EP2483375A1 - Method for processing gas associated with oil - Google Patents

Method for processing gas associated with oil

Info

Publication number
EP2483375A1
EP2483375A1 EP10770504A EP10770504A EP2483375A1 EP 2483375 A1 EP2483375 A1 EP 2483375A1 EP 10770504 A EP10770504 A EP 10770504A EP 10770504 A EP10770504 A EP 10770504A EP 2483375 A1 EP2483375 A1 EP 2483375A1
Authority
EP
European Patent Office
Prior art keywords
gas
methane
degrees celsius
ethane
propane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10770504A
Other languages
German (de)
French (fr)
Inventor
Franz Pockstaller
Günther WALL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innio Jenbacher GmbH and Co OG
Original Assignee
GE Jenbacher GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Jenbacher GmbH and Co OHG filed Critical GE Jenbacher GmbH and Co OHG
Publication of EP2483375A1 publication Critical patent/EP2483375A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/12Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/061Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/065Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/60Integration in an installation using hydrocarbons, e.g. for fuel purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Definitions

  • the invention relates to a process for the production of fuel gas for gas engines from accruing in crude oil associated gas containing methane, ethane, propane, hydrocarbons having more than three carbon atoms and optionally propene, wherein a gaseous fraction and a liquid fraction obtained by partial condensation of the associated gas become.
  • an associated gas which consists almost entirely of hydrocarbons. It is a mixture of different gaseous hydrocarbons, mainly alkanes and alkenes. This associated gas is often referred to as "Associated Petroleum Gas” APG, formerly known as "flare gas”.
  • this gas is unsuitable for feeding into a gas pipeline because it has a complex mixture of different hydrocarbons compared to natural gas, which contains methane as the main component.
  • Customers who are optimized for certain gas compositions and gas qualities can not be optimally operated with such mixtures. For the energetic use of this associated gas was therefore of little importance for a long time. For many years it has been burned unused, from which the former term "flare gas" is derived, which is not only harmful to the environment but also a waste of valuable resources.
  • One way to use the associated gas is the combustion in gas burners operated boilers.
  • the thermal energy requirement at the mostly exposed petroleum extraction stations is usually not as great as accompanying gas is present.
  • the methane number is a measure of the knock resistance and too low a methane number means that the knock resistance of the associated gas is too low to convert it into heat and power with combined heat and power plants.
  • the gas engine In order to make the accompanying gas for Otto engine combustion usable in a gas engine, the gas engine usually has to be preceded by a gas treatment plant.
  • WO 2007/070198 A2 a process for the treatment of associated gas in oil production is presented.
  • the primary aim of this process is to produce a methane-rich gaseous phase and a low-methane liquid phase.
  • different pressure and temperature conditions are called, with primarily on very low temperatures and very high pressures is turned off, creating a gaseous phase containing almost exclusively methane and small traces of ethane.
  • the resulting liquid phase still has a high methane and ethane content, which can be deduced from the described process conditions and examples.
  • WO 2007/070198 A2 focuses on the recovery of a liquid phase with a high energy utility value.
  • the recovered gas phase is therefore suitable for the implementation in a gas engine in view of the number of methane, the complex process conditions make the operation of the gas engine but uneconomical.
  • the high quality recovered liquid phase must also be removed.
  • Object of the present invention is to improve the method of the type mentioned in such a way that the recovered products are better usable in the further utilization.
  • the gaseous fraction obtained can be burned in a gas engine operated by a gas engine in order to generate electricity and heat via a cogeneration plant.
  • the generation of the gaseous fraction should take place from the economic point of view as cost-effective as possible by exploiting the prevailing temperature and pressure conditions of accruing during crude oil associated associated gas.
  • This object is achieved in a method of the type mentioned in that the condensation process is carried out at such pressure and temperature conditions that the recovered liquid phase is substantially free of methane, ethane, propane and optionally propene, and that in the recovered gaseous Phase, essentially all of the methane, ethane, propane and optionally propene is included.
  • the basic idea of the invention is to convert hydrocarbons with a high methane number into the gas phase and condense hydrocarbons with a low methane number into the treatment of associated gas.
  • a gaseous mixture is provided which contains essentially all of the methane, ethane, propane and possibly propene.
  • the methane number in the gaseous phase and thus also the knock resistance of the gas can be increased.
  • the special finding lies in the fact that hydrocarbons with more than three carbon atoms reduce the knock resistance enormously, while hydrocarbons with up to three carbon atoms can be excellently reacted in a gas engine.
  • n-butane and isobutane are responsible for ensuring that Knocking strength is reduced, while a gas with the main components methane, ethane and propane (possibly also propene) has a methane number, which is ideal for the implementation in gas engines, especially with upstream compression equipment, outstanding.
  • the aim is therefore the separation of n-butane and isobutane.
  • the condensation process is carried out at a temperature of -5 degrees Celsius to -14 degrees Celsius.
  • a temperature range between -7 degrees Celsius and -14 degrees Celsius. Since the boiling point of isobutane is -11, 7 degrees Celsius, it is therefore favorable if the temperature is below -11, 7 degrees Celsius.
  • ambient temperatures prevail in the range of these values, so that expensive cooling can either be completely avoided or can be carried out in a correspondingly cost-effective manner, thereby enabling economically particularly favorable recovery of the gaseous fraction.
  • the condensation process takes place in several stages, wherein in one stage to a temperature of -5 to -8 degrees Celsius and in another stage to a temperature of -8 to -14 and -12 degrees Celsius is cooled. In this way, low boiling hydrocarbons in a first fraction and higher boiling hydrocarbons in a second liquid fraction can be collected. In this way, it is also possible to condense in a first step any water contained in the accompanying gas. Under the temperature conditions selected above, it is advantageous if certain pressure conditions are set at the same time, since temperature and pressure are responsible for the condensation behavior of gases. It is preferably provided that the pressure during the condensation process is between 1 bar and 16 bar, preferably 10 bar to 16 bar, more preferably 14 bar to 16 bar.
  • the associated gas produced during crude oil production flows at a pressure in the range of these values, so that the selection of this range makes it possible to obtain the gaseous fraction economically particularly favorably.
  • the cost of pressure equipment up to generating pressures of 16 bar is relatively low compared to pressure equipment of a higher class of pressure equipment.
  • the gaseous fraction has a methane number of at least 40, preferably at least 45.
  • the methane number as a measure of the knock resistance of the engine is important for the further purpose.
  • the recovered gaseous fraction should indeed be implemented in a gas engine, so that a methane number of at least 40, preferably at least 45 should be given.
  • the gaseous phase is substantially free of n-butane and iso-butane.
  • any water vapor present in the associated gas is removed.
  • absorbents and molecular sieves such as zeolites or known drying agents such as inorganic salts can be used, for example.
  • Table 1 Composition of an associated gas (example):
  • the mixture described in the table has a methane number of 32.7 and is not suitable for combustion in a Gasottomotor. After cooling to about -14 degrees Celsius, a gaseous mixture resulted, consisting almost exclusively of methane, ethane and propane and having a methane number of 45. In addition, the gas contains traces of carbon dioxide, as well as nitrogen. The remaining components are almost completely contained in the condensate.
  • the following tables 2 and 3 also show once again the difference between the subject invention and the prior art.
  • Table 3 Gas conditioning by cooling to -48 degrees Celsius
  • the advantage of the method is that the gas does not have to be cooled to very low temperatures as usual, but only to about -5 to -14 degrees Celsius, preferably -12 degrees Celsius, the gas especially suitable for internal combustion engines in terms of knock resistance close. As a result, a significant cost reduction is achieved.

Abstract

The invention relates to a method for producing combustible gas for gas engines from associated gas obtained during oil production, the associated gas containing methane, ethane, propane, hydrocarbons having more than three carbon atoms, and optionally propene, wherein a gaseous fraction and a liquid fraction are obtained by partially condensing the associated gas, wherein the condensation process is performed under such pressure and temperature conditions that the liquid phase is substantially free from methane, ethane, propane, and optionally propene, and that substantially the entire methane, ethane, propane, and optionally propene are contained in the gaseous phase.

Description

Verfahren zur Aufbereitung von Erdölbegleitgas  Process for the treatment of associated gas
Die Erfindung betrifft ein Verfahren zur Herstellung von Brenngas für Gasmotoren aus bei der Erdölförderung anfallendem Begleitgas, welches Methan, Ethan, Propan, Kohlenwasserstoffe mit mehr als drei Kohlenstoffatomen und gegebenenfalls Propen enthält, wobei eine gasförmige Fraktion und eine flüssige Fraktion durch teilweises Kondensieren des Begleitgases gewonnen werden. Bei der Erdölförderung aus Erdöllagerstätten mittels Erdölförderstationen fällt ein Begleitgas an, das fast ausschließlich aus Kohlenwasserstoffen besteht. Dabei handelt es sich um eine Mischung unterschiedlicher gasförmiger Kohlenwasserstoffe, hauptsächlich Alkane und Alkene. Dieses Begleitgas wird häufig als „Associated Petroleum Gas" APG, früher auch als„Flare Gas" bezeichnet. The invention relates to a process for the production of fuel gas for gas engines from accruing in crude oil associated gas containing methane, ethane, propane, hydrocarbons having more than three carbon atoms and optionally propene, wherein a gaseous fraction and a liquid fraction obtained by partial condensation of the associated gas become. In oil production from crude oil deposits by means of petroleum extraction stations is an associated gas, which consists almost entirely of hydrocarbons. It is a mixture of different gaseous hydrocarbons, mainly alkanes and alkenes. This associated gas is often referred to as "Associated Petroleum Gas" APG, formerly known as "flare gas".
Für die Einspeisung in eine Gaspipeline ist dieses Begleitgas allerdings ungeeignet, da es im Vergleich zu Erdgas, das als Hauptkomponente Methan enthält, eine komplexe Mischung aus unterschiedlichen Kohlenwasserstoffen aufweist. Auf bestimmte Gaszusammensetzungen und Gasqualitäten hin optimierte Abnehmer können mit solchen Mischungen nicht optimal betrieben werden. Für die energetische Nutzung war dieses Begleitgas daher lange Zeit von geringer Bedeutung. Über viele Jahre hindurch wurde dieses ungenutzt verbrannt, woraus sich auch der frühere Begriff „Flare Gas" ableitet. Diese Methode ist nicht nur umweltschädlich, sondern stellt auch eine Verschwendung wertvoller Ressourcen dar. However, this gas is unsuitable for feeding into a gas pipeline because it has a complex mixture of different hydrocarbons compared to natural gas, which contains methane as the main component. Customers who are optimized for certain gas compositions and gas qualities can not be optimally operated with such mixtures. For the energetic use of this associated gas was therefore of little importance for a long time. For many years it has been burned unused, from which the former term "flare gas" is derived, which is not only harmful to the environment but also a waste of valuable resources.
Eine Möglichkeit das Begleitgas zu nutzen liegt in der Verbrennung in mit Gasbrennern betriebenen Boilern. Der thermische Energiebedarf an den meist exponiert situierten Erdölförderstationen ist allerdings meist nicht so groß, wie Begleitgas vorhanden ist. Eine direkte Verwertung des Gases, indem es in ottomotorisch betriebenen Gasmotoren verbrannt wird, um in weiterer Folge Strom mittels eines Generators zu erzeugen, scheitert an der zu geringen Methanzahl des Begleitgases. Die Methanzahl ist ein Maß für die Klopffestigkeit und eine zu geringe Methanzahl bedeutet, dass die Klopffestigkeit des Begleitgases zu niedrig ist, um es mit Kraft-Wärme- Kopplungsanlagen in Strom und Wärme umzuwandeln. Um das Begleitgas für ottomotorische Verbrennung in einem Gasmotor nutzbar zu machen, muss dem Gasmotor in der Regel eine Gasaufbereitungsanlage vorgeschaltet werden. Hierfür sind unterschiedliche Technologien bekannt, unter anderem die Membrantechnologie oder das Abkühlen des Gases auf extrem niedrige Temperaturen. Dabei ist es üblich, beinahe Erdgasqualität zu erzeugen, d.h. auf einen Methangehalt von über 85% zu erhöhen. Abgeschiedene höherwertige Kohlenwasserstoffe können als Wertstoff durch Cracken oder durch direkte thermische Verwertung weiter verwendet werden. Die Membrantechnologie zur Aufbereitung von Begleitgasen stellt einen relativ hohen technischen und finanziellen Aufwand dar. Auch die Alternative, das Abkühlen des Gases mit dem Ziel, dass die höherwertigen Kohlenwasserstoffe auskondensieren, ist sehr aufwendig, werden sie doch sehr niedrige Temperaturen in der Größenordung benötigt. So wird zum Beispiel Propan (C3H8) bei -42 Grad Celsius, Ethan (C2H6) sogar erst bei -89 Grad Celsius flüssig. Derartige Temperaturen lassen sich zum Beispiel mit Turboexpandern erzeugen. Auch hierfür muss ein sehr hoher technischer und finanzieller Aufwand getrieben werden. One way to use the associated gas is the combustion in gas burners operated boilers. However, the thermal energy requirement at the mostly exposed petroleum extraction stations is usually not as great as accompanying gas is present. A direct utilization of the gas, by being burnt in Otto engine operated gas engines, in order to subsequently generate electricity by means of a generator, fails because of the insufficient methane number of the associated gas. The methane number is a measure of the knock resistance and too low a methane number means that the knock resistance of the associated gas is too low to convert it into heat and power with combined heat and power plants. In order to make the accompanying gas for Otto engine combustion usable in a gas engine, the gas engine usually has to be preceded by a gas treatment plant. For this purpose, different technologies are known, including membrane technology or the cooling of the gas to extremely low temperatures. It is customary to produce almost natural gas quality, ie to increase to a methane content of over 85%. Deposited higher-value hydrocarbons can continue to be used as valuable material by cracking or by direct thermal utilization. The membrane technology for the treatment of associated gases represents a relatively high technical and financial expense. Also, the alternative, the cooling of the gas with the aim that the higher-grade hydrocarbons condense, is very expensive, they are still very low temperatures in the order required. For example, propane (C 3 H 8 ) at -42 degrees Celsius, ethane (C 2 H 6 ) even at -89 degrees Celsius liquid. Such temperatures can be generated, for example, with turboexpanders. Again, a very high technical and financial effort must be driven.
In der WO 2007/070198 A2 wird ein Verfahren zur Aufbereitung von Begleitgas bei der Erdölförderung vorgestellt. Bei diesem Verfahren geht es primär darum, eine methanreiche gasförmige Phase und eine methanarme flüssige Phase herzustellen. Dabei werden unterschiedliche Druck- und Temperaturverhältnisse genannt, wobei primär auf sehr niedrige Temperaturen und sehr hohe Drücke abgestellt wird, sodass eine gasförmige Phase entsteht, die beinahe ausschließlich Methan und geringe Spuren an Ethan enthält. Die dabei entstehende flüssige Phase weist allerdings immer noch einen hohen Methan- und Ethangehalt auf, was sich aus den beschriebenen Verfahrensbedingungen und beispielen ableiten lässt. Dies ist aber auch verständlich, da in der WO 2007/070198 A2 die Gewinnung einer flüssigen Phase mit hohem Energienutzwert im Vordergrund steht. In WO 2007/070198 A2, a process for the treatment of associated gas in oil production is presented. The primary aim of this process is to produce a methane-rich gaseous phase and a low-methane liquid phase. Here, different pressure and temperature conditions are called, with primarily on very low temperatures and very high pressures is turned off, creating a gaseous phase containing almost exclusively methane and small traces of ethane. However, the resulting liquid phase still has a high methane and ethane content, which can be deduced from the described process conditions and examples. However, this is also understandable since WO 2007/070198 A2 focuses on the recovery of a liquid phase with a high energy utility value.
Die bisher angewendeten Verfahren, bei denen das Begleitgas auf so niedrige Temperaturen und Drücke abgekühlt wurde, dass beinahe reines gasförmiges Methan und ein Kondensat mit den übrigen Kohlenwasserstoffen entsteht, ist energetisch extrem aufwändig, da eine Abkühlung bis zum Siedepunkt von Ethan bzw. Ethen erforderlich ist, um eine Anreicherung von Methan in der Gasphase zu erzielen. Die WO 2007/070198 A2 erlaubt gewisse Rückstände an Kohlenwasserstoffverbindungen mit zwei Kohlenstoffatomen im Gas. Die Wahl der Verfahrensbedingungen sieht allerdings vor, dass die flüssige Phase einen sehr hohen Methangehalt aufweist, der natürlich auf Kosten der Qualität der gewonnen Gasphase geht. Die gewonnene Gasphase ist daher für die Umsetzung in einem Gasmotor angesichts der Methanzahl geeignet, die aufwendigen Verfahrensbedingungen machen den Betrieb des Gasmotors aber unwirtschaftlich. Die hochwertige gewonnene flüssige Phase muss außerdem noch abtransportiert werden. Aufgabe der vorliegenden Erfindung ist es, das Verfahren der eingangs genannten Art derart zu verbessern, dass die gewonnenen Produkte in der weiteren Verwertung besser einsetzbar sind. Insbesondere soll erzielt werden, dass die erhaltene gasförmige Fraktion in einem ottomotorisch betriebenen Gasmotor verbrannt werden kann, um über eine Kraft-Wärme-Kopplungsanlage Strom und Wärme zu erzeugen. Die Erzeugung der gasförmigen Fraktion soll dabei aus wirtschaftlicher Sicht möglichst kostengünstig durch Ausnutzung der vorherrschenden Temperatur- und Druckverhältnisse des bei der Erdölförderung anfallenden Begleitgases erfolgen. The previously used methods, in which the associated gas was cooled to such low temperatures and pressures that almost pure gaseous methane and a condensate formed with the other hydrocarbons, is energetically extremely complex, since a cooling to the boiling point of ethane or ethene is required in order to achieve an enrichment of methane in the gas phase. The WO 2007/070198 A2 allows certain residues of hydrocarbon compounds having two carbon atoms in the gas. The choice of process conditions, however, provides that the liquid phase has a very high methane content, which of course is at the expense of the quality of the recovered gas phase. The recovered gas phase is therefore suitable for the implementation in a gas engine in view of the number of methane, the complex process conditions make the operation of the gas engine but uneconomical. The high quality recovered liquid phase must also be removed. Object of the present invention is to improve the method of the type mentioned in such a way that the recovered products are better usable in the further utilization. In particular, it should be achieved that the gaseous fraction obtained can be burned in a gas engine operated by a gas engine in order to generate electricity and heat via a cogeneration plant. The generation of the gaseous fraction should take place from the economic point of view as cost-effective as possible by exploiting the prevailing temperature and pressure conditions of accruing during crude oil associated associated gas.
Diese Aufgabe wird bei einem Verfahren der eingangs genannten Gattung dadurch gelöst, dass der Kondensationsvorgang bei solchen Druck- und Temperaturverhältnissen ausgeführt wird, dass die gewonnene flüssige Phase im Wesentlichen frei von Methan, Ethan, Propan und gegebenenfalls Propen ist, und dass in der gewonnenen gasförmigen Phase im Wesentlichen das gesamte Methan, Ethan, Propan und gegebenenfalls Propen enthalten ist. This object is achieved in a method of the type mentioned in that the condensation process is carried out at such pressure and temperature conditions that the recovered liquid phase is substantially free of methane, ethane, propane and optionally propene, and that in the recovered gaseous Phase, essentially all of the methane, ethane, propane and optionally propene is included.
Die Grundidee der Erfindung besteht darin, der Aufbereitung von Begleitgas Kohlenwasserstoffe mit hoher Methanzahl in die Gasphase zu überführen und Kohlenwasserstoffe mit niedriger Methanzahl auszukondensieren. Dabei wird ein gasförmiges Gemisch bereit gestellt, das im Wesentlichen das gesamte Methan, Ethan, Propan und allenfalls Propen enthält. Auf diese Art kann die Methanzahl in der gasförmigen Phase und somit auch die Klopffestigkeit des Gases erhöht werden. Die besondere Erkenntnis liegt dabei darin, dass Kohlenwasserstoffe mit mehr als drei Kohlenstoffatomen die Klopffestigkeit enorm erniedrigen, während Kohlenwasserstoffe mit bis zu drei Kohlenstoffatomen hervorragend in einem Gasmotor umgesetzt werden können. Insbesondere n-Butan und Isobutan sind dafür verantwortlich, dass die Klopffestigkeit verringert wird, während ein Gas mit den Hauptbestandteilen Methan, Ethan und Propan (gegebenenfalls auch Propen) eine Methanzahl aufweist, die sich für die Umsetzung in Gasmotoren, insbesondere auch mit vorgeschalteten Verdichtungseinrichtungen, hervorragend eignet. Ziel ist also die Abtrennung von n- Butan und Isobutan. The basic idea of the invention is to convert hydrocarbons with a high methane number into the gas phase and condense hydrocarbons with a low methane number into the treatment of associated gas. In this case, a gaseous mixture is provided which contains essentially all of the methane, ethane, propane and possibly propene. In this way, the methane number in the gaseous phase and thus also the knock resistance of the gas can be increased. The special finding lies in the fact that hydrocarbons with more than three carbon atoms reduce the knock resistance enormously, while hydrocarbons with up to three carbon atoms can be excellently reacted in a gas engine. In particular, n-butane and isobutane are responsible for ensuring that Knocking strength is reduced, while a gas with the main components methane, ethane and propane (possibly also propene) has a methane number, which is ideal for the implementation in gas engines, especially with upstream compression equipment, outstanding. The aim is therefore the separation of n-butane and isobutane.
Im Gegensatz zum Stand der Technik kann also so eine besonders hochwertige gasförmige Phase gewonnen werden mit den wertvollen Bestandteilen Methan, Ethan und Propan, während die flüssige Phase die höherwertigen Kohlenwasserstoffe enthält, wobei sich diese Phase für eine allfällige Weiterverwertung immer noch hervorragend eignet. Unter diesem Gesichtspunkt stellt die flüssige Phase mit hohem Methangehalt, wie sie gemäß WO 2007/070198 A2 gewonnen wird energetisch betrachtet eine Verschwendung dar, da Gasmotoren deutlich sensibler sind, als Anlagen zur Verbrennung der gewonnenen flüssigen Phase. Auch das gemäß WO 2007/070198 A2 gewonnene Gas ist hinsichtlich der Energieausbeute nicht optimal, da ein hoher Teil des Methans verloren geht. In contrast to the prior art, so a particularly high-quality gaseous phase can be obtained with the valuable components methane, ethane and propane, while the liquid phase contains the higher-valued hydrocarbons, this phase is still ideal for any further use. From this point of view, the liquid phase with high methane content, as obtained according to WO 2007/070198 A2 is energetically a waste, since gas engines are much more sensitive than plants for the combustion of the recovered liquid phase. Also, the gas obtained according to WO 2007/070198 A2 is not optimal in terms of energy yield, since a large part of the methane is lost.
Bevorzugt ist im Rahmen der Erfindung vorgesehen, dass der Kondensationsvorgang bei einer Temperatur von -5 Grad Celsius bis -14 Grad Celsius durchgeführt wird. Besonders bevorzugt liegt der Temperaturbereich zwischen -7 Grad Celsius und -14 Grad Celsius. Da der Siedepunkt von Isobutan bei -11 ,7 Grad Celsius liegt, ist es also günstig wenn die Temperatur unterhalb von -11 ,7 Grad Celsius liegt. In vielen geographischen Einsatzgebieten des Verfahrens herrschen Umgebungstemperaturen im Bereich dieser Werte vor, sodass eine teure Kühlung dadurch entweder ganz vermieden werden kann oder entsprechend kostengünstig erfolgen kann, wodurch eine wirtschaftlich besonders günstige Gewinnung der gasförmigen Fraktion ermöglicht wird. It is preferably provided in the context of the invention that the condensation process is carried out at a temperature of -5 degrees Celsius to -14 degrees Celsius. Particularly preferred is the temperature range between -7 degrees Celsius and -14 degrees Celsius. Since the boiling point of isobutane is -11, 7 degrees Celsius, it is therefore favorable if the temperature is below -11, 7 degrees Celsius. In many geographic areas of application of the process, ambient temperatures prevail in the range of these values, so that expensive cooling can either be completely avoided or can be carried out in a correspondingly cost-effective manner, thereby enabling economically particularly favorable recovery of the gaseous fraction.
Bevorzugt ist vorgesehen, dass der Kondensationsvorgang mehrstufig erfolgt, wobei in einer Stufe auf eine Temperatur von -5 bis -8 Grad Celsius und in einer anderen Stufe auf eine Temperatur von -8 bis -14 bzw -12 Grad Celsius gekühlt wird. Auf diese Art können niedrig siedende Kohlenwasserstoffe in einer ersten Fraktion und höher siedende Kohlenwasserstoffe in einer zweiten flüssigen Fraktion gesammelt werden. Auf diese Art und Weise ist es aber auch möglich, in einem ersten Schritt allfälliges Wasser, das im Begleitgas enthalten ist, zu kondensieren. Unter den oben gewählten Temperaturbedingungen ist es vorteilhaft, wenn gleichzeitig bestimmte Druckbedingungen eingestellt sind, da Temperatur und Druck für das Kondensationsverhalten von Gasen verantwortlich sind. Bevorzugt ist dabei vorgesehen, dass der Druck beim Kondensationsvorgang zwischen 1 bar und 16 bar, vorzugsweise 10 bar bis 16 bar, besonders bevorzugt 14 bar bis 16 bar, beträgt. Das bei der Erdölförderung anfallende Begleitgas strömt in vielen Fällen mit einem Druck im Bereich dieser Werte aus, sodass durch die Wahl dieses Bereiches eine wirtschaftlich besonders günstige Gewinnung der gasförmigen Fraktion ermöglicht wird. Außerdem sind die Kosten von Druckgeräten bis zu erzeugenden Drücken von 16 bar relativ niedrig im Vergleich zu Druckgeräten einer höheren Druckgeräteklasse. It is preferably provided that the condensation process takes place in several stages, wherein in one stage to a temperature of -5 to -8 degrees Celsius and in another stage to a temperature of -8 to -14 and -12 degrees Celsius is cooled. In this way, low boiling hydrocarbons in a first fraction and higher boiling hydrocarbons in a second liquid fraction can be collected. In this way, it is also possible to condense in a first step any water contained in the accompanying gas. Under the temperature conditions selected above, it is advantageous if certain pressure conditions are set at the same time, since temperature and pressure are responsible for the condensation behavior of gases. It is preferably provided that the pressure during the condensation process is between 1 bar and 16 bar, preferably 10 bar to 16 bar, more preferably 14 bar to 16 bar. In many cases, the associated gas produced during crude oil production flows at a pressure in the range of these values, so that the selection of this range makes it possible to obtain the gaseous fraction economically particularly favorably. In addition, the cost of pressure equipment up to generating pressures of 16 bar is relatively low compared to pressure equipment of a higher class of pressure equipment.
Bevorzugt ist weiters vorgesehen, dass die gasförmige Fraktion eine Methanzahl von wenigstens 40, vorzugsweise wenigstens 45 aufweist. Die Methanzahl als Maß für die Klopffestigkeit des Motors ist für den weiteren Verwendungszweck wichtig. Im vorliegenden Fall soll die gewonnene gasförmige Fraktion ja in einem Gasmotor umgesetzt werden, sodass eine Methanzahl von wenigstens 40, vorzugsweise wenigstens 45 gegeben sein soll. Weiters kann in einer Ausführungsvariante vorgesehen sein, dass die gasförmige Phase im Wesentlichen frei von n-Butan und Iso-Butan ist. Preferably, it is further provided that the gaseous fraction has a methane number of at least 40, preferably at least 45. The methane number as a measure of the knock resistance of the engine is important for the further purpose. In the present case, the recovered gaseous fraction should indeed be implemented in a gas engine, so that a methane number of at least 40, preferably at least 45 should be given. Furthermore, it can be provided in one embodiment that the gaseous phase is substantially free of n-butane and iso-butane.
In einer weiteren Ausführungsvariante kann vorgesehen sein, dass gegebenenfalls im Begleitgas vorhandener Wasserdampf entfernt wird. Dabei können Absorptionsmittel und Molekularsiebe wie Zeolithe oder bekannte Trocknungsmittel wie anorganische Salze beispielsweise eingesetzt werden. In der folgenden Tabelle 1 sei an einem Beispiel eine Zusammensetzung eines möglichen Begleitgases einer Erdölförderstation beschrieben: Tabelle 1 : Zusammensetzung eines Begleitgases (Beispiel): In a further embodiment, it may be provided that any water vapor present in the associated gas is removed. In this case, absorbents and molecular sieves such as zeolites or known drying agents such as inorganic salts can be used, for example. An example of a composition of a possible associated gas of a petroleum-producing station is described in the following Table 1: Table 1: Composition of an associated gas (example):
Das in der Tabelle beschriebene Gemisch weist eine Methanzahl von 32,7 auf und ist nicht für die Verbrennung in einem Gasottomotor geeignet. Nach einer Abkühlung auf etwa -14 Grad Celsius ergab sich ein gasförmiges Gemisch, das fast ausschließlich aus Methan, Ethan und Propan bestand und eine Methanzahl von 45 aufweist. Zusätzlich enthält das Gas Spuren an Kohlendioxid, sowie Stickstoff. Die übrigen Bestandteile sind fast vollständig im Kondensat enthalten. Die nachfolgenden Tabellen 2 und 3 zeigen außerdem noch einmal den Unterschied zwischen der gegenständlichen Erfindung und dem Stand der Technik. The mixture described in the table has a methane number of 32.7 and is not suitable for combustion in a Gasottomotor. After cooling to about -14 degrees Celsius, a gaseous mixture resulted, consisting almost exclusively of methane, ethane and propane and having a methane number of 45. In addition, the gas contains traces of carbon dioxide, as well as nitrogen. The remaining components are almost completely contained in the condensate. The following tables 2 and 3 also show once again the difference between the subject invention and the prior art.
Tabelle 3: Gasaufbereitung durch Abkühlung auf -48 Grad Celsius Table 3: Gas conditioning by cooling to -48 degrees Celsius
Wie aus den Tabellen 2 und 3 ersichtlich, werden bei der gegenständlichen Erfindung (Tabelle 2) alle gasförmigen Bestandteile mit Siedepunkten unterhalb von Isobutan in der Gasphase und darüber liegendem Siedepunkt im Kondensat gesammelt. Beim Stand der Technik (Tabelle 3), wo eine Abkühlung auf -48 Grad Celsius vorgesehen ist, erfolgt eine Anreicherung in der Gasphase an ausschließlich jenen Verbindungen, die einen Siedepunkt von C02 und darunter aufweisen, im Kondensat erfolgt eine Aufkonzentrierung der übrigen Bestandteile. Gemäß WO 2007/070198 A2 wäre überhaupt nur eine Anreicherung an CH4 in der Gasphase zu beobachten, eine saubere Auftrennung erfolgt nicht. As can be seen from Tables 2 and 3, in the subject invention (Table 2), all gaseous components with boiling points below isobutane are collected in the gas phase and boiling point above in the condensate. In the prior art (Table 3), where a cooling to -48 degrees Celsius is provided, an enrichment in the gas phase takes place exclusively on those compounds which have a boiling point of C0 2 and below, in the condensate is a concentration of the other constituents. According to WO 2007/070198 A2, only an enrichment of CH 4 in the gas phase would ever be observed, a clean separation does not take place.
Berechnungen der Anmelderin ergaben, dass man bei typischen Begleitgas, das bei Ölförderstationen auftritt, nur wenige höherwertige Kohlenwasserstoffe abspalten muss, um moderne Verbrennungskraftmaschinen, die speziell für klopffreudige Gase konstruiert bzw. abgestimmt wurden, betreiben zu können. Hierzu zählen Heptan (C7H 6), Benzol (C6H6), n-Pentan und Isopentan (C5H12) sowie n-Butan und Isobutan (C4H10). All diese Komponenten kondensieren bereits bei -12 Grad Celsius, sodass es ausreicht, das Gas bis zu dieser Temperatur abzukühlen. Das lässt sich mit handelsüblichen Kältemaschinen wie zum Beispiel Kaltwassersätzen sowie mit am Markt verfügbaren Wärmetauschern und Kondensatschleusen mit geringem Aufwand kostengünstig bewerkstelligen. Calculations by the applicant showed that with typical associated gas, which occurs at oil production stations, it is necessary to split off only a few higher-order hydrocarbons in order to use modern internal combustion engines that are especially suitable for knock-in-the-mouth gases designed or tuned to operate. These include heptane (C 7 H 6 ), benzene (C 6 H 6 ), n-pentane and isopentane (C 5 H 12 ) and n-butane and isobutane (C 4 H 10 ). All these components already condense at -12 degrees Celsius, so it is sufficient to cool the gas up to this temperature. This can be done inexpensively with commercially available refrigerators such as chillers and available on the market heat exchangers and condensate locks with little effort.
Der Vorteil des Verfahrens besteht darin, dass das Gas nicht wie sonst üblich auf sehr niedere Temperaturen abgekühlt werden muss, sondern nur auf ca. -5 bis -14 Grad Celsius, vorzugsweise -12 Grad Celsius, um das Gas speziell für Verbrennungskraftmaschinen hinsichtlich Klopffestigkeit tauglich zu machen. Dadurch wird eine deutliche Kostenreduktion erreicht. The advantage of the method is that the gas does not have to be cooled to very low temperatures as usual, but only to about -5 to -14 degrees Celsius, preferably -12 degrees Celsius, the gas especially suitable for internal combustion engines in terms of knock resistance close. As a result, a significant cost reduction is achieved.

Claims

Patentansprüche 1. Verfahren zur Herstellung von Brenngas für Gasmotoren aus bei der Erdölförderung anfallendem Begleitgas, welches Methan, Ethan, Propan, Kohlenwasserstoffe mit mehr als drei Kohlenstoffatomen und gegebenenfalls Propen enthält, wobei eine gasförmige Fraktion und eine flüssige Fraktion durch teilweises Kondensieren des Begleitgases gewonnen werden, dadurch gekennzeichnet, dass der Kondensationsvorgang bei solchen Druck- und Temperaturverhältnissen ausgeführt wird, dass die flüssige Phase im Wesentlichen frei von Methan, Ethan, Propan und gegebenenfalls Propen ist, und dass in der gasförmigen Phase im Wesentlichen das gesamte Methan, Ethan, Propan und gegebenenfalls Propen enthalten ist. 1. A process for the production of fuel gas for gas engines from accruing in crude oil associated gas containing methane, ethane, propane, hydrocarbons having more than three carbon atoms and optionally propene, wherein a gaseous fraction and a liquid fraction are obtained by partially condensing the associated gas , characterized in that the condensation process is carried out at such pressure and temperature conditions that the liquid phase is substantially free of methane, ethane, propane and optionally propene, and that in the gaseous phase substantially all of the methane, ethane, propane and optionally propene is included.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Kondensationsvorgang bei einer Temperatur von -5 Grad Celsius bis -14 Grad Celsius durchgeführt wird. 2. The method according to claim 1, characterized in that the condensation process is carried out at a temperature of -5 degrees Celsius to -14 degrees Celsius.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Kondensationsvorgang bei einer Temperatur von -7 Grad Celsius bis -12 Grad Celsius durchgeführt wird. 3. The method according to claim 2, characterized in that the condensation process is carried out at a temperature of -7 degrees Celsius to -12 degrees Celsius.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Kondensationsvorgang mehrstufig erfolgt, wobei in einer Stufe auf eine Temperatur von -5 bis -8 Grad Celsius und in einer weiteren Stufe auf eine Temperatur von -8 bis -12 Grad Celsius gekühlt wird. 4. The method according to any one of claims 1 to 3, characterized in that the condensation process is carried out in several stages, wherein in one stage to a temperature of -5 to -8 degrees Celsius and in a further stage to a temperature of -8 to -12 degrees Celsius is cooled.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Druck beim Kondensationsvorgang zwischen 1 bar und 16 bar, vorzugsweise 10 bar bis 16 bar, besonders bevorzugt 14 bar bis 16 bar, beträgt. 5. The method according to any one of claims 1 to 4, characterized in that the pressure during the condensation process between 1 bar and 16 bar, preferably 10 bar to 16 bar, more preferably 14 bar to 16 bar.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die gasförmige Fraktion eine Methanzahl von wenigstens 40, vorzugsweise wenigstens 45, aufweist. 6. The method according to any one of claims 1 to 5, characterized in that the gaseous fraction has a methane number of at least 40, preferably at least 45.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die gasförmige Phase im Wesentlichen frei von n-Butan und Isobutan ist. 7. The method according to any one of claims 1 to 6, characterized in that the gaseous phase is substantially free of n-butane and isobutane.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass im Begleitgas gegebenenfalls vorhandener Wasserdampf entfernt wird. 8. The method according to any one of claims 1 to 7, characterized in that any accompanying water vapor is removed in the associated gas.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass Wasserdampf durch Kondensation, Absorption oder Kombinationen daraus entfernt wird. 9. The method according to claim 8, characterized in that water vapor is removed by condensation, absorption or combinations thereof.
EP10770504A 2009-10-02 2010-10-01 Method for processing gas associated with oil Withdrawn EP2483375A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1557/2009A AT508831B1 (en) 2009-10-02 2009-10-02 METHOD FOR THE TREATMENT OF PETROLEUM GAS
PCT/AT2010/000362 WO2011038437A1 (en) 2009-10-02 2010-10-01 Method for processing gas associated with oil

Publications (1)

Publication Number Publication Date
EP2483375A1 true EP2483375A1 (en) 2012-08-08

Family

ID=43446560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10770504A Withdrawn EP2483375A1 (en) 2009-10-02 2010-10-01 Method for processing gas associated with oil

Country Status (5)

Country Link
US (1) US20120167621A1 (en)
EP (1) EP2483375A1 (en)
AT (1) AT508831B1 (en)
RU (1) RU2530898C2 (en)
WO (1) WO2011038437A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1944802U (en) * 1966-06-04 1966-08-25 Burger Eisenwerke Ag THROTTLE TAP ON GAS HEATERS.
GB1275260A (en) * 1968-09-30 1972-05-24 Exxon Research Engineering Co Improvements in the purification of natural gas
US3754405A (en) * 1969-02-10 1973-08-28 Black Sivalls & Bryson Inc Method of controlling the hydrocarbon dew point of a gas stream
CA1107190A (en) * 1979-12-06 1981-08-18 Donald D. Livingstone Hydrocarbon recovery
DE3445995A1 (en) * 1984-12-17 1986-06-19 Linde Ag METHOD FOR OBTAINING C (DOWN ARROW) 2 (DOWN ARROW) (DOWN ARROW) + (DOWN ARROW) - OR FROM C (DOWN ARROW) 3 (DOWN ARROW) (DOWN ARROW) + (DOWN ARROW) CARBON
DE3626560A1 (en) * 1986-08-06 1988-02-11 Linde Ag Process for the removal of C4-hydrocarbons from a gas mixture
GB2229519A (en) * 1989-03-15 1990-09-26 Foster Wheeler Energy Ltd Treatment process for gas stream
FR2688224A1 (en) * 1992-02-24 1993-09-10 Shell Int Research Process for the treatment of acidic liquefied petroleum gases
TW366409B (en) * 1997-07-01 1999-08-11 Exxon Production Research Co Process for liquefying a natural gas stream containing at least one freezable component
TW573112B (en) * 2001-01-31 2004-01-21 Exxonmobil Upstream Res Co Process of manufacturing pressurized liquid natural gas containing heavy hydrocarbons
GB2413824A (en) * 2004-05-07 2005-11-09 Statoil Asa Operating diesel-cycle i.c. engines on gaseous fuels with ignition-improvers
PE20060989A1 (en) * 2004-12-08 2006-11-06 Shell Int Research METHOD AND DEVICE FOR PRODUCING A LIQUID NATURAL GAS CURRENT
FR2883769B1 (en) * 2005-03-31 2007-06-08 Inst Francais Du Petrole PROCESS FOR PRETREATING AN ACIDIC GAS
US20070130991A1 (en) 2005-12-14 2007-06-14 Chevron U.S.A. Inc. Liquefaction of associated gas at moderate conditions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011038437A1 *

Also Published As

Publication number Publication date
US20120167621A1 (en) 2012-07-05
WO2011038437A1 (en) 2011-04-07
AT508831B1 (en) 2012-09-15
RU2012117788A (en) 2013-11-10
AT508831A1 (en) 2011-04-15
RU2530898C2 (en) 2014-10-20

Similar Documents

Publication Publication Date Title
EP3521267B1 (en) Method for the production of dimethyl ether and carbon dioxide
DE102012020354A1 (en) Process for separating heavy hydrocarbons from a hydrocarbon-rich fraction
EP3339277A1 (en) Method and assembly for manufacturing an olefin
DE2713359A1 (en) PROCESS FOR THE FRACTIONATION OF CRACK GASES WITH THE HELP OF REFRIGERATION TECHNOLOGY
DE1501714A1 (en) Process for the partial liquefaction of a gas mixture
EP3312261B1 (en) Method for separating a hydrocarbon mixture
WO2013020675A1 (en) Separation sequence for hydrocarbons from a gentle thermal cleavage
DE69815331T2 (en) METHOD AND SYSTEM FOR GENERATING POWER FROM RESIDUAL HEATING OIL
WO2011038437A1 (en) Method for processing gas associated with oil
DE112011101330B4 (en) Method and apparatus for the liquefaction and distillation of volatiles of carbonaceous solids
DE102015215939B4 (en) Method for generating a fuel composition and for operating an internal combustion engine
WO2013020676A1 (en) Method for cracking hydrocarbons
WO2019008151A1 (en) Method and system for separating a starting mixture
WO2020200516A1 (en) Method and system for condensing a gas
EP2926882A1 (en) Method and assembly for separating a gas mixture and method for retrofitting a separating system
DE102005024106A1 (en) Multistage cryogenic separation of material stream comprises dehydrogenating material stream with hydrocarbon-rich liquid, extracting liquid fraction, mixing hydrocarbon-rich gas and producing flash gas and liquid product
DE382090C (en) Process for the production of low-boiling or gaseous substances
EP4043538A1 (en) Method and system for producing ethylene and / or other olefins by steam cracking
EP3102655A1 (en) Olefin production process
WO2016131837A1 (en) Method for producing hydrocarbons
DE102007039432A1 (en) Hydrogen separation from fuel gas
WO2017093459A1 (en) Process for producing a hydrocarbon product
WO2017071792A1 (en) Method and plant for producing hydrogen and further reaction products by converting hydrocarbons
AT526333A4 (en) Process for producing fuel from hydrocarbon-containing starting materials
DE102016209155A1 (en) Low-emission or emission-free process for the production of olefins

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140704

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170503