Inventor name: RAGOT, STEPHANE

Inventor name: KOVESI, BALAZS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORANGE

17Q First examination report despatched

Effective date: 20130909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602010026664

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G10L0019000000

Ipc: G10L0019008000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G10L 19/16 20130101ALN20150309BHEP

Ipc: G10L 19/008 20130101AFI20150309BHEP

Ipc: H04S 3/00 20060101ALI20150309BHEP

INTG Intention to grant announced

Effective date: 20150325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 742758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010026664

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 742758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150812

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151112

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151214

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010026664

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151015

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

26N No opposition filed

Effective date: 20160513

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101015

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 14