EP2466686A1 - Antenne d'émission et de réception de rayonnement GHz et/ou THz ayant une caractéristique de fréquence optimisée - Google Patents

Antenne d'émission et de réception de rayonnement GHz et/ou THz ayant une caractéristique de fréquence optimisée Download PDF

Info

Publication number
EP2466686A1
EP2466686A1 EP10195245A EP10195245A EP2466686A1 EP 2466686 A1 EP2466686 A1 EP 2466686A1 EP 10195245 A EP10195245 A EP 10195245A EP 10195245 A EP10195245 A EP 10195245A EP 2466686 A1 EP2466686 A1 EP 2466686A1
Authority
EP
European Patent Office
Prior art keywords
antenna
resonators
resonator
antenna according
photoconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10195245A
Other languages
German (de)
English (en)
Inventor
Maik Scheller
Christian Jansen
Martin Prof. Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philipps Universitaet Marburg
Original Assignee
Philipps Universitaet Marburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philipps Universitaet Marburg filed Critical Philipps Universitaet Marburg
Priority to EP10195245A priority Critical patent/EP2466686A1/fr
Priority to PCT/EP2011/072276 priority patent/WO2012080105A1/fr
Publication of EP2466686A1 publication Critical patent/EP2466686A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/002Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices being reconfigurable or tunable, e.g. using switches or diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element

Definitions

  • the present invention relates to a photoconductive antenna for emitting or receiving terahertz radiation which has an increased antenna gain for one or more frequency bands.
  • This increased antenna gain is realized according to the invention by resonators applied in the vicinity of the photoconductive excitation site.
  • THz systems based on photoconductive antennas are used, for example, in non-destructive testing technology and safety technology.
  • antennas designed according to the invention can decisively improve the performance of THz systems, inter alia with regard to the signal-to-noise ratio, and thus open up new fields of application for the THz technology in which the dynamic range of existing systems is insufficient.
  • the invention relates to a photoconductive antenna for emitting or receiving terahertz radiation.
  • Terahertz radiation is electromagnetic radiation with a frequency of about 0.1 THz to about 100 THz. Applications for terahertz
  • the antenna can be used as a photoconductive switch for generation and detection of terahertz pulses.
  • a short laser pulse whose duration is in the range of femtoseconds to picoseconds, the photoconductivity, so that terahertz radiation can be emitted or detected for a short time (see WO 2008/054 846 A2 ).
  • a photoconductive telescope antenna consists of a high-resistance, semiconductive layer which has the shortest possible carrier recombination time in the femtosecond to picosecond range and the highest possible charge carrier mobility. On this layer, an antenna structure of an electrically conductive material is applied.
  • this antenna includes, for example, spiral antennas ( KR 10 2005 0015364 A . JP2001060821A ; JP2008028872A . JP 58123203 A . CA 2 292 635 . CA 2 575 130 ), Bowtie antennas ( US 2006/0152412 A1 ) and dipole antennas ( US 5 729 017 A . WO 02/060017 A1 ).
  • These structures have a photoconductive excitation site in the form of a gap in the metallization. Its conductivity is determined by the incident laser radiation, since the photon energy of the laser is greater than the band gap of the semiconductive layer and thus free charge carriers are generated during illumination (cf. US 5 729 017 A ; WO 03/047036 A1 ).
  • electrical contacts and leads are deposited on the semiconductive layer.
  • the photoconductive telether antenna is used as an emitter, a bias voltage is applied to the antenna. If charge carriers are now generated by the laser radiation incident in the photoconductive gap, they experience an acceleration in the externally impressed electric field, which causes the emission of the terahertz radiation.
  • the photoconductive telescope antenna is used as a detector, instead of a voltage source, a highly sensitive current amplifier is connected to the antenna.
  • the charge carriers generated by the laser beam are accelerated by the incident terahertz field.
  • the measurable photocurrent is thus a measure of the incident terahertz field strength.
  • terahertz antennas according to the prior art is in particular the inefficient conversion of laser to terahertz power. This results from the spectrally relatively flat but very broadband antenna gain.
  • the antennas may emit THz waves in a frequency range from 0.1 THz up to a few 10 THz, without the antenna gain in individual frequency ranges experiencing a noticeable increase caused by the metallization structure.
  • terahertz antennas Another disadvantage of terahertz antennas according to the prior art are the static, non-modulatable nature of the antenna gain and the static, non-modulatable spatial radiation profile.
  • the object of the present invention is to overcome the disadvantages of the prior art.
  • such an antenna which in addition to the features of a photoconductive terahertz antenna according to the prior art additionally has at least one arranged resonator in the vicinity of the photoconductive excitation locus, is suitable for improving the frequency-selective antenna gain and / or the emission characteristic.
  • at least one of the resonators measured from the excitation location, in a radius which corresponds at most twice the resonance wavelength, to be arranged away.
  • the resonators consist of conductive regions (resistance layer below 1 k ⁇ / cm), which can be excited to an electrical oscillation at one or more resonant frequencies.
  • the lateral dimension of the essentially planar resonators is at least 1/50, but not more than one, preferably 1/2 and more preferably one third to one fourth of the resonance wavelength.
  • the dimensions of the at least one resonator and the spatial proximity to the radiation location result.
  • resonator types also in combination, can be used.
  • periodic arrangements of resonators also known as frequency-selective surfaces or electronic-bandgap structures
  • Embodiments of the resonator elements include, among others symmetrical and asymmetrical single and double gap ring as well as rectangular resonators.
  • the conductivity of the regions forming the resonator structures is preferably achieved by metallization (for example with gold, titanium, copper, platinum, silver, aluminum, nickel, iron or a combination of these elements). These can be applied wet, electrochemically, by evaporation (CVD, PVD, MOCVD), by doping or by printing processes (screen printing, gravure printing, inkjet printing, laser printing).
  • metallization for example with gold, titanium, copper, platinum, silver, aluminum, nickel, iron or a combination of these elements.
  • the resonators are in the same spatial plane as the leads, so that no additional effort in the structuring of the antenna is formed.
  • switchable, electrically conductive resonators can be realized directly in the semiconductor.
  • the circuit is performed electrically and or photoelectrically.
  • gallium arsenide, indium gallium arsenide, indium aluminum arsenide, indium antimonide, or sapphire grown silicon films are preferably used singly or in combination.
  • Other III / V or II / VI contributors may also be used insofar as they have short carrier lifetimes and have bandgap energy less than the photon energy of the laser used.
  • the semiconducting materials are preferably grown at low temperature (narrow. low temperature green) or ion implanted to achieve a short carrier lifetime.
  • the antenna according to the invention is suitable for transmitting and receiving terahertz radiation.
  • An advantage of emitting terahertz radiation is that the transmission power of the antenna in one or more narrow frequency band / bands (bandwidth of 1 to 100 GHz) is significantly enhanced by the use of the resonators. As a result, the signal-to-noise ratio can be increased in these spectral ranges. If an antenna according to the invention is used to receive terahertz radiation, then it has an increased reception sensitivity in one or more narrow frequency bands (bandwidth from 1 to 100 GHz), which likewise achieves an improvement in the signal-to-noise ratio.
  • the antenna is excited by continuous wave laser radiation, it is particularly advantageous if the resonance frequency of the resonators is close to the difference frequency of the exciting laser modes, since then a particularly efficient conversion of laser to terahertz power is possible.
  • the resonant structure attenuates the antenna gain in those areas in which unwanted frequency components would arise which make the signal detection and / or evaluation more difficult.
  • the resonant structures include those which can be modulated in their quality (their spectral resonance width), for example via a Changing the impedance between two sub-segments of the resonator or a change in the impedance between adjacent resonator elements, and thus allow a modulation of the resulting antenna gain of the photoconductive antenna.
  • terahertz antenna which can tune the main emission and reception direction of the antenna by a spatial angle.
  • This tunability can be achieved, for example, by influencing the impedance between individual resonator segments or between a plurality of resonators.
  • the terahertz antenna according to the invention with tunable resonant frequency.
  • a tuning of the resonance frequency is possible, inter alia, via electrical or optical switching areas.
  • the resonators may consist of a plurality of ring segments, wherein two rings can be short-circuited to each other over a switching range, thus changing the To allow resonance condition.
  • the effective length of the resonator would be increased so that the resonant frequency would be shifted to lower frequencies.
  • switchable resonator elements it is thus possible to set different resonance frequencies.
  • liquid crystals (English Liquid Crystals) can be applied to the resonators. These change their dielectric properties when an electric field is applied. This causes a change in the resonant condition of the resonators and thus a shift in the resonant frequency.
  • structures according to the invention can be used as sensors which allow conclusions to be drawn about the sample material by changing the resonance properties when a sample is applied.
  • the resonance frequency and the resonance width vary characteristically according to the material properties of the sample depending on the sample material.
  • the feed lines of the antenna structure further comprise matching elements which minimize the parasitic resonances due to back reflections from the electrical contacts.
  • the matching elements can additionally be provided with loss elements, such as absorbing coatings and / or low-resistance metal structures, in order to further minimize the back reflections.
  • An arrangement of components (transmitter and receiver) is constructed which emits and detects THz radiation.
  • a photoconductive terahertz antenna This consists of a semiconductive substrate (eg gallium arsenide, silicon on sapphire or indium gallium arsenide) 101, on which one or more electrical leads 102 are applied. To operate the antenna, laser radiation 104 is directed to a photoconductive region 106 .
  • the antenna structures according to the invention additionally include one or more conductive resonators 105 (see Fig. 2 ).
  • the antenna can be switched as a receiver or as a transmitter. By applying a voltage 109 to the electrical leads 102, the antenna emits terahertz radiation and operates as a transmitter. Alternatively, a meter 103 may be connected to the leads 102 to detect terahertz waves.
  • the partial areas of the conductive resonators 105 can be connected via switching area 107.
  • the conductivity of the switching ranges can be modulated by applying a voltage or a current to them.
  • the switching regions 107 may be realized in the form of photoconductive regions whose conductivity can be switched optically (e.g., by a laser). By modulating the switching ranges, the spectral characteristics of the resonators can be changed and thus the spectral antenna gain or the radiation characteristic of the antenna can be influenced.
  • gap-ring resonators FIGS. 2 to 5
  • a periodic arrangement of rectangular conductors FIG. 6
  • a periodic arrangement of gap-ring resonators FIG. 7
  • the resonators can have both angular and round shapes and either laterally to the electrical leads ( FIGS. 2 to 4 ) or as part of these ( FIG. 5 ).
  • FIG. 9 shows the spectral intensity of a measured in a THz time domain spectrometer signal, on the one hand, a photoconductive antenna resonant structure according to the invention and, secondly, a reference antenna according to the prior art was used as an emitter.
  • FIG. 10 schematically shows the spectral intensity of the signal of a THz time domain spectrometer, in which a resonant structure photoconductive antenna according to the invention is used as a sensor.
  • a sample 108 By applying a sample 108 , the resonant frequency of the resonator structure can be changed. Based on the waveform can be deduced on the dielectric properties of the sample material.

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
EP10195245A 2010-12-15 2010-12-15 Antenne d'émission et de réception de rayonnement GHz et/ou THz ayant une caractéristique de fréquence optimisée Withdrawn EP2466686A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10195245A EP2466686A1 (fr) 2010-12-15 2010-12-15 Antenne d'émission et de réception de rayonnement GHz et/ou THz ayant une caractéristique de fréquence optimisée
PCT/EP2011/072276 WO2012080105A1 (fr) 2010-12-15 2011-12-09 Antenne servant à émettre et à recevoir un rayonnement en ghz et/ou thz à caractéristique de fréquence optimisée

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10195245A EP2466686A1 (fr) 2010-12-15 2010-12-15 Antenne d'émission et de réception de rayonnement GHz et/ou THz ayant une caractéristique de fréquence optimisée

Publications (1)

Publication Number Publication Date
EP2466686A1 true EP2466686A1 (fr) 2012-06-20

Family

ID=43982340

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10195245A Withdrawn EP2466686A1 (fr) 2010-12-15 2010-12-15 Antenne d'émission et de réception de rayonnement GHz et/ou THz ayant une caractéristique de fréquence optimisée

Country Status (2)

Country Link
EP (1) EP2466686A1 (fr)
WO (1) WO2012080105A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150285687A1 (en) * 2012-07-03 2015-10-08 Massachusetts Institute Of Technology Detection of electromagnetic radiation using nonlinear materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728428A (zh) * 2018-12-29 2019-05-07 中国科学院半导体研究所 基于亚波长结构调制太赫兹辐射的光电导天线及制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123203A (ja) 1982-01-19 1983-07-22 Tokyo Keiki Co Ltd 二条スパイラルアンテナ
US5729017A (en) 1996-05-31 1998-03-17 Lucent Technologies Inc. Terahertz generators and detectors
US5789750A (en) 1996-09-09 1998-08-04 Lucent Technologies Inc. Optical system employing terahertz radiation
CA2292635A1 (fr) 1998-04-03 1999-10-14 Raytheon Company Antenne compacte en spirale
JP2001060821A (ja) 1999-08-19 2001-03-06 Tokimec Inc スパイラルアンテナ
WO2002060017A1 (fr) 2001-01-26 2002-08-01 Nikon Corporation Élément générant de la lumière térahertzienne, générateur et détecteur de lumière térahertzienne
WO2003047036A1 (fr) 2001-11-29 2003-06-05 Picometrix, Inc. Grille photoconductrice amplifiee
CA2575130A1 (fr) 2004-08-13 2006-02-23 Sensormatic Electronics Corporation Antenne en spirale accordable pour etiquette de securite
US20060152412A1 (en) 2002-09-04 2006-07-13 Evans Michael J Electrodes on a photoconductive substrate for generation and detection of terahertz radiation
WO2007006552A1 (fr) * 2005-07-12 2007-01-18 Technische Universität Braunschweig Emetteur thz et recepteur thz
JP2008028872A (ja) 2006-07-24 2008-02-07 Hoko Denshi Kk スロットスパイラルアンテナ、及び角形スロットスパイラルアンテナ、並びに、それらの調整方法
WO2008054846A2 (fr) 2006-03-29 2008-05-08 The Regents Of The University Of California Mélangeur optique permettant de créer un rayonnement térahertzien cohérent et de détecter le rayonnement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562952B1 (ko) 2003-08-05 2006-03-22 박익모 다양한 복사패턴을 갖는 다중 대역용 다기능마이크로스트립 스파이럴 안테나

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123203A (ja) 1982-01-19 1983-07-22 Tokyo Keiki Co Ltd 二条スパイラルアンテナ
US5729017A (en) 1996-05-31 1998-03-17 Lucent Technologies Inc. Terahertz generators and detectors
US5789750A (en) 1996-09-09 1998-08-04 Lucent Technologies Inc. Optical system employing terahertz radiation
CA2292635A1 (fr) 1998-04-03 1999-10-14 Raytheon Company Antenne compacte en spirale
JP2001060821A (ja) 1999-08-19 2001-03-06 Tokimec Inc スパイラルアンテナ
WO2002060017A1 (fr) 2001-01-26 2002-08-01 Nikon Corporation Élément générant de la lumière térahertzienne, générateur et détecteur de lumière térahertzienne
WO2003047036A1 (fr) 2001-11-29 2003-06-05 Picometrix, Inc. Grille photoconductrice amplifiee
US20060152412A1 (en) 2002-09-04 2006-07-13 Evans Michael J Electrodes on a photoconductive substrate for generation and detection of terahertz radiation
CA2575130A1 (fr) 2004-08-13 2006-02-23 Sensormatic Electronics Corporation Antenne en spirale accordable pour etiquette de securite
WO2007006552A1 (fr) * 2005-07-12 2007-01-18 Technische Universität Braunschweig Emetteur thz et recepteur thz
WO2008054846A2 (fr) 2006-03-29 2008-05-08 The Regents Of The University Of California Mélangeur optique permettant de créer un rayonnement térahertzien cohérent et de détecter le rayonnement
JP2008028872A (ja) 2006-07-24 2008-02-07 Hoko Denshi Kk スロットスパイラルアンテナ、及び角形スロットスパイラルアンテナ、並びに、それらの調整方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AL-NAIB IBRAHEEM ET AL: "Thin-film sensing with planar asymmetric metamaterial resonators", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 93, no. 8, 27 August 2008 (2008-08-27), pages 83507 - 83507, XP012113707, ISSN: 0003-6951, DOI: 10.1063/1.2976636 *
HOU-TONG CHEN: "Active Terahertz metamaterial devices", PHOTONICS SOCIETY WINTER TOPICALS MEETING SERIES (WTM), 2010, 11 January 2010 (2010-01-11), IEEE, IEEE, PISCATAWAY, NJ, USA, pages 28 - 29, XP031643083, ISBN: 978-1-4244-5240-8 *
J. F. O'HARA, H. CHEN, A. J. TAYLOR, R. D. AVERITT, AND W. J. PADILLA: "Split-Ring Resonator Enhanced Terahertz Antenna", NONLINEAR OPTICS: MATERIALS, FUNDAMENTALS AND APPLICATIONS, OSA TECHNICAL DIGEST (CD), no. paper TuB2, 30 July 2007 (2007-07-30), Kona, Hawaii, XP002637844 *
JANSEN C ET AL: "Terahertz metasurfaces with high Q-factors", APPLIED PHYSICS LETTERS, vol. 98, no. 5, 051109, January 2011 (2011-01-01), AMERICAN INSTITUTE OF PHYSICS USA, XP002637845, ISSN: 0003-6951, DOI: 10.1063/1.3553193 *
LI-MING SI ET AL: "Characterization and application of planar terahertz narrow bandpass filter with metamaterial resonators", INTERNATIONAL WORKSHOP ON METAMATERIALS, 2008, 9 November 2008 (2008-11-09), IEEE, PISCATAWAY, NJ, USA, pages 351 - 354, XP031378613, ISBN: 978-1-4244-2608-9, DOI: 10.1109/META.2008.4723612 *
O'HARA J F ET AL: "Active THz metamaterials", 33RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES. IRMMW-THZ 2008., 15 September 2008 (2008-09-15), pages 1 - 3, XP031398253, ISBN: 978-1-4244-2119-0 *
SINGH R ET AL: "Asymmetric planar terahertz metamaterials", OPTICS EXPRESS, vol. 18, no. 12, 2 June 2010 (2010-06-02), OPTICAL SOCIETY OF AMERICA USA, pages 13044 - 13050, XP002637846, ISSN: 1094-4087, DOI: 10.1364/OE.18.013044 *
TAKANO K ET AL: "Enhanced terahertz emission from metaatom-loaded photoconductive antennas", 35TH INTERNATIONAL CONFERENCE ON INFRARED MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 5 September 2010 (2010-09-05), IEEE, PISCATAWAY, NJ, USA, pages 1 - 2, XP031782897, ISBN: 978-1-4244-6655-9 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150285687A1 (en) * 2012-07-03 2015-10-08 Massachusetts Institute Of Technology Detection of electromagnetic radiation using nonlinear materials
US9366576B2 (en) * 2012-07-03 2016-06-14 Massachusetts Institute Of Technology Detection of electromagnetic radiation using nonlinear materials
US10024723B2 (en) 2012-07-03 2018-07-17 Massachusetts Institute Of Technology Detection of electromagnetic radiation using nonlinear materials

Also Published As

Publication number Publication date
WO2012080105A1 (fr) 2012-06-21

Similar Documents

Publication Publication Date Title
EP2296227B1 (fr) Antenne pour la réception de signaux satellite circulaires polarisés
EP1905125B1 (fr) Emetteur thz et recepteur thz
EP1825530B1 (fr) Source de rayonnements tétrahertz cohérents
DE102006059573B3 (de) Anordnung zur Abstrahlung oder zum Empfang von Terahertz-Strahlung
JP5656428B2 (ja) 光伝導素子
DE102009000644A1 (de) Vorrichtung zum Senden und/oder Empfangen elektromagnetischer HF-Signale, sowie Messgerät und Werkzeugmaschinenüberwachungsvorrichtung mit einer solchen Vorrichtung
EP2424036A2 (fr) Antenne de réception pour signaux radio par satellite polarisés circulaires
DE102014100350B4 (de) Photomischer mit photonischem Kristall vom Typ mit großflächiger Anordnung zum Erzeugen und Detektieren von Breitband-Terahertz-Wellen
EP2466686A1 (fr) Antenne d'émission et de réception de rayonnement GHz et/ou THz ayant une caractéristique de fréquence optimisée
DE102008047103B4 (de) Vorrichtung und Verfahren zur dreidimensionalen Bildgebung mit THz-Strahlung
CN102810814A (zh) 一种多路太赫兹脉冲波导工艺方法
WO2014090565A1 (fr) Appareil de mesure du niveau de remplissage
DE102008031751B3 (de) Photoleitende Antenne zur Abstrahlung oder zum Empfang von Terahertz-Strahlung
EP3256824B1 (fr) Dispositif à deux elements de couplage pour déterminer et surveiller un niveau de remplissage
DE102010018812A1 (de) Photoleitende Messspitze, messtechnische Anordnung und Verfahren zur Erzeugung und/oder Detektion elektromagnetischer Feldsignale
DE102019100945B4 (de) Hochfrequenzvorrichtung und zugehöriges Verfahren zum Erzeugen und Erfassen von elektromagnetischer THz-Strahlung
EP2120291A1 (fr) Antennes terahertz échelonnables
DE102013107265B4 (de) Optoelektronische Hochfrequenzvorrichtung
DE102006012817B4 (de) Photoleitender Terahertz-Emitter
WO2012084232A1 (fr) Dispositif, équipement de production et procédé pour la caractérisation de surfaces limites de matériaux par irradiation thz, et utilisation de ce dispositif
DE102016116900B3 (de) THz-Antenne und Vorrichtung zum Senden und/oder Empfangen von THz-Strahlung
DE102011015384A1 (de) Photoleitendes Antennenarray zum Empfang gepulster Terahertzstrahlung
DE102008004417A1 (de) Vorrichtung zum Senden und/oder Empfangen elektromagnetischer HF-Signale
DE102016011383A1 (de) Photoleitende Antenne zur Erzeugung oder zum Empfang von Terahertz-Strahlung
EP3096180A1 (fr) Procédé d'élargissement du spectre de fréquences d'une onde électromagnétique, et composant destinés à sa réalisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121220

17Q First examination report despatched

Effective date: 20130219

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160701