EP2484494B1 - Hand tool with a temperature-dependent sensor - Google Patents

Hand tool with a temperature-dependent sensor Download PDF

Info

Publication number
EP2484494B1
EP2484494B1 EP11009876.1A EP11009876A EP2484494B1 EP 2484494 B1 EP2484494 B1 EP 2484494B1 EP 11009876 A EP11009876 A EP 11009876A EP 2484494 B1 EP2484494 B1 EP 2484494B1
Authority
EP
European Patent Office
Prior art keywords
temperature
actual
switch
control unit
tist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11009876.1A
Other languages
German (de)
French (fr)
Other versions
EP2484494A3 (en
EP2484494A2 (en
Inventor
Martin Fuchs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festool GmbH
Original Assignee
Festool GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festool GmbH filed Critical Festool GmbH
Publication of EP2484494A2 publication Critical patent/EP2484494A2/en
Publication of EP2484494A3 publication Critical patent/EP2484494A3/en
Application granted granted Critical
Publication of EP2484494B1 publication Critical patent/EP2484494B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F3/00Associations of tools for different working operations with one portable power-drive means; Adapters therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the invention relates to a hand machine tool, in particular an electric screwdriver, according to the preamble of claim 1.
  • Such a hand machine tool is for example in EP 1 780 867 A2 explained.
  • Temperature-dependent resistors are generally used as sensors to determine the motor temperature.
  • the usual sensors in particular so-called PTC resistors (PTC), have strongly non-linear temperature-dependent characteristics. When a certain temperature is reached, the resistance value of the PTC thermistor increases extremely, whereupon the control device switches off the electric motor so that it can cool down.
  • PTC PTC resistors
  • a typical characteristic of a PTC thermistor is in Figure 2a shown. As a rule, however, exact temperatures cannot be measured with a PTC thermistor. The The temperature cut-off limit is determined empirically based on a few tests.
  • thermistor which can also be used as a sensor
  • the characteristic is not entirely, but essentially linear, which is exemplified in Figure 2b is shown.
  • the thermistor resistance is installed on the electric motor, for example, the actual temperature values determined by the sensor designed as a thermistor, for example, do not represent the actual, higher temperature of the electric motor, but a lower temperature, so that the control device does not switch off the electric motor in good time and the electric motor overheated.
  • the actual temperature values follow the actual temperature of the electric motor in this example.
  • a screwdriver for example a cordless screwdriver
  • a large current flows through the electric motor, causing it to heat up quickly in a short time.
  • the thermistor cannot detect the high temperature quickly enough due to its "inertia", an unfavorable heat flow to it or the like, so that the control device does not switch off the electric motor.
  • the electric motor can be destroyed.
  • a hand machine tool is provided in accordance with the technical teaching of claim 1.
  • a basic idea of the invention is to dynamically adapt the temperature cut-off limit value so that the respective machine-typical. i.e. e.g. characteristic of the sensor, which is dependent on further parameters, finds its way into the switch-off limit value.
  • This characteristic curve does not only depend on the electrical properties of the sensor, for example the thermistor, but also, for example, on the installation position of the sensor on the electric motor or with respect to the electric motor, its construction and the like.
  • the sensor e.g. the thermistor, has a certain "detection inertia", i.e.
  • a relatively high temperature cut-off limit can be permitted so that the actual temperature values determined by him cannot correspond to the actual temperature of the electric motor, so that the electric motor and thus the hand machine tool can be used up to the respective power limit.
  • the electric motor therefore does not switch off “too early", but can deliver its maximum output, which is particularly advantageous in the case of display devices. Nevertheless, the control device according to the invention switches the electric motor off in good time before it overheats.
  • the control device changes the temperature cut-off limit value depending on an actual gradient representing the respective gradient of a curve of the actual temperature values.
  • the control device can react to the "dynamics" of the curve. If a relatively small temperature increase (small actual gradient) can be observed, the temperature switch-off limit value can be relatively high. However, if the temperature rises rapidly and steeply, the control device acts, so to speak, and lowers the temperature cut-off limit.
  • a variant of the invention can also provide that the control device compares, for example, the course of the actual temperature values with one or more curves that are stored, for example, in or in the control device or in a memory assigned to it.
  • a temperature switch-off limit value can be assigned to the respective stored curve, so that the control device can independently determine an "ideal" temperature switch-off limit value that "fits" to the current profile of the actual temperature values.
  • control device is designed to correct the temperature cut-off limit value on the basis of gradient monitoring, it is advantageous if it determines the temperature cut-off limit value on the basis of a comparison of the actual gradient value with at least one maximum gradient value, which represents a maximum permissible increase or decrease in the Actual temperature values are represented. If the slope of the actual temperature values increases or decreases, the control device corrects the temperature cut-off limit value.
  • control device determines the temperature switch-off limit value on the basis of a comparison of the actual gradient value with at least one maximum gradient value, which represents a maximum permissible rise and / or fall of the actual temperature values. This means that, for example, there are two maximum gradient values, one for the permissible rise and another for the permissible drop in the actual temperature values.
  • control device it is possible for the control device to use only one or two maximum gradient values for comparison with the actual gradient value. However, it is also possible for the control device to compare the temperature cut-off limit value on the basis of a comparison with a plurality of gradient values, for example with gradient values which are dependent on the actual temperature values. These gradient values can, for example, be contained in a table, determined using a formula or the like. Thus, a constant maximum gradient value is not assumed, but a variable or a number of several gradient values, which serve as a basis for comparison for comparison with the actual gradient value.
  • the control device can correct the temperature cut-off limit value according to the invention in a variety of ways, for example when the actual gradient value exceeds or falls below the maximum gradient value (s).
  • a correction can, for example, provide that the control device changes the temperature cut-off limit value on the basis of a correction value.
  • the correction value can be a constant correction value, but also a variable correction value.
  • a variable correction value can depend on the actual gradient value, on the actual temperature values or the like.
  • the control device can correct the temperature cut-off limit value, for example on the basis of time conditions, on the basis of a control command or the like.
  • the hand machine tool and / or the control device can have a switching input via which the control device can be controlled to correct the temperature cut-off limit value.
  • a learning mode of the control device can be activated, for example, via this switching input, in the course of which the control device corrects the temperature cut-off limit value.
  • the user can activate the control input in the event of a high load on the hand machine tool, so that the control device can adjust to this case, i.e. sets the temperature cut-off limit value so that overheating does not occur at maximum load, but at the same time high performance of the hand machine tool can be called up.
  • the control device can cyclically check the course of the actual temperature values, for example, in order to correct the temperature cut-off limit value.
  • the cycle can be a fixed cycle. For example, it is possible that the Control device after the detection of a certain number of actual temperature values, for example 100 actual temperature values, corrects the temperature cut-off limit value (if necessary). If the actual temperature values are recorded at intervals of, for example, 1 ms, the temperature cut-off limit value is checked every 100 ms and corrected if necessary.
  • control device can change a cycle time for the cyclical correction of the temperature cut-off limit value depending on the respective actual gradient value and / or depending on the respective actual temperature value. It is possible, for example, for the control device to check and, if necessary, correct the temperature cut-off limit value more frequently than in the case of smaller actual gradient values in the event of a relatively high increase (or decrease) in the actual temperature values. It is also possible that the temperature cut-off limit value is corrected more frequently at relatively high temperatures than at lower actual temperature values which are less critical for the electric motor.
  • control device has a filter for filtering and or smoothing the course of the actual temperature values or the actual gradient value.
  • filter for filtering and or smoothing the course of the actual temperature values or the actual gradient value.
  • the temperature-dependent sensor is expediently an NTC resistor, that is to say a so-called thermistor.
  • NTC resistor that is to say a so-called thermistor.
  • PTC resistor a so-called PTC resistor
  • a hand-held machine tool 10 is designed as a screwdriver 50, for example as a cordless screwdriver or mains-operated screwdriver.
  • a power plug 11 for connection to a power grid (not shown) and or an electrical energy store 12, for example a battery pack, is present in the hand machine tool 10.
  • An electric motor 15 can be switched on and off with a switch 14 that can be actuated, for example, by a pushbutton 13. Furthermore, the speed of the electric motor 15 can be set with the switch 14.
  • the electric motor 15 drives, for example, via a gear (not shown) or directly a tool holder 16 into which, for example, a screwdriver bit 67 can be inserted.
  • a gear not shown
  • a tool holder 16 into which, for example, a screwdriver bit 67 can be inserted.
  • other tools can also be introduced on the tool holder 16, for example a drill chuck 17.
  • the tool holder provided on an output 60 rotates e.g. about an axis of rotation 61.
  • the pushbutton 13 is located on a handle section 18 of a housing 19 of the hand machine tool 10, which the electric motor 15 in a drive section 20 of the housing 19th
  • the electric motor 15 has a stator 21 and a rotor 22 which is rotatably mounted on or in the stator 21.
  • An output shaft 23 is motionally coupled to the tool holder 16, for example via a gear.
  • Exciter windings 24 are provided on the stator 21 and are supplied with electrical current by a current supply device 25 via lines 26.
  • the current supply device 25 is connected via lines 33 to an energy source (for example the power grid) or the energy store 12.
  • the energization device 25 is expediently connected to a rotation angle sensor 27 arranged on the electric motor 15.
  • the energization device 25 has electrical components 28, for example a capacitor, power transistors, logic elements and the like, which are arranged on a circuit board 29.
  • a control device 30 is provided for controlling the hand machine tool 10, in particular its electric motor 15.
  • the control device 30 is connected to the energization device 25 via lines 31.
  • the control device 30 is arranged together with the switch 14 on a circuit board 32, this being to be understood only as an example, since for example the control device 30 could also form a structural unit with the current supply device 25.
  • the electric motor 15 is, for example, an electronically commutated electric motor, whereby the principle according to the invention, which will be described later, can of course also be used with other motor types without any problems.
  • control device 30 When the electric motor 15 is actuated, the control device 30 also monitors its respective temperature in order to retrieve the highest possible optimal performance of the electric motor 15, so that, for example, screws with high torque can be screwed in, but the electric motor 15 does not overheat.
  • a temperature-dependent sensor 35 is arranged in the area of the excitation windings 24 in the electric motor 15.
  • the sensor 35 is, for example, a temperature-dependent resistor 55, for example a so-called thermistor, that is to say an NTC resistor, the characteristic curve of which is shown in FIG Figure 2b is indicated.
  • the sensor 35 has a resistance in the range of 1 kilohm at a temperature of -20 ° C. In the range of 0 ° C the resistance is still around 400 ohms and then continues to decrease to around 100 ohms to 40 ° C.
  • This exemplary temperature characteristic curve 36 of the sensor 35 is therefore essentially linear in comparison to, for example, one in Figure 2a shown characteristic curve 34 of a PTC thermistor (PTC resistor), which is low in the range of about - 30 ° C to about 95 ° C and is below a resistance value of about 10 kilo-ohms, but then abruptly to a value of about 80 kilo-ohms increases at about 150 ° C.
  • PTC resistor PTC resistor
  • the sensor 35 is connected to the control device 30 via a line 37, via which the sensor 35 transmits actual temperature values Tact to the control device 30.
  • the actual temperature values Tist are, for example, resistance values.
  • An exemplary course of the resistance values or the actual temperature values T actual is shown in Figure 2b shown.
  • Switch-off means 38 of the control device 30 compare a respective actual temperature value T actual with a temperature switch-off limit value TA. When the temperature cut-off limit value TA is reached, the cut-off means 38 switch off the electric motor 15, i.e. the excitation windings 24 are no longer energized. This prevents the electric motor 15 from overheating.
  • the functional sequence of the control device 30 thus runs, for example, as in FIG Figure 5 shown:
  • the control device 30 receives a respective actual temperature value Tact and enters it in a step S2, for example in a table 39 which is expediently stored in a memory 40.
  • the control device 30 compares the actual temperature value Tact with a temperature cut-off limit value stored in the memory 40 TA. If the actual temperature value Tist is smaller than the temperature switch-off limit value TA, the control device 30 returns to step S1 and waits for the next actual temperature value Tist, calls it up, or the like.
  • the control device 30 branches to a step S4 and switches off the electric motor 15 for a fixed or expediently adjustable waiting time TW. After the waiting time TW, the electric motor 15 has cooled somewhat, so that the control device 30 can continue with step S5 or S1.
  • the control device 30 carries out the aforementioned steps regularly, so that the temperature of the electric motor 15 does not rise above an admissible level.
  • the sensor 35 is not arranged directly in the inner area or core area of the electric motor 15, but is relatively easy to maintain and / or easy to install, for example in the area of winding heads of the excitation windings 24. This makes it possible for the electric motor 15 to become relatively hot in its core area before this is reflected in higher temperatures in the area of the sensor 35. In particular, rapid temperature increases occur when the electric motor 15 is heavily loaded in a short time.
  • the electric motor 15 is initially cold and is then heavily loaded, for example because a screw to be screwed blocks but the expedient torque cutoff does not yet react, this can lead to a very high, rapid temperature rise in the electric motor 15.
  • the invention remedies this as follows: After each cycle or after a series of cycles in the course of which steps S1 to S3 or S4 are carried out, for example 100-300 cycles which are each run through every millisecond (for example, waiting times can also be provided in steps S3 or S4 or If the respective cycle is only called up every millisecond by a processor 41 of the control device 30), the control device 30 corrects the temperature switch-off limit value TA, if necessary.
  • the control device 30 increments a cycle counter Z, for example after step S3 or S4 or in a step S5. If the cycle counter Z has a predetermined value Zmax, for example 100 or 300, if 100 or 300 cycles S1 to S3 or S1 to S4 have been completed , after the corresponding test step S6, the control device does not call step S1, but rather the correction routine described below.
  • the control device 30 determines an actual gradient value GRist, which represents the current gradient of the actual temperature values. For example, the control device 30 determines the actual gradient value GRist using the table 39. For example, it is possible for the control device 30 to determine the actual gradient value GRist using the current actual temperature value and the actual temperature value preceding it. It would then be sufficient to only save the last actual temperature value Tact, i.e. for example, that table 39 would have only one row.
  • control device 30 it is also possible for the control device 30 to have a plurality of actual temperature values T actual, which are stored in the table 39, in order to form the actual gradient value GR actual uses, for example 2 or more. It is advantageous if the control device 30 carries out, for example, averaging, smoothing or filtering the actual temperature values in order to eliminate "outliers" of the actual temperature values. Then table 39, which contains several actual temperature values, is advantageous.
  • step S8 the control device 30 checks whether the actual gradient value GRist, which was determined in step S7, is greater than a maximum gradient value GRmax, which is stored in the memory 40, for example.
  • control device 30 branches to step S9 and resets the cycle counter Z to zero. From step S9, the control device 30 then returns to step S1.
  • control device 30 branches from step S8 to a step S10, in which it corrects the temperature switch-off limit value TA.
  • the control device 30 uses the formula (1).
  • the control device 30 corrects the temperature switch-off limit value TA relatively strongly downward, so that it is ensured that the switch-off means 38 switch off the electric motor 15 in good time before a possible overheating.
  • control device 30 determines a smaller actual gradient value dT2 / s from a point in time t2, which, however, follows as before is greater than the maximum gradient value. Therefore, the control device 30 lowers the temperature switch-off limit value TA in the respective step S10, but only to a lesser extent (curve 70).
  • control device 30 no longer reduces the temperature switch-off limit value TA when the actual gradient value is no longer greater than the maximum gradient value.
  • a profile 71 of the temperature switch-off limit value TA is shown in FIG Figure 4 indicated by dashed lines.
  • control device 30 can also raise the temperature switch-off limit value TA again if the actual gradient value is, for example, significantly smaller than the maximum gradient value, in particular for a certain period of time.
  • This period of time can preferably be determined or programmed by parameterization.
  • a relatively strong correction of the temperature switch-off limit value TA can take place at time t1 in order to provide a certain degree of certainty that the electric motor 15 is switched off in good time before possible overheating. If, however, in the further course or operation of the electric motor 15 it turns out that the actual gradient value GRist remains below the critical threshold, the maximum gradient value GRmax, for a longer time, the control device 30 can accordingly raise the temperature switch-off limit value TA again ( Course 72).
  • the control device 30 also learns when the electric motor 15 is operating.
  • control device 30 returns to step S1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Description

Die Erfindung betrifft eine Hand-Werkzeugmaschine, insbesondere ein elektrisches Schraubgerät, gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a hand machine tool, in particular an electric screwdriver, according to the preamble of claim 1.

Eine derartige Hand- Werkzeugmaschine ist beispielsweise in EP 1 780 867 A2 erläutert.Such a hand machine tool is for example in EP 1 780 867 A2 explained.

Ein elektrischer Motor einer Handwerkzeugmaschine, beispielsweise eines Schraubgerätes, aber auch ein elektrischer Motor eines sonstigen elektrischen Gerätes, beispielsweise eines Staubsaugers, soll beim Betrieb nicht überhitzen, damit es nicht zu Beschädigungen kommt. Zur Ermittlung der Motortemperatur werden in der Regel temperaturabhängige Widerstände als Sensoren verwendet. Die üblichen Sensoren, insbesondere sogenannte Kaltleiter-Widerstände (PTC), haben stark nicht lineare temperaturabhängige Kennlinien. Bei Erreichen einer bestimmten Temperatur steigt der Widerstandswert des Kaltleiters extrem an, worauf die Steuerungseinrichtung den Elektromotor abschaltet, so dass dieser abkühlen kann. In der Regel ist die Hand-Werkzeugmaschine dann für eine gewisse Zeit nicht nutzbar. Eine typische Kennlinie eines Kaltleiters ist in Figur 2a dargestellt. Bei einem Kaltleiter können in der Regel jedoch keine genauen Temperaturen gemessen werden. Der Temperatur-Abschaltgrenzwert wird empirisch anhand einiger Versuche ermittelt.An electric motor of a hand-held power tool, for example a screwdriver, but also an electric motor of another electrical device, for example a vacuum cleaner, should not overheat during operation so that there is no damage. Temperature-dependent resistors are generally used as sensors to determine the motor temperature. The usual sensors, in particular so-called PTC resistors (PTC), have strongly non-linear temperature-dependent characteristics. When a certain temperature is reached, the resistance value of the PTC thermistor increases extremely, whereupon the control device switches off the electric motor so that it can cool down. As a rule, the hand machine tool cannot be used for a certain time. A typical characteristic of a PTC thermistor is in Figure 2a shown. As a rule, however, exact temperatures cannot be measured with a PTC thermistor. The The temperature cut-off limit is determined empirically based on a few tests.

Bei einem so genannten Heißleiter-Widerstand (NTC), der auch als Sensor verwendbar ist, ist die Kennlinie zwar nicht ganz, aber doch im Wesentlichen linear, was exemplarisch in Figur 2b dargestellt ist. Wenn der Heißleiter-Widerstand am Elektromotor z.B. ungünstig eingebaut ist, repräsentieren die vom beispielsweise als Heißleiter ausgestalteten Sensor ermittelten Ist-Temperaturwerte nicht die tatsächliche, höhere Temperatur des Elektromotors, sondern eine niedrigere Temperatur, so dass die Steuerungseinrichtung den Elektromotor nicht rechtzeitig abschaltet und der Elektromotor überhitzt. Die Ist-Temperaturwerte laufen der tatsächlichen Temperatur des Elektromotors in diesem Beispiel hinterher. Wenn beispielsweise ein Schraubgerät, zum Beispiel ein Akku-Schrauber, aufgrund eines starken Widerstands blockiert, fließt ein großer Strom durch den Elektromotor, wodurch dieser sich in kurzer Zeit stark erhitzt. Der Heißleiter jedoch kann jedoch aufgrund seiner "Trägheit", eines ungünstigen Wärmeflusses zu ihm hin oder dergleichen, die hohe Temperatur nicht schnell genug erfassen, so dass die Steuerungseinrichtung den Elektromotor nicht abschaltet. Der Elektromotor kann zerstört werden.In the case of a so-called thermistor (NTC), which can also be used as a sensor, the characteristic is not entirely, but essentially linear, which is exemplified in Figure 2b is shown. If the thermistor resistance is installed on the electric motor, for example, the actual temperature values determined by the sensor designed as a thermistor, for example, do not represent the actual, higher temperature of the electric motor, but a lower temperature, so that the control device does not switch off the electric motor in good time and the electric motor overheated. The actual temperature values follow the actual temperature of the electric motor in this example. If, for example, a screwdriver, for example a cordless screwdriver, blocks due to a strong resistance, a large current flows through the electric motor, causing it to heat up quickly in a short time. However, the thermistor cannot detect the high temperature quickly enough due to its "inertia", an unfavorable heat flow to it or the like, so that the control device does not switch off the electric motor. The electric motor can be destroyed.

Es ist daher die Aufgabe der vorliegenden Erfindung, eine verbesserte Temperaturabschaltung eines Elektromotors bereitzustellen.It is therefore the object of the present invention to provide an improved temperature shutdown of an electric motor.

Zur Lösung der Aufgabe ist eine Hand-Werkzeugmaschine gemäß der technischen Lehre des Anspruchs 1 vorgesehen.To achieve the object, a hand machine tool is provided in accordance with the technical teaching of claim 1.

Ein Grundgedanke der Erfindung ist es, den Temperatur-Abschaltgrenzwert dynamisch anzupassen, so dass die jeweilige maschinentypische. d.h. z.B. von weiteren Parametern abhängige, Kennlinie des Sensors Eingang in den Abschaltgrenzwert findet. Diese Kennlinie hängt nicht nur von den elektrischen Eigenschaften des Sensors, beispielsweise des Heißleiters, ab, sondern auch beispielsweise von der Einbauposition des Sensors am Elektromotor oder bezüglich des Elektromotors, dessen Bauweise und dergleichen. Obwohl der Sensor, beispielsweise der Heißleiter, eine gewisse "Erfassungsträgheit" hat, d.h. dass die von ihm ermittelten Temperatur-Istwerte nicht der tatsächlichen Temperatur des Elektromotors entsprechen, können, kann ein relativ hoher Temperatur-Abschaltgrenzwert zugelassen werden, so dass der Elektromotor und somit die Hand-Werkzeugmaschine bis zur jeweiligen Leistungsgrenze genutzt werden kann. Der Elektromotor schaltet also nicht "zu früh" ab, sondern kann seine maximale Leistung abgeben, was insbesondere bei Schaubgeräten vorteilhaft ist. Dennoch schaltet die erfindungsgemäße Steuerungseinrichtung den Elektromotor rechtzeitig ab, bevor er überhitzt.A basic idea of the invention is to dynamically adapt the temperature cut-off limit value so that the respective machine-typical. i.e. e.g. characteristic of the sensor, which is dependent on further parameters, finds its way into the switch-off limit value. This characteristic curve does not only depend on the electrical properties of the sensor, for example the thermistor, but also, for example, on the installation position of the sensor on the electric motor or with respect to the electric motor, its construction and the like. Although the sensor, e.g. the thermistor, has a certain "detection inertia", i.e. A relatively high temperature cut-off limit can be permitted so that the actual temperature values determined by him cannot correspond to the actual temperature of the electric motor, so that the electric motor and thus the hand machine tool can be used up to the respective power limit. The electric motor therefore does not switch off "too early", but can deliver its maximum output, which is particularly advantageous in the case of display devices. Nevertheless, the control device according to the invention switches the electric motor off in good time before it overheats.

Erfindungsgemäß ist vorgesehen, dass die Steuerungseinrichtung den Temperatur-Abschaltgrenzwert abhängig von einem den jeweiligen Gradienten einer Verlaufskurve der Temperatur-Istwerte repräsentierenden Ist-Gradienten verändert. Somit kann also die Steuerungseinrichtung auf die "Dynamik" der Verlaufskurve reagieren. Wenn also ein relativ geringer Temperaturanstieg (kleiner Ist-Gradient) zu beobachten ist, kann der Temperatur-Abschaltgrenzwert verhältnismäßig hoch sein. Steigt die Temperatur jedoch rasch und steil an, handelt die Steuerungseinrichtung sozusagen und senkt den Temperatur-Abschaltgrenzwert ab.According to the invention, it is provided that the control device changes the temperature cut-off limit value depending on an actual gradient representing the respective gradient of a curve of the actual temperature values. Thus, the control device can react to the "dynamics" of the curve. If a relatively small temperature increase (small actual gradient) can be observed, the temperature switch-off limit value can be relatively high. However, if the temperature rises rapidly and steeply, the control device acts, so to speak, and lowers the temperature cut-off limit.

Eine Variante der Erfindung kann jedoch auch vorsehen, dass die Steuerungseinrichtung beispielsweise den Verlauf der Temperatur-Istwerte mit einer oder mehreren Kurven vergleicht, die beispielsweise bei oder in der Steuerungseinrichtung oder einem ihr zugeordneten Speicher abgespeichert sind. Der jeweiligen gespeicherten Kurve kann beispielsweise jeweils ein Temperatur-Abschaltgrenzwert zugeordnet sein, so dass die Steuerungseinrichtung selbstständig einen "idealen" Temperatur-Abschaltgrenzwert, der zu dem aktuellen Verlauf der Temperatur-Istwerte "passt", ermitteln kann.However, a variant of the invention can also provide that the control device compares, for example, the course of the actual temperature values with one or more curves that are stored, for example, in or in the control device or in a memory assigned to it. For example, a temperature switch-off limit value can be assigned to the respective stored curve, so that the control device can independently determine an "ideal" temperature switch-off limit value that "fits" to the current profile of the actual temperature values.

Wenn die Steuerungseinrichtung zur Korrektur des Temperatur-Abschaltgrenzwerts anhand einer Gradientenüberwachung ausgestaltet ist, ist es vorteilhaft, wenn sie den Temperatur-Abschaltgrenzwert anhand eines Vergleichs des Ist-Gradienten-Werts mit mindestens einem Maximal-Gradientenwert ermittelt, der einen maximal zulässigen Anstieg oder Abfall der Temperatur-Istwerte repräsentiert. Wenn also die Steigung der Temperatur-Istwerte zu- oder abnimmt, korrigiert die Steuerungseinrichtung den Temperatur-Abschaltgrenzwert.If the control device is designed to correct the temperature cut-off limit value on the basis of gradient monitoring, it is advantageous if it determines the temperature cut-off limit value on the basis of a comparison of the actual gradient value with at least one maximum gradient value, which represents a maximum permissible increase or decrease in the Actual temperature values are represented. If the slope of the actual temperature values increases or decreases, the control device corrects the temperature cut-off limit value.

Bevorzugt ist dabei vorgesehen, dass die Steuerungseinrichtung den Temperatur-Abschaltgrenzwert anhand eines Vergleichs des Ist-Gradienten-Werts mit mindestens einem Maximal-Gradientenwert ermittelt, der einen maximal zulässigen Anstieg und/oder Abfall der Temperatur-Istwerte repräsentiert. Das bedeutet, dass beispielsweise zwei Maximal-Gradientenwerte vorhanden sind, einer für den zulässigen Anstieg und ein weiterer für den zulässigen Abfall der Temperatur-Istwerte.It is preferably provided that the control device determines the temperature switch-off limit value on the basis of a comparison of the actual gradient value with at least one maximum gradient value, which represents a maximum permissible rise and / or fall of the actual temperature values. This means that, for example, there are two maximum gradient values, one for the permissible rise and another for the permissible drop in the actual temperature values.

Es ist zwar, wie oben angedeutet, möglich, dass die Steuerungseinrichtung nur einen oder zwei Maximal-Gradientenwerte zum Vergleich mit dem Ist-Gradientenwert heranzieht. Es ist aber auch möglich, dass die Steuerungseinrichtung den Temperatur-Abschaltgrenzwert anhand eines Vergleichs mit mehreren Gradientenwerten vergleicht, beispielsweise mit von den Temperatur-Istwerten abhängigen Gradientenwerten. Diese Gradientenwerte können beispielsweise in einer Tabelle enthalten sein, anhand einer Formel ermittelt werden oder dergleichen. Somit wird also nicht von einem konstanten Maximal-Gradientenwert ausgegangen, sondern von einem variablen oder einer Reihe von mehreren Gradientenwerten, die als Vergleichsbasis zum Vergleich mit dem Ist-Gradientenwert dienen.As indicated above, it is possible for the control device to use only one or two maximum gradient values for comparison with the actual gradient value. However, it is also possible for the control device to compare the temperature cut-off limit value on the basis of a comparison with a plurality of gradient values, for example with gradient values which are dependent on the actual temperature values. These gradient values can, for example, be contained in a table, determined using a formula or the like. Thus, a constant maximum gradient value is not assumed, but a variable or a number of several gradient values, which serve as a basis for comparison for comparison with the actual gradient value.

Die Steuerungseinrichtung kann den Temperatur-Abschaltgrenzwert auf vielfältige Weise erfindungsgemäß korrigieren, beispielsweise, wenn der Ist-Gradienten-Wert den oder die Maximal-Gradientenwerte überschreitet oder unterschreitet. Eine Korrektur kann beispielsweise vorsehen, dass die Steuerungseinrichtung den Temperatur-Abschaltgrenzwert anhand eines Korrekturwertes verändert. Der Korrekturwert kann ein konstanter Korrekturwert sein, aber auch ein variabler Korrekturwert. Beispielsweise kann ein variabler Korrekturwert vom Ist-Gradientenwert, von den Temperatur-Istwerten oder dergleichen abhängen. Weiterhin ist es möglich, dass die Steuerungseinrichtung den Temperatur-Abschaltgrenzwert anhand einer Formel berechnet, beispielsweise einer Formel, die den Ist-Gradientenwert enthält.The control device can correct the temperature cut-off limit value according to the invention in a variety of ways, for example when the actual gradient value exceeds or falls below the maximum gradient value (s). A correction can, for example, provide that the control device changes the temperature cut-off limit value on the basis of a correction value. The correction value can be a constant correction value, but also a variable correction value. For example, a variable correction value can depend on the actual gradient value, on the actual temperature values or the like. Furthermore, it is possible for the control device to calculate the temperature cut-off limit value using a formula, for example a formula that contains the actual gradient value.

Die Formel kann beispielsweise lauten: TAneu = TAakt GRist * Korr

Figure imgb0001
wobei:

  • TAneu der neue (zu berechnende) Temperatur-Abschaltgrenzwert,
  • TAakt der aktuelle (noch nicht korrigierte) Temperatur-Abschaltgrenzwert,
  • GRist der Ist-Gradientenwert und
  • Korr ein Korrekturwert sind.
The formula can be, for example: TAneu = TAakt - Grist * corr
Figure imgb0001
in which:
  • TAnew the new (to be calculated) temperature cut-off limit,
  • TAakt the current (not yet corrected) temperature cut-off limit,
  • GR is the actual gradient value and
  • Corr are a correction value.

Die Korrektur des Temperatur-Abschaltgrenzwerts kann von der Steuerungseinrichtung beispielsweise aufgrund zeitlicher Bedingungen, anhand eines Steuerbefehles oder dergleichen, vorgenommen werden. Beispielsweise kann die Hand-Werkzeugmaschine und/oder die Steuerungseinrichtung einen Schalteingang haben, über den die Steuerungseinrichtung zur Korrektur des Temperatur-Abschaltgrenzwerts angesteuert werden kann. Über diesen Schalteingang kann beispielsweise ein Lernmodus der Steuerungseinrichtung aktiviert werden, in dessen Rahmen die Steuerungseinrichtung den Temperatur-Abschaltgrenzwert korrigiert. Beispielsweise kann der Benutzer den Steuerungseingang bei einem Fall hoher Belastung der Hand-Werkzeugmaschine aktivieren, so dass sich die Steuerungseinrichtung auf diesen Fall einstellen kann, d.h. den Temperatur-Abschaltgrenzwert so einstellt, dass bei maximaler Last keine Überhitzung auftritt, zugleich aber eine hohe Leistung der Hand-Werkzeugmaschine abgerufen werden kann.The control device can correct the temperature cut-off limit value, for example on the basis of time conditions, on the basis of a control command or the like. For example, the hand machine tool and / or the control device can have a switching input via which the control device can be controlled to correct the temperature cut-off limit value. A learning mode of the control device can be activated, for example, via this switching input, in the course of which the control device corrects the temperature cut-off limit value. For example, the user can activate the control input in the event of a high load on the hand machine tool, so that the control device can adjust to this case, i.e. sets the temperature cut-off limit value so that overheating does not occur at maximum load, but at the same time high performance of the hand machine tool can be called up.

Bevorzugt sind jedoch zeitliche Bedingungen für die Korrektur des Temperatur-Abschaltgrenzwerts und/oder ein "automatisches Korrigieren":
Die Steuerungseinrichtung kann den Verlauf der Temperatur-Istwerte beispielsweise zyklisch überprüfen, um den Temperatur-Abschaltgrenzwert zu korrigieren. Der Zyklus kann ein fester Zyklus sein. Beispielsweise ist es möglich, dass die Steuerungseinrichtung nach der Erfassung einer bestimmten Anzahl von Temperatur-Istwerten, zum Beispiel 100 Temperatur-Istwerten, den Temperatur-Abschaltgrenzwert (wenn nötig) korrigiert. Wenn die Erfassung der Temperatur-Istwerte im Takt von beispielsweise 1 ms erfolgt, wird der Temperatur-Abschaltgrenzwert alle 100 ms überprüft, gegebenenfalls korrigiert.
However, temporal conditions for the correction of the temperature cut-off limit value and / or an “automatic correction” are preferred:
The control device can cyclically check the course of the actual temperature values, for example, in order to correct the temperature cut-off limit value. The cycle can be a fixed cycle. For example, it is possible that the Control device after the detection of a certain number of actual temperature values, for example 100 actual temperature values, corrects the temperature cut-off limit value (if necessary). If the actual temperature values are recorded at intervals of, for example, 1 ms, the temperature cut-off limit value is checked every 100 ms and corrected if necessary.

Möglich ist es auch, dass die Steuerungseinrichtung eine Zykluszeit zur zyklischen Korrektur des Temperatur-Abschaltgrenzwerts abhängig von dem jeweiligen Ist-Gradientenwert und/oder abhängig vom jeweiligen Temperatur-Istwert ändert. Es ist beispielsweise möglich, dass die Steuerungseinrichtung bei einem relativ hohen Anstieg (oder Abfall) der Temperatur-Istwerte den Temperatur-Abschaltgrenzwert häufiger überprüft und gegebenenfalls korrigiert als bei kleineren Ist-Gradientenwerten. Es ist auch möglich, dass bei relativ hohen Temperaturen eine häufigere Korrektur des Temperatur-Abschaltgrenzwerts erfolgt als bei niedrigeren, für den Elektromotor unkritischeren Temperatur-Istwerten.It is also possible for the control device to change a cycle time for the cyclical correction of the temperature cut-off limit value depending on the respective actual gradient value and / or depending on the respective actual temperature value. It is possible, for example, for the control device to check and, if necessary, correct the temperature cut-off limit value more frequently than in the case of smaller actual gradient values in the event of a relatively high increase (or decrease) in the actual temperature values. It is also possible that the temperature cut-off limit value is corrected more frequently at relatively high temperatures than at lower actual temperature values which are less critical for the electric motor.

Weiterhin ist es zweckmäßig, wenn die Steuerungseinrichtung einen Filter zur Filterung und oder Glättung des Verlaufs der Temperatur-Istwerte oder des Ist-Gradientenwerts aufweist. Somit werden beispielsweise "Ausreißer" bei diesen Werten eliminiert.Furthermore, it is expedient if the control device has a filter for filtering and or smoothing the course of the actual temperature values or the actual gradient value. Thus, for example, "outliers" are eliminated from these values.

Der temperaturabhängige Sensor ist zweckmäßigerweise ein NTC-Widerstand, also ein so genannter Heißleiter. Jedenfalls ist es vorteilhaft, wenn der Sensor ein temperaturabhängiger Widerstand ist. Dies bedeutet, dass beispielsweise auch ein so genannter Kaltleiter (PTC-Widerstand) zum Einsatz kommen könnte.The temperature-dependent sensor is expediently an NTC resistor, that is to say a so-called thermistor. In any case, it is advantageous if the sensor is a temperature-dependent resistor. This means that, for example, a so-called PTC resistor could also be used.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung erläutert. Es zeigen:

Figur 1
eine Seitenansicht einer erfindungsgemäßen Hand-Werkzeugmaschine,
Figur 2a
einen Temperaturverlauf eines bei der Hand-Werkzeugmaschine nicht verwendeten Kaltleiters (PTC-Widerstands),
Figur 2b
einen Temperaturverlauf eines Sensors in Gestalt eines so genannten Heißleiters (NTC-Widerstands) der bei der Hand-Werkzeugmaschine gemäß Figur 1 eingebaut ist,
Figur 3
ein Schaltbild der Hand-Werkzeugmaschine gemäß Figur 1 mit einer erfindungsgemäßen Steuerungseinrichtung,
Figur 4
einen Verlauf eines von der Steuerungseinrichtung gemäß Figur 3 korrigierten Temperatur-Abschaltgrenzwerts, und
Figur 5
ein Ablaufdiagramm, gemäß dem die Steuerungseinrichtung gemäß Figur 3 beispielsweise arbeitet.
An exemplary embodiment of the invention is explained below with reference to the drawing. Show it:
Figure 1
a side view of a hand machine tool according to the invention,
Figure 2a
a temperature profile of a PTC resistor (PTC resistor) not used in the hand machine tool,
Figure 2b
a temperature profile of a sensor in the form of a so-called thermistor (NTC resistor) according to the hand machine tool Figure 1 is installed,
Figure 3
2 shows a circuit diagram of the hand machine tool according to FIG. 1 with a control device according to the invention,
Figure 4
a course of a by the control device Figure 3 corrected temperature cut-off limit, and
Figure 5
a flowchart according to which the control device according to Figure 3 for example works.

Eine Hand-Werkzeugmaschine 10 ist als ein Schraubgerät 50 ausgestaltet, beispielsweise als ein Akku-Schraubgerät oder netzbetriebenes Schraubgerät. Beispielsweise ist ein Netzstecker 11 zum Anschluss an ein nicht dargestelltes Stromnetz und oder ein elektrischer Energiespeicher 12, zum Beispiel ein Akkupack, bei der Hand-Werkzeugmaschine 10 vorhanden.A hand-held machine tool 10 is designed as a screwdriver 50, for example as a cordless screwdriver or mains-operated screwdriver. For example, a power plug 11 for connection to a power grid (not shown) and or an electrical energy store 12, for example a battery pack, is present in the hand machine tool 10.

Mit einem zum Beispiel über einen Drucktaster 13 betätigbaren Schalter 14 kann ein Elektromotor 15 ein- und ausgeschaltet werden. Ferner kann mit dem Schalter 14 die Drehzahl des Elektromotors 15 eingestellt werden. Der Elektromotor 15 treibt beispielsweise über ein nicht dargestelltes Getriebe oder direkt eine Werkzeugaufnahme 16 an, in die beispielsweise ein Schrauberbit 67 eingesteckt werden kann. Selbstverständlich können an der Werkzeugaufnahme 16 auch andere Werkzeuge eingebracht werden, zum Beispiel ein Bohrfutter 17.An electric motor 15 can be switched on and off with a switch 14 that can be actuated, for example, by a pushbutton 13. Furthermore, the speed of the electric motor 15 can be set with the switch 14. The electric motor 15 drives, for example, via a gear (not shown) or directly a tool holder 16 into which, for example, a screwdriver bit 67 can be inserted. Of course, other tools can also be introduced on the tool holder 16, for example a drill chuck 17.

Die an einem Abtrieb 60 vorgesehen Werkzeugaufnahme dreht z.B. um eine Drehachse 61.The tool holder provided on an output 60 rotates e.g. about an axis of rotation 61.

Der Drucktaster 13 befindet sich an einem Handgriffabschnitt 18 eines Gehäuses 19 der Hand-Werkzeugmaschine 10, der der Elektromotor 15 in einem Antriebsabschnitt 20 des Gehäuses 19.The pushbutton 13 is located on a handle section 18 of a housing 19 of the hand machine tool 10, which the electric motor 15 in a drive section 20 of the housing 19th

Der Elektromotor 15 weist einen Stator 21 sowie einen Rotor 22 auf, der am oder im Stator 21 drehbar gelagert ist. Eine Abtriebswelle 23 ist mit der Werkzeugaufnahme 16 bewegungsgekoppelt, zum Beispiel über ein Getriebe.The electric motor 15 has a stator 21 and a rotor 22 which is rotatably mounted on or in the stator 21. An output shaft 23 is motionally coupled to the tool holder 16, for example via a gear.

Am Stator 21 sind Erregerwicklungen 24 vorhanden, die von einer Bestromungseinrichtung 25 über Leitungen 26 mit elektrischem Strom versorgt (bestromt) werden. Die Bestromungseinrichtung 25 ist über Leitungen 33 mit einer Energiequelle (zum Beispiel dem Stromnetz) oder dem Energiespeicher 12 verbunden. Zweckmäßigerweise ist die Bestromungseinrichtung 25 mit einem am Elektromotor 15 angeordneten Drehwinkelsensor 27 verbunden. Die Bestromungseinrichtung 25 weist elektrische Komponenten 28 auf, zum Beispiel ein Kondensator, Leistungstransistoren, Logikelemente und dergleichen, die auf einer Platine 29 angeordnet sind.Exciter windings 24 are provided on the stator 21 and are supplied with electrical current by a current supply device 25 via lines 26. The current supply device 25 is connected via lines 33 to an energy source (for example the power grid) or the energy store 12. The energization device 25 is expediently connected to a rotation angle sensor 27 arranged on the electric motor 15. The energization device 25 has electrical components 28, for example a capacitor, power transistors, logic elements and the like, which are arranged on a circuit board 29.

Zur Steuerung der Hand-Werkzeugmaschine 10, insbesondere deren Elektromotor 15, ist eine Steuerungseinrichtung 30, vorgesehen. Die Steuerungseinrichtung 30 ist über Leitungen 31 mit der Bestromungseinrichtung 25 verbunden. Die Steuerungseinrichtung 30 ist zusammen mit dem Schalter 14 auf einer Platine 32 angeordnet, wobei dies nur exemplarisch zu verstehen ist, da beispielsweise die Steuerungseinrichtung 30 mit der Bestromungseinrichtung 25 auch eine Baueinheit bilden könnte.A control device 30 is provided for controlling the hand machine tool 10, in particular its electric motor 15. The control device 30 is connected to the energization device 25 via lines 31. The control device 30 is arranged together with the switch 14 on a circuit board 32, this being to be understood only as an example, since for example the control device 30 could also form a structural unit with the current supply device 25.

Der Elektromotor 15 ist beispielsweise ein elektronisch kommutierter Elektromotor, wobei das später noch beschriebene erfindungsgemäße Prinzip selbstverständlich auch bei anderen Motortypen ohne weiteres eingesetzt werden kann.The electric motor 15 is, for example, an electronically commutated electric motor, whereby the principle according to the invention, which will be described later, can of course also be used with other motor types without any problems.

Die Steuerungseinrichtung 30 überwacht bei der Ansteuerung des Elektromotors 15 auch dessen jeweilige Temperatur, um eine möglichst hohe, optimale Leistung des Elektromotor 15 abzurufen, so dass beispielsweise Schrauben mit großem Drehmoment eingeschraubt werden können, dennoch aber keine Überhitzung des Elektromotors 15 auftritt.When the electric motor 15 is actuated, the control device 30 also monitors its respective temperature in order to retrieve the highest possible optimal performance of the electric motor 15, so that, for example, screws with high torque can be screwed in, but the electric motor 15 does not overheat.

Im Bereich der Erregerwicklungen 24 ist beim Elektromotor 15 ein temperaturabhängiger Sensor 35 angeordnet. Bei dem Sensor 35 handelt es sich z.B. um einen temperaturabhängigen Widerstand 55, beispielsweise einen sogenannten Heißleiter, also um einen NTC-Widerstand, dessen Kennlinie in Figur 2b angedeutet ist. Beispielsweise hat der Sensor 35 bei einer Temperatur von -20 °C einen Widerstand im Bereich von 1 Kilo-Ohm. Im Bereich von 0°C beträgt der Widerstand noch etwa 400 Ohm und nimmt dann kontinuierlich weiter ab auf ca. 100 Ohm bezogen auf 40°C. Diese beispielhafte Temperatur-Kennlinie 36 des Sensors 35 ist also im Wesentlichen linear im Vergleich zu beispielsweise einer in Figur 2a dargestellten Kennlinie 34 eines Kaltleiters (PTC-Widerstand), die im Bereich von etwa - 30 °C bis ca. 95 °C niedrig ist und sich unterhalb eines Widerstandswerts von etwa 10 Kilo-Ohm befindet, dann aber sprunghaft bis zu einem Wert von etwa 80 Kilo-Ohm bei etwa 150 °C ansteigt.A temperature-dependent sensor 35 is arranged in the area of the excitation windings 24 in the electric motor 15. The sensor 35 is, for example, a temperature-dependent resistor 55, for example a so-called thermistor, that is to say an NTC resistor, the characteristic curve of which is shown in FIG Figure 2b is indicated. For example, the sensor 35 has a resistance in the range of 1 kilohm at a temperature of -20 ° C. In the range of 0 ° C the resistance is still around 400 ohms and then continues to decrease to around 100 ohms to 40 ° C. This exemplary temperature characteristic curve 36 of the sensor 35 is therefore essentially linear in comparison to, for example, one in Figure 2a shown characteristic curve 34 of a PTC thermistor (PTC resistor), which is low in the range of about - 30 ° C to about 95 ° C and is below a resistance value of about 10 kilo-ohms, but then abruptly to a value of about 80 kilo-ohms increases at about 150 ° C.

Der Sensor 35 ist über eine Leitung 37 mit der Steuerungseinrichtung 30 verbunden, über die der Sensor 35 Temperatur-Istwerte Tist an die Steuerungseinrichtung 30 übermittelt. Bei den Temperatur-Istwerten Tist handelt es sich beispielsweise um Widerstandswerte. Ein beispielhafter Verlauf der Widerstandswerte bzw. der Temperatur-Istwerte Tist ist in Figur 2b dargestellt.The sensor 35 is connected to the control device 30 via a line 37, via which the sensor 35 transmits actual temperature values Tact to the control device 30. The actual temperature values Tist are, for example, resistance values. An exemplary course of the resistance values or the actual temperature values T actual is shown in Figure 2b shown.

Abschaltmittel 38 der Steuerungseinrichtung 30 vergleichen einen jeweiligen Temperatur-Istwert Tist mit einem Temperatur-Abschaltgrenzwert TA. Wenn der Temperatur-Abschaltgrenzwert TA erreicht ist, schalten die Abschaltmittel 38 den Elektromotor 15 ab, d.h. die Erregerwicklungen 24 werden nicht mehr bestromt. Dadurch wird ein Überhitzen des Elektromotors 15 verhindert.Switch-off means 38 of the control device 30 compare a respective actual temperature value T actual with a temperature switch-off limit value TA. When the temperature cut-off limit value TA is reached, the cut-off means 38 switch off the electric motor 15, i.e. the excitation windings 24 are no longer energized. This prevents the electric motor 15 from overheating.

Der Funktionsablauf der Steuerungseinrichtung 30 verläuft also beispielsweise wie in Figur 5 dargestellt:
In einem Schritt S1 empfängt die Steuerungseinrichtung 30 einen jeweiligen Temperatur-Istwert Tist und trägt diesen in einem Schritt S2 beispielsweise in eine zweckmäßigerweise in einem Speicher 40 gespeicherten Tabelle 39 ein. In einem Schritt S3 vergleicht die Steuerungseinrichtung 30 den Temperatur-Istwert Tist mit einem im Speicher 40 abgelegten Temperatur-Abschaltgrenzwert TA. Wenn der Temperatur-Istwert Tist kleiner als der Temperatur-Abschaltgrenzwert TA ist, kehrt die Steuerungseinrichtung 30 wieder zum Ablaufschritt S1 zurück und wartet auf den nächsten Temperatur-Istwert Tist, ruft diesen ab, oder dergleichen.
The functional sequence of the control device 30 thus runs, for example, as in FIG Figure 5 shown:
In a step S1, the control device 30 receives a respective actual temperature value Tact and enters it in a step S2, for example in a table 39 which is expediently stored in a memory 40. In a step S3, the control device 30 compares the actual temperature value Tact with a temperature cut-off limit value stored in the memory 40 TA. If the actual temperature value Tist is smaller than the temperature switch-off limit value TA, the control device 30 returns to step S1 and waits for the next actual temperature value Tist, calls it up, or the like.

Wenn der Temperatur-Istwert Tist jedoch größer oder gleich dem Temperatur-Abschaltgrenzwert TA ist, verzweigt die Steuerungseinrichtung 30 zu einem Schritt S4 und schaltet den Elektromotor 15 für eine feste oder zweckmäßigerweise einstellbare Wartezeit TW ab. Nach Ablauf der Wartezeit TW ist der Elektromotor 15 etwas abgekühlt, so dass die Steuerungseinrichtung 30 mit dem Schritt S5 oder S1 weitermachen kann.However, if the actual temperature value Tact is greater than or equal to the temperature switch-off limit value TA, the control device 30 branches to a step S4 and switches off the electric motor 15 for a fixed or expediently adjustable waiting time TW. After the waiting time TW, the electric motor 15 has cooled somewhat, so that the control device 30 can continue with step S5 or S1.

Die vorgenannten Schritte führt die Steuerungseinrichtung 30 regelmäßig durch, so dass die Temperatur des Elektromotors 15 nicht über ein zulässiges Maß ansteigt. Allerdings ist der Sensor 35 nicht unmittelbar im Innenbereich oder Kernbereich des Elektromotors 15 angeordnet, sondern relativ wartungsfreundlich und/oder montagefreundlich beispielsweise im Bereich von Wickelköpfen der Erregerwicklungen 24. Dadurch ist es möglich, dass der Elektromotor 15 in seinem Kernbereich schon relativ heiß wird, bevor dies sich in höheren Temperaturen im Bereich des Sensors 35 niederschlägt. Insbesondere treten rasche Temperaturanstiege dann auf, wenn der Elektromotor 15 im kurzer Zeit stark belastet wird. Wenn der Elektromotor 15 beispielsweise zunächst kalt ist und bereits dann stark belastet wird, beispielsweise weil eine zu schraubende Schraube blockiert, die zweckmäßigerweise vorhandene Drehmomentabschaltung jedoch noch nicht reagiert, kann dies zu einem sehr hohen, schnellen Temperaturanstieg des Elektromotors 15 führen. Hier schafft die Erfindung wie folgt Abhilfe:
Nach jedem Zyklus oder nach einer Reihe von Zyklen, in deren Rahmen die Schritte S1 bis S3 oder S4 durchlaufen werden, beispielsweise 100-300 Zyklen, die jeweils jede Millisekunde durchlaufen werden (beispielsweise können bei den Schritten S3 oder S4 jeweils noch Wartezeiten vorgesehen sein oder es der jeweilige Zyklus von einem Prozessor 41 der Steuerungseinrichtung 30 nur jede Millisekunde aufgerufen werden), korrigiert die Steuerungseinrichtung 30 den Temperatur-Abschaltgrenzwert TA, falls erforderlich.
The control device 30 carries out the aforementioned steps regularly, so that the temperature of the electric motor 15 does not rise above an admissible level. However, the sensor 35 is not arranged directly in the inner area or core area of the electric motor 15, but is relatively easy to maintain and / or easy to install, for example in the area of winding heads of the excitation windings 24. This makes it possible for the electric motor 15 to become relatively hot in its core area before this is reflected in higher temperatures in the area of the sensor 35. In particular, rapid temperature increases occur when the electric motor 15 is heavily loaded in a short time. If, for example, the electric motor 15 is initially cold and is then heavily loaded, for example because a screw to be screwed blocks but the expedient torque cutoff does not yet react, this can lead to a very high, rapid temperature rise in the electric motor 15. The invention remedies this as follows:
After each cycle or after a series of cycles in the course of which steps S1 to S3 or S4 are carried out, for example 100-300 cycles which are each run through every millisecond (for example, waiting times can also be provided in steps S3 or S4 or If the respective cycle is only called up every millisecond by a processor 41 of the control device 30), the control device 30 corrects the temperature switch-off limit value TA, if necessary.

Die Steuerungseinrichtung 30 inkrementiert beispielsweise nach dem Schritt S3 oder S4 oder in einem Schritt S5 einen Zykluszähler Z. Wenn der Zykluszähler Z einen vorbestimmten Wert Zmax hat, beispielsweise 100 oder 300, wenn 100 oder 300 Zyklen S1 bis S3 bzw. S1 bis S4 durchlaufen sind, ruft die Steuerungseinrichtung nach dem entsprechenden Prüfschritt S6 nicht den Schritt S1, sondern die nachfolgend beschriebene Korrekturroutine auf.The control device 30 increments a cycle counter Z, for example after step S3 or S4 or in a step S5. If the cycle counter Z has a predetermined value Zmax, for example 100 or 300, if 100 or 300 cycles S1 to S3 or S1 to S4 have been completed , after the corresponding test step S6, the control device does not call step S1, but rather the correction routine described below.

In einem Schritt S7 ermittelt die Steuerungseinrichtung 30 einen Ist-Gradientenwert GRist, der die aktuelle Steigung der Temperatur-Istwerte repräsentiert. Beispielsweise ermittelt die Steuerungseinrichtung 30 den Ist-Gradientenwert GRist anhand der Tabelle 39. Beispielsweise ist es möglich, dass die Steuerungseinrichtung 30 den Ist-Gradientenwert GRist anhand des aktuellen Temperatur-Istwerts und des diesem vorhergehenden Temperatur-Istwerts ermittelt. Dann wäre es ausreichend, nur den jeweils letzten Temperatur-Istwert Tist zu speichern, d.h. dass die Tabelle 39 beispielsweise nur eine einzige Zeile hätte.In a step S7, the control device 30 determines an actual gradient value GRist, which represents the current gradient of the actual temperature values. For example, the control device 30 determines the actual gradient value GRist using the table 39. For example, it is possible for the control device 30 to determine the actual gradient value GRist using the current actual temperature value and the actual temperature value preceding it. It would then be sufficient to only save the last actual temperature value Tact, i.e. for example, that table 39 would have only one row.

Es ist aber auch möglich, dass die Steuerungseinrichtung 30 mehrere Temperatur-Istwerte Tist, die in der Tabelle 39 gespeichert sind, zur Bildung des Ist-Gradientenwerts GRist heranzieht, beispielsweise 2 oder mehrere. Dabei ist es vorteilhaft, wenn die Steuerungseinrichtung 30 beispielsweise eine Mittelwert-Bildung, eine Glättung oder eine Filterung der Temperatur-Istwerte durchführt, um "Ausreißer" der Temperatur-Istwerte zu eliminieren. Dann ist die Tabelle 39, die mehrere Temperatur-Istwerte enthält, vorteilhaft.However, it is also possible for the control device 30 to have a plurality of actual temperature values T actual, which are stored in the table 39, in order to form the actual gradient value GR actual uses, for example 2 or more. It is advantageous if the control device 30 carries out, for example, averaging, smoothing or filtering the actual temperature values in order to eliminate "outliers" of the actual temperature values. Then table 39, which contains several actual temperature values, is advantageous.

In einem Schritt S8 überprüft die Steuerungseinrichtung 30, ob der Ist-Gradientenwert GRist, der in Schritt S7 ermittelt worden ist, größer ist als ein Maximal-Gradientenwert GRmax, der zum Beispiel im Speicher 40 gespeichert ist.In a step S8, the control device 30 checks whether the actual gradient value GRist, which was determined in step S7, is greater than a maximum gradient value GRmax, which is stored in the memory 40, for example.

Wenn dies nicht der Fall ist, verzweigt die Steuerungseinrichtung 30 zum Schritt S9 und setzt den Zykluszähler Z wieder auf Null zurück. Vom Schritt S9 kehrt die Steuerungseinrichtung 30 dann wieder zum Schritt S1 zurück.If this is not the case, the control device 30 branches to step S9 and resets the cycle counter Z to zero. From step S9, the control device 30 then returns to step S1.

Wenn jedoch der Ist-Gradientenwert größer oder gleich dem Maximal-Gradientenwert ist, verzweigt die Steuerungseinrichtung 30 vom Schritt S8 zu einem Schritt S10, in dem sie den Temperatur-Abschaltgrenzwert TA korrigiert. Beispielsweise wendet die Steuerungseinrichtung 30 dabei die Formel (1) an.If, however, the actual gradient value is greater than or equal to the maximum gradient value, the control device 30 branches from step S8 to a step S10, in which it corrects the temperature switch-off limit value TA. For example, the control device 30 uses the formula (1).

Wenn zum Beispiel zu einem Zeitpunkt t1 der Einstieg der Ist-Temperatur besonders groß war, d.h. der Ist-Gradientenwert dT1/s hoch ist, korrigiert die Steuerungseinrichtung 30 den Temperatur-Abschaltgrenzwert TA relativ stark nach unten, so dass sichergestellt ist, dass die Abschaltmittel 38 den Elektromotor 15 rechtzeitig vor einer möglichen Überhitzung abschalten.For example, if the entry of the actual temperature was particularly large at a time t1, i.e. the actual gradient value dT1 / s is high, the control device 30 corrects the temperature switch-off limit value TA relatively strongly downward, so that it is ensured that the switch-off means 38 switch off the electric motor 15 in good time before a possible overheating.

Der weitere Temperaturanstieg ist jedoch etwas moderater, so dass die Steuerungseinrichtung 30 ab einem Zeitpunkt t2 einen kleineren Ist-Gradientenwert dT2/s ermittelt, der jedoch nach wie vor größer als der Maximal-Gradientenwert ist. Daher setzt die Steuerungseinrichtung 30 im jeweiligen Schritt S10 den Temperatur-Abschaltgrenzwert TA zwar herab, jedoch nur noch nur noch in einem geringeren Maß (Verlauf 70).However, the further temperature rise is somewhat more moderate, so that the control device 30 determines a smaller actual gradient value dT2 / s from a point in time t2, which, however, follows as before is greater than the maximum gradient value. Therefore, the control device 30 lowers the temperature switch-off limit value TA in the respective step S10, but only to a lesser extent (curve 70).

Es versteht sich, dass die Steuerungseinrichtung 30 den Temperatur-Abschaltgrenzwert TA nicht mehr herabsetzt, wenn der Ist-Gradientenwert nicht mehr größer als der Maximal-Gradientenwert ist. Ein solcher Verlauf 71 des Temperatur-Abschaltgrenzwerts TA ist in Figur 4 gestrichelt angedeutet.It goes without saying that the control device 30 no longer reduces the temperature switch-off limit value TA when the actual gradient value is no longer greater than the maximum gradient value. Such a profile 71 of the temperature switch-off limit value TA is shown in FIG Figure 4 indicated by dashed lines.

Weiterhin ist es auch möglich, dass die Steuerungseinrichtung 30 den Temperatur-Abschaltgrenzwert TA auch wieder anhebt, wenn der Ist-Gradientenwert beispielsweise deutlich kleiner als der Maximal-Gradientenwert ist, insbesondere für eine bestimmte Zeitdauer. Diese Zeitdauer ist vorzugsweise durch eine Parametrisierung festlegbar oder fest programmiert. Somit kann beispielsweise zum Zeitpunkt t1 eine relativ starke Korrektur des Temperatur-Abschaltgrenzwert TA erfolgen, um eine gewisse Sicherheit zu schaffen, dass der Elektromotor 15 rechtzeitig vor einer möglichen Überhitzung abgeschaltet wird. Wenn sich dann jedoch im weiteren Verlauf bzw. Betrieb des Elektromotors 15 herausstellt, dass der Ist-Gradientenwert GRist für eine längere Zeit unterhalb der kritischen Schwelle, dem Maximal-Gradientenwert GRmax bleibt, kann die Steuerungseinrichtung 30 dementsprechend den Temperatur-Abschaltgrenzwert TA wieder anheben (Verlauf 72).Furthermore, it is also possible for the control device 30 to also raise the temperature switch-off limit value TA again if the actual gradient value is, for example, significantly smaller than the maximum gradient value, in particular for a certain period of time. This period of time can preferably be determined or programmed by parameterization. Thus, for example, a relatively strong correction of the temperature switch-off limit value TA can take place at time t1 in order to provide a certain degree of certainty that the electric motor 15 is switched off in good time before possible overheating. If, however, in the further course or operation of the electric motor 15 it turns out that the actual gradient value GRist remains below the critical threshold, the maximum gradient value GRmax, for a longer time, the control device 30 can accordingly raise the temperature switch-off limit value TA again ( Course 72).

Die Steuerungseinrichtung 30 lernt also beim Betrieb des Elektromotors 15 dazu.The control device 30 also learns when the electric motor 15 is operating.

Vom Schritt S10 geht die Steuerungseinrichtung 30 wieder zum Schritt S1 zurück.From step S10, control device 30 returns to step S1.

Claims (9)

  1. Hand-operated power tool, in particular electric screwdriver (50), with a control unit (30) for controlling an electric motor (15) provided with a temperature-dependent sensor (35), in particular a resistor (55), on the basis of temperature actual values (Tist) determined by the temperature-dependent sensor (35), wherein the control unit (30) has switch-off means (38) to switch off the electric motor (15) with the aid of a comparison of the respective temperature actual value (Tist) with a temperature switch-off threshold (TA), characterised in that the control unit (30) is designed for correction of the temperature switch-off threshold (TA) depending on a progression of the temperature actual values (Tist), and that the control unit (30) is designed to vary the temperature switch-off threshold (TA) depending on an actual gradient value (GRist) representing the respective gradients of a progression curve of the temperature actual values (Tist).
  2. Hand-operated power tool according to claim 1, characterised in that the control unit (30) determines the temperature switch-off threshold (TA) with the aid of a comparison of the actual gradient value (GRist) with at least one maximum gradient value (GRmax) which represents a maximum permissible rise and/or fall of the temperature actual values (Tist).
  3. Hand-operated power tool according to claim 1 or 2, characterised in that the control unit (30) determines the temperature switch-off threshold (TA) with the aid of a comparison of the actual gradient value (GRist) with gradient values dependent on the temperature actual values (Tist).
  4. Hand-operated power tool according to any of the preceding claims, characterised in that the control unit (30) changes the temperature switch-off threshold (TA), in particular if the maximum gradient value or values (GRmax) is or are exceeded by the actual gradient value (GRist), by a correction value containing the gradient value, and/or calculates it with the aid of a formula containing the actual gradient value (GRist).
  5. Hand-operated power tool according to any of the preceding claims, characterised in that the control unit (30) makes cyclical checks of the progression of the temperature actual values (Tist) for correction of the temperature switch-off threshold (TA).
  6. Hand-operated power tool according to claim 5, characterised in that the control unit (30) varies a cycle time for cyclical correction of the temperature switch-off threshold (TA), depending on a or the particular actual gradient value (GRist) and/or depending on the respective temperature actual value (Tist).
  7. Hand-operated power tool according to any of the preceding claims, characterised in that the control unit (30) has a filter for filtering and/or smoothing the progression of the temperature actual values (Tist) and/or the actual gradient value (GRist).
  8. Hand-operated power tool according to any of the preceding claims, characterised in that the temperature-dependent sensor (35) forms or includes a resistor (55), in particular an NTC resistor (55).
  9. Control unit (30) for a hand-operated power tool (10) or a suction unit for controlling an electric motor (15) provided with a temperature-dependent sensor (35), in particular a resistor (55), on the basis of temperature actual values (Tist) determined by the temperature-dependent sensor (35), wherein the control unit (30) has switch-off means (38) to switch off the electric motor (15) with the aid of a comparison of the respective temperature actual value (Tist) with a temperature switch-off threshold (TA), characterised in that the control unit (30) is designed for correction of the temperature switch-off threshold (TA) depending on a progression of the temperature actual values (Tist), and that the control unit (30) is designed to vary the temperature switch-off threshold (TA) depending on an actual gradient value (GRist) representing the respective gradients of a progression curve of the temperature actual values (Tist).
EP11009876.1A 2011-02-03 2011-12-15 Hand tool with a temperature-dependent sensor Active EP2484494B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011010224A DE102011010224A1 (en) 2011-02-03 2011-02-03 Hand machine tool with a temperature-dependent sensor

Publications (3)

Publication Number Publication Date
EP2484494A2 EP2484494A2 (en) 2012-08-08
EP2484494A3 EP2484494A3 (en) 2018-02-14
EP2484494B1 true EP2484494B1 (en) 2020-01-01

Family

ID=45421785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11009876.1A Active EP2484494B1 (en) 2011-02-03 2011-12-15 Hand tool with a temperature-dependent sensor

Country Status (2)

Country Link
EP (1) EP2484494B1 (en)
DE (1) DE102011010224A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202021105334U1 (en) 2021-10-01 2023-01-04 Festool Gmbh Power tool and controller
DE102021211124A1 (en) 2021-10-01 2023-04-06 Festool Gmbh Power tool, method, computer program product, computer readable medium and control device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121272A1 (en) 2011-12-15 2013-06-20 Audi Ag Method and device for temperature-dependent control of an electric motor
DE102014112026A1 (en) * 2014-08-22 2016-02-25 Kriwan Industrie-Elektronik Gmbh Rotor-critical motor with thermal motor protection system
DE102016004525A1 (en) 2016-04-14 2017-10-19 Andreas Stihl Ag & Co. Kg Method and device for detecting the switching position of an operating switch for starting up an electric motor
EP4009125A1 (en) 2020-12-02 2022-06-08 Andreas Stihl AG & Co. KG Method for determining information about a condition of a drive motor system and/or a drive accumulator pack of a gardening, forestry and/or construction machine and system for determining information about the condition of a drive motor system and/or drive motor system construction processing equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945824B4 (en) * 1999-09-24 2014-04-24 Behr Gmbh & Co. Kg Control device for an electrically operated blower
DE10023174A1 (en) * 2000-05-11 2001-11-22 Bosch Gmbh Robert Electric hand tool, e.g. drill with speed control has automatic reset for adjuster, returning it to initial setting in accordance with an operational parameter
DE10214364A1 (en) * 2002-03-30 2003-10-16 Bosch Gmbh Robert Monitoring device, power tool, power supply device and associated operating method
DE102004043059A1 (en) * 2004-09-06 2006-03-09 Kriwan Industrie-Elektronik Gmbh Method and protection circuit for temperature monitoring of refrigerant-cooled electric motors
EP1780867B1 (en) * 2005-10-28 2016-11-30 Black & Decker Inc. Battery pack for cordless power tools
DE102008000704A1 (en) * 2007-04-24 2008-10-30 Robert Bosch Gmbh Power tool and device switch for a power tool
DE102008003786A1 (en) * 2008-01-10 2009-07-16 Robert Bosch Gmbh Method for detecting a thermal overload situation in an electric hand tool
JP4793425B2 (en) * 2008-11-10 2011-10-12 パナソニック電工株式会社 Rechargeable power tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202021105334U1 (en) 2021-10-01 2023-01-04 Festool Gmbh Power tool and controller
DE102021211124A1 (en) 2021-10-01 2023-04-06 Festool Gmbh Power tool, method, computer program product, computer readable medium and control device

Also Published As

Publication number Publication date
EP2484494A3 (en) 2018-02-14
DE102011010224A1 (en) 2012-08-09
EP2484494A2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
EP2484494B1 (en) Hand tool with a temperature-dependent sensor
EP2146822B1 (en) Power screwdriver
DE4412507B4 (en) Control for a cooling system
EP2476202B1 (en) Controllable direct current motor with a modified characteristic curve
WO2007020146A1 (en) Method and device for detecting an overload in hand tools
DE102008033866B4 (en) Control device for an electric drive motor and machine tool
DE102012018299A1 (en) Motor winding overheat protection device and motor control device
DE102006016441A1 (en) Electric machine tool operating method, involves driving electric machine tool by electric motor, where connection of battery unit is made to energize motor that is interrupted upon identification of blocking case
EP3068587A1 (en) Voltage control at low temperature to avoid undervoltage switch-offs of battery-operated hand-operated electric tools
EP3749076A1 (en) Method for monitoring a cooling effect of an air cooling device
DE102006032698A1 (en) Electrical heating system controlling method for use in e.g. dish washer, involves controlling electrical heating system based on actual resistance values and change of resistance values of electrical resistor heating unit
EP3414831B1 (en) Robust current limitation for an electric drive
DE112018006979T5 (en) Electric compressor
EP2672100B1 (en) Control of an electric intake air heater of an internal combustion engine
EP3364512B1 (en) Method and assembly for protecting an electrical motor against overheating
DE102018131337A1 (en) Method for operating a cooking device
DE29913196U1 (en) Electric motor with self-protection against overheating
DE102013109773A1 (en) Method and device for controlling and / or regulating a surgical drive unit
EP2059739B1 (en) Refrigerator with forced-ventilation evaporator
EP2875582B1 (en) Method for protecting an electric motor from overload
EP1634483B1 (en) Flexible electrical heating unit
EP1594025A2 (en) Method and heating device for controlling a temperature
EP2501938B1 (en) Rotary pump arrangement having a controller and/or regulator
WO2015139713A1 (en) Method for operating a motor
EP1875589B1 (en) Method and device for temperature limitation according to current and/or voltage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FESTOOL GROUP GMBH & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FESTOOL GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B25B 21/00 20060101AFI20180109BHEP

Ipc: B25F 5/00 20060101ALI20180109BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180713

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190919

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1219187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016356

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200101

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200501

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200402

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016356

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201215

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1219187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231114

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231114

Year of fee payment: 13

Ref country code: DE

Payment date: 20231116

Year of fee payment: 13