EP2487449B1 - Telescopic sight with adjustment field lens - Google Patents

Telescopic sight with adjustment field lens Download PDF

Info

Publication number
EP2487449B1
EP2487449B1 EP12154951.3A EP12154951A EP2487449B1 EP 2487449 B1 EP2487449 B1 EP 2487449B1 EP 12154951 A EP12154951 A EP 12154951A EP 2487449 B1 EP2487449 B1 EP 2487449B1
Authority
EP
European Patent Office
Prior art keywords
lens
eyepiece
objective
image plane
field lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12154951.3A
Other languages
German (de)
French (fr)
Other versions
EP2487449A2 (en
EP2487449A3 (en
Inventor
Helke Karen Hesse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schmidt and Bender GmbH and Co KG
Original Assignee
Schmidt and Bender GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schmidt and Bender GmbH and Co KG filed Critical Schmidt and Bender GmbH and Co KG
Publication of EP2487449A2 publication Critical patent/EP2487449A2/en
Publication of EP2487449A3 publication Critical patent/EP2487449A3/en
Application granted granted Critical
Publication of EP2487449B1 publication Critical patent/EP2487449B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/38Telescopic sights specially adapted for smallarms or ordnance; Supports or mountings therefor

Definitions

  • the invention relates to a telescopic sight according to the preamble of claim 1.
  • Riflescopes are used in hunting and in the military to aim at targets at great distances using weapons.
  • they have a lens arrangement within a housing that enlarges a target object.
  • the lens arrangement has at least one objective and an eyepiece.
  • the objective is a collecting optical system for real optical imaging of the target object and the eyepiece is a lens system through which one eye looks into the lens arrangement.
  • An intermediate image designed by the lens in an image plane on the lens side is shown enlarged in an image plane on the eyepiece side. Due to the enlargement, however, the viewing angle is very limited and objects in a shorter distance are difficult to sight or look at. In order to be able to effectively target these objects as well, the prior art provides a variable magnification, the so-called zoom. In addition, the targeted object is reversed in the lens-side image plane and displayed upside down and must therefore be corrected.
  • a reversing system within the riflescope is therefore used to correct the view and enlarge the image.
  • the optical elements include lenses, putty lenses and reticles.
  • an intermediate image generated in the image plane on the lens side is erected and enlarged in the image plane on the eyepiece side where it is viewed.
  • each individual lens When optically imaging the object in a virtual or real intermediate image, each individual lens generates various aberrations, including spherical aberration, defocus, coma, field curvature, distortion, longitudinal and transverse color errors in various orders.
  • the lenses are combined and arranged in the lens of a telescopic sight in such a way that the errors compensate one another as well as possible via the beam path from the object to the image.
  • cement elements made of flint and crown glass are used to correct the color errors.
  • the prior art therefore provides for the image errors to be reduced by cleverly designing the lens system in such a way that a consistently good image quality is guaranteed over the entire magnification range.
  • a high zoom rifle scope is for example in EP 1 746 451 B1 described.
  • This describes a rifle scope, with a center tube, which is arranged between an objective and an eyepiece.
  • the center tube contains a reversing system in which an adjustable magnifying lens is integrated.
  • This consists of two optical elements that can be moved relative to one another.
  • the reversal system is arranged between an objective-side image plane and an eyepiece-side image plane. By moving the optical elements, an intermediate image designed by the lens in the lens-side image plane is enlarged and erected with a changeable image scale in the eyepiece-side image plane.
  • the maximum magnification is at least four times.
  • An optical beam deflection device is also integrated in the reversing system.
  • This consists of an additional lens arrangement, which is arranged on the side of the reversing system facing the eyepiece and has a negative refractive power between -20 dpt (diopter) and - 40 dpt. This widens the area of enlargement. This ensures a subjective field of view of the riflescope of at least 22 ° at all magnifications, at least for light with a wavelength of approximately 550 nm.
  • the reversing system has a field lens at a distance from the lens side from the image plane on the lens side, by means of which a bundle of rays coming from the lens of an object point lying at the edge of the field of view can be guided through the narrow channel of the reversing system.
  • This field lens also has the task of shifting the magnification range of the riflescope and is not primarily used for image correction.
  • the object of the invention is therefore to reduce the image errors over the entire enlargement range, in particular in the marginal region and also at small enlargements, the solution being intended to cause low mechanical complexity and low costs.
  • the riflescope should remain easy and comfortable to use and have a long service life.
  • a riflescope with a reversing system arranged between an objective and an eyepiece which has an objective-side field lens and at least two optical elements that can be displaced relative to one another, with an objective-side image plane lying between the objective and the field lens and spaced apart from the field lens, and one between the eyepiece and the reversal system, the ocular-side image plane, whereby by moving the optical elements an intermediate image designed by the lens in the objective-side image plane is shown erected in the ocular-side image plane with a variable magnification, and with at least four times the maximum magnification, the invention provides that between a correction field lens is arranged on the objective-side image plane and the field lens.
  • the correction field lens is insensitive to vibrations and thermal changes that result from use under different operating conditions. This results in a long life for the riflescope.
  • the actuating forces for the movable optical elements are not increased, which would require a more stable and thus heavier design.
  • the few additional components required increase the weight of the riflescope only insignificantly.
  • the rifle scope remains light, comfortable and easy to use.
  • the particular advantages of the correction lens at the position according to the invention result from the correction of various image errors, which are less pronounced on the ocular-side image plane occur.
  • the position between the lens-side image plane and the field lens is particularly advantageous. This changes the image error correction depending on the position of the movable optical elements and thus the magnification. It is now possible to design the image error correction over the entire zoom range in such a way that a brilliant, sharp and well-illuminated image is displayed on the image plane on the eyepiece side. A third movable optical element in the reversing system is not necessary.
  • a beam path is influenced in such a way that, among other things, the spherical aberration and the coma are reduced at all magnifications, but especially at the small magnification, in the image plane on the eyepiece side, but also astigmatism and curvature of the field are reduced.
  • the correction field lens is used to correct the aberrations that have already come out of the lens but also to compensate for the aberrations that arise in the reversing system, so that the best possible image is created in the image plane on the eyepiece side.
  • the correction field lens is arranged between the image plane on the objective side and the field lens, since this allows the errors from the objective to be corrected.
  • the following table shows the influence of the correction field lens according to the invention on 3rd order image errors, according to an optical design program according to MIL-HDBK-141 (Military Standardization Handbook: Optical Design): Image defect strength from the optical design program in accordance with MIL-HDBK-141 WITHOUT CORRECTION FIELD LENS WITH CORRECTION FIELD LENS Image error type Small enlargement Medium magnification Big enlargement Small enlargement Medium magnification Big enlargement Spherical aberration 0.821086 0.150681 0.235905 0.448830 0.106225 0.187797 coma -0.199421 -0.100022 0.100028 -0.051632 -0.100011 0.100030 Tangential astigmatism 0.307891 -0.011196 0.067351 0.066316 -0.051988 0.033315 Sagittal astimagism 0.239279 0.023984 0.037844 0.136409 0.004444 0.023182 Field curvature 0.204973
  • the correction field lens is arranged on the side of the image plane on the lens side facing away from the lens.
  • the lens can be designed with a plane side facing the lens and can be arranged directly at the lens-side image plane. This allows cementing with a reticle or a reticle. This does not significantly reduce the transmission, and the otherwise high sensitivity of the two mutually facing glass surfaces of the reticle and correction field lens to the visibility of scratches is significantly reduced in the putty surface.
  • the correction field lens is collecting or scattering.
  • it can be convex, concave or flat.
  • a spherical and / or flat surface is particularly advantageous, since such a correction field lens costs significantly less than aspherical lenses.
  • a further development provides that a reticle is arranged on the correction field lens, preferably in the image plane on the objective side.
  • the correction field lens can be cemented with the reticle. This reduces the complexity of the optical arrangement and the necessary fastening means. Thermal influences and vibrations have no increased effect on the optical arrangement. Thus, the weight of the rifle scope remains low and the handling is easy and comfortable. In principle, however, it would also be possible to arrange the reticle in the eyepiece-side image plane, as can be found in particular on the American market.
  • a beam splitter is arranged between the eyepiece-side image plane and the eyepiece. This can be used to reflect another target in the scope.
  • a variant of the invention provides that the objective consists of an objective lens and an objective achromatic lens arranged between the objective lens and the objective-side image plane.
  • a further objective achromatic lens can also be provided, which is arranged on the same side of the objective lens or on the opposite side thereof.
  • the eyepiece consists of an eyepiece lens and an eyepiece achromat arranged between the eyepiece lens and the eyepiece-side image plane.
  • the second optical element is arranged closer to the eyepiece than the first optical element, and that a beam deflection device with negative refractive power is arranged in the reversing system between the second optical element and the eyepiece-side image plane. This enlarges the enlargement range. This is particularly advantageous for high zoom riflescopes.
  • the correction field lens is particularly advantageous for improving the image quality if the maximum magnification of the intermediate image on the ocular-side image plane is at least five times, but preferably at least six times and particularly preferably at least eight times. Especially in the case of large magnification areas, a sharp and brilliant image is thus achieved over the entire image area, in particular up to the edge of the image, even at low magnifications.
  • Fig. 1 shows a cross section through an optical arrangement according to the invention of a telescopic sight with an optical path SG.
  • a reversing system 30 is arranged between an objective 10 and an eyepiece 20.
  • the reversing system 30 has a field lens 50 on the lens side and on the eyepiece side, two optical elements 31, 32 which can be displaced relative to one another, the second optical element 32 being arranged closer to the eyepiece 20 than the first optical element 31.
  • an objective-side image plane BE1 spaced from the field lens 50.
  • an eyepiece-side image plane BE2 lies between the eyepiece 20 and the reversing system 30.
  • the objective 10 consists of a first objective achromatic device 12, an objective lens 11 arranged between the objective achromatic device 12 and the objective-side image plane BE1 and a second objective achromatic device 13 arranged between the objective lens 11 and the objective side image plane BE1.
  • the eyepiece 20 consists of an eyepiece lens 21 and an eyepiece achromat 22 arranged between the eyepiece lens 21 and the eyepiece-side image plane BE2.
  • a beam splitter 60 and a beam deflection device 70 are provided.
  • the beam splitter 60 is arranged between the eyepiece-side image plane BE2 and the eyepiece 20.
  • the beam deflection device 70 has a negative refractive power and is located in the reversing system 30 between the second optical element 32 and the eyepiece-side image plane BE2.
  • a correction field lens 40 is furthermore arranged between the lens-side image plane BE1 and the field lens 50.
  • This is cemented with a reticle 41, which is positioned in the lens-side image plane BE1. Due to the physical extent of the reticle 41, part of it lies between the objective 10 and the lens-side image plane BE1 and part between the lens-side image plane BE1 and the field lens 50.
  • the actual correction lens 40 is around the part of the reticle 41 in the direction of the field lens 50 spaced from the lens-side image plane BE1 by which the reticle 41 on the field lens 50 side projects beyond the lens-side image plane BE1.
  • the field lens 50 is used to focus the beam path SG onto a diameter of the first displaceable optical element 31.
  • Fig. 2 shows a cross section through a telescopic sight 1, in which the features of the optical arrangement Fig. 1 are integrated.
  • a reversing system 30 is arranged within a tube 102 in a housing 101 between an objective 10 and an eyepiece 20.
  • the tube 102 is adjustably positionable within the housing 101 by means of an adjusting wheel 103.
  • the position of a reticle can be adjusted in order to be able to align the optical target acquisition and the point of impact of a projectile. Without such an adjustment option, the point of impact could deviate from the target acquisition due to the trajectory of the projectile, which is influenced, among other things, by the force of gravity and wind power.
  • the reversing system 30 has a field lens 50 on the lens side and two optical elements 31, 32 that can be displaced relative to one another on the eyepiece side, the second optical element 32 being arranged closer to the eyepiece 20 than the first optical element 31.
  • One is located between the objective 10 and the field lens 50 lens-side image plane BE1 spaced from field lens 50.
  • an eyepiece-side image plane BE2 lies between the eyepiece 20 and the reversing system 30.
  • the objective 10 consists of an objective lens 11 and two objective achromats 12, 13 arranged between the objective lens 11 and the objective-side image plane BE1.
  • the eyepiece 20 consists of an eyepiece lens 21 and an eyepiece arranged between the ocular lens 21 and the ocular-side image plane BE2 -Achromat 22.
  • the eyepiece 20 consists of an eyepiece lens 21 and an eyepiece achromat 22 arranged between the eyepiece lens 21 and the eyepiece-side image plane BE2.
  • a correction field lens 40 is furthermore arranged in the tube 102 between the lens-side image plane BE1 and the field lens 50. This is cemented with a reticle 41, which is positioned in the lens-side image plane BE1.
  • the telescopic sight 1 has a beam splitter 60 and a beam deflection device 70.
  • the beam splitter 60 is fixed in the housing 101 between the eyepiece-side image plane BE2 and the eyepiece 20.
  • the beam deflection device 70 has a negative refractive power and is located in the reversing system 30 between the second optical element 32 and the eyepiece-side image plane BE2. Like the rest of the reversal system 30, it is arranged in the tube 102.
  • Fig. 3a and Fig. 3b each show an optical arrangement.
  • a reversing system is arranged between an objective consisting of an objective lens 11 and two objective achromats 12, 13 and an image plane BE2 on the eyepiece side.
  • the reversing system has a field lens 50 on the lens side and two optical elements 31, 32 that can be displaced relative to one another on the eyepiece side, the second optical element 32 being arranged closer to the eyepiece-side image plane BE2 than the first optical element 31.
  • a reticle 41 is arranged in this image plane BE1.
  • the optical arrangement Fig. 3b deviates from Fig. 3a a correction field lens 40 according to the invention between the lens-side image plane BE1 and the field lens 50. In particular, it is cemented with the reticle 41.
  • the displaceable optical elements 31, 32 are in a position in which there is a very small magnification or a non-magnifying setting. This can be seen from the beam paths SG in such a way that the distance between the top beam and the bottom beam of the beam path SG in the lens-side image plane BE1 corresponds approximately to that which exists between the top beam and the bottom beam of the beam path SG in the ocular-side image plane BE2.
  • FIG. 4a1 , Fig. 4a2 , Fig. 4b1 and Fig. 4b2 aberration diagrams of transverse aberrations are shown on the ocular-side image plane at low magnification with and without a correction field lens.
  • the underlying optical arrangements correspond to those in Fig. 3a and Fig. 3b shown.
  • the aberration diagram Fig. 4a1 shows the transverse aberration in the tangential plane without correction field lens (cf. Fig. 3a ) and the aberration diagram Fig. 4a2 the transverse aberration in the tangential plane with correction field lens (cf. Fig. 3b ).
  • a range of deviation from the ideal state from -0.1 mm to + 0.1 mm is shown.
  • the graph line shows the transverse aberration in the tangential plane for the wavelength 546 nm.
  • the three graphs are arranged so that the distance of the measuring point from the optical axis increases from bottom to top.
  • the tangential image surface is influenced by the correction field lens at every distance from the center of the image field.
  • the individual graphs are in the aberration diagram Fig. 4a2 each flatter and closer to the horizontal, which describes an error-free ideal state than in the aberration diagram Fig. 4a1 .
  • the transverse aberration is in the tangential plane of the aberration diagram Fig. 4a2 , ie with correction field lens, significantly lower than with an aberration diagram Fig. 4a1 .
  • Aberration diagram Fig. 4b1 shows the transverse aberration in the sagittal plane without correction field lens (cf. Fig. 3a ) and the aberration diagram Fig. 4b2 transverse aberration in the sagittal plane with correction field lens (cf. Fig. 3b ).
  • the graph line shows the transverse aberration in the sagittal plane for the wavelength 546 nm.
  • the three graphs are arranged in such a way that the distance of the measuring point from the optical axis increases from bottom to top.
  • the sagittal image surface is influenced by the correction field lens at every distance from the center of the image field.
  • the individual graphs are in the aberration diagram Fig. 4b2 each flatter and closer to the horizontal, which describes an error-free ideal state than in the aberration diagram Fig. 4b1 .
  • the transverse aberration is in the sagittal plane of the aberration diagram Fig. 4b2 , ie with correction field lens, significantly lower than with an aberration diagram Fig. 4b1 .
  • Fig. 5a and Fig. 5b each describe an optical arrangement.
  • a reversing system is arranged between an objective consisting of an objective lens 11 and two objective achromats 12, 13 and an image plane BE2 on the eyepiece side.
  • the reversing system has a field lens 50 on the lens side and two optical elements 31, 32 that can be displaced relative to one another on the eyepiece side, the second optical element 32 being arranged closer to the eyepiece-side image plane BE2 than the first optical element 31.
  • a reticle 41 is arranged in this image plane BE1.
  • Fig. 5b deviates from Fig. 5a a correction field lens 40 according to the invention between the lens-side image plane BE1 and the field lens 50. In particular, it is cemented with the reticle 41.
  • the displaceable optical elements 31, 32 are in a position in which there is a large magnification. This can be seen from the beam paths SG in such a way that the distance between the top beam and the bottom beam of the beam path SG in the eyepiece-side image plane BE2 is significantly greater than that between the top beam and the bottom beam of the beam path SG in the lens-side image plane BE1.
  • FIG. 6a1 Figure 6a2 , Fig. 6b1 and Fig. 6b2 aberration diagrams of transverse aberrations are shown on the eyepiece-side image plane at high magnification with and without a correction field lens.
  • the underlying optical arrangements correspond to those in Fig. 5a and Fig. 5b shown.
  • the aberration diagram Fig. 6a1 shows the transverse aberration in the tangential plane without correction field lens (cf. Fig. 5a ) and the aberration diagram Figure 6a2 the transverse aberration in the tangential plane with correction field lens (cf. Fig. 5b ).
  • a range of deviation from the ideal state of -0.2 mm to + 0.2 mm is shown.
  • the Graph line shows the transverse aberration in the tangential plane for the wavelength 546 nm.
  • the three graphs are arranged so that the distance of the measuring point from the optical axis increases from bottom to top.
  • the tangential image surface is influenced by the correction field lens at every distance from the center of the image field.
  • the individual graphs are in the aberration diagram Figure 6a2 each flatter and closer to the horizontal, which describes an error-free ideal state than in the aberration diagram Fig. 6a1 .
  • the transverse aberration is in the tangential plane of the aberration diagram Figure 6a2 , ie with correction field lens, significantly lower than with an aberration diagram Fig. 6a1 .
  • the improvements are not as blatant as with a small enlargement Fig. 4a1 and Fig. 4a2 , since the optical arrangement is already optimized for medium to high magnifications, and the correction by the correction field lens is correspondingly lower at these magnifications.
  • Aberration diagram Fig. 6b1 shows the transverse aberration in the sagittal plane without correction field lens (cf. Fig. 5a ) and the aberration diagram Fig. 5b2 transverse aberration in the sagittal plane with correction field lens (cf. Fig. 5b ).
  • the graph line shows the transverse aberration in the sagittal plane for the wavelength 546 nm.
  • the three graphs are arranged in such a way that the distance of the measuring point from the optical axis increases from bottom to top.
  • the sagittal image surface is influenced by the correction field lens at every distance from the center of the image field.
  • the individual graphs are in the aberration diagram Fig. 6b2 each flatter and closer to the horizontal, which describes an error-free ideal state than in the aberration diagram Fig. 6b1 .
  • the transverse aberration is in the sagittal plane of the aberration diagram Fig. 6b2 , ie with correction field lens, significantly lower than with an aberration diagram Fig. 6b1 .
  • the improvements are, however not as blatant as with a small enlargement Fig. 4b1 and Fig. 4b2 , since the optical arrangement is already optimized for medium to high magnifications, and the correction by the correction field lens is correspondingly lower at these magnifications.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Telescopes (AREA)
  • Lenses (AREA)

Description

Die Erfindung betrifft ein Zielfernrohr gemäß dem Oberbegriff von Anspruch 1.The invention relates to a telescopic sight according to the preamble of claim 1.

Zielfernrohre werden bei der Jagd und beim Militär dafür eingesetzt mittels Waffen Ziele in großen Distanzen anzuvisieren. Hierfür verfügen sie über eine Linsenanordnung innerhalb eines Gehäuses, die ein Zielobjekt vergrößert. Insbesondere weist die Linsenanordnung wenigstens ein Objektiv und ein Okular auf. Das Objektiv ist ein sammelndes optisches System zur reellen optischen Abbildung des Zielobjektes und das Okular ein Linsensystem, durch das mit einem Auge in die Linsenanordnung geblickt wird.Riflescopes are used in hunting and in the military to aim at targets at great distances using weapons. For this purpose, they have a lens arrangement within a housing that enlarges a target object. In particular, the lens arrangement has at least one objective and an eyepiece. The objective is a collecting optical system for real optical imaging of the target object and the eyepiece is a lens system through which one eye looks into the lens arrangement.

Ein von dem Objektiv in einer objektivseitigen Bildebene entworfenes Zwischenbild wird in einer okularseitigen Bildebene vergrößert abgebildet. Durch die Vergrößerung ist jedoch der Blickwinkel sehr eingeschränkt und Objekte in kürzerer Distanz können schlecht anvisiert oder betrachtet werden. Um auch diese Objekte effektiv ins Visier nehmen zu können, sieht der Stand der Technik eine variable Vergrößerung, den so genannten Zoom, vor. Zudem wird das anvisierte Objekt in der objektivseitigen Bildebene seitenverkehrt und auf dem Kopf stehend abgebildet und muss deshalb korrigiert werden.An intermediate image designed by the lens in an image plane on the lens side is shown enlarged in an image plane on the eyepiece side. Due to the enlargement, however, the viewing angle is very limited and objects in a shorter distance are difficult to sight or look at. In order to be able to effectively target these objects as well, the prior art provides a variable magnification, the so-called zoom. In addition, the targeted object is reversed in the lens-side image plane and displayed upside down and must therefore be corrected.

Zur Ansichtskorrektur und Vergrößerung des Bildes kommt deshalb ein Umkehrsystem innerhalb des Zielfernrohres zum Einsatz. Dieses ermöglicht eine axiale unabhängige bzw. definierte Verschiebung von zwei optischen Elementen. Zu den optischen Elementen zählen dabei unter anderem Linsen, Kittlinsen und Absehen. Hierdurch wird ein in der objektivseitigen Bildebene erzeugtes Zwischenbild aufgerichtet und in der okularseitigen Bildebene, wo es betrachtet wird, vergrößert abgebildet.A reversing system within the riflescope is therefore used to correct the view and enlarge the image. This enables an axial independent or defined displacement of two optical elements. The optical elements include lenses, putty lenses and reticles. As a result, an intermediate image generated in the image plane on the lens side is erected and enlarged in the image plane on the eyepiece side where it is viewed.

Bei einer solchen Linsenanordnung kommt es jedoch zu Bildfehlern. Jede einzelne Linse erzeugt bei der optischen Abbildung des Objektes in ein virtuelles oder reales Zwischenbild verschiedene Aberrationen, unter anderem Sphärische Aberration, Defokus, Koma, Bildfeldwölbung, Verzeichnung, Farblängs- und Farbquerfehler in verschiedenen Ordnungen.With such a lens arrangement, however, image errors occur. When optically imaging the object in a virtual or real intermediate image, each individual lens generates various aberrations, including spherical aberration, defocus, coma, field curvature, distortion, longitudinal and transverse color errors in various orders.

Zur Korrektur dieser Bildfehler in der ersten Bildebene werden in dem Objektiv eines Zielfernrohres die Linsen so kombiniert und angeordnet, dass die Fehler über den Strahlverlauf vom Objekt zum Bild sich gegenseitig möglichst gut kompensieren. So werden beispielsweise Kittglieder aus Flint- und Kronglas eingesetzt um die Farbfehler zu korrigieren.To correct these image errors in the first image plane, the lenses are combined and arranged in the lens of a telescopic sight in such a way that the errors compensate one another as well as possible via the beam path from the object to the image. For example, cement elements made of flint and crown glass are used to correct the color errors.

Trotz Einsatz von optischen Mitteln verbleibt in der ersten Bildebene stets eine gewisse Menge an Bildfehlern, die insbesondere bei hochzoomigen Ferngläsern oder Zielfernrohren, insbesondere bei einer mehr als vierfachen Vergrößerung, in der okularseitigen Bildebene bei einer hohen Vergrößerung verstärkt sichtbar sind. Dabei werden Querfehler mit der Vergrößerung linear und Längsfehler mit der Vergrößerung quadratisch verstärkt.Despite the use of optical means, there is always a certain amount of image errors in the first image plane, which are increasingly visible in the ocular-side image plane at high magnification, particularly in the case of high-zoom binoculars or riflescopes, in particular when magnifying more than four times. Lateral errors are amplified linearly with the magnification and longitudinal errors with the magnification quadratic.

Deshalb sieht der Stand der Technik vor, die Bildfehler durch geschickte Auslegung des Linsensystems so zu reduzieren, dass eine gleichbleibend gute Bildqualität über den gesamten Vergrößerungsbereich gewährleistet ist.The prior art therefore provides for the image errors to be reduced by cleverly designing the lens system in such a way that a consistently good image quality is guaranteed over the entire magnification range.

Bei herkömmlichen hochzoomigen Systemen kommt es hier zu einem Konflikt mit der Korrektur der vergößerten Bildfehler auf den hohen Vergrößerungen und der Korrektur der Bildfehler auf den kleinen Vergrößerungen auf dem gesamten Sehfeld. Wird das Linsensystem so ausgelegt, dass die Bildfehler bei hoher Vergrößerungen bei der Abbildung von der ersten in die okularseitige Bildebene möglichst gut kompensiert werden, kommt es zu deutlich sichtbaren Restfehlern, insbesondere Koma und Sphärische Aberration, bei geringer Vergrößerung.In conventional high-zoom systems, there is a conflict here with the correction of the enlarged image errors on the high magnifications and the correction of the image errors on the small magnifications on the entire field of view. If the lens system is designed in such a way that the image errors at high magnifications when imaging from the first into the eyepiece-side image plane are compensated as well as possible, clearly visible residual errors occur, in particular coma and spherical aberration, at low magnifications.

Diese Bildfehler wirken sich für den Anwender störend auf den optischen Eindruck hinsichtlich Brillanz, Ruhe und Schärfe des Bildes aus, und vermitteln einen Eindruck minderwertiger Qualität.These image errors have a disruptive effect on the optical impression with regard to the brilliance, calmness and sharpness of the image, and give an impression of inferior quality.

Ein hochzoomiges Zielfernrohr ist beispielsweise in EP 1 746 451 B1 beschrieben. Diese beschreibt ein Zielfernrohr, mit einem Mittelrohr, das zwischen einem Objektiv und einem Okular angeordnet ist. Das Mittelrohr enthält ein Umkehrsystem, in das eine verstellbare Vergrößerungsoptik integriert ist. Diese besteht aus zwei relativ zueinander verschiebbaren optischen Elementen. Das Umkehrsystem ist dabei zwischen einer objektivseitigen Bildebene und einer okularseitigen Bildebene angeordnet. Durch das Verschieben der optischen Elemente wird ein von dem Objektiv in der objektivseitigen Bildebene entworfenes Zwischenbild mit einem veränderbaren Abbildungsmaßstab in der okularseitigen Bildebene vergrößert und aufgerichtet abgebildet. Die maximale Vergrößerung ist dabei wenigstens vierfach.A high zoom rifle scope is for example in EP 1 746 451 B1 described. This describes a rifle scope, with a center tube, which is arranged between an objective and an eyepiece. The center tube contains a reversing system in which an adjustable magnifying lens is integrated. This consists of two optical elements that can be moved relative to one another. The reversal system is arranged between an objective-side image plane and an eyepiece-side image plane. By moving the optical elements, an intermediate image designed by the lens in the lens-side image plane is enlarged and erected with a changeable image scale in the eyepiece-side image plane. The maximum magnification is at least four times.

Weiterhin ist eine optische Strahlumlenkeinrichtung in das Umkehrsystem integriert. Diese besteht aus einer zusätzlichen Linsenanordnung, die auf der dem Okular zugewandten Seite des Umkehrsystems angeordnet ist und eine negative Brechkraft zwischen -20 dpt (Dioptrien) und - 40 dpt aufweist. Diese weitet den Vergrößerungsbereich auf. Hierdurch wird bei allen Vergrößerungen, ein subjektives Sehfeld des Zielfernrohrs von mindestens 22°, zumindest für Licht mit einer Wellenlänge von etwa 550 nm gewährleistet.An optical beam deflection device is also integrated in the reversing system. This consists of an additional lens arrangement, which is arranged on the side of the reversing system facing the eyepiece and has a negative refractive power between -20 dpt (diopter) and - 40 dpt. This widens the area of enlargement. This ensures a subjective field of view of the riflescope of at least 22 ° at all magnifications, at least for light with a wavelength of approximately 550 nm.

Zusätzlich weist das Umkehrsystem objektivseitig beabstandet zur objektivseitigen Bildebene eine Feldlinse auf, mittels derer ein vom Objektiv kommendes Strahlenbündel eines am Sehfeldrand liegenden Objektpunktes durch den engen Kanal des Umkehrsystems leitbar ist. Diese Feldlinse hat außerdem die Aufgabe, den Vergrößerungsbereich des Zielfernrohres zu verschieben und wird nicht in erster Linie zur Bildfehlerkorrektur eingesetzt.In addition, the reversing system has a field lens at a distance from the lens side from the image plane on the lens side, by means of which a bundle of rays coming from the lens of an object point lying at the edge of the field of view can be guided through the narrow channel of the reversing system. This field lens also has the task of shifting the magnification range of the riflescope and is not primarily used for image correction.

Um die Bildfehler hochzoomiger Zielfernrohre auch bei kleiner Vergrößerung zu reduzieren, haben weiterentwickelte bekannte Zielfernrohre ein bewegbares drittes optisches Element im Umkehrsystem (zum Beispiel US 7 684 114 B2 ) oder setzen asphärische Linsen in diesem ein. Ein drittes bewegbares optisches Element erhöht jedoch die Anforderungen an eine präzise Führung, was zu einer hohen Komplexität sowie hohen Kosten führt. Ebenso verursacht die Herstellung asphärischer Linsen hohe Kosten. Weiterer Stand der Technik lässt sich in den Druckschriften WO 02/082003 A2 , WO 2006/081411 A2 , US 3 918 791 A sowie EP 1 801 634 A1 finden.In order to reduce the image errors of high-zoom riflescopes even at low magnification, further developed known riflescopes have a movable third optical element in the reversing system (for example US 7 684 114 B2 ) or use aspherical lenses in it. However, a third movable optical element increases the requirements for precise guidance, which leads to high complexity and high costs. The manufacture of aspherical lenses also causes high costs. Further state of the art can be found in the publications WO 02/082003 A2 , WO 2006/081411 A2 , US 3 918 791 A such as EP 1 801 634 A1 Find.

Aufgabe der Erfindung ist deshalb, die Bildfehler über den gesamten Vergrößerungsbereich zu reduzieren, insbesondere im Randbereich und auch bei kleinen Vergrößerungen, wobei die Lösung eine geringe mechanische Komplexität und geringe Kosten verursachen soll. Dabei soll das Zielfernrohr einfach und komfortabel handhabbar bleiben und eine hohe Lebensdauer aufweisen.The object of the invention is therefore to reduce the image errors over the entire enlargement range, in particular in the marginal region and also at small enlargements, the solution being intended to cause low mechanical complexity and low costs. The riflescope should remain easy and comfortable to use and have a long service life.

Hauptmerkmale der Erfindung sind im kennzeichnenden Teil von Anspruch 1 angegeben. Ausgestaltungen sind Gegenstand der Ansprüche 2 bis 10.Main features of the invention are set out in the characterizing part of claim 1. Refinements are the subject of claims 2 to 10.

Bei einem Zielfernrohr mit einem zwischen einem Objektiv und einem Okular angeordneten Umkehrsystem, das eine objektivseitige Feldlinse und okularseitig wenigstens zwei relativ zueinander verschiebbare optische Elemente aufweist, mit einer zwischen dem Objektiv und der Feldlinse liegenden und zur Feldlinse beabstandeten objektivseitigen Bildebene sowie einer zwischen dem Okular und dem Umkehrsystem liegenden okularseitigen Bildebene, wobei durch das Verschieben der optischen Elemente ein von dem Objektiv in der objektivseitigen Bildebene entworfenes Zwischenbild mit einer veränderbaren Vergrößerung aufgerichtet in der okularseitigen Bildebene abgebildet ist, und mit einer wenigstens vierfachen maximalen Vergrößerung, sieht die Erfindung vor, dass zwischen der objektivseitigen Bildebene und der Feldlinse eine Korrekturfeldlinse angeordnet ist.In the case of a riflescope with a reversing system arranged between an objective and an eyepiece, which has an objective-side field lens and at least two optical elements that can be displaced relative to one another, with an objective-side image plane lying between the objective and the field lens and spaced apart from the field lens, and one between the eyepiece and the reversal system, the ocular-side image plane, whereby by moving the optical elements an intermediate image designed by the lens in the objective-side image plane is shown erected in the ocular-side image plane with a variable magnification, and with at least four times the maximum magnification, the invention provides that between a correction field lens is arranged on the objective-side image plane and the field lens.

Eine solche Korrekturfeldlinse ist nicht bewegbar, wodurch sich die Komplexität des Zielfernrohrs nur geringfügig erhöht. Indem bereits vor der Feldlinse eine Korrektur des Strahlengangs erfolgt, setzen sich Bildfehler weniger stark im Umkehrsystem fort. Hierdurch erhöht sich die Bildgüte erheblich.Such a correction field lens cannot be moved, which increases the complexity of the riflescope only slightly. By correcting the beam path before the field lens, image errors are less likely to continue in the reversing system. This increases the image quality considerably.

Durch die unbewegbare Anordnung, ist die Korrekturfeldlinse unempfindlich gegenüber Erschütterungen sowie thermische Veränderungen, die durch den Einsatz unter verschiedenen Einsatzbedingungen entstehen. Hieraus ergibt sich eine lange Lebensdauer des Zielfernrohrs. Außerdem werden die Stellkräfte für die bewegbaren optischen Elemente nicht erhöht, die eine stabilere und somit schwerere Auslegung erfordern würden. Die wenigen benötigten zusätzlichen Bauteile erhöhen das Gewicht des Zielfernrohrs nur unwesentlich. Das Zielfernrohr bleibt leicht, komfortabel und einfach handhabbar.Due to the immovable arrangement, the correction field lens is insensitive to vibrations and thermal changes that result from use under different operating conditions. This results in a long life for the riflescope. In addition, the actuating forces for the movable optical elements are not increased, which would require a more stable and thus heavier design. The few additional components required increase the weight of the riflescope only insignificantly. The rifle scope remains light, comfortable and easy to use.

Die besonderen Vorteile der Korrekturlinse an der erfindungsgemäßen Position ergeben sich aus der Korrektur verschiedener Bildfehler, die auf der okularseitigen Bildebene weniger stark auftreten. Besonders vorteilhaft ist die Position zwischen der objektivseitigen Bildebene und der Feldlinse. Durch diese ändert sich die Bildfehlerkorrektur in Abhängigkeit der Position der bewegbaren optischen Elemente und somit der Vergrößerung. Es ist nunmehr möglich die Bildfehlerkorrektur über den gesamten Zoombereich so auszulegen, dass ein brillantes, scharfes und gut ausgeleuchtetes Bild auf der okularseitigen Bildebene dargestellt ist. Ein drittes bewegbares optisches Element im Umkehrsystem ist nicht erforderlich.The particular advantages of the correction lens at the position according to the invention result from the correction of various image errors, which are less pronounced on the ocular-side image plane occur. The position between the lens-side image plane and the field lens is particularly advantageous. This changes the image error correction depending on the position of the movable optical elements and thus the magnification. It is now possible to design the image error correction over the entire zoom range in such a way that a brilliant, sharp and well-illuminated image is displayed on the image plane on the eyepiece side. A third movable optical element in the reversing system is not necessary.

Mittels der Korrekturfeldlinse wird ein Strahlengang, derart beeinflusst, dass unter anderem die sphärische Aberration und die Koma auf allen Vergrößerungen, insbesondere aber auf der kleinen Vergrößerung, in der okularseitigen Bildebene verringert werden, aber auch Astigmatismus und Bildfeldwölbung werden verringert.By means of the correction field lens, a beam path is influenced in such a way that, among other things, the spherical aberration and the coma are reduced at all magnifications, but especially at the small magnification, in the image plane on the eyepiece side, but also astigmatism and curvature of the field are reduced.

Die Korrekturfeldlinse dient dabei der Korrektur der bereits aus dem Objektiv kommenden aber auch des Ausgleichs der im Umkehrsystem entstehenden Aberrationen, sodass in der okularseitigen Bildebene ein möglichst gutes Bild entsteht.The correction field lens is used to correct the aberrations that have already come out of the lens but also to compensate for the aberrations that arise in the reversing system, so that the best possible image is created in the image plane on the eyepiece side.

Besonders vorteilhaft hierbei ist, dass die Korrekturfeldlinse zwischen der objektivseitigen Bildebene und der Feldlinse angeordnet ist, da hiermit die Fehler aus dem Objektiv korrigiert werden können.It is particularly advantageous here that the correction field lens is arranged between the image plane on the objective side and the field lens, since this allows the errors from the objective to be corrected.

Folgende Tabelle zeigt den Einfluss der erfindungsgemäßen Korrekturfeldlinse auf Bildfehler 3. Ordnung, gemäß einem Optikdesignprogramm nach MIL-HDBK-141 (Military Standardization Handbook: Optical Design): Bildfehlerstärke aus Optikdesignprogramm gemäß MIL-HDBK-141 OHNE KORREKTURFELDLINSE MIT KORREKTURFELDLINSE Bildfehlertyp Kleine Vergrößerung Mittlere Vergrößerung Große Vergrößerung Kleine Vergrößerung Mittlere Vergrößerung Große Vergrößerung Sphärische Abberation 0.821086 0.150681 0.235905 0.448830 0.106225 0.187797 Koma -0.199421 -0.100022 0.100028 -0.051632 -0.100011 0.100030 Tangentialer Astigmatismus 0.307891 -0.011196 0.067351 0.066316 -0.051988 0.033315 Sagittaler Astimagtismus 0.239279 0.023984 0.037844 0.136409 0.004444 0.023182 Bildfeldwölbung 0.204973 0.041574 0.023091 0.171455 0.032660 0.018116 Verzeichnung -0.342277 -0.267520 -0.275009 -0.071922 -0.354690 -0.373345 Chromatischer Längsfehler 0.085116 0.136314 0.225582 0.080157 0.127397 0.197048 Chromatischer Querfehler -0.009277 -0.018927 -0.020088 -0.009153 -0.022958 -0.027716 The following table shows the influence of the correction field lens according to the invention on 3rd order image errors, according to an optical design program according to MIL-HDBK-141 (Military Standardization Handbook: Optical Design): Image defect strength from the optical design program in accordance with MIL-HDBK-141 WITHOUT CORRECTION FIELD LENS WITH CORRECTION FIELD LENS Image error type Small enlargement Medium magnification Big enlargement Small enlargement Medium magnification Big enlargement Spherical aberration 0.821086 0.150681 0.235905 0.448830 0.106225 0.187797 coma -0.199421 -0.100022 0.100028 -0.051632 -0.100011 0.100030 Tangential astigmatism 0.307891 -0.011196 0.067351 0.066316 -0.051988 0.033315 Sagittal astimagism 0.239279 0.023984 0.037844 0.136409 0.004444 0.023182 Field curvature 0.204973 0.041574 0.023091 0.171455 0.032660 0.018116 Distortion -0.342277 -0.267520 -0.275009 -0.071922 -0.354690 -0.373345 Chromatic longitudinal error 0.085116 0.136314 0.225582 0.080157 0.127397 0.197048 Chromatic cross error -0.009277 -0.018927 -0.020088 -0.009153 -0.022958 -0.027716

Anhand der oben stehenden Tabellenwerte ist erkennbar, dass mit einer erfindungsgemäßen Korrekturfeldlinse nahezu jeder Bildfehlertyp deutlich verringert auftritt.From the table values above it can be seen that with a correction field lens according to the invention almost every type of image error occurs significantly reduced.

In einer Ausbildung der Erfindung ist die Korrekturfeldlinse an der dem Objektiv abgewandten Seite der objektivseitigen Bildebene angeordnet.In one embodiment of the invention, the correction field lens is arranged on the side of the image plane on the lens side facing away from the lens.

Besonders vorteilhaft hierbei ist, dass die Linse mit einer dem Objektiv zugewandten Planseite ausgestaltet sein kann und direkt bei der objektivseitigen Bildebene angeordnet sein kann. Dies erlaubt eine Verkittung mit einer Strichplatte oder einem Absehen. Hierdurch wird die Transmission nicht wesentlich verringert, und die sonst hohe Empfindlichkeit der beiden einander zugewandten Glasflächen von Absehen und Korrekturfeldlinse gegenüber der Sichtbarkeit von Kratzern wird in der Kittfläche deutlich reduziert.It is particularly advantageous here that the lens can be designed with a plane side facing the lens and can be arranged directly at the lens-side image plane. This allows cementing with a reticle or a reticle. This does not significantly reduce the transmission, and the otherwise high sensitivity of the two mutually facing glass surfaces of the reticle and correction field lens to the visibility of scratches is significantly reduced in the putty surface.

Weiterhin kann vorgesehen sein, dass die Korrekturfeldlinse sammelnd oder streuend ist. Hierfür kann diese konvex, konkav oder flach gestaltet sein. Besonders vorteilhaft ist eine sphärische und/oder plane Oberfläche, da eine solche Korrekturfeldlinse deutlich weniger kostet als asphärische Linsen.Furthermore, it can be provided that the correction field lens is collecting or scattering. For this purpose, it can be convex, concave or flat. A spherical and / or flat surface is particularly advantageous, since such a correction field lens costs significantly less than aspherical lenses.

Eine Weiterbildung sieht vor, dass an der Korrekturfeldlinse ein Absehen angeordnet ist, vorzugsweise in der objektivseitigen Bildebene. Dabei kann die Korrekturfeldlinse mit dem Absehen verkittet ist. Hierdurch sinkt die Komplexität der optischen Anordnung und der notwendigen Befestigungsmittel. Thermische Einflüsse und Erschütterungen haben keine verstärkte Auswirkung auf die optische Anordnung. Somit bleibt auch das Gewicht des Zielfernrohrs gering und es ergibt sich eine gute komfortable Handhabbarkeit. Grundsätzlich wäre es jedoch auch möglich das Absehen in der okularseitigen Bildebene anzuordnen, wie man es insbesondere auf dem amerikanischen Markt findet.A further development provides that a reticle is arranged on the correction field lens, preferably in the image plane on the objective side. The correction field lens can be cemented with the reticle. This reduces the complexity of the optical arrangement and the necessary fastening means. Thermal influences and vibrations have no increased effect on the optical arrangement. Thus, the weight of the rifle scope remains low and the handling is easy and comfortable. In principle, however, it would also be possible to arrange the reticle in the eyepiece-side image plane, as can be found in particular on the American market.

Ferner besteht die Möglichkeit, dass zwischen der okularseitigen Bildebene und dem Okular ein Strahlteiler angeordnet ist. Dieser kann dazu verwendet werden, eine weitere Zielmarke im Zielfernrohr einzuspiegeln.There is also the possibility that a beam splitter is arranged between the eyepiece-side image plane and the eyepiece. This can be used to reflect another target in the scope.

Eine Variante der Erfindung sieht vor, dass das Objektiv aus einer Objektivlinse und einem zwischen der Objektivlinse und der objektivseitigen Bildebene angeordneten Objektiv-Achromat besteht. Zudem kann auch ein weiterer Objektiv-Achromat vorgesehen sein, der auf der gleichen Seite der Objektivlinse oder der gegenüberliegenden Seite von dieser angeordnet ist. Gleichsam kann vorgesehen sein, dass das Okular aus einer Okularlinse und einem zwischen der Okularlinse und der okularseitigen Bildebene angeordneten Okular-Achromat besteht. Mittels dieser Achromate ist es möglich, Farblängs- und Farbquerfehler deutlich zu reduzieren.A variant of the invention provides that the objective consists of an objective lens and an objective achromatic lens arranged between the objective lens and the objective-side image plane. A further objective achromatic lens can also be provided, which is arranged on the same side of the objective lens or on the opposite side thereof. At the same time it can be provided that the eyepiece consists of an eyepiece lens and an eyepiece achromat arranged between the eyepiece lens and the eyepiece-side image plane. With these achromatic lenses it is possible to significantly reduce longitudinal and transverse color errors.

Als zusätzliches technisches Merkmal ist vorsehbar, dass das zweite optische Element näher am Okular angeordnet ist als das erste optische Element, und dass im Umkehrsystem zwischen dem zweiten optischen Element und der okularseitigen Bildebene eine Strahlumlenkeinrichtung mit negativer Brechkraft angeordnet ist. Hierdurch wird der Vergrößerungsbereich aufgeweitet. Dies ist besonders bei hochzoomigen Zielfernrohren von Vorteil.It can be provided as an additional technical feature that the second optical element is arranged closer to the eyepiece than the first optical element, and that a beam deflection device with negative refractive power is arranged in the reversing system between the second optical element and the eyepiece-side image plane. This enlarges the enlargement range. This is particularly advantageous for high zoom riflescopes.

Besonders vorteilhaft ist die Korrekturfeldlinse zur Verbesserung der Bildgüte, wenn die maximale Vergrößerung des Zwischenbilds auf der okularseitigen Bildebene wenigstens fünffach, vorzugsweise jedoch wenigstens sechsfach und besonders bevorzugt wenigstens achtfach ist. Gerade bei großen Vergrößerungsbereichen wird so auch bei den niedrigen Vergrößerungen ein scharfes und brillantes Bild über den gesamten Bildbereich, insbesondere bis zum Bildrand, erreicht.The correction field lens is particularly advantageous for improving the image quality if the maximum magnification of the intermediate image on the ocular-side image plane is at least five times, but preferably at least six times and particularly preferably at least eight times. Especially in the case of large magnification areas, a sharp and brilliant image is thus achieved over the entire image area, in particular up to the edge of the image, even at low magnifications.

Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus dem Wortlaut der Ansprüche sowie aus der folgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnungen. Es zeigen:

Fig. 1
einen Querschnitt durch eine erfindungsgemäße optische Anordnung mit Strahlengang;
Fig. 2
einen Querschnitt durch ein erfindungsgemäßes Zielfernrohr;
Fig. 3a
einen Strahlengang bei einer optischen Anordnung ohne Korrekturfeldlinse bei kleiner Vergrößerung;
Fig. 3b
einen Strahlengang bei einer optischen Anordnung mit Korrekturfeldlinse bei kleiner Vergrößerung;
Fig. 4a1
eine Queraberration in tangentialer Ebene für eine optische Anordnung ohne Korrekturfeldlinse bei kleiner Vergrößerung;
Fig. 4a2
eine Queraberration in tangentialer Ebene für eine optische Anordnung mit Korrekturfeldlinse bei kleiner Vergrößerung;
Fig. 4b1
eine Queraberration in sagittaler Ebene für eine optische Anordnung ohne Korrekturfeldlinse bei kleiner Vergrößerung;
Fig. 4b2
eine Queraberration in sagittaler Ebene für eine optische Anordnung mit Korrekturfeldlinse bei kleiner Vergrößerung;
Fig. 5a
einen Strahlengang bei einer optischen Anordnung ohne Korrekturfeldlinse bei großer Vergrößerung;
Fig. 5b
einen Strahlengang bei einer optischen Anordnung mit Korrekturfeldlinse bei großer Vergrößerung;
Fig. 6a1
eine Queraberration in tangentialer Ebene für eine optische Anordnung ohne Korrekturfeldlinse bei großer Vergrößerung;
Fig. 6a2
eine Queraberration in tangentialer Ebene für eine optische Anordnung mit Korrekturfeldlinse bei großer Vergrößerung;
Fig. 6b1
eine Queraberration in sagittaler Ebene für eine optische Anordnung ohne Korrekturfeldlinse bei großer Vergrößerung; und
Fig. 6b2
eine Queraberration in sagittaler Ebene für eine optische Anordnung mit Korrekturfeldlinse bei großer Vergrößerung.
Further features, details and advantages of the invention emerge from the wording of the claims and from the following description of exemplary embodiments with reference to the drawings. Show it:
Fig. 1
a cross section through an optical arrangement according to the invention with beam path;
Fig. 2
a cross section through an inventive telescopic sight;
Fig. 3a
an optical path in an optical arrangement without a correction field lens at low magnification;
Fig. 3b
an optical path in an optical arrangement with correction field lens at low magnification;
Fig. 4a1
a transverse aberration in the tangential plane for an optical arrangement without correction field lens at low magnification;
Fig. 4a2
a transverse aberration in the tangential plane for an optical arrangement with correction field lens at low magnification;
Fig. 4b1
a transverse aberration in the sagittal plane for an optical arrangement without correction field lens at low magnification;
Fig. 4b2
a transverse aberration in the sagittal plane for an optical arrangement with correction field lens at low magnification;
Fig. 5a
an optical path in an optical arrangement without a correction field lens at high magnification;
Fig. 5b
an optical path in an optical arrangement with correction field lens at high magnification;
Fig. 6a1
a transverse aberration in the tangential plane for an optical arrangement without a correction field lens at high magnification;
Figure 6a2
a transverse aberration in the tangential plane for an optical arrangement with correction field lens at high magnification;
Fig. 6b1
a transverse aberration in the sagittal plane for an optical arrangement without correction field lens at high magnification; and
Fig. 6b2
a transverse aberration in the sagittal plane for an optical arrangement with correction field lens at high magnification.

Fig. 1 zeigt einen Querschnitt durch eine erfindungsgemäße optische Anordnung eines Zielfernrohrs mit einem Strahlengang SG. Zwischen einem Objektiv 10 und einem Okular 20 ist ein Umkehrsystem 30 angeordneten. Das Umkehrsystem 30 weist eine objektivseitige Feldlinse 50 und okularseitig zwei relativ zueinander verschiebbare optische Elemente 31, 32 auf, wobei das zweite optische Element 32 näher am Okular 20 angeordnet ist als das erste optische Element 31. Zwischen dem Objektiv 10 und der Feldlinse 50 liegt eine zur Feldlinse 50 beabstandete objektivseitige Bildebene BE1. Außerdem liegt zwischen dem Okular 20 und dem Umkehrsystem 30 eine okularseitige Bildebene BE2. Fig. 1 shows a cross section through an optical arrangement according to the invention of a telescopic sight with an optical path SG. A reversing system 30 is arranged between an objective 10 and an eyepiece 20. The reversing system 30 has a field lens 50 on the lens side and on the eyepiece side, two optical elements 31, 32 which can be displaced relative to one another, the second optical element 32 being arranged closer to the eyepiece 20 than the first optical element 31. Between the objective 10 and the field lens 50 there is an objective-side image plane BE1 spaced from the field lens 50. In addition, an eyepiece-side image plane BE2 lies between the eyepiece 20 and the reversing system 30.

Im Detail besteht das Objektiv 10 aus einem ersten Objektiv-Achromat 12, einer zwischen dem Objektiv-Achromat 12 und der objektivseitigen Bildebene BE1 angeordneten Objektivlinse 11 und einem zwischen der Objektivlinse 11 und der objektivseitigen Bildebene BE1 angeordneten zweiten Objektiv-Achromat 13. Das Okular 20 besteht aus einer Okularlinse 21 und einem zwischen der Okularlinse 21 und der okularseitigen Bildebene BE2 angeordneten Okular-Achromat 22.In detail, the objective 10 consists of a first objective achromatic device 12, an objective lens 11 arranged between the objective achromatic device 12 and the objective-side image plane BE1 and a second objective achromatic device 13 arranged between the objective lens 11 and the objective side image plane BE1. The eyepiece 20 consists of an eyepiece lens 21 and an eyepiece achromat 22 arranged between the eyepiece lens 21 and the eyepiece-side image plane BE2.

Zusätzlichen sind ein Strahlteiler 60 und eine Strahlumlenkeinrichtung 70 vorgesehen. Der Strahlteiler 60 ist zwischen der okularseitigen Bildebene BE2 und dem Okular 20 angeordnet. Die Strahlumlenkeinrichtung 70 hat eine negative Brechkraft und befindet sich im Umkehrsystem 30 zwischen dem zweiten optischen Element 32 und der okularseitigen Bildebene BE2.In addition, a beam splitter 60 and a beam deflection device 70 are provided. The beam splitter 60 is arranged between the eyepiece-side image plane BE2 and the eyepiece 20. The beam deflection device 70 has a negative refractive power and is located in the reversing system 30 between the second optical element 32 and the eyepiece-side image plane BE2.

Erfindungsgemäß ist weiterhin zwischen der objektivseitigen Bildebene BE1 und der Feldlinse 50 eine Korrekturfeldlinse 40 angeordnet. Diese ist mit einem Absehen 41 verkittet, das in der objektivseitigen Bildebene BE1 positioniert ist. Aufgrund der physischen Ausdehnung des Absehens 41 liegt ein Teil von diesem zwischen dem Objektiv 10 und der objektivseitigen Bildebene BE1 und ein Teil zwischen der objektivseitigen Bildebene BE1 und der Feldlinse 50. Die eigentliche Korrekturlinse 40 ist um den Teil des Absehens 41 in Richtung der Feldlinse 50 von der objektivseitigen Bildebene BE1 beabstandet, um den das Absehen 41 auf Seiten der Feldlinse 50 über die objektivseitige Bildebene BE1 hinausragt.According to the invention, a correction field lens 40 is furthermore arranged between the lens-side image plane BE1 and the field lens 50. This is cemented with a reticle 41, which is positioned in the lens-side image plane BE1. Due to the physical extent of the reticle 41, part of it lies between the objective 10 and the lens-side image plane BE1 and part between the lens-side image plane BE1 and the field lens 50. The actual correction lens 40 is around the part of the reticle 41 in the direction of the field lens 50 spaced from the lens-side image plane BE1 by which the reticle 41 on the field lens 50 side projects beyond the lens-side image plane BE1.

Durch das Verschieben der optischen Elemente 31, 32 ist ein von dem Objektiv 10 in der objektivseitigen Bildebene BE1 entworfenes Zwischenbild mit einer veränderbaren Vergrößerung aufgerichtet in der okularseitigen Bildebene BE2 abgebildet.By shifting the optical elements 31, 32, an intermediate image designed by the objective 10 in the image plane BE1 on the objective side is shown erected with a variable magnification in the image plane BE2 on the eyepiece side.

Wie am Verlauf des Strahlengangs SG weiterhin erkennbar, dient die Feldlinse 50 der Bündelung des Strahlengangs SG auf einen Durchmesser des ersten verschiebbaren optischen Elements 31.As can also be seen in the course of the beam path SG, the field lens 50 is used to focus the beam path SG onto a diameter of the first displaceable optical element 31.

Fig. 2 zeigt einen Querschnitt durch ein Zielfernrohr 1, in welchem die Merkmale der optischen Anordnung aus Fig. 1 integriert sind. In einem Gehäuse 101 ist zwischen einem Objektiv 10 und einem Okular 20 ein Umkehrsystem 30 innerhalb eines Tubus 102 angeordneten. Der Tubus 102 ist mittels eines Verstellrads 103 verstellbar innerhalb des Gehäuses 101 positionierbar. Hierdurch lässt sich die Lage eines Absehens einstellen, um die optische Zielerfassung und die Treffpunktlage eines Projektils angleichen zu können. Ohne eine solche Verstellmöglichkeit könnte die Treffpunktlage von der Zielerfassung aufgrund der Flugbahn des Projektils abweichen, die unter anderem durch die Erdanziehungskraft und Windkraft beeinflusst wird. Fig. 2 shows a cross section through a telescopic sight 1, in which the features of the optical arrangement Fig. 1 are integrated. A reversing system 30 is arranged within a tube 102 in a housing 101 between an objective 10 and an eyepiece 20. The tube 102 is adjustably positionable within the housing 101 by means of an adjusting wheel 103. In this way, the position of a reticle can be adjusted in order to be able to align the optical target acquisition and the point of impact of a projectile. Without such an adjustment option, the point of impact could deviate from the target acquisition due to the trajectory of the projectile, which is influenced, among other things, by the force of gravity and wind power.

Das Umkehrsystem 30 weist eine objektivseitige Feldlinse 50 und okularseitig zwei relativ zueinander verschiebbare optische Elemente 31, 32 auf, wobei das zweite optische Element 32 näher am Okular 20 angeordnet ist als das erste optische Element 31. Zwischen dem Objektiv 10 und der Feldlinse 50 liegt eine zur Feldlinse 50 beabstandete objektivseitige Bildebene BE1. Außerdem liegt zwischen dem Okular 20 und dem Umkehrsystem 30 eine okularseitige Bildebene BE2.The reversing system 30 has a field lens 50 on the lens side and two optical elements 31, 32 that can be displaced relative to one another on the eyepiece side, the second optical element 32 being arranged closer to the eyepiece 20 than the first optical element 31. One is located between the objective 10 and the field lens 50 lens-side image plane BE1 spaced from field lens 50. In addition, an eyepiece-side image plane BE2 lies between the eyepiece 20 and the reversing system 30.

Im Detail besteht das Objektiv 10 aus einer Objektivlinse 11 und zwei zwischen der Objektivlinse 11 und der objektivseitigen Bildebene BE1 angeordneten Objektiv-Achromaten 12, 13. Das Okular 20 besteht aus einer Okularlinse 21 und einem zwischen der Okularlinse 21 und der okularseitigen Bildebene BE2 angeordneten Okular-Achromat 22. Das Okular 20 besteht aus einer Okularlinse 21 und einem zwischen der Okularlinse 21 und der okularseitigen Bildebene BE2 angeordneten Okular-Achromat 22.In detail, the objective 10 consists of an objective lens 11 and two objective achromats 12, 13 arranged between the objective lens 11 and the objective-side image plane BE1. The eyepiece 20 consists of an eyepiece lens 21 and an eyepiece arranged between the ocular lens 21 and the ocular-side image plane BE2 -Achromat 22. The eyepiece 20 consists of an eyepiece lens 21 and an eyepiece achromat 22 arranged between the eyepiece lens 21 and the eyepiece-side image plane BE2.

Erfindungsgemäß ist weiterhin zwischen der objektivseitigen Bildebene BE1 und der Feldlinse 50 eine Korrekturfeldlinse 40 im Tubus 102 angeordnet. Diese ist mit einem Absehen 41 verkittet, das in der objektivseitigen Bildebene BE1 positioniert ist.According to the invention, a correction field lens 40 is furthermore arranged in the tube 102 between the lens-side image plane BE1 and the field lens 50. This is cemented with a reticle 41, which is positioned in the lens-side image plane BE1.

Zusätzlichen weist das Zielfernrohr 1 einen Strahlteiler 60 und eine Strahlumlenkeinrichtung 70 auf. Der Strahlteiler 60 ist zwischen der okularseitigen Bildebene BE2 und dem Okular 20 im Gehäuse 101 fixiert. Die Strahlumlenkeinrichtung 70 hat eine negative Brechkraft und befindet sich im Umkehrsystem 30 zwischen dem zweiten optischen Element 32 und der okularseitigen Bildebene BE2. Sie ist wie der Rest des Umkehrsystems 30 im Tubus 102 angeordnet.In addition, the telescopic sight 1 has a beam splitter 60 and a beam deflection device 70. The beam splitter 60 is fixed in the housing 101 between the eyepiece-side image plane BE2 and the eyepiece 20. The beam deflection device 70 has a negative refractive power and is located in the reversing system 30 between the second optical element 32 and the eyepiece-side image plane BE2. Like the rest of the reversal system 30, it is arranged in the tube 102.

Durch das Verschieben der optischen Elemente 31, 32 ist ein von dem Objektiv 10 in der objektivseitigen Bildebene BE1 entworfenes Zwischenbild mit einer veränderbaren Vergrößerung aufgerichtet in der okularseitigen Bildebene BE2 abgebildet.By shifting the optical elements 31, 32, an intermediate image designed by the objective 10 in the image plane BE1 on the objective side is shown erected with a variable magnification in the image plane BE2 on the eyepiece side.

Fig. 3a und Fig. 3b zeigen jeweils eine optische Anordnung. Zwischen einem Objektiv, bestehend aus einer Objektivlinse 11 und zwei Objektiv-Achromaten 12, 13 und einer okularseitigen Bildebene BE2 ist ein Umkehrsystem angeordneten. Das Umkehrsystem weist eine objektivseitige Feldlinse 50 und okularseitig zwei relativ zueinander verschiebbare optische Elemente 31, 32 auf, wobei das zweite optische Element 32 näher an der okularseitigen Bildebene BE2 angeordnet ist als das erste optische Element 31. Zwischen dem Objektiv-Achromat 12 und der Feldlinse 50 liegt eine zur Feldlinse 50 beabstandete objektivseitige Bildebene BE1. In dieser Bildebene BE1 ist ein Absehen 41 angeordnet. Fig. 3a and Fig. 3b each show an optical arrangement. A reversing system is arranged between an objective consisting of an objective lens 11 and two objective achromats 12, 13 and an image plane BE2 on the eyepiece side. The reversing system has a field lens 50 on the lens side and two optical elements 31, 32 that can be displaced relative to one another on the eyepiece side, the second optical element 32 being arranged closer to the eyepiece-side image plane BE2 than the first optical element 31. Between the objective achromatic lens 12 and the field lens 50 there is a lens-side image plane BE1 spaced apart from the field lens 50. A reticle 41 is arranged in this image plane BE1.

Die optische Anordnung Fig. 3b weist abweichend von Fig. 3a eine erfindungsgemäße Korrekturfeldlinse 40 zwischen der objektivseitigen Bildebene BE1 und der Feldlinse 50 auf. Insbesondere ist sie mit dem Absehen 41 verkittet.The optical arrangement Fig. 3b deviates from Fig. 3a a correction field lens 40 according to the invention between the lens-side image plane BE1 and the field lens 50. In particular, it is cemented with the reticle 41.

Durch diese optischen Anordnungen Fig. 3a und Fig. 3b verläuft jeweils ein Strahlengang SG. Bei einem Vergleich der Strahlengänge SG fällt auf, dass die Korrekturfeldlinse 41 der Fig. 3b nur geringfügig Einfluss auf den Strahlengang SG nimmt. Die Strahlengänge ähneln sich im Gesamtverlauf relativ stark. Dennoch hat die Korrekturfeldlinse 41 erheblichen Einfluss auf Bildfehler in der objektivseitigen Bildebene BE2, insbesondere reduziert sie diese.Through these optical arrangements Fig. 3a and Fig. 3b one beam path SG runs. When comparing the beam paths SG, it is noticeable that the correction field lens 41 of the Fig. 3b only slightly influences the beam path SG. The beam paths are relatively similar overall. Nevertheless, the correction field lens 41 has a considerable influence on image errors in the image plane BE2 on the lens side, in particular it reduces them.

Die verschiebbaren optischen Elemente 31, 32 befinden sich in einer Position, bei der eine sehr kleine Vergrößerung bzw. ein nicht vergrößernde Einstellung vorliegt. Dies ist derart anhand der Strahlengänge SG erkennbar, dass der Abstand des obersten Strahls und des untersten Strahls des Strahlengangs SG in der objektivseitigen Bildebene BE1 ungefähr dem entspricht, der zwischen dem obersten Strahl und dem untersten Strahl des Strahlengangs SG in der okularseitigen Bildebene BE2 vorliegt.The displaceable optical elements 31, 32 are in a position in which there is a very small magnification or a non-magnifying setting. This can be seen from the beam paths SG in such a way that the distance between the top beam and the bottom beam of the beam path SG in the lens-side image plane BE1 corresponds approximately to that which exists between the top beam and the bottom beam of the beam path SG in the ocular-side image plane BE2.

In den Fig. 4a1 , Fig. 4a2 , Fig. 4b1 und Fig. 4b2 sind Aberrationsdiagramme von Queraberrationen an der okularseitigen Bildebene bei kleiner Vergrößerung mit und ohne Korrekturfeldlinse dargestellt. Die zugrunde liegenden optischen Anordnungen entsprechen dabei denen in Fig. 3a und Fig. 3b gezeigten.In the Fig. 4a1 , Fig. 4a2 , Fig. 4b1 and Fig. 4b2 aberration diagrams of transverse aberrations are shown on the ocular-side image plane at low magnification with and without a correction field lens. The underlying optical arrangements correspond to those in Fig. 3a and Fig. 3b shown.

Das Aberrationsdiagramm Fig. 4a1 zeigt die Queraberration in der tangentialen Ebene ohne Korrekturfeldlinse (vgl. Fig. 3a) und das Aberrationsdiagramm Fig. 4a2 die Queraberration in der tangentialen Ebene mit Korrekturfeldlinse (vgl. Fig. 3b). Auf der Abszisse eines jeden Graphen ist eine Abweichungsspanne vom Idealzustand von -0,1 mm bis + 0,1 mm gezeigt. Die Graphenlinie zeigt die Queraberration in tangentialen Ebene für die Wellenlänge 546 nm. Weiterhin sind die drei Graphen so angeordnet, dass der Abstand des Messpunktes von der optischen Achse von unten nach oben zunimmt. Insbesondere entspricht der unterste Graph jeweils der Bildfeldmitte der okularseitigen Bildebene (FIELD HIGHT = 0.00) und der oberste dem Bildfeldrand (FIELD HIGHT = 3.70).The aberration diagram Fig. 4a1 shows the transverse aberration in the tangential plane without correction field lens (cf. Fig. 3a ) and the aberration diagram Fig. 4a2 the transverse aberration in the tangential plane with correction field lens (cf. Fig. 3b ). On the abscissa of each graph, a range of deviation from the ideal state from -0.1 mm to + 0.1 mm is shown. The graph line shows the transverse aberration in the tangential plane for the wavelength 546 nm. Furthermore, the three graphs are arranged so that the distance of the measuring point from the optical axis increases from bottom to top. In particular, the bottom graph corresponds to the center of the image field of the image plane on the eyepiece side (FIELD HIGHT = 0.00) and the top graph corresponds to the edge of the image field (FIELD HIGHT = 3.70).

Wie durch einen Vergleich des Aberrationsdiagramms Fig. 4a1 mit Aberrationsdiagramm Fig. 4a2 zu erkennen, ist die tangentiale Bildoberfläche bei jedem Abstand zur Bildfeldmitte durch die Korrekturfeldlinse beeinflusst. Insbesondere sind die einzelnen Graphen im Aberrationsdiagramm Fig. 4a2 jeweils flacher und dichter an der Horizontalen angeordnet, die einen fehlerfreien Idealzustand beschreibt, als im Aberrationsdiagramm Fig. 4a1. Dementsprechend ist die Queraberration in der tangentialen Ebene von Aberrationsdiagramm Fig. 4a2, d.h. mit Korrekturfeldlinse, deutlich geringer als bei Aberrationsdiagramm Fig. 4a1.As by comparing the aberration diagram Fig. 4a1 with aberration diagram Fig. 4a2 recognizable, the tangential image surface is influenced by the correction field lens at every distance from the center of the image field. In particular, the individual graphs are in the aberration diagram Fig. 4a2 each flatter and closer to the horizontal, which describes an error-free ideal state than in the aberration diagram Fig. 4a1 . Accordingly, the transverse aberration is in the tangential plane of the aberration diagram Fig. 4a2 , ie with correction field lens, significantly lower than with an aberration diagram Fig. 4a1 .

Aberrationsdiagramm Fig. 4b1 zeigt die Queraberration in der sagittalen Ebene ohne Korrekturfeldlinse (vgl. Fig. 3a) und das Aberrationsdiagramm Fig. 4b2 die Queraberration in der sagittalen Ebene mit Korrekturfeldlinse (vgl. Fig. 3b). Auf der Abszisse eines jeden Graphen ist eine Abweichungsspanne vom Idealzustand von -0,1 mm bis + 0,1 mm gezeigt. Die Graphenlinie zeigt die Queraberration in der sagittalen Ebene für die Wellenlänge 546 nm. Weiterhin sind die drei Graphen so angeordnet, dass der Abstand des Messpunktes von der optischen Achse von unten nach oben zunimmt. Insbesondere entspricht der unterste Graph jeweils der Bildfeldmitte der okularseitigen Bildebene (FIELD HIGHT = 0.00) und der oberste dem Bildfeldrand (FIELD HIGHT = 3.70).Aberration diagram Fig. 4b1 shows the transverse aberration in the sagittal plane without correction field lens (cf. Fig. 3a ) and the aberration diagram Fig. 4b2 transverse aberration in the sagittal plane with correction field lens (cf. Fig. 3b ). On the abscissa of each graph, a range of deviation from the ideal state from -0.1 mm to + 0.1 mm is shown. The graph line shows the transverse aberration in the sagittal plane for the wavelength 546 nm. Furthermore, the three graphs are arranged in such a way that the distance of the measuring point from the optical axis increases from bottom to top. In particular, the bottom graph corresponds to the center of the image field of the image plane on the eyepiece side (FIELD HIGHT = 0.00) and the top graph corresponds to the edge of the image field (FIELD HIGHT = 3.70).

Wie durch einen Vergleich des Aberrationsdiagramms Fig. 4b1 mit Aberrationsdiagramm Fig. 4b2 zu erkennen, ist die sagittale Bildoberfläche bei jedem Abstand zur Bildfeldmitte durch die Korrekturfeldlinse beeinflusst. Insbesondere sind die einzelnen Graphen im Aberrationsdiagramm Fig. 4b2 jeweils flacher und dichter an der Horizontalen angeordnet, die einen fehlerfreien Idealzustand beschreibt, als im Aberrationsdiagramm Fig. 4b1. Dementsprechend ist die Queraberration in der sagittalen Ebene von Aberrationsdiagramm Fig. 4b2, d.h. mit Korrekturfeldlinse, deutlich geringer als bei Aberrationsdiagramm Fig. 4b1.As by comparing the aberration diagram Fig. 4b1 with aberration diagram Fig. 4b2 the sagittal image surface is influenced by the correction field lens at every distance from the center of the image field. In particular, the individual graphs are in the aberration diagram Fig. 4b2 each flatter and closer to the horizontal, which describes an error-free ideal state than in the aberration diagram Fig. 4b1 . Accordingly, the transverse aberration is in the sagittal plane of the aberration diagram Fig. 4b2 , ie with correction field lens, significantly lower than with an aberration diagram Fig. 4b1 .

Fig. 5a und Fig. 5b beschreiben jeweils eine optische Anordnung. Zwischen einem Objektiv, bestehend aus einer Objektivlinse 11 und zwei Objektiv-Achromaten 12, 13 und einer okularseitigen Bildebene BE2 ist ein Umkehrsystem angeordneten. Das Umkehrsystem weist eine objektivseitige Feldlinse 50 und okularseitig zwei relativ zueinander verschiebbare optische Elemente 31, 32 auf, wobei das zweite optische Element 32 näher an der okularseitigen Bildebene BE2 angeordnet ist als das erste optische Element 31. Zwischen dem Objektiv-Achromat 12 und der Feldlinse 50 liegt eine zur Feldlinse 50 beabstandete objektivseitige Bildebene BE1. In dieser Bildebene BE1 ist ein Absehen 41 angeordnet. Fig. 5a and Fig. 5b each describe an optical arrangement. A reversing system is arranged between an objective consisting of an objective lens 11 and two objective achromats 12, 13 and an image plane BE2 on the eyepiece side. The reversing system has a field lens 50 on the lens side and two optical elements 31, 32 that can be displaced relative to one another on the eyepiece side, the second optical element 32 being arranged closer to the eyepiece-side image plane BE2 than the first optical element 31. Between the objective achromatic lens 12 and the field lens 50 there is a lens-side image plane BE1 spaced apart from the field lens 50. A reticle 41 is arranged in this image plane BE1.

Die Anordnung von Fig. 5b weist abweichend von Fig. 5a eine erfindungsgemäße Korrekturfeldlinse 40 zwischen der objektivseitigen Bildebene BE1 und der Feldlinse 50 auf. Insbesondere ist sie mit dem Absehen 41 verkittet.The arrangement of Fig. 5b deviates from Fig. 5a a correction field lens 40 according to the invention between the lens-side image plane BE1 and the field lens 50. In particular, it is cemented with the reticle 41.

Durch diese optischen Anordnungen der Fig. 5a und Fig. 5b verläuft jeweils ein Strahlengang SG. Bei einem Vergleich der Strahlengänge SG fällt auf, dass die Korrekturfeldlinse 41 der Fig. 5b nur geringfügig Einfluss auf den Strahlengang SG nimmt. Der Strahlengang SG ähnelt sich im Gesamtverlauf relativ stark. Dennoch hat die Korrekturfeldlinse 41 erheblichen Einfluss auf Bildfehler in der objektivseitigen Bildebene BE2, insbesondere verringert sie diese.Through these optical arrangements of Fig. 5a and Fig. 5b one beam path SG runs. When comparing the beam paths SG, it is noticeable that the correction field lens 41 of the Fig. 5b only slightly influences the beam path SG. The overall beam path SG is relatively similar. Nevertheless, the correction field lens 41 has a significant influence on image errors in the lens-side image plane BE2, in particular it reduces them.

Die verschiebbaren optischen Elemente 31, 32 befinden sich in einer Position, bei der eine große Vergrößerung vorliegt. Dies ist derart anhand der Strahlengänge SG erkennbar, dass der Abstand des obersten Strahls und des untersten Strahls des Strahlengangs SG in der okularseitigen Bildebene BE2 deutlich größer ist als der zwischen dem obersten Strahl und dem untersten Strahl des Strahlengangs SG in der objektivseitigen Bildebene BE1.The displaceable optical elements 31, 32 are in a position in which there is a large magnification. This can be seen from the beam paths SG in such a way that the distance between the top beam and the bottom beam of the beam path SG in the eyepiece-side image plane BE2 is significantly greater than that between the top beam and the bottom beam of the beam path SG in the lens-side image plane BE1.

In den Fig. 6a1 , Fig. 6a2 , Fig. 6b1 und Fig. 6b2 sind Aberrationsdiagramme von Queraberrationen an der okularseitigen Bildebene bei großer Vergrößerung mit und ohne Korrekturfeldlinse dargestellt. Die zugrunde liegenden optischen Anordnungen entsprechen dabei denen in Fig. 5a und Fig. 5b gezeigten.In the Fig. 6a1 , Figure 6a2 , Fig. 6b1 and Fig. 6b2 aberration diagrams of transverse aberrations are shown on the eyepiece-side image plane at high magnification with and without a correction field lens. The underlying optical arrangements correspond to those in Fig. 5a and Fig. 5b shown.

Das Aberrationsdiagramm Fig. 6a1 zeigt die Queraberration in der tangentialen Ebene ohne Korrekturfeldlinse (vgl. Fig. 5a) und das Aberrationsdiagramm Fig. 6a2 die Queraberration in der tangentialen Ebene mit Korrekturfeldlinse (vgl. Fig. 5b). Auf der Abszisse eines jeden Graphen ist eine Abweichungsspanne vom Idealzustand von -0,2 mm bis + 0,2 mm gezeigt. Die Graphenlinie zeigt die Queraberration in der tangentialen Ebene für die Wellenlänge 546 nm. Weiterhin sind die drei Graphen so angeordnet, dass der Abstand des Messpunktes von der optischen Achse von unten nach oben zunimmt. Insbesondere entspricht der unterste Graph jeweils der Bildfeldmitte der okularseitigen Bildebene (FIELD HIGHT = 0.00) und der oberste dem Bildfeldrand (FIELD HIGHT = 0.411).The aberration diagram Fig. 6a1 shows the transverse aberration in the tangential plane without correction field lens (cf. Fig. 5a ) and the aberration diagram Figure 6a2 the transverse aberration in the tangential plane with correction field lens (cf. Fig. 5b ). On the abscissa of each graph, a range of deviation from the ideal state of -0.2 mm to + 0.2 mm is shown. The Graph line shows the transverse aberration in the tangential plane for the wavelength 546 nm. Furthermore, the three graphs are arranged so that the distance of the measuring point from the optical axis increases from bottom to top. In particular, the bottom graph corresponds to the center of the image field of the image plane on the eyepiece side (FIELD HIGHT = 0.00) and the top graph corresponds to the edge of the image field (FIELD HIGHT = 0.411).

Wie durch einen Vergleich des Aberrationsdiagramms Fig. 6a1 mit Aberrationsdiagramm Fig. 6a2 zu erkennen, ist die tangentiale Bildoberfläche bei jedem Abstand zur Bildfeldmitte durch die Korrekturfeldlinse beeinflusst. Insbesondere sind die einzelnen Graphen im Aberrationsdiagramm Fig. 6a2 jeweils flacher und dichter an der Horizontalen angeordnet, die einen fehlerfreien Idealzustand beschreibt, als im Aberrationsdiagramm Fig. 6a1. Dementsprechend ist die Queraberration in der tangentialen Ebene von Aberrationsdiagramm Fig. 6a2, d.h. mit Korrekturfeldlinse, deutlich geringer als bei Aberrationsdiagramm Fig. 6a1. Die Verbesserungen sind jedoch nicht so eklatant wie bei einer kleinen Vergrößerung gemäß Fig. 4a1 und Fig. 4a2, da die optische Anordnung bereits für die mittleren bis hohen Vergrößerungen optimiert ist, und die Korrektur durch die Korrekturfeldlinse bei diesen Vergrößerungen dementsprechend geringer ausfällt.As by comparing the aberration diagram Fig. 6a1 with aberration diagram Figure 6a2 recognizable, the tangential image surface is influenced by the correction field lens at every distance from the center of the image field. In particular, the individual graphs are in the aberration diagram Figure 6a2 each flatter and closer to the horizontal, which describes an error-free ideal state than in the aberration diagram Fig. 6a1 . Accordingly, the transverse aberration is in the tangential plane of the aberration diagram Figure 6a2 , ie with correction field lens, significantly lower than with an aberration diagram Fig. 6a1 . However, the improvements are not as blatant as with a small enlargement Fig. 4a1 and Fig. 4a2 , since the optical arrangement is already optimized for medium to high magnifications, and the correction by the correction field lens is correspondingly lower at these magnifications.

Aberrationsdiagramm Fig. 6b1 zeigt die Queraberration in der sagittalen Ebene ohne Korrekturfeldlinse (vgl. Fig. 5a) und das Aberrationsdiagramm Fig. 5b2 die Queraberration in der sagittalen Ebene mit Korrekturfeldlinse (vgl. Fig. 5b). Auf der Abszisse eines jeden Graphen ist eine Abweichungsspanne vom Idealzustand von -0,2 mm bis + 0,2 mm gezeigt. Die Graphenlinie zeigt die Queraberration in der sagittalen Ebene für die Wellenlänge 546 nm. Weiterhin sind die drei Graphen so angeordnet, dass der Abstand des Messpunktes von der optischen Achse von unten nach oben zunimmt. Insbesondere entspricht der unterste Graph jeweils der Bildfeldmitte der okularseitigen Bildebene (FIELD HIGHT = 0.00) und der oberste dem Bildfeldrand (FIELD HIGHT = 0.411).Aberration diagram Fig. 6b1 shows the transverse aberration in the sagittal plane without correction field lens (cf. Fig. 5a ) and the aberration diagram Fig. 5b2 transverse aberration in the sagittal plane with correction field lens (cf. Fig. 5b ). On the abscissa of each graph, a range of deviation from the ideal state of -0.2 mm to + 0.2 mm is shown. The graph line shows the transverse aberration in the sagittal plane for the wavelength 546 nm. Furthermore, the three graphs are arranged in such a way that the distance of the measuring point from the optical axis increases from bottom to top. In particular, the bottom graph corresponds to the center of the image field of the image plane on the eyepiece side (FIELD HIGHT = 0.00) and the top graph corresponds to the edge of the image field (FIELD HIGHT = 0.411).

Wie durch einen Vergleich des Aberrationsdiagramms Fig. 6b1 mit Aberrationsdiagramm Fig. 6b2 zu erkennen, ist die sagittale Bildoberfläche bei jedem Abstand zur Bildfeldmitte durch die Korrekturfeldlinse beeinflusst. Insbesondere sind die einzelnen Graphen im Aberrationsdiagramm Fig. 6b2 jeweils flacher und dichter an der Horizontalen angeordnet, die einen fehlerfreien Idealzustand beschreibt, als im Aberrationsdiagramm Fig. 6b1. Dementsprechend ist die Queraberration in der sagittalen Ebene von Aberrationsdiagramm Fig. 6b2, d.h. mit Korrekturfeldlinse, deutlich geringer als bei Aberrationsdiagramm Fig. 6b1. Die Verbesserungen sind jedoch nicht so eklatant wie bei einer kleinen Vergrößerung gemäß Fig. 4b1 und Fig. 4b2, da die optische Anordnung bereits für die mittleren bis hohen Vergrößerungen optimiert ist, und die Korrektur durch die Korrekturfeldlinse bei diesen Vergrößerungen dementsprechend geringer ausfällt.As by comparing the aberration diagram Fig. 6b1 with aberration diagram Fig. 6b2 the sagittal image surface is influenced by the correction field lens at every distance from the center of the image field. In particular, the individual graphs are in the aberration diagram Fig. 6b2 each flatter and closer to the horizontal, which describes an error-free ideal state than in the aberration diagram Fig. 6b1 . Accordingly, the transverse aberration is in the sagittal plane of the aberration diagram Fig. 6b2 , ie with correction field lens, significantly lower than with an aberration diagram Fig. 6b1 . The improvements are, however not as blatant as with a small enlargement Fig. 4b1 and Fig. 4b2 , since the optical arrangement is already optimized for medium to high magnifications, and the correction by the correction field lens is correspondingly lower at these magnifications.

Die Erfindung ist nicht auf eine der vorbeschriebenen Ausführungsformen beschränkt, sondern in vielfältiger Weise abwandelbar.The invention is not limited to one of the above-described embodiments, but can be modified in many ways.

Sämtliche aus den Ansprüchen, der Beschreibung und der Zeichnung hervorgehenden Merkmale und Vorteile, einschließlich konstruktiver Einzelheiten, räumlicher Anordnungen und Verfahrensschritten, können sowohl für sich als auch in den verschiedensten Kombinationen erfindungswesentlich sein. Bezugszeichenliste 1 Zielfernrohr 41 Absehen 10 Objektiv 50 Feldlinse 11 Objektivlinse 60 Strahlteiler 12 erster Objektiv-Achromat 70 Strahlumlenkeinrichtung 13 zweiter Objektiv-Achromat 101 Gehäuse 20 Okular 102 Tubus 21 Okularlinse 103 Verstellrad 22 Okular-Achromat BE1 objektivseitige Bildebene 30 Umkehrsystem BE2 okularseitige Bildebene 31 erstes optisches Element 32 zweites optisches Element SG Strahlengang 40 Korrekturfeldlinse All of the features and advantages arising from the claims, the description and the drawing, including constructive details, spatial arrangements and method steps, can be essential to the invention both individually and in the most varied of combinations. <b> List of reference symbols </b> 1 Rifle scope 41 Reticle 10th lens 50 Field lens 11 Objective lens 60 Beam splitter 12th first lens achromatic lens 70 Beam deflector 13 second lens achromatic lens 101 casing 20th eyepiece 102 Tube 21 Eyepiece lens 103 Adjustment wheel 22 Eyepiece achromat BE1 lens-side image plane 30th Reversal system BE2 eyepiece-side image plane 31 first optical element 32 second optical element SG Beam path 40 Correction field lens

Claims (11)

  1. Telescopic site (1) with an inversion system (30) arranged between an objective (10) and an eyepiece (20), which inversion system comprises a field lens (50) on the objective side and at least two optical elements (31, 32) displaceable with respect to one another on the eyepiece side, with an image plane (BE1) on the objective side lying between the objective (10) and the field lens (50) and spaced from the field lens (50), as well as an image plane (BE2) on the eyepiece side lying between the eyepiece (20) and the inversion system (30), wherein due to the displacement of the optical elements (31, 32) an intermediate image projected by the objective (10) in the image plane (BE1) on the objective side is formed erected with an alterable magnification in the image plane (BE2) on the eyepiece side, and with an at least 4x maximum magnification, characterised in that a non-moveable correcting field lens (40) is arranged between the image plane (BE1) on the objective side and the field lens (50), which serves to correct the aberrations formed by the objective (10) but also to compensate the aberrations formed in the inversion system (30).
  2. Telescopic site (1) according to claim 1, characterised in that the correcting field lens (40) is arranged on the side of the image plane (BE1) on the objective side facing away from the objective (10).
  3. Telescopic site (1) according to either of claims 1 and 2, characterised in that the correcting field lens (40) is a collecting lens or scattering lens.
  4. Telescopic site (1) according to any one of the preceding claims, characterised in that a sight lens (41) is arranged on the correcting field lens (40), preferably in the image plane (BE1) on the objective side.
  5. Telescopic site (1) according to claim 4, characterised in that the correcting field lens (40) is cemented to the sight lens (41).
  6. Telescopic site (1) according to any one of the preceding claims, characterised in that a beam splitter (60) is arranged between the image plane (BE2) on the eyepiece side and the eyepiece (20).
  7. Telescopic site (1) according to any one of the preceding claims, characterised in that the objective (10) consists of an objective lens (11) and an objective achromatic lens (12, 13) arranged between the objective lens (11) and the image plane (BE1) on the objective side.
  8. Telescopic site (1) according to any one of the preceding claims, characterised in that the eyepiece (20) consists of an eyepiece lens (21) and an eyepiece achromatic lens (22) arranged between the eyepiece lens (21) and the image plane (BE2) on the eyepiece side.
  9. Telescopic site (1) according to any one of the preceding claims, characterised in that the second optical element (32) is arranged closer to the eyepiece (20) than the first optical element (31), and that a beam deflection device (70) with negative refractive power is arranged in the inversion system (30) between the second optical element (32) and the image plane (BE2) on the eyepiece side.
  10. Telescopic site (1) according to any one of the preceding claims, characterised in that the maximum magnification of the intermediate image on the image plane (BE2) on the eyepiece side is at least 5x, preferably however at least 6x and particularly preferably at least 8x.
  11. Telescopic site (1) according to any one of the preceding claims, characterised in that the field lens (50) is arranged spaced from the correcting field lens (40).
EP12154951.3A 2011-02-11 2012-02-10 Telescopic sight with adjustment field lens Active EP2487449B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011000685A DE102011000685B3 (en) 2011-02-11 2011-02-11 Scope with correction field lens

Publications (3)

Publication Number Publication Date
EP2487449A2 EP2487449A2 (en) 2012-08-15
EP2487449A3 EP2487449A3 (en) 2015-05-20
EP2487449B1 true EP2487449B1 (en) 2020-04-01

Family

ID=45655592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12154951.3A Active EP2487449B1 (en) 2011-02-11 2012-02-10 Telescopic sight with adjustment field lens

Country Status (3)

Country Link
US (1) US8958149B2 (en)
EP (1) EP2487449B1 (en)
DE (1) DE102011000685B3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT513009B1 (en) * 2012-06-11 2021-02-15 Swarovski Optik Kg Lens for an image recording device
CZ304284B6 (en) * 2013-02-21 2014-02-12 České vysoké učení technické v Praze - fakulta stavební Sniper scope with variable magnification

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045545A (en) * 1960-11-10 1962-07-24 Bausch & Lomb Optical system for sighting instruments
US3918791A (en) * 1974-10-18 1975-11-11 Leupold & Stevens Inc Flat field variable power rifle scope
US4497548A (en) * 1980-12-05 1985-02-05 Burris Company Variable-power riflescope with range-compensating reticle and a field stop diaphram centered off the optical axis
AT394457B (en) * 1985-12-18 1992-04-10 Basta Walter RIFLE SCOPE WITH AUTOMATIC ELEVATION DEVICE FOR SNIPER RIFLES
US5481405A (en) * 1993-11-30 1996-01-02 Minnesota Mining And Manufacturing Company Stepless micrographic zoom lens having large magnification ratio
DE10116997A1 (en) * 2001-04-05 2002-10-31 Hensoldt & Soehne Optik Scope
WO2006060489A2 (en) * 2004-11-30 2006-06-08 Bernard Thomas Windauer Optical sighting system
WO2006081411A2 (en) * 2005-01-26 2006-08-03 Meade Instruments Corporation Scope with improved magnification system
AT502229B1 (en) * 2005-07-20 2007-05-15 Swarovski Optik Kg FERNOPTICAL EQUIPMENT
DE102005063245A1 (en) * 2005-12-21 2007-07-05 Carl Zeiss Sports Optics Gmbh Telescope with variable magnification

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2487449A2 (en) 2012-08-15
DE102011000685B3 (en) 2012-08-09
EP2487449A3 (en) 2015-05-20
US20120212811A1 (en) 2012-08-23
US8958149B2 (en) 2015-02-17

Similar Documents

Publication Publication Date Title
DE19858785C2 (en) Endoscope lens and endoscope with such a lens
DE69222729T2 (en) Optical system for repeated imaging with refractive and diffractive optical elements
EP2211222B1 (en) Telescope with wide field of view and large magnification
EP2680057B1 (en) Wide-angle lens of the modified retrofocus type
EP3420882B1 (en) Endoscope and lens for a camera for endoscope
DE69809880T2 (en) LENS WITH A CONSTANT FOCAL LENGTH IN THE VISIBLE AND IR AREAS
DE102012200146A1 (en) Reversing set for an endoscope and endoscope
EP2808716B1 (en) Photographic wide-angle lens with internal focusing
DE112017003378T5 (en) endoscope optics
EP2122403A2 (en) Anastigmatic anamorphic lens system
DE102004051357B4 (en) Immersion microscope objective
DE102008042221B9 (en) Optical system and telescope with an optical system
DE102015218328B4 (en) Optical system for field imaging and / or pupil imaging
EP2487449B1 (en) Telescopic sight with adjustment field lens
DE4401364A1 (en) Real viewfinder
DE102004003139A1 (en) Variable focus polar alignment part
EP1562062B1 (en) Zoom-telescope
DE102015201393A1 (en) Arrangement for changing the focus of a microscope objective
DE102018106236B3 (en) Lens with fixed focal length
DE102010015506B4 (en) Catadioptric Cassegrain lens
DE102018204155B4 (en) Variable focal length lens and method for controlling the lens, and telescope and binoculars with such a lens
DE19964079C1 (en) Maksutov-Cassegrain system of short length
DE4301291A1 (en) Universal, two-mirror corrector for cassegrain-type mirror system
DE19930568A1 (en) Supplementary lens for focusing pair of binoculars on nearby object
DE102017101352A1 (en) Spectacle lens for a display device that can be placed on the head of a user and forms an image

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F41G 1/38 20060101AFI20150415BHEP

17P Request for examination filed

Effective date: 20151113

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191004

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1251902

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012015909

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200801

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200702

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012015909

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1251902

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120210

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240229

Year of fee payment: 13

Ref country code: GB

Payment date: 20240228

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240228

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401