EP2460241B1 - Broad stripe laser having an epitaxial layer stack and method for producing the same - Google Patents

Broad stripe laser having an epitaxial layer stack and method for producing the same Download PDF

Info

Publication number
EP2460241B1
EP2460241B1 EP10740507.8A EP10740507A EP2460241B1 EP 2460241 B1 EP2460241 B1 EP 2460241B1 EP 10740507 A EP10740507 A EP 10740507A EP 2460241 B1 EP2460241 B1 EP 2460241B1
Authority
EP
European Patent Office
Prior art keywords
layer
broad stripe
ridges
layer stack
stripe laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10740507.8A
Other languages
German (de)
French (fr)
Other versions
EP2460241A1 (en
Inventor
Alfred Lell
Stefanie Rammelsberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of EP2460241A1 publication Critical patent/EP2460241A1/en
Application granted granted Critical
Publication of EP2460241B1 publication Critical patent/EP2460241B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2036Broad area lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4081Near-or far field control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/2086Methods of obtaining the confinement using special etching techniques lateral etch control, e.g. mask induced
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides

Definitions

  • the present invention relates to a broad strip laser with an epitaxial layer stack containing an active radiation-generating layer. Furthermore, the invention relates to a method for producing such a wide-band laser.
  • semiconductor lasers due to their compactness and cost-effective production, find application in numerous fields of application, such as data transmission, data storage, projection, material processing, optical pumping, biosensing and the like.
  • semiconductor lasers based on the AlInGaN material system offer a wide variety of possible uses due to their generated radiation in the UV to blue-green wavelength range. In most applications, it depends on a high optical output power or output power density of the semiconductor laser.
  • the output power is limited due to thermal effects.
  • the output power is limited to a few 100 milliwatts in cw mode.
  • optical output powers can be increased by increasing the efficiency of the semiconductor laser, for example by means of an optimized epitaxial design of the layers of the semiconductor laser.
  • this is also here limits the output power of such semiconductor lasers due to thermal effects to a few 100 milliwatts in cw mode.
  • Performance enhancing measures can also be made possible, for example, by the simultaneous operation of multiple laser diodes.
  • thermo lens which causes the laser mode to constrict to a few ⁇ m at high currents, runs the risk of damaging or even destroying the webs arranged at the top at high current densities.
  • the publication GB 2 180 690 A relates to a semiconductor laser array.
  • a strip diode laser can be found n the publication US 5,299,219 A ,
  • the publication GB 2 388 958 A is to take an optical component.
  • a semiconductor laser array is from the document JP 01-175281 A known.
  • the invention has for its object to provide an improved wide-band laser, which in particular has an improved optical power density, increased efficiency at high power and improved life. Furthermore, the invention has for its object to provide an improved, in particular simplified manufacturing method of such a wide-band laser.
  • a wide-strip laser with an epitaxial layer stack which contains an active, radiation-generating layer and has an upper side and a lower side.
  • the layer stack has trenches in which at least one layer of the layer stack is at least partially removed and which lead from the top toward the bottom.
  • the layer stack further has webs on the upper side, which each adjoin the trenches, so that the layer stack is strip-shaped on the upper side.
  • the webs and the trenches each have a width of at most 20 microns.
  • the webs and the trenches each have a width of at most 10 .mu.m, more preferably of at most 7 .mu.m.
  • such a broad-band laser preferably has index-guided, closely adjacent individual strips, so-called webs, with a width of less than 20 ⁇ m, on the upper side, preferably less than 10 ⁇ m, more preferably less than 7 ⁇ m. Adjacent webs have a distance of at most 20 microns, preferably of at most 10 microns to each other.
  • the wide strip laser according to the invention thus does not have, as is the case on the upper side, only a wide strip.
  • the broad stripe of the laser is split up into individual strips, the so-called webs.
  • Such broadband lasers advantageously have an improved, in particular increased optical output power and output power density with simultaneously reduced facet load. Furthermore, the lifetime of such wide-area lasers advantageously increases, and they can simultaneously have a beam profile optimized for the respective application.
  • the wide-band laser according to the invention advantageously makes it possible to set the emission characteristic specifically between forward radiation, Gaussian profile and rectangular profile or mixtures thereof.
  • the broad-band laser in particular the epitaxial layer stack of the broad-band laser, is preferably based on InGaN, particularly preferably on InGaAlN.
  • the wide stripe laser is an edge emitter.
  • the wide stripe laser is a semiconductor laser.
  • At least one layer of the layer stack is n-doped on the underside facing side of the active radiation-generating layer and at least one layer of the layer stack is p-doped on the side of the active, radiation-generating layer facing the upper side.
  • All layers of the layer stack are preferably n-doped or undoped on the side of the active, radiation-generating layer facing the underside, and all layers of the layer stack are p-doped or undoped on the side of the active, radiation-generating layer facing the top side.
  • the trenches of the wide-band laser are preferably formed in the p-doped layer or the p-doped layers of the layer stack.
  • the trenches do not penetrate the active layer of the layer stack of the wide-band laser. In this case, the trenches are thus formed only on the upper side of the layer stack.
  • the trenches can penetrate the active layer.
  • the trenches in all layers of the Layer stack which are located on the top side facing the active radiation-generating layer, and formed in the active, radiation-generating layer.
  • the webs each have a same height.
  • the trenches each have an equal depth.
  • the trenches may at least partially have a different depth.
  • the trough depth between the lands is less than outside the original latitude strip.
  • the stronger facet load of the middle webs can be counteracted by a higher current widening.
  • the depth difference of the trenches is step-shaped.
  • the index-defining trough depth between the lands may be higher than outside the original wide-strip.
  • the beam profile of the wide-band laser can be controlled with advantage over the depth-dependent steepness of the trenches.
  • adjacent webs are each arranged at an equal distance from each other.
  • adjacent webs may be at least partially disposed at a different distance from each other.
  • adjacent inner webs have a greater distance from each other than adjacent outer webs. Thereby can be counteracted the different thermal load of the webs.
  • the webs at least partially have a different width.
  • inner webs have a greater width than outer webs. This can be counteracted a different oscillation, which is due in particular by a different thermal load, whereby the beam profile is influenced with advantage targeted.
  • the trenches each have a base surface, each having a curvature.
  • the depth difference of the trenches is preferably gradual.
  • the curvatures of the bases of the trenches are preferably lenticular.
  • the bases of the trenches together form a convex lens shape.
  • connection layer is arranged at least in some areas on the webs.
  • connection layer can completely cover a side of the webs facing away from the active layer.
  • connection layer may be structured on the webs in each case.
  • connection layer is formed on the webs in each case as a connection layer withdrawn from two mutually opposite edges of the layer stack.
  • the connection layer on the webs can each be designed as a connection layer provided with one or more openings. The openings of the connection layer may extend transversely to the respective web or along the respective web. This allows specific areas with higher absorption can be generated.
  • further trenches may be arranged which extend in regions vertically into the respective webs, but which do not completely penetrate them.
  • a passivation layer is arranged in regions between the webs and the connection layer.
  • the passivation layer is preferably designed to be electrically insulating. In areas of the passivation layer, there is thus no electrical contact between the layers of the webs and the connection layer.
  • the connection layer can be formed over the entire surface, wherein the electrical connection between the connection layer and the layer stack is not formed over the entire surface due to the passivation layer.
  • a dielectric passivation is arranged on the upper side of the epitaxial layer stack, wherein no dielectric passivation is arranged on the webs. In areas on the jetties, the Dielectric passivation thus each have a recess.
  • the dielectric passivation is formed as a layer.
  • the passivation layer and / or the dielectric passivation preferably contain silicon dioxide (SiO 2 ), silicon nitride (SiN), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ) or tantalum oxide (Ta 2 O 5 ).
  • a plurality of wide-band lasers are arranged side by side as separate arrays, wherein the distances between adjacent arrays are each preferably greater than 20 microns.
  • an optical lens or a lens system is arranged downstream of the laser in the emission direction.
  • a wide-band laser according to the invention which has a controlled emission characteristic, can advantageously be combined with an optical lens or a corresponding lens system in such a way that a desired imaging property is achieved.
  • the conventionally known wide-stripe laser structure is split in particular into individual strips, in particular individual webs.
  • the output power can be optimized for the particular application of the laser out.
  • an improved optical output, improved radiance and increased lifetimes, in particular a simultaneously controllable optimization of the beam profile is made possible.
  • FIG. 3 shows a schematic cross-section of a modification of a wide-band laser comprising an epitaxial layer stack 2 with an active radiation-generating layer 21.
  • the layer stack 2 has an upper side 22 and a lower side 23.
  • the layer stack 2 may be arranged, for example, on a substrate or a carrier (not shown).
  • the layers facing the underside 23 have an n-doping seen from the active layer 21.
  • the layers of the layer stack 2, that of the top 22 facing from the active layer 21, preferably have a p-type doping.
  • magnesium or zinc can be used as p-doping.
  • the laser is designed in particular as a wide-band laser 1.
  • the laser structure is etched so that a narrow strip is formed on the upper side, whereby there is advantageously a strong index guiding by the refractive index jump of the laser structure to air.
  • the p-doped layers of the wide-band laser are removed down to a narrow strip, whereby the electrons are laterally restricted and diffusion is avoided.
  • the layer stack 2 also has trenches 3, in which at least one layer of the layer stack is at least partially removed and which lead from the top side 22 in the direction of the bottom side 23.
  • the wide-strip laser 1 thus has further etching areas on the upper side, wherein the wide strip of the laser structure is split into individual strips, so-called webs.
  • the layer stack 2, in particular the wide strip of the wide-band laser 1, is thus strip-shaped on the upper side.
  • the webs 4 preferably have a width of at most 20 .mu.m, preferably of at most 10 .mu.m, more preferably of at most 7 .mu.m.
  • adjacent webs 4 each have a distance of at most 20 .mu.m, preferably of at most 10 .mu.m to each other.
  • the beam profile and the output power can advantageously be optimized for the particular application of the laser.
  • the optimization can be achieved by means of a different web width and / or a different index guide.
  • the wide-band laser 1, whose wide strip is divided into webs 4, advantageously allows improved optical output power, improved radiance, and extended life.
  • a controllable optimization of the beam profile is possible at the same time.
  • the efficiency increases at high power with advantage.
  • the emission characteristic of such a wide-band laser can be specifically shaped by, for example, controlled control of the single emitter density (distance of the webs), the laser threshold currents (for example, by controlling the current spread over the index guide and / or over the different land width of the individual emitter), and / or the slope (for example via loss control) or combinations thereof.
  • the in FIG. 1 Wide strip laser 1 shown an edge emitter.
  • the trenches 3 of the wide-band laser 1 are produced, for example, by means of an etching process.
  • the etching depth T 1 in the embodiment of the FIG. 1 is in particular designed such that the active layer 21 is not etched, in particular no trenches 3 through the active layer 21 are guided. Alternatively, the trenches 3 may penetrate the active layer 21 (not shown).
  • the trenches 3 each have an equal depth T 1 .
  • the trench width d 2 is at most 20 ⁇ m.
  • the distance between two adjacent webs 4 is at most 20 ⁇ m.
  • the webs 4 have a width d 1 of at most 20 microns, preferably 10 microns.
  • a dielectric passivation 9 is preferably arranged, wherein on the webs 4 no dielectric passivation 9 is arranged. In regions on the webs 4, the dielectric passivation 9 thus each has a recess.
  • the dielectric passivation 9 is formed as a layer.
  • the dielectric passivation 9 preferably contains silicon dioxide (SiO 2 ), silicon nitride (SiN), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 or tantalum oxide (Ta 2 O 5 ).
  • the dielectric passivation 9 is not shown for the sake of clarity. However, the dielectric passivation 9 also finds in the other FIGS. 2 to 13 Application, even if not explicitly shown.
  • connection layer 5 On the webs 4 each have a connection layer 5 is arranged.
  • the connecting layer 5 completely covers the side of the webs facing away from the active layer 21 in each case.
  • the connection layer 5 is thus preferably in each case in the recesses of dielectric passivation 9 arranged.
  • the connection layer 5 is preferably like the webs 4 strip-shaped, wherein the connection layer 5 in the modification of FIG. 1 is formed in each case in areas of the webs as a continuous layer.
  • the connection layer 5 has no recesses or openings on the webs.
  • connection layer 5 is thus formed as a structured, in particular strip-shaped connection layer, the strips of the connection layer 5 coinciding with the webs 4.
  • connection layer 5 only the side of the webs 4, which faces away from the active layer 21, has the connection layer 5.
  • connection layer 5 preferably comprises a metal or a metal alloy.
  • the broadband laser of the modification of the FIG. 1 allows an increased optical output power or output line density, the facet load of the laser is reduced, the lifetime is increased with advantage and at the same time an optimized for each application beam profile is enabled.
  • a broadband laser designed in this way makes it possible to set the emission characteristic specifically between forward radiation, Gaussian profile and rectangular profile or mixtures thereof.
  • such wide stripe lasers having a controlled emission characteristic can be used in combination with lenses (not shown). Especially can be achieved with an optical lens or a corresponding lens system, a desired imaging property.
  • FIGS. 2A and 2B are each manufacturing steps for producing a wide-band laser according to the modification of FIG. 1 shown.
  • FIG. 2A a conventional wide-stripe laser, in which the layer stack 2 is removed on the upper side 22 such that the upper side, a wide strip is formed.
  • the wide strip is formed by means of a first etching process.
  • the active layer 21 of the wide-band laser is preferably not etched.
  • the layer stack 2 has a connection layer 5 for electrical contacting of the wide-area laser.
  • a substrate or a support may be arranged (not shown), wherein on the underside for the electrical contacting of the wide-area laser preferably a further connection layer is arranged (not shown).
  • trenches 3 are etched in the wide strip arranged on the upper side, so that the wide strip is split or divided into webs 4, see FIG. 2B .
  • the webs 4 preferably have a width d 1 of at most 20 .mu.m, more preferably of at most 10 .mu.m.
  • the etching width that is to say the trench width d 2 , preferably has at most 20 ⁇ m, preferably at most 10 ⁇ m.
  • Two adjacent webs 4 are therefore in particular thus arranged at most at a distance of 20 ⁇ m, preferably of at most 10 ⁇ m, from each other.
  • the etching depth T 1 of the individual trenches 3 is in the Embodiment of Figures 1 and 2 each about the same size.
  • the etching depth T 1 is formed such that the active layer 21 of the wide-band laser is not penetrated or etched.
  • the conventionally known wide-stripe laser structure is thus in the modification of FIG. 2 split into a plurality of equal width, equidistant, deeply etched webs 4 by means of a further etching process.
  • the production of the wide strip and the production of the webs 4, ie the respective etching processes, can be carried out in one etching step.
  • the modification of FIG. 3 is different from the modification of FIG. 1 in that adjacent webs 4 are at least partially arranged at a different distance from each other.
  • adjacent inner webs 4a have a greater distance from each other than adjacent outer webs 4b.
  • the distance of the webs 4a, 4b to each other has at most 20 microns, preferably 10 microns. Due to the different distances of adjacent webs 4a, 4b, the different thermal load can be counteracted. This advantageously increases the service life of such a broadband laser.
  • the modification of FIG. 4 is different from the modification of FIG. 1 in that the trenches 3 have a smaller etching depth T 1 in the broad-band structure of the laser.
  • the trenches 3 do not completely penetrate the broad stripe structure of the laser.
  • the depth T 2 of the broad-band structure of the laser is therefore greater than the depth T 1 of the trenches 3.
  • the wide-strip structure is thus split into a plurality of equidistant, equidistant webs 4, wherein the index-defining etch depth T 1 between the webs 4 is less than outside the original wide stripe to counteract the stronger facet load of the middle webs by a higher current widening.
  • the ⁇ tztiefenunter Kunststoff T 1 to T 2 preferably runs in steps.
  • FIGS. 5A to 5D are individual manufacturing steps for producing a wide-band laser according to the modification of FIG. 4 shown.
  • FIG. 5A a layer stack 2 comprising an active radiation-generating layer 21, an upper side 22 and a lower side 23 is shown.
  • a layer stack 2 comprising an active radiation-generating layer 21, an upper side 22 and a lower side 23 is shown.
  • a wide strip structure As in FIG. 5B represented, formed by means of a first etching process, a wide strip structure. The etches preferably do not pass through the active layer 21.
  • the first etching step takes place in particular by means of a photoresist 6 which is formed on the upper side 22 of the laser.
  • the first etching step instead of the photoresist by means of an etch mask, which is formed on the upper side 22 of the laser.
  • the etching mask may be, for example, a dielectric or metallic hard mask.
  • trenches 3 are etched into the wide stripe structure, as in FIG. 5C shown.
  • the etching depth of the trenches 3 is less than the etching depth of the wide strip structure in this case.
  • the production of the wide strip and the production of the webs 4, in particular the first etching process and the further etching process can be carried out in one etching step.
  • connection layer 5 is arranged.
  • the embodiment of FIG. 6 is different from the modification of FIG. 4 in that the trenches 3 each have a base 31, which in each case has a curvature.
  • the curvature of the base 31 is preferably formed in each case lens-shaped.
  • the curvatures of the base surfaces 31 together have a convex lens shape.
  • the trenches 3 thus have in the embodiment of FIG. 6 a different depth.
  • the wide-strip structure is split into a plurality of equidistant, equidistant webs 4, wherein the index-defining etch depth between the webs is less than outside the original wide stripe, to counteract the stronger facet load of the middle webs by a higher current expansion.
  • the etch depth difference in this case is preferably gradual.
  • FIGS. 7A to 7D are manufacturing steps of a wide-band laser according to the embodiment of FIG. 6 shown.
  • an etching auxiliary mask 8 is applied to the layer stack 2, in particular on the upper side 22 of the layer stack 2.
  • a photoresist 7 is arranged, which preferably flows through a thermal treatment. Due to the flowing photoresist, a lenticular structure of the etching auxiliary mask can be produced.
  • the etching aid mask is thus structured in a lens-shaped manner, as in FIG. 7B shown. This structuring is preferably carried out by means of a dry chemical transfer to the etching auxiliary mask 8.
  • a single stripe structure with a graded index guide is formed, as in FIG Figure 7D shown.
  • webs 4 and trenches 3 are formed in the layer stack 2 on the upper side, wherein the trenches 3 have a base surface 31, each having a curvature.
  • the modification of FIG. 8 is different from the modification of FIG. 4 in that the trenches 3 have a greater depth, in particular a larger etching depth T 1 , than the broad-band structure of the laser (depth T 2 ).
  • the wide-strip structure is split into a plurality of equidistant, equidistant webs 4, wherein the index-defining etching depth T 1 between the webs 4 is gradually or stepwise higher than outside the original Breitst Teacherss, which can be controlled by the ⁇ tzeniefenjoness with advantage targeted the beam profile of the laser.
  • FIGS. 9A to 9D are each manufacturing steps for producing a wide-band laser according to the modification of FIG. 8 shown.
  • a multi-stage etching process is used.
  • a photoresist 6 is applied in the edge region, see FIG. 9B , where here a first etching process takes place, which forms a first etching region 9 on the upper side of the layer stack 2.
  • a strip-shaped lacquer structure is applied to the upper side 22 of the layer stack 2 in regions of the first etching process 9, with a second etching process subsequently taking place, which etches trenches 3 into the upper side 22 of the layer stack 2.
  • the trenches 3 in contrast to the modification of FIGS.
  • the modification of FIG. 10 is different from the modification of FIG. 1 in that the webs 4 have a different width b 1 , b 2 .
  • Inner webs preferably have a larger width b 1 than outer webs (width b 2 ).
  • the broadband laser according to the modification of FIG. 10 thus has a plurality of equidistant, deep etched, different width webs 4, whereby a different oscillation, which is due to a different thermal load, can be counteracted with advantage.
  • the beam profile of the laser can advantageously be influenced in a targeted manner.
  • connection layer 51, 52 which is respectively arranged on the webs 4 is structured.
  • the terminal layer 51, 52 in contrast to the in FIG. 1 shown connection layer guided along the respective web 4 opening 5c.
  • connection layer 51, 52 on the respective webs 4 is strip-shaped, in which case the connection layer 51, 52 has two strips 51, 52 arranged laterally on the webs 4. Between the strips 51, 52, the opening 5c of the connection layer is formed, so that no connection layer 51, 52 is arranged in regions on the webs 4, in particular in the middle region of the webs 4.
  • connection layer 51, 52 is thus preferably composed of profit-guided strips, in particular metallization strips.
  • connection layer 51, 52 A view of such a trained connection layer is, for example, in FIG. 13C shown.
  • the web 4 has laterally two connection layers 51, 52, which are guided along the web 4 and in particular are pulled through.
  • No connection layer is arranged centrally along the web 4.
  • the modification of FIG. 12 is different from the modification of FIG. 11 in that the webs in regions, in particular in the areas in which no connection layer 5 is applied, have further etching depths.
  • the connection layer 5 is in particular arranged in each case on a lateral region of the webs 4, so that the further etching depths are formed centrally of the webs 4. In particular, the etching depths do not lead completely vertically through the webs 4.
  • FIGS. 13A to 13C in each case a plan view of a web 4 is shown.
  • additional modifications of the connection layer 5 in each case additional modifications of the connection layer 5.
  • connection layer 5 is formed as a not completely drawn through connection layer.
  • connection layer 5 is formed on the webs 4 in each case as a connecting layer 5 which is drawn back from two mutually opposite edges 5a, 5b of the webs 4.
  • the webs 4 therefore have no connection layer 5 in the edge region 5a, 5b. This allows specific areas with a higher absorption can be generated.
  • connection layer 5 has openings 5c.
  • connection layer 5 has a plurality of openings 5c transversely to the web 4.
  • connection layer 5 is therefore split into two strips 51, 52, which extend along the web 4.
  • a passivation layer may be arranged between the connection layer 5 and the webs 4 (not shown).
  • the passivation layer is in particular electrically insulating, so that the connection layer 5 can be formed over the entire surface, wherein the electrical contact between the connection layer 5 and the bridge 4 is not formed over the entire surface by means of the passivation layer. In particular, in areas of the passivation layer no electrical contact between the connection layer 5 and the web 4 takes place.
  • the passivation layer contains silicon dioxide (SiO 2 ), silicon nitride (SiN), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ) or tantalum oxide (Ta 2 O 5 ).
  • a plurality of wide-band lasers according to the embodiments of the broad-band laser of FIGS. 1 . 3 . 4 . 6 . 8th . 10, 11 or 12 arranged side by side as a separate arrays, wherein the distances between adjacent arrays are each preferably greater than 20 microns (not shown).

Description

Die vorliegende Erfindung betrifft einen Breitstreifenlaser mit einem epitaktischen Schichtenstapel, der eine aktive, strahlungserzeugende Schicht enthält. Weiterhin betrifft die Erfindung ein Verfahren zum Herstellen eines derartigen Breitstreifenlasers.The present invention relates to a broad strip laser with an epitaxial layer stack containing an active radiation-generating layer. Furthermore, the invention relates to a method for producing such a wide-band laser.

Halbleiterlaser finden aufgrund ihrer Kompaktheit und kostengünstigen Herstellung Anwendung in zahlreichen Applikationsbereichen, wie beispielsweise Datenübertragung, Datenspeicherung, Projektion, Materialbearbeitung, optisches Pumpen, Biosensorik und ähnliches. Insbesondere Halbleiterlaser basierend auf dem AlInGaN-Materialsystem bieten aufgrund ihrer erzeugten Strahlung im UV- bis Blaubeziehungsweise grünen Wellenlängenbereich vielfältige Einsatzmöglichkeiten. In den meisten Anwendungsgebieten kommt es dabei auf eine hohe optische Ausgangsleistung beziehungsweise Ausgangsleistungsdichte des Halbleiterlasers an.Semiconductor lasers, due to their compactness and cost-effective production, find application in numerous fields of application, such as data transmission, data storage, projection, material processing, optical pumping, biosensing and the like. In particular, semiconductor lasers based on the AlInGaN material system offer a wide variety of possible uses due to their generated radiation in the UV to blue-green wavelength range. In most applications, it depends on a high optical output power or output power density of the semiconductor laser.

Jedoch ist bei Halbleiterlasern die Ausgangsleistung aufgrund thermischer Effekte begrenzt. Beispielsweise ist bei sogenannten "Single-Emittern" die Ausgangsleistung auf wenige 100 Milliwatt im cw-Betrieb begrenzt.However, in semiconductor lasers, the output power is limited due to thermal effects. For example, in so-called "single emitters" the output power is limited to a few 100 milliwatts in cw mode.

Optische Ausgangsleistungen können unter anderem durch Steigerung der Effizienz des Halbleiterlasers, beispielsweise mit Hilfe eines optimierten Epitaxiedesigns der Schichten des Halbleiterlasers erhöht werden. Allerdings ist auch hierbei die Ausgangsleistung derartiger Halbleiterlaser aufgrund thermischer Effekte auf wenige 100 Milliwatt im cw-Betrieb begrenzt.Among other things, optical output powers can be increased by increasing the efficiency of the semiconductor laser, for example by means of an optimized epitaxial design of the layers of the semiconductor laser. However, this is also here limits the output power of such semiconductor lasers due to thermal effects to a few 100 milliwatts in cw mode.

Leistungssteigernde Maßnahmen können ferner beispielsweise durch den gleichzeitigen Betrieb mehrerer Laserdioden ermöglicht werden.Performance enhancing measures can also be made possible, for example, by the simultaneous operation of multiple laser diodes.

Zusätzlich besteht bei Breitstreifenlasern durch die so genannte "thermische Linse", die das Einschnüren der Lasermode des Lasers auf wenige µm bei hohen Strömen bewirkt, die Gefahr, die oberseitig angeordneten Stege bei hohen Stromdichten zu beschädigen oder gar zu zerstören.In addition, in the case of wide-band lasers, the so-called "thermal lens", which causes the laser mode to constrict to a few μm at high currents, runs the risk of damaging or even destroying the webs arranged at the top at high current densities.

Die Druckschrift GB 2 180 690 A betrifft ein Halbleiterlaserarray.The publication GB 2 180 690 A relates to a semiconductor laser array.

In der Druckschrift US 2009/0092163 A1 ist eine Laserdiode und eine Herstellungsmethode hierfür angegeben.In the publication US 2009/0092163 A1 For example, a laser diode and method of fabrication is disclosed.

Ein Streifendiodenlaser findet sich n der Druckschrift US 5,299,219 A .A strip diode laser can be found n the publication US 5,299,219 A ,

Die Beschreibung eines Halbleiterlasers ist in der Druckschrift JP 2007-157906 A wiedergegeben.The description of a semiconductor laser is in the document JP 2007-157906 A played.

In der Druckschrift US 4,400,813 A ist ein Laser mit einem Streifenwellenleiter offenbart.In the publication US 4,400,813 A a laser with a strip waveguide is disclosed.

Der Druckschrift GB 2 388 958 A ist ein optisches Bauteil zu entnehmen.The publication GB 2 388 958 A is to take an optical component.

Eine Halbleiterlaseranordnung ist aus der Druckschrift JP 01-175281 A bekannt.A semiconductor laser array is from the document JP 01-175281 A known.

Der Erfindung liegt die Aufgabe zugrunde, einen verbesserten Breitstreifenlaser anzugeben, der insbesondere eine verbesserte optische Leistungsdichte, eine gesteigerte Effizienz bei hohen Leistungen und eine verbesserte Lebensdauer aufweist. Ferner liegt der Erfindung die Aufgabe zugrunde, ein verbessertes, insbesondere vereinfachtes Herstellungsverfahren eines derartigen Breitstreifenlasers anzugeben.The invention has for its object to provide an improved wide-band laser, which in particular has an improved optical power density, increased efficiency at high power and improved life. Furthermore, the invention has for its object to provide an improved, in particular simplified manufacturing method of such a wide-band laser.

Diese Aufgaben werden durch einen Breitstreifenlaser mit den Merkmalen des Patentanspruchs 1 und ein Verfahren zu dessen Herstellung mit den Merkmalen des Patentanspruchs 15 gelöst.These objects are achieved by a wide-band laser having the features of patent claim 1 and a method for its production having the features of patent claim 15.

Erfindungsgemäß ist ein Breitstreifenlaser mit einem epitaktischen Schichtenstapel vorgesehen, der eine aktive, strahlungserzeugende Schicht enthält und eine Oberseite und eine Unterseite aufweist. Der Schichtenstapel weist Gräben auf, in denen wenigstens eine Schicht des Schichtenstapels zumindest teilweise entfernt ist und die von der Oberseite in Richtung Unterseite führen. Der Schichtenstapel weist ferner oberseitig Stege auf, die jeweils an die Gräben angrenzen, sodass der Schichtenstapel oberseitig streifenförmig ausgebildet ist. Die Stege und die Gräben weisen jeweils eine Breite von höchstens 20 µm auf. Bevorzugt weisen die Stege und die Gräben jeweils eine Breite von höchstens 10 µm, besonders bevorzugt von höchstens 7 µm auf.According to the invention, a wide-strip laser with an epitaxial layer stack is provided which contains an active, radiation-generating layer and has an upper side and a lower side. The layer stack has trenches in which at least one layer of the layer stack is at least partially removed and which lead from the top toward the bottom. The layer stack further has webs on the upper side, which each adjoin the trenches, so that the layer stack is strip-shaped on the upper side. The webs and the trenches each have a width of at most 20 microns. Preferably, the webs and the trenches each have a width of at most 10 .mu.m, more preferably of at most 7 .mu.m.

Ein derartiger Breitstreifenlaser weist demnach oberseitig vorzugsweise indexgeführte, eng benachbarte Einzelstreifen, sogenannte Stege, mit einer Breite von weniger als 20 µm, bevorzugt von weniger als 10 µm, besonders bevorzugt von weniger als 7 µm auf. Benachbarte Stege weisen dabei einen Abstand von höchstens 20 µm, bevorzugt von höchstens 10 µm zueinander auf.Accordingly, such a broad-band laser preferably has index-guided, closely adjacent individual strips, so-called webs, with a width of less than 20 μm, on the upper side, preferably less than 10 μm, more preferably less than 7 μm. Adjacent webs have a distance of at most 20 microns, preferably of at most 10 microns to each other.

Der erfindungsgemäße Breitstreifenlaser weist somit nicht, wie herkömmlicherweise oberseitig lediglich einen Breitstreifen auf. Insbesondere ist der Breitstreifen des Lasers erfindungsgemäß in Einzelstreifen, den sogenannten Stegen, aufgespalten.The wide strip laser according to the invention thus does not have, as is the case on the upper side, only a wide strip. In particular, according to the invention, the broad stripe of the laser is split up into individual strips, the so-called webs.

Derartige Breitstreifenlaser weisen mit Vorteil eine verbesserte, insbesondere gesteigerte optische Ausgangsleistung und Ausgangsleistungsdichte bei gleichzeitig verringerter Facettenbelastung auf. Weiter erhöht sich so mit Vorteil die Lebensdauer derartiger Breitstreifenlaser, wobei diese gleichzeitig ein auf die jeweilige Applikation hin optimiertes Strahlprofil aufweisen können. Zusätzlich ermöglicht der erfindungsgemäße Breitstreifenlaser mit Vorteil, die Abstrahlcharakteristik gezielt zwischen Vorwärtsstrahlung, Gaußprofil und Rechteckprofil oder Mischungen daraus einzustellen.Such broadband lasers advantageously have an improved, in particular increased optical output power and output power density with simultaneously reduced facet load. Furthermore, the lifetime of such wide-area lasers advantageously increases, and they can simultaneously have a beam profile optimized for the respective application. In addition, the wide-band laser according to the invention advantageously makes it possible to set the emission characteristic specifically between forward radiation, Gaussian profile and rectangular profile or mixtures thereof.

Insbesondere gelingt es mittels eines derartigen Breitstreifenlasers, die Abstrahlcharakteristik gezielt zu formen durch eine kontrollierte Steuerung der

  • Einzelemitterdichte, insbesondere einstellbar über den jeweiligen Abstand der Stege,
  • Laserschwellströme, beispielsweise durch Steuerung der Stromaufweitung über Indexführung und/oder eine unterschiedliche Breite der einzelnen Stege, und
  • Steilheit, beispielsweise durch Steuerung der Verluste,
  • oder Kombinationen hieraus.
In particular, by means of such a wide-band laser, it is possible to form the emission characteristic in a targeted manner by means of a controlled control of the
  • Single emitter density, in particular adjustable over the respective distance of the webs,
  • Laser Schwellströme, for example, by controlling the flow expansion over index guide and / or a different width of the individual webs, and
  • Steepness, for example by controlling the losses,
  • or combinations thereof.

Bevorzugt basiert der Breitstreifenlaser, insbesondere der epitaktische Schichtenstapel des Breitstreifenlasers, auf InGaN, besonders bevorzugt auf InGaAlN. Vorzugsweise ist der Breitstreifenlaser ein Kantenemitter. Bevorzugt ist der Breitstreifenlaser ein Halbleiterlaser.The broad-band laser, in particular the epitaxial layer stack of the broad-band laser, is preferably based on InGaN, particularly preferably on InGaAlN. Preferably, the wide stripe laser is an edge emitter. Preferably, the wide stripe laser is a semiconductor laser.

Bei einer bevorzugten Ausgestaltung des Breitstreifenlasers ist zumindest eine Schicht des Schichtenstapels auf der der Unterseite zugewandten Seite der aktiven, strahlungserzeugenden Schicht n-dotiert und zumindest eine Schicht des Schichtenstapels auf der der Oberseite zugewandten Seite der aktiven, strahlungserzeugenden Schicht p-dotiert.In a preferred embodiment of the wide-band laser, at least one layer of the layer stack is n-doped on the underside facing side of the active radiation-generating layer and at least one layer of the layer stack is p-doped on the side of the active, radiation-generating layer facing the upper side.

Bevorzugt sind alle Schichten des Schichtenstapels auf der der Unterseite zugewandten Seite der aktiven, strahlungserzeugenden Schicht n-dotiert oder undotiert und alle Schichten des Schichtenstapels auf der der Oberseite zugewandten Seite der aktiven, strahlungserzeugenden Schicht p-dotiert oder undotiert.All layers of the layer stack are preferably n-doped or undoped on the side of the active, radiation-generating layer facing the underside, and all layers of the layer stack are p-doped or undoped on the side of the active, radiation-generating layer facing the top side.

Die Gräben des Breitstreifenlasers sind vorzugsweise in der p-dotierten Schicht oder den p-dotierten Schichten des Schichtenstapels ausgebildet.The trenches of the wide-band laser are preferably formed in the p-doped layer or the p-doped layers of the layer stack.

Bevorzugt durchdringen die Gräben die aktive Schicht des Schichtenstapels des Breitstreifenlasers nicht. In diesem Fall sind die Gräben somit lediglich oberseitig des Schichtenstapels ausgebildet.Preferably, the trenches do not penetrate the active layer of the layer stack of the wide-band laser. In this case, the trenches are thus formed only on the upper side of the layer stack.

Alternativ können die Gräben die aktive Schicht durchdringen. In diesem Fall sind die Gräben in allen Schichten des Schichtenstapels, die sich auf der der Oberseite zugewandten Seite der aktiven, strahlungserzeugenden Schicht befinden, sowie in der aktiven, strahlungserzeugenden Schicht ausgebildet.Alternatively, the trenches can penetrate the active layer. In this case, the trenches in all layers of the Layer stack, which are located on the top side facing the active radiation-generating layer, and formed in the active, radiation-generating layer.

Vorzugsweise weisen die Stege jeweils eine gleiche Höhe auf.Preferably, the webs each have a same height.

Bei einer bevorzugten Ausgestaltung des Breitstreifenlasers weisen die Gräben jeweils eine gleiche Tiefe auf. Alternativ können die Gräben zumindest teilweise eine unterschiedliche Tiefe aufweisen.In a preferred embodiment of the wide-band laser, the trenches each have an equal depth. Alternatively, the trenches may at least partially have a different depth.

Beispielsweise ist die Gräbentiefe zwischen den Stegen geringer als außerhalb des ursprünglichen Breitstreifens. Dadurch kann der stärkeren Facettenbelastung der mittleren Stege durch eine höhere Stromaufweitung entgegengewirkt werden. Bevorzugt verläuft der Tiefenunterschied der Gräben stufenförmig.For example, the trough depth between the lands is less than outside the original latitude strip. As a result, the stronger facet load of the middle webs can be counteracted by a higher current widening. Preferably, the depth difference of the trenches is step-shaped.

Alternativ kann die indexdefinierende Gräbentiefe zwischen den Stegen höher sein als außerhalb des ursprünglichen Breitstreifens. Dadurch kann mit Vorteil über die tiefenabhängige Steilheit der Gräben gezielt das Strahlprofil des Breitstreifenlasers gesteuert werden.Alternatively, the index-defining trough depth between the lands may be higher than outside the original wide-strip. As a result, the beam profile of the wide-band laser can be controlled with advantage over the depth-dependent steepness of the trenches.

Bei einer bevorzugten Ausgestaltung des Breitstreifenlasers sind benachbarte Stege jeweils in einem gleichen Abstand zueinander angeordnet.In a preferred embodiment of the wide-band laser adjacent webs are each arranged at an equal distance from each other.

Alternativ können benachbarte Stege zumindest teilweise in einem unterschiedlichen Abstand zueinander angeordnet sein. Vorzugsweise weisen benachbarte innere Stege einen größeren Abstand zueinander auf als benachbarte äußere Stege. Dadurch kann der unterschiedlichen thermischen Belastung der Stege entgegengewirkt werden.Alternatively, adjacent webs may be at least partially disposed at a different distance from each other. Preferably, adjacent inner webs have a greater distance from each other than adjacent outer webs. Thereby can be counteracted the different thermal load of the webs.

Bei einer bevorzugten Ausgestaltung des Breitstreifenlasers weisen die Stege zumindest teilweise eine unterschiedliche Breite auf.In a preferred embodiment of the wide-band laser, the webs at least partially have a different width.

Bevorzugt weisen innere Stege eine größere Breite auf als äußere Stege. Dadurch kann einem unterschiedlichen Anschwingen, das insbesondere bedingt ist durch eine unterschiedliche thermische Belastung, entgegengewirkt werden, wodurch das Strahlprofil mit Vorteil gezielt beeinflusst wird.Preferably, inner webs have a greater width than outer webs. This can be counteracted a different oscillation, which is due in particular by a different thermal load, whereby the beam profile is influenced with advantage targeted.

Bei dem Breitstreifenlaser weisen die Gräben jeweils eine Grundfläche auf, die jeweils eine Krümmung aufweist. Der Tiefenunterschied der Gräben verläuft vorzugsweise graduell. So kann mit Vorteil der stärkeren Facettenbelastung der mittleren Stege durch eine höhere Stromaufweitung entgegengewirkt werden.In the wide-stripe laser, the trenches each have a base surface, each having a curvature. The depth difference of the trenches is preferably gradual. Thus it can be counteracted with advantage of the stronger facet load of the middle webs by a higher current widening.

Die Krümmungen der Grundflächen der Gräben sind vorzugsweise linsenförmig ausgebildet. Bevorzugt bilden die Grundflächen der Gräben zusammen eine konvexe Linsenform aus.The curvatures of the bases of the trenches are preferably lenticular. Preferably, the bases of the trenches together form a convex lens shape.

Bei einer bevorzugten Ausgestaltung des Breitstreifenlasers ist jeweils auf den Stegen zumindest bereichsweise eine Anschlussschicht angeordnet.In a preferred embodiment of the wide-band laser, a connection layer is arranged at least in some areas on the webs.

Beispielsweise kann die Anschlussschicht eine von der aktiven Schicht abgewandte Seite der Stege vollständig bedecken. Alternativ kann die Anschlussschicht auf den Stegen jeweils strukturiert ausgebildet sein.By way of example, the connection layer can completely cover a side of the webs facing away from the active layer. Alternatively, the connection layer may be structured on the webs in each case.

Vorzugsweise ist die Anschlussschicht auf den Stegen jeweils als von zwei sich gegenüberliegenden Kanten des Schichtenstapels zurückgezogene Anschlussschicht ausgebildet. Ferner kann die Anschlussschicht auf den Stegen jeweils als mit einer oder mehreren Öffnungen versehene Anschlussschicht ausgebildet sein. Die Öffnungen der Anschlussschicht können sich dabei quer zu dem jeweiligen Steg oder entlang des jeweiligen Steges erstrecken. Dadurch können gezielt Bereiche mit höherer Absorption erzeugt werden.Preferably, the connection layer is formed on the webs in each case as a connection layer withdrawn from two mutually opposite edges of the layer stack. Furthermore, the connection layer on the webs can each be designed as a connection layer provided with one or more openings. The openings of the connection layer may extend transversely to the respective web or along the respective web. This allows specific areas with higher absorption can be generated.

In Bereichen der Öffnungen der Anschlussschicht können bei einer weiteren bevorzugten Ausgestaltung des Breitstreifenlasers weitere Gräben angeordnet sein, die sich bereichsweise vertikal in die jeweiligen Stege erstrecken, diese jedoch nicht vollständig durchdringen.In regions of the openings of the connection layer, in a further preferred refinement of the wide-area laser, further trenches may be arranged which extend in regions vertically into the respective webs, but which do not completely penetrate them.

Bei einer weiteren bevorzugten Ausgestaltung des Breitstreifenlasers ist zwischen den Stegen und der Anschlussschicht bereichsweise eine Passivierungsschicht angeordnet. Die Passivierungsschicht ist vorzugsweise elektrisch isolierend ausgebildet. In Bereichen der Passivierungsschicht liegt somit kein elektrischer Kontakt zwischen den Schichten der Stege und der Anschlussschicht vor. Die Anschlussschicht kann dabei ganzflächig ausgebildet sein, wobei der elektrische Anschluss zwischen der Anschlussschicht und dem Schichtenstapel aufgrund der Passivierungsschicht nicht ganzflächig ausgebildet ist.In a further preferred embodiment of the wide-band laser, a passivation layer is arranged in regions between the webs and the connection layer. The passivation layer is preferably designed to be electrically insulating. In areas of the passivation layer, there is thus no electrical contact between the layers of the webs and the connection layer. The connection layer can be formed over the entire surface, wherein the electrical connection between the connection layer and the layer stack is not formed over the entire surface due to the passivation layer.

vorzugsweise ist auf der Oberseite des epitaktischen Schichtenstapels eine dielektrische Passivierung angeordnet, wobei auf den Stegen keine dielektrische Passivierung angeordnet ist. In Bereichen auf den Stegen weist die dielektrische Passivierung somit jeweils eine Aussparung auf. Bevorzugt ist die dielektrische Passivierung als Schicht ausgebildet.Preferably, a dielectric passivation is arranged on the upper side of the epitaxial layer stack, wherein no dielectric passivation is arranged on the webs. In areas on the jetties, the Dielectric passivation thus each have a recess. Preferably, the dielectric passivation is formed as a layer.

Vorzugsweise enthält die Passivierungsschicht und/oder die dielektrische Passivierung Siliziumdioxid (SiO2), Siliziumnitrid (SiN), Aluminiumoxid (Al2O3), Hafniumoxid (HfO2), Zirconiumoxid (ZrO2) oder Tantaloxid (Ta2O5).The passivation layer and / or the dielectric passivation preferably contain silicon dioxide (SiO 2 ), silicon nitride (SiN), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ) or tantalum oxide (Ta 2 O 5 ).

Bei einer weiteren bevorzugten Ausgestaltung ist eine Mehrzahl von Breitstreifenlasern nebeneinander als voneinander getrennte Arrays angeordnet, wobei die Abstände zwischen benachbarten Arrays jeweils vorzugsweise größer als 20 µm sind.In a further preferred embodiment, a plurality of wide-band lasers are arranged side by side as separate arrays, wherein the distances between adjacent arrays are each preferably greater than 20 microns.

Bei einer weiteren bevorzugten Ausführungsform des Breitstreifenlasers ist dem Laser in Abstrahlrichtung eine optische Linse oder ein Linsensystem nachgeordnet. Ein erfindungsgemäßer Breitstreifenlaser, der eine kontrollierte Abstrahlcharakteristik aufweist, kann mit Vorteil mit einer optischen Linse oder einem entsprechendem Linsensystem derart kombiniert sein, dass eine gewünschte Abbildungseigenschaft erzielt wird.In a further preferred embodiment of the wide-band laser, an optical lens or a lens system is arranged downstream of the laser in the emission direction. A wide-band laser according to the invention, which has a controlled emission characteristic, can advantageously be combined with an optical lens or a corresponding lens system in such a way that a desired imaging property is achieved.

Ein erfindungsgemäßes Verfahren zum Herstellen eines Breitstreifenlasers umfasst insbesondere die folgenden Schritte:

  • a) Epitaktisches Aufwachsen eines Schichtenstapels auf einem Aufwachssubstrat, wobei der Schichtenstapel eine Oberseite und eine Unterseite aufweist,
  • b) Oberseitiges Ätzen des Schichtenstapels an zwei sich gegenüberliegenden Kanten des Schichtenstapels derart, dass eine Breitstreifenlaserstruktur ausgebildet wird, und
  • c) Oberseitiges Ätzen von Gräben in den Schichtenstapel im Bereich der Breitstreifenlaserstruktur derart, dass Stege ausgebildet werden, die jeweils eine Breite von höchstens 20 µm, bevorzugt von höchstens 10 µm aufweisen, wobei benachbarte Stege einen Abstand von höchstens 20 µm, bevorzugt von höchstens 10 µm zueinander aufweisen.
A method according to the invention for producing a wide-band laser comprises in particular the following steps:
  • a) Epitaxially growing a layer stack on a growth substrate, wherein the layer stack has a top side and a bottom side,
  • b) top etching the layer stack on two opposite edges of the layer stack such that a wide stripe laser structure is formed, and
  • c) top etching of trenches in the stack of layers in the region of the broad strip laser structure such that webs are formed, each having a width of at most 20 .mu.m, preferably of at most 10 .mu.m, wherein adjacent webs a distance of at most 20 .mu.m, preferably of at most 10th Have each other.

Die herkömmlicherweise bekannte Breitstreifenlaserstruktur wird insbesondere in Einzelstreifen, insbesondere einzelne Stege aufgespalten. Durch eine unterschiedliche Breite der Stege und/oder durch eine unterschiedliche Indexführung des Strahlprofils kann die Ausgangsleistung auf die jeweilige Anwendung des Lasers hin optimiert werden. Somit ermöglichen sich eine verbesserte optische Ausgangsleistung, eine verbesserte Strahldichte und eine erhöhte Lebensdauern, wobei insbesondere eine gleichzeitig kontrollierbare Optimierung des Strahlprofils ermöglicht wird.The conventionally known wide-stripe laser structure is split in particular into individual strips, in particular individual webs. By a different width of the webs and / or by a different index guide of the beam profile, the output power can be optimized for the particular application of the laser out. Thus, an improved optical output, improved radiance and increased lifetimes, in particular a simultaneously controllable optimization of the beam profile is made possible.

Weitere Merkmale, Vorteile, bevorzugte Ausgestaltungen und Zweckmäßigkeiten des Breitstreifenlasers und des Verfahrens zu dessen Herstellung ergeben sich aus den im Folgenden in Verbindung mit den Figuren 1 bis 13 erläuterten Ausführungsbeispielen. Es zeigen:

Figuren 1, 3, 4, 8, 10, 11 und 12
jeweils einen schematischen Querschnitt einer Abwandlung eines Breitstreifenlasers,
Figur 6
einen schematischen Querschnitt eines Ausführungsbeispiels eines erfindungsgemäßen Breitstreifenlasers,
Figuren 2, 5 und 9
jeweils ein Herstellungsverfahren zur Herstellung einer Abwandlung eines Breitstreifenlasers,
Figur 7
ein erfindungsgemäßes Herstellungsverfahren zur Herstellung eines Ausführungsbeispiels eines Breitstreifenlasers, und
Figur 13A bis 13C
jeweils eine Aufsicht auf ein Ausführungsbeispiel eines Steges eines erfindungsgemäßen Breitstreifenlasers.
Further features, advantages, preferred embodiments and expediencies of the wide-band laser and the method for its production will become apparent from the following in connection with the FIGS. 1 to 13 explained embodiments. Show it:
FIGS. 1, 3, 4, 8, 10, 11 and 12
each a schematic cross section of a modification of a wide-band laser,
FIG. 6
a schematic cross section of an embodiment of a wideband laser according to the invention,
FIGS. 2, 5 and 9
each a manufacturing method for producing a modification of a wide-band laser,
FIG. 7
an inventive manufacturing method for producing an embodiment of a wide-band laser, and
FIGS. 13A to 13C
in each case a plan view of an embodiment of a web of a wide-band laser according to the invention.

Gleiche oder gleich wirkende Bestandteile sind jeweils mit den gleichen Bezugszeichen versehen. Die dargestellten Bestandteile sowie die Größenverhältnisse der Bestandteile untereinander sind nicht als maßstabsgerecht anzusehen.Identical or equivalent components are each provided with the same reference numerals. The components shown and the size ratios of the components with each other are not to be considered as true to scale.

In Figur 1 ist ein schematischer Querschnitt einer Abwandlung eines Breitstreifenlasers dargestellt, der einen epitaktischen Schichtenstapel 2 mit einer aktiven, strahlungserzeugenden Schicht 21 aufweist. Insbesondere weist der Schichtenstapel 2 eine Oberseite 22 und eine Unterseite 23 auf. Der Schichtenstapel 2 kann beispielsweise auf einem Substrat oder einem Träger angeordnet sein (nicht dargestellt).In FIG. 1 FIG. 3 shows a schematic cross-section of a modification of a wide-band laser comprising an epitaxial layer stack 2 with an active radiation-generating layer 21. In particular, the layer stack 2 has an upper side 22 and a lower side 23. The layer stack 2 may be arranged, for example, on a substrate or a carrier (not shown).

Vorzugsweise weisen die der Unterseite 23 zugewandten Schichten von der aktiven Schicht 21 gesehen eine n-Dotierung auf. Die Schichten des Schichtenstapels 2, die der Oberseite 22 von der aktiven Schicht 21 aus gesehen zugewandt sind, weisen vorzugsweise eine p-Dotierung auf. Als p-Dotierung kann beispielsweise Magnesium oder Zink Verwendung finden.Preferably, the layers facing the underside 23 have an n-doping seen from the active layer 21. The layers of the layer stack 2, that of the top 22 facing from the active layer 21, preferably have a p-type doping. For example, magnesium or zinc can be used as p-doping.

Der Laser ist insbesondere als Breitstreifenlasers 1 ausgebildet. Dabei ist die Laserstruktur so geätzt, dass oberseitig ein schmaler Streifen ausgebildet ist, wodurch mit Vorteil ein starkes Indexguiding durch den Brechungsindexsprung der Laserstruktur zu Luft vorliegt.The laser is designed in particular as a wide-band laser 1. In this case, the laser structure is etched so that a narrow strip is formed on the upper side, whereby there is advantageously a strong index guiding by the refractive index jump of the laser structure to air.

In der Abwandlung zu Figur 1 sind insbesondere die p-dotierten Schichten des Breitstreifenlasers bis auf einen schmalen Streifen entfernt, wodurch die Elektronen lateral eingeschränkt sind und eine Diffusion vermieden wird.In the modification to FIG. 1 In particular, the p-doped layers of the wide-band laser are removed down to a narrow strip, whereby the electrons are laterally restricted and diffusion is avoided.

Der Schichtenstapel 2 weist weiter Gräben 3 auf, in denen wenigstens eine Schicht des Schichtenstapels zumindest teilweise entfernt ist und die von der Oberseite 22 in Richtung Unterseite 23 führen. Der Breitstreifenlaser 1 weist somit oberseitig weitere Ätzbereiche auf, wobei der Breitstreifen der Laserstruktur in Einzelstreifen, so genannte Stege, aufgespalten ist. Der Schichtenstapel 2, insbesondere der Breitstreifen des Breitstreifenlasers 1 ist oberseitig somit streifenförmig ausgebildet.The layer stack 2 also has trenches 3, in which at least one layer of the layer stack is at least partially removed and which lead from the top side 22 in the direction of the bottom side 23. The wide-strip laser 1 thus has further etching areas on the upper side, wherein the wide strip of the laser structure is split into individual strips, so-called webs. The layer stack 2, in particular the wide strip of the wide-band laser 1, is thus strip-shaped on the upper side.

Die Stege 4 weisen vorzugsweise eine Breite von höchstens 20 µm, bevorzugt von höchstens 10 µm, besonders bevorzugt von höchstens 7 µm auf. Die Gräben 3, die benachbarte Stege 4 voneinander trennen, weisen jeweils eine Breite von höchstens 20 µm, bevorzugt von höchstens 10 µm auf. Somit weisen benachbarte Stege 4 jeweils einen Abstand von höchstens 20 µm, bevorzugt von höchstens 10 µm zueinander auf.The webs 4 preferably have a width of at most 20 .mu.m, preferably of at most 10 .mu.m, more preferably of at most 7 .mu.m. The trenches 3, which separate adjacent webs 4 from one another, each have a width of at most 20 .mu.m, preferably of at most 10 .mu.m. Thus, adjacent webs 4 each have a distance of at most 20 .mu.m, preferably of at most 10 .mu.m to each other.

Durch die Aufspaltung des Breitstreifens des Lasers in Stege 4 kann mit Vorteil das Strahlprofil und die Ausgangsleistung auf die jeweilige Anwendung des Lasers hin optimiert werden. Insbesondere kann die Optimierung mittels einer unterschiedlichen Stegbreite und/oder einer unterschiedlichen Indexführung erzielt werden.By splitting the wide stripe of the laser into webs 4, the beam profile and the output power can advantageously be optimized for the particular application of the laser. In particular, the optimization can be achieved by means of a different web width and / or a different index guide.

Der Breitstreifenlaser 1, dessen Breitstreifen in Stege 4 unterteilt ist, ermöglicht mit Vorteil eine verbesserte optische Ausgangsleistung, eine verbesserte Strahldichte und eine verlängerte Lebensdauer. Insbesondere ermöglicht sich gleichzeitig eine kontrollierbare Optimierung des Strahlprofils. Weiter steigert sich mit Vorteil die Effizienz bei hohen Leistungen.The wide-band laser 1, whose wide strip is divided into webs 4, advantageously allows improved optical output power, improved radiance, and extended life. In particular, a controllable optimization of the beam profile is possible at the same time. Furthermore, the efficiency increases at high power with advantage.

Insbesondere kann die Abstrahlcharakteristik eines derartigen Breitstreifenlasers gezielt geformt werden durch beispielsweise eine kontrollierte Steuerung der Einzelemitterdichte (Abstand der Stege), der Laserschwellströme (beispielsweise durch Steuerung der Stromaufweitung über Indexführung und/oder über die unterschiedliche Stegbreite der Einzelemitter), und/oder der Steilheit (beispielsweise über Steuerung der Verluste) oder Kombinationen daraus.In particular, the emission characteristic of such a wide-band laser can be specifically shaped by, for example, controlled control of the single emitter density (distance of the webs), the laser threshold currents (for example, by controlling the current spread over the index guide and / or over the different land width of the individual emitter), and / or the slope ( for example via loss control) or combinations thereof.

Vorzugsweise ist der in Figur 1 dargestellte Breitstreifenlaser 1 ein Kantenemitter.Preferably, the in FIG. 1 Wide strip laser 1 shown an edge emitter.

Die Gräben 3 des Breitstreifenlasers 1 werden beispielsweise mittels eines Ätzprozesses hergestellt. Die Ätztiefe T1 in dem Ausführungsbeispiel der Figur 1 ist insbesondere derart ausgebildet, dass die aktive Schicht 21 nicht geätzt wird, insbesondere keine Gräben 3 durch die aktive Schicht 21 geführt sind. Alternativ können die Gräben 3 die aktive Schicht 21 durchdringen (nicht dargestellt).The trenches 3 of the wide-band laser 1 are produced, for example, by means of an etching process. The etching depth T 1 in the embodiment of the FIG. 1 is in particular designed such that the active layer 21 is not etched, in particular no trenches 3 through the active layer 21 are guided. Alternatively, the trenches 3 may penetrate the active layer 21 (not shown).

In der Abwandlung der Figur 1 weisen die Gräben 3 jeweils eine gleiche Tiefe T1 auf. Die Gräbenbreite d2 beträgt höchstens 20 µm. Insbesondere beträgt der Abstand zwischen zwei benachbarten Stegen 4 so höchstens 20 µm. Die Stege 4 weisen eine Breite d1 von höchstens 20 µm, vorzugsweise 10 µm auf.In the modification of the FIG. 1 the trenches 3 each have an equal depth T 1 . The trench width d 2 is at most 20 μm. In particular, the distance between two adjacent webs 4 is at most 20 μm. The webs 4 have a width d 1 of at most 20 microns, preferably 10 microns.

Auf der Oberseite 22 des Schichtenstapels 2 ist vorzugsweise eine dielektrische Passivierung 9 angeordnet, wobei auf den Stegen 4 keine dielektrische Passivierung 9 angeordnet ist. In Bereichen auf den Stegen 4 weist die dielektrische Passivierung 9 somit jeweils eine Aussparung auf. Bevorzugt ist die dielektrische Passivierung 9 als Schicht ausgebildet.On the upper side 22 of the layer stack 2, a dielectric passivation 9 is preferably arranged, wherein on the webs 4 no dielectric passivation 9 is arranged. In regions on the webs 4, the dielectric passivation 9 thus each has a recess. Preferably, the dielectric passivation 9 is formed as a layer.

Vorzugsweise enthält die dielektrische Passivierung 9 Siliziumdioxid (SiO2), Siliziumnitrid (SiN), Aluminiumoxid (Al2O3), Hafniumoxid (HfO2), Zirconiumoxid (ZrO2 oder Tantaloxid (Ta2O5) .The dielectric passivation 9 preferably contains silicon dioxide (SiO 2 ), silicon nitride (SiN), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 or tantalum oxide (Ta 2 O 5 ).

In den weiteren Figuren 2 bis 13 ist die dielektrische Passivierung 9 jeweils der Übersicht halber nicht dargestellt. Jedoch findet die dielektrische Passivierung 9 auch in den weiteren Figuren 2 bis 13 Anwendung, auch wenn diese nicht explizit gezeigt ist.In the other FIGS. 2 to 13 the dielectric passivation 9 is not shown for the sake of clarity. However, the dielectric passivation 9 also finds in the other FIGS. 2 to 13 Application, even if not explicitly shown.

Auf den Stegen 4 ist jeweils eine Anschlussschicht 5 angeordnet. In der Abwandlung der Figur 1 bedeckt die Anschlussschicht 5 die von der aktiven Schicht 21 abgewandte Seite der Stege jeweils vollständig. Die Anschlussschicht 5 ist somit vorzugsweise jeweils in den Aussparungen der dielektrischen Passivierung 9 angeordnet. Die Anschlussschicht 5 ist bevorzugt ebenso wie die Stege 4 streifenförmig ausgebildet, wobei die Anschlussschicht 5 in der Abwandlung der Figur 1 jeweils in Bereichen der Stege als durchgezogene Schicht ausgebildet ist. Vorzugsweise weist die Anschlussschicht 5 jeweils auf den Stegen keine Aussparungen oder Öffnungen auf.On the webs 4 each have a connection layer 5 is arranged. In the modification of the FIG. 1 the connecting layer 5 completely covers the side of the webs facing away from the active layer 21 in each case. The connection layer 5 is thus preferably in each case in the recesses of dielectric passivation 9 arranged. The connection layer 5 is preferably like the webs 4 strip-shaped, wherein the connection layer 5 in the modification of FIG. 1 is formed in each case in areas of the webs as a continuous layer. Preferably, the connection layer 5 has no recesses or openings on the webs.

Durch die Anschlussschicht 5 sind ebenso wie durch die Stege 4 die Gräben 3 geführt. Die Anschlussschicht 5 ist somit als strukturierte, insbesondere streifenförmige Anschlussschicht ausgebildet, wobei die Streifen der Anschlussschicht 5 mit den Stegen 4 zusammenfallen. Insbesondere weist lediglich die Seite der Stege 4, die von der aktiven Schicht 21 abgewandt ist, die Anschlussschicht 5 auf.Through the connection layer 5 as well as through the webs 4, the trenches 3 are guided. The connection layer 5 is thus formed as a structured, in particular strip-shaped connection layer, the strips of the connection layer 5 coinciding with the webs 4. In particular, only the side of the webs 4, which faces away from the active layer 21, has the connection layer 5.

Die Anschlussschicht 5 weist vorzugsweise ein Metall oder eine Metalllegierung auf.The connection layer 5 preferably comprises a metal or a metal alloy.

Der Breitstreifenlaser der Abwandlung der Figur 1 ermöglicht eine erhöhte optische Ausgangsleistung beziehungsweise Ausgangsleitungsdichte, wobei die Facettenbelastung des Lasers verringert ist, die Lebensdauer mit Vorteil erhöht ist und gleichzeitig ein auf die jeweilige Anwendung hin optimiertes Strahlprofil ermöglicht wird. Insbesondere ermöglicht ein derartig ausgebildeter Breitstreifenlaser es, die Abstrahlcharakteristik gezielt zwischen Vorwärtsstrahlung, Gaußprofil und Rechteckprofil oder Mischungen daraus einzustellen.The broadband laser of the modification of the FIG. 1 allows an increased optical output power or output line density, the facet load of the laser is reduced, the lifetime is increased with advantage and at the same time an optimized for each application beam profile is enabled. In particular, such a broadband laser designed in this way makes it possible to set the emission characteristic specifically between forward radiation, Gaussian profile and rectangular profile or mixtures thereof.

Vorzugsweise können derartige Breitstreifenlaser aufweisend eine kontrollierte Abstrahlcharakteristik in Kombination mit Linsen Verwendung finden (nicht dargestellt). Insbesondere kann mit einer optischen Linse oder einem entsprechenden Linsensystem eine gewünschte Abbildungseigenschaft erzielt werden.Preferably, such wide stripe lasers having a controlled emission characteristic can be used in combination with lenses (not shown). Especially can be achieved with an optical lens or a corresponding lens system, a desired imaging property.

In den Figuren 2A und 2B sind jeweils Herstellungsschritte zur Herstellung eines Breitstreifenlasers gemäß der Abwandlung der Figur 1 dargestellt. Insbesondere zeigt Figur 2A einen herkömmlichen Breitstreifenlaser, bei dem der Schichtenstapel 2 auf der Oberseite 22 derart entfernt ist, dass oberseitig ein Breitstreifen ausgebildet ist.In the FIGS. 2A and 2B are each manufacturing steps for producing a wide-band laser according to the modification of FIG. 1 shown. In particular shows FIG. 2A a conventional wide-stripe laser, in which the layer stack 2 is removed on the upper side 22 such that the upper side, a wide strip is formed.

Vorzugsweise entsteht der Breitstreifen mittels eines ersten Ätzprozesses. Dabei wird die aktive Schicht 21 des Breitstreifenlasers vorzugsweise nicht geätzt.Preferably, the wide strip is formed by means of a first etching process. In this case, the active layer 21 of the wide-band laser is preferably not etched.

Oberseitig weist der Schichtenstapel 2 eine Anschlussschicht 5 zur elektrischen Kontaktierung des Breitstreifenlasers auf. Unterseitig kann ein Substrat oder ein Träger angeordnet sein (nicht dargestellt), wobei unterseitig zur elektrischen Kontaktierung des Breitstreifenlasers bevorzugt eine weitere Anschlussschicht angeordnet ist (nicht dargestellt).On the upper side, the layer stack 2 has a connection layer 5 for electrical contacting of the wide-area laser. On the underside, a substrate or a support may be arranged (not shown), wherein on the underside for the electrical contacting of the wide-area laser preferably a further connection layer is arranged (not shown).

Nachfolgend der Herstellung der Breitstreifenlaserstruktur werden in dem oberseitig angeordneten Breitstreifen Gräben 3 geätzt, sodass der Breitstreifen in Stege 4 aufgespalten, beziehungsweise unterteilt ist, siehe Figur 2B. Die Stege 4 weisen dabei vorzugsweise eine Breite d1 von höchstens 20 µm, besonders bevorzugt von höchstens 10 µm auf. Die Ätzbreite, also die Gräbenbreite d2, weist vorzugsweise höchstens 20 µm, bevorzugt höchstens 10 µm auf. Zwei benachbarte Stege 4 sind insbesondere somit höchstens in einem Abstand von 20 µm, bevorzugt von höchstens 10 µm zueinander angeordnet. Die Ätztiefe T1 der einzelnen Gräben 3 ist in dem Ausführungsbeispiel der Figuren 1 und 2 jeweils in etwa gleich groß. Insbesondere ist die Ätztiefe T1 derart ausgebildet, dass die aktive Schicht 21 des Breitstreifenlasers nicht durchdrungen beziehungsweise geätzt ist.Following the production of the wide-strip laser structure, trenches 3 are etched in the wide strip arranged on the upper side, so that the wide strip is split or divided into webs 4, see FIG FIG. 2B , The webs 4 preferably have a width d 1 of at most 20 .mu.m, more preferably of at most 10 .mu.m. The etching width, that is to say the trench width d 2 , preferably has at most 20 μm, preferably at most 10 μm. Two adjacent webs 4 are therefore in particular thus arranged at most at a distance of 20 μm, preferably of at most 10 μm, from each other. The etching depth T 1 of the individual trenches 3 is in the Embodiment of Figures 1 and 2 each about the same size. In particular, the etching depth T 1 is formed such that the active layer 21 of the wide-band laser is not penetrated or etched.

Die herkömmlicherweise bekannte Breitstreifenlaserstruktur wird somit in der Abwandlung der Figur 2 mittels eines weiteren Ätzprozesses in mehrere gleich breite, äquidistante, gleich tief geätzte Stege 4 aufgespalten.The conventionally known wide-stripe laser structure is thus in the modification of FIG. 2 split into a plurality of equal width, equidistant, deeply etched webs 4 by means of a further etching process.

Alternativ können die Herstellung des Breitstreifens sowie die Herstellung der Stege 4, also die jeweiligen Ätzprozesse, in einem Ätzschritt erfolgen.Alternatively, the production of the wide strip and the production of the webs 4, ie the respective etching processes, can be carried out in one etching step.

Die Abwandlung der Figur 3 unterscheidet sich von der Abwandlung der Figur 1 dadurch, dass benachbarte Stege 4 zumindest teilweise in einem unterschiedlichen Abstand zueinander angeordnet sind. Vorzugsweise weisen benachbarte innere Stege 4a einen größeren Abstand zueinander auf als benachbarte äußere Stege 4b. Der Abstand der Stege 4a, 4b zueinander weist jedoch höchstens 20 µm, vorzugsweise 10 µm auf. Durch die unterschiedlichen Abstände benachbarter Stege 4a, 4b kann der unterschiedlichen thermischen Belastung entgegengewirkt werden. Dadurch erhöht sich mit Vorteil die Lebensdauer eines derartigen Breitstreifenlasers.The modification of FIG. 3 is different from the modification of FIG. 1 in that adjacent webs 4 are at least partially arranged at a different distance from each other. Preferably, adjacent inner webs 4a have a greater distance from each other than adjacent outer webs 4b. The distance of the webs 4a, 4b to each other, however, has at most 20 microns, preferably 10 microns. Due to the different distances of adjacent webs 4a, 4b, the different thermal load can be counteracted. This advantageously increases the service life of such a broadband laser.

Die Abwandlung der Figur 4 unterscheidet sich von der Abwandlung der Figur 1 dadurch, dass die Gräben 3 in der Breitstreifenstruktur des Lasers eine geringere Ätztiefe T1 aufweisen. Insbesondere durchdringen die Gräben 3 die Breitstreifenstruktur des Lasers nicht vollständig. Die Tiefe T2 der Breitstreifenstruktur des Lasers ist demnach größer als die Tiefe T1 der Gräben 3.The modification of FIG. 4 is different from the modification of FIG. 1 in that the trenches 3 have a smaller etching depth T 1 in the broad-band structure of the laser. In particular, the trenches 3 do not completely penetrate the broad stripe structure of the laser. The depth T 2 of the broad-band structure of the laser is therefore greater than the depth T 1 of the trenches 3.

Die Breitstreifenstruktur ist somit in mehrere gleich breite, äquidistante Stege 4 aufgespalten, wobei die indexdefinierende Ätztiefe T1 zwischen den Stegen 4 geringer ist als außerhalb des ursprünglichen Breitstreifens, um der stärkeren Facettenbelastung der mittleren Stege durch eine höhere Stromaufweitung entgegenzuwirken. Der Ätztiefenunterschied T1 zu T2 verläuft vorzugsweise stufenförmig.The wide-strip structure is thus split into a plurality of equidistant, equidistant webs 4, wherein the index-defining etch depth T 1 between the webs 4 is less than outside the original wide stripe to counteract the stronger facet load of the middle webs by a higher current widening. The Ätztiefenunterschied T 1 to T 2 preferably runs in steps.

In den Figuren 5A bis 5D sind einzelne Herstellungsschritte zur Herstellung eines Breitstreifenlasers gemäß der Abwandlung der Figur 4 dargestellt.In the FIGS. 5A to 5D are individual manufacturing steps for producing a wide-band laser according to the modification of FIG. 4 shown.

In Figur 5A ist ein Schichtenstapel 2 aufweisend eine aktive, strahlungserzeugende Schicht 21, eine Oberseite 22 und eine Unterseite 23 gezeigt. An der Oberseite 22 wird, wie in Figur 5B dargestellt, mittels eines ersten Ätzprozesses eine Breitstreifenstruktur ausgebildet. Die Ätzungen führen vorzugsweise nicht durch die aktive Schicht 21. Der erste Ätzschritt erfolgt insbesondere mittels eines Fotolacks 6, der auf der Oberseite 22 des Lasers ausgebildet ist.In FIG. 5A a layer stack 2 comprising an active radiation-generating layer 21, an upper side 22 and a lower side 23 is shown. At the top 22, as in FIG. 5B represented, formed by means of a first etching process, a wide strip structure. The etches preferably do not pass through the active layer 21. The first etching step takes place in particular by means of a photoresist 6 which is formed on the upper side 22 of the laser.

Alternativ kann der erste Ätzschritt an Stelle des Fotolacks mittels einer Ätzmaske erfolgen, die auf der Oberseite 22 des Lasers ausgebildet ist. Die Ätzmaske kann beispielsweise eine dielektrische oder metallische Hartmaske sein.Alternatively, the first etching step instead of the photoresist by means of an etch mask, which is formed on the upper side 22 of the laser. The etching mask may be, for example, a dielectric or metallic hard mask.

In einem weiteren Ätzprozess werden Gräben 3 in die Breitstreifenstruktur geätzt, wie in Figur 5C dargestellt. Dabei ist in diesem Fall die Ätztiefe der Gräben 3 geringer als die Ätztiefe der Breitstreifenstruktur.In a further etching process, trenches 3 are etched into the wide stripe structure, as in FIG FIG. 5C shown. In this case, the etching depth of the trenches 3 is less than the etching depth of the wide strip structure in this case.

Alternativ können die Herstellung des Breitstreifens sowie die Herstellung der Stege 4, insbesondere der erste Ätzprozess und der weitere Ätzprozess in einem Ätzschritt erfolgen.Alternatively, the production of the wide strip and the production of the webs 4, in particular the first etching process and the further etching process can be carried out in one etching step.

Im letzten Verfahrensschritt wird, wie in Figur 5D dargestellt, der Fotolack 6 entfernt, wobei auf den Stegen 4 eine Anschlussschicht 5 angeordnet wird.In the last step, as in FIG. 5D represented, the photoresist 6 is removed, wherein on the webs 4, a connection layer 5 is arranged.

Das Ausführungsbeispiel der Figur 6 unterscheidet sich von der Abwandlung der Figur 4 dadurch, dass die Gräben 3 jeweils eine Grundfläche 31 aufweisen, die jeweils eine Krümmung aufweist. Die Krümmung der Grundfläche 31 ist vorzugsweise jeweils linsenförmig ausgebildet. Insbesondere weisen die Krümmungen der Grundflächen 31 zusammen eine konvexe Linsenform auf.The embodiment of FIG. 6 is different from the modification of FIG. 4 in that the trenches 3 each have a base 31, which in each case has a curvature. The curvature of the base 31 is preferably formed in each case lens-shaped. In particular, the curvatures of the base surfaces 31 together have a convex lens shape.

Die Gräben 3 weisen somit in dem Ausführungsbeispiel der Figur 6 eine unterschiedliche Tiefe auf. Insbesondere wird die Breitstreifenstruktur in mehrere gleich breite, äquidistante Stege 4 aufgespalten, wobei die indexdefinierende Ätztiefe zwischen den Stegen geringer ist als außerhalb des ursprünglichen Breitstreifens, um der stärkeren Facettenbelastung der mittleren Stege durch eine höhere Stromaufweitung entgegenzuwirken. Der Ätztiefenunterschied verläuft in diesem Fall vorzugsweise graduell.The trenches 3 thus have in the embodiment of FIG. 6 a different depth. In particular, the wide-strip structure is split into a plurality of equidistant, equidistant webs 4, wherein the index-defining etch depth between the webs is less than outside the original wide stripe, to counteract the stronger facet load of the middle webs by a higher current expansion. The etch depth difference in this case is preferably gradual.

In den Figuren 7A bis 7D sind Herstellungsschritte eines Breitstreifenlasers gemäß dem Ausführungsbeispiel der Figur 6 dargestellt.In the FIGS. 7A to 7D are manufacturing steps of a wide-band laser according to the embodiment of FIG. 6 shown.

Wie in Figur 7A dargestellt, ist auf den Schichtenstapel 2, insbesondere auf der Oberseite 22 des Schichtenstapels 2, eine Ätzhilfsmaske 8 aufgebracht. Auf der Ätzhilfsmaske 8 ist ein Fotolack 7 angeordnet, der durch eine thermische Behandlung vorzugsweise verfließt. Durch den verfließenden Fotolack kann eine linsenförmige Struktur der Ätzhilfsmaske hergestellt werden. Insbesondere wird so die Ätzhilfsmaske linsenförmig strukturiert, wie in Figur 7B dargestellt. Diese Strukturierung erfolgt vorzugsweise mittels einer trockenchemischen Übertragung auf die Ätzhilfsmaske 8.As in FIG. 7A 1, an etching auxiliary mask 8 is applied to the layer stack 2, in particular on the upper side 22 of the layer stack 2. On the Ätzhilfsmaske 8 a photoresist 7 is arranged, which preferably flows through a thermal treatment. Due to the flowing photoresist, a lenticular structure of the etching auxiliary mask can be produced. In particular, the etching aid mask is thus structured in a lens-shaped manner, as in FIG FIG. 7B shown. This structuring is preferably carried out by means of a dry chemical transfer to the etching auxiliary mask 8.

Im nächsten Verfahrensschritt wird, wie in Figur 7C dargestellt, eine streifenförmige Lackstruktur 6 auf die linsenförmige Ätzhilfsmaske 8 aufgebracht. Anschließend wird mittels eines weiteren Ätzprozesses eine Einzelstreifenstruktur mit gradueller Indexführung ausgebildet, wie in Figur 7D dargestellt. Insbesondere werden so in dem Schichtenstapel 2 oberseitig Stege 4 und Gräben 3 ausgebildet, wobei die Gräben 3 eine Grundfläche 31 mit jeweils einer Krümmung aufweisen.In the next step, as in FIG. 7C shown, a strip-shaped paint structure 6 applied to the lens-shaped etching auxiliary mask 8. Subsequently, by means of a further etching process, a single stripe structure with a graded index guide is formed, as in FIG Figure 7D shown. In particular, webs 4 and trenches 3 are formed in the layer stack 2 on the upper side, wherein the trenches 3 have a base surface 31, each having a curvature.

Die Abwandlung der Figur 8 unterscheidet sich von der Abwandlung der Figur 4 dadurch, dass die Gräben 3 eine größere Tiefe, insbesondere eine größere Ätztiefe T1 aufweisen als die Breitstreifenstruktur des Lasers (Tiefe T2). Insbesondere wird die Breitstreifenstruktur in mehrere gleich breite, äquidistante Stege 4 aufgespalten, wobei die indexdefinierende Ätztiefe T1 zwischen den Stegen 4 graduell oder stufenförmig höher ist als außerhalb des ursprünglichen Breitstreifens, wodurch über die ätztiefenabhängige Steilheit mit Vorteil gezielt das Strahlprofil des Lasers gesteuert werden kann.The modification of FIG. 8 is different from the modification of FIG. 4 in that the trenches 3 have a greater depth, in particular a larger etching depth T 1 , than the broad-band structure of the laser (depth T 2 ). In particular, the wide-strip structure is split into a plurality of equidistant, equidistant webs 4, wherein the index-defining etching depth T 1 between the webs 4 is gradually or stepwise higher than outside the original Breitstreifens, which can be controlled by the Ätzeniefenabhängige steepness with advantage targeted the beam profile of the laser.

In den Figuren 9A bis 9D sind jeweils Herstellungsschritte zur Herstellung eines Breitstreifenlasers gemäß der Abwandlung der Figur 8 dargestellt.In the FIGS. 9A to 9D are each manufacturing steps for producing a wide-band laser according to the modification of FIG. 8 shown.

Ähnlich wie in den Abwandlungen der Figuren 5A bis 5D findet hierbei ein mehrstufiger Ätzprozess Anwendung. Auf den Schichtenstapel 2 wird im Randbereich ein Fotolack 6 aufgebracht, siehe Figur 9B, wobei hier ein erster Ätzprozess stattfindet, der einen ersten Ätzbereich 9 oberseitig des Schichtenstapels 2 ausbildet. Anschließend wird eine streifenförmige Lackstruktur in Bereichen des ersten Ätzprozesses 9 auf die Oberseite 22 des Schichtenstapels 2 aufgebracht, wobei anschließend ein zweiter Ätzprozess stattfindet, der Gräben 3 in die Oberseite 22 des Schichtenstapels 2 ätzt. Dabei werden die Gräben 3 im Unterschied zu der Abwandlung der Figuren 5A bis 5d derart tief geätzt, dass die Ätztiefe T1 höher ist als die Ätztiefe T2 der Breitstreifenstruktur, siehe Figur 9C. Im nächsten Verfahrensschritt wird die streifenförmige Lackstruktur 6 entfernt, wobei eine Anschlussschicht 5 jeweils auf die Stege 4 aufgebracht wird, siehe Figur 9D.Similar to the modifications of the FIGS. 5A to 5D In this case, a multi-stage etching process is used. On the layer stack 2, a photoresist 6 is applied in the edge region, see FIG. 9B , where here a first etching process takes place, which forms a first etching region 9 on the upper side of the layer stack 2. Subsequently, a strip-shaped lacquer structure is applied to the upper side 22 of the layer stack 2 in regions of the first etching process 9, with a second etching process subsequently taking place, which etches trenches 3 into the upper side 22 of the layer stack 2. In this case, the trenches 3, in contrast to the modification of FIGS. 5A to 5D etched so deeply that the etch depth T 1 is higher than the etch depth T 2 of the wide stripe structure, see FIG. 9C , In the next method step, the strip-shaped lacquer structure 6 is removed, wherein a connection layer 5 is applied in each case to the webs 4, see FIG. 9D ,

Die Abwandlung der Figur 10 unterscheidet sich von der Abwandlung der Figur 1 dadurch, dass die Stege 4 eine unterschiedliche Breite b1, b2 aufweisen. Vorzugsweise weisen innere Stege eine größere Breite b1 auf als äußerer Stege (Breite b2).The modification of FIG. 10 is different from the modification of FIG. 1 in that the webs 4 have a different width b 1 , b 2 . Inner webs preferably have a larger width b 1 than outer webs (width b 2 ).

Der Breitstreifenlaser gemäß der Abwandlung der Figur 10 weist somit mehrere äquidistante, gleich tief geätzte, unterschiedlich breite Stege 4 auf, wodurch einem unterschiedlichen Anschwingen, das bedingt ist durch eine unterschiedliche thermische Belastung, mit Vorteil entgegengewirkt werden kann. Dadurch kann mit Vorteil das Strahlprofil des Lasers gezielt beeinflusst werden.The broadband laser according to the modification of FIG. 10 thus has a plurality of equidistant, deep etched, different width webs 4, whereby a different oscillation, which is due to a different thermal load, can be counteracted with advantage. As a result, the beam profile of the laser can advantageously be influenced in a targeted manner.

Die Abwandlung der Figur 11 unterscheidet sich von der Abwandlung der Figur 1 dadurch, dass die Anschlussschicht 51, 52, die jeweils auf den Stegen 4 angeordnet ist, strukturiert ist. Insbesondere weist die Anschlussschicht 51, 52 im Unterschied zu der in Figur 1 dargestellten Anschlussschicht eine entlang des jeweiligen Steges 4 geführte Öffnung 5c auf. Die Anschlussschicht 51, 52 auf den jeweiligen Stegen 4 ist demnach streifenförmig ausgebildet, wobei in diesem Fall die Anschlussschicht 51, 52 zwei auf den Stegen 4 seitlich angeordnete Streifen 51, 52 aufweist. Zwischen den Streifen 51, 52 ist die Öffnung 5c der Anschlussschicht ausgebildet, sodass bereichsweise auf den Stegen 4 keine Anschlussschicht 51, 52 angeordnet ist, insbesondere im mittleren Bereich der Stege 4.The modification of FIG. 11 is different from the modification of FIG. 1 in that the connection layer 51, 52, which is respectively arranged on the webs 4, is structured. In particular, the terminal layer 51, 52, in contrast to the in FIG. 1 shown connection layer guided along the respective web 4 opening 5c. Accordingly, the connection layer 51, 52 on the respective webs 4 is strip-shaped, in which case the connection layer 51, 52 has two strips 51, 52 arranged laterally on the webs 4. Between the strips 51, 52, the opening 5c of the connection layer is formed, so that no connection layer 51, 52 is arranged in regions on the webs 4, in particular in the middle region of the webs 4.

Die Anschlussschicht 51, 52 setzt sich somit vorzugsweise aus gewinngeführten Streifen, insbesondere Metallisierungsstreifen, zusammen.The connection layer 51, 52 is thus preferably composed of profit-guided strips, in particular metallization strips.

Eine Aufsicht auf eine derartig ausgebildete Anschlussschicht ist beispielsweise in Figur 13C dargestellt. Der Steg 4 weist seitlich zwei Anschlussschichten 51, 52 auf, die entlang des Steges 4 geführt sind und insbesondere durchgezogen sind. Mittig entlang des Steges 4 ist keine Anschlussschicht angeordnet.A view of such a trained connection layer is, for example, in FIG. 13C shown. The web 4 has laterally two connection layers 51, 52, which are guided along the web 4 and in particular are pulled through. No connection layer is arranged centrally along the web 4.

Die Abwandlung der Figur 12 unterscheidet sich von der Abwandlung der Figur 11 dadurch, dass die Stege bereichsweise, insbesondere in den Bereichen, in denen keine Anschlussschicht 5 aufgebracht ist, weitere Ätztiefen aufweisen. Die Anschlussschicht 5 ist insbesondere jeweils an einem seitlichen Bereich der Stege 4 angeordnet, sodass die weiteren Ätztiefen mittig der Stege 4 ausgebildet sind. Die Ätztiefen führen vertikal insbesondere nicht vollständig durch die Stege 4 hindurch.The modification of FIG. 12 is different from the modification of FIG. 11 in that the webs in regions, in particular in the areas in which no connection layer 5 is applied, have further etching depths. The connection layer 5 is in particular arranged in each case on a lateral region of the webs 4, so that the further etching depths are formed centrally of the webs 4. In particular, the etching depths do not lead completely vertically through the webs 4.

In den Ausführungsbeispielen der Figuren 13A bis 13C ist jeweils eine Aufsicht auf einen Steg 4 dargestellt. Insbesondere zeigen die Ausführungsbeispiele der Figuren 13A bis 13C jeweils zusätzliche Modifizierungen der Anschlussschicht 5.In the embodiments of the FIGS. 13A to 13C in each case a plan view of a web 4 is shown. In particular, the embodiments of the show FIGS. 13A to 13C in each case additional modifications of the connection layer 5.

In Figur 13A ist die Anschlussschicht 5 als nicht vollständig durchgezogene Anschlussschicht ausgebildet. Insbesondere ist die Anschlussschicht 5 auf den Stegen 4 jeweils als von zwei sich gegenüberliegenden Kanten 5a, 5b der Stege 4 zurückgezogene Anschlussschicht 5 ausgebildet. Die Stege 4 weisen demnach im Kantenbereich 5a, 5b keine Anschlussschicht 5 auf. Dadurch können gezielt Bereiche mit einer höheren Absorption erzeugt werden.In FIG. 13A the connection layer 5 is formed as a not completely drawn through connection layer. In particular, the connection layer 5 is formed on the webs 4 in each case as a connecting layer 5 which is drawn back from two mutually opposite edges 5a, 5b of the webs 4. The webs 4 therefore have no connection layer 5 in the edge region 5a, 5b. This allows specific areas with a higher absorption can be generated.

Das Ausführungsbeispiel der Figur 13B unterscheidet sich von dem Ausführungsbeispiel der Figur 13A dadurch, dass die Anschlussschicht 5 Öffnungen 5c aufweist. Insbesondere weist die Anschlussschicht 5 mehrere Öffnungen 5c quer zum Steg 4 auf.The embodiment of FIG. 13B differs from the embodiment of FIG. 13A in that the connection layer 5 has openings 5c. In particular, the connection layer 5 has a plurality of openings 5c transversely to the web 4.

Im Unterschied dazu weist das Ausführungsbeispiel der Figur 13C eine Öffnung 5c entlang des Steges 4 auf. Die Anschlussschicht 5 ist demnach in zwei Streifen 51, 52 aufgespalten, die sich entlang des Steges 4 erstrecken.In contrast, the embodiment of the FIG. 13C an opening 5c along the web 4. The connection layer 5 is therefore split into two strips 51, 52, which extend along the web 4.

Alternativ zu einer Anschlussschicht 5, die Öffnungen 5c aufweist, kann zwischen der Anschlussschicht 5 und den Stegen 4 eine Passivierungsschicht angeordnet sein (nicht dargestellt). Die Passivierungsschicht ist insbesondere elektrisch isolierend, sodass die Anschlussschicht 5 ganzflächig ausgebildet sein kann, wobei der elektrische Kontakt zwischen Anschlussschicht 5 und Steg 4 mittels der Passivierungsschicht nicht ganzflächig ausgebildet ist. Insbesondere findet in Bereichen der Passivierungsschicht kein elektrischer Kontakt zwischen Anschlussschicht 5 und Steg 4 statt. Beispielsweise enthält die Passivierungsschicht Siliziumdioxid (SiO2), Siliziumnitrid (SiN), Aluminiumoxid (Al2O3), Hafniumoxid (HfO2), Zirconiumoxid (ZrO2) oder Tantaloxid (Ta2O5).As an alternative to a connection layer 5, which has openings 5c, a passivation layer may be arranged between the connection layer 5 and the webs 4 (not shown). The passivation layer is in particular electrically insulating, so that the connection layer 5 can be formed over the entire surface, wherein the electrical contact between the connection layer 5 and the bridge 4 is not formed over the entire surface by means of the passivation layer. In particular, in areas of the passivation layer no electrical contact between the connection layer 5 and the web 4 takes place. For example, the passivation layer contains silicon dioxide (SiO 2 ), silicon nitride (SiN), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ) or tantalum oxide (Ta 2 O 5 ).

Ferner kann eine Mehrzahl von Breitstreifenlasern gemäß den Ausführungsbeispielen der Breitstreifenlaser der Figuren 1, 3, 4, 6, 8, 10, 11 oder 12 nebeneinander als voneinander getrennte Arrays angeordnet ein, wobei die Abstände zwischen benachbarten Arrays jeweils vorzugsweise größer als 20 µm sind (nicht dargestellt).Furthermore, a plurality of wide-band lasers according to the embodiments of the broad-band laser of FIGS. 1 . 3 . 4 . 6 . 8th . 10, 11 or 12 arranged side by side as a separate arrays, wherein the distances between adjacent arrays are each preferably greater than 20 microns (not shown).

Claims (15)

  1. A broad stripe laser (1) comprising an epitaxial layer stack (2), which contains an active, radiation-generating layer (21) and has a top side (22) and an underside (23), wherein
    - the broad stripe laser (1) has a broad stripe structure having a broad stripe arranged on the top side,
    - the layer stack (2) has trenches (3) in which at least one layer of the layer stack (2) is at least partly removed and which lead from the top side (22) in the direction of the underside (23),
    - the layer stack (2) has on the top side ridges (4) each adjoining the trenches (3), such that the layer stack (2) is embodied in striped fashion on the top side, and such that the broad stripe is split into index-guided adjacent individual stripes, the ridges (4),
    - the broad stripe laser (1) is an edge emitter, and
    - the ridges (4) and the trenches (3) respectively have a width (d1, d2) of at most 20 µm characterized in that the trenches (3) each have a base area (31) and the base area (31) has a curvature in each case.
  2. Broad stripe laser according to Claim 1, wherein
    at least one layer of the layer stack (2) on that side of the active, radiation-generating layer (21) which faces the underside (23) is n-doped and at least one layer of the layer stack (2) on that side of the active, radiation-generating layer (21) which faces the top side (22) is p-doped and the trenches (3) are formed in the p-doped layer or the p-doped layers of the layer stack (2).
  3. Broad stripe laser according to either of the preceding claims, wherein
    the layer stack is based on the InGaAlN material system.
  4. Broad stripe laser according to any of the preceding claims, wherein
    the trenches (3) penetrate through the active layer.
  5. Broad stripe laser according to any of the preceding claims, wherein
    the ridges (4) have a width (d1) of less than 7 µm and adjacent ridges (4) have a distance (d2) from one another of at most 10 µm.
  6. Broad stripe laser according to any of the preceding claims, wherein
    the trenches (3) have a different depth at least in part.
  7. Broad stripe laser according to any of the preceding claims, wherein
    adjacent ridges (4) are in each case arranged at an identical distance from one another.
  8. Broad stripe laser according to any of the preceding Claims 1 to 6, wherein
    adjacent ridges (4) are arranged at a different distance from one anther at least in part, wherein adjacent inner ridges (4a) are at a greater distance from one another than adjacent outer ridges (4b).
  9. Broad stripe laser according to any of the preceding claims, wherein
    the ridges (4) have a different width (b1, b2) at least in part.
  10. Broad stripe laser according to any of the preceding claims, wherein
    the base areas (31) of the trenches (3) together form a convex lens shape.
  11. Broad stripe laser according to any of the preceding claims, wherein
    a connection layer (5) is arranged at least in regions in each case on the ridges (4).
  12. Broad stripe laser according to Claim 11, wherein
    the connection layer (5) is formed on the ridges (4) in each case as a connection layer (5) drawn back from two opposite edges (5a, 5b) of the layer stack (2).
  13. Broad stripe laser according to Claim 11 or 12, wherein
    the connection layer (5) is formed on the ridges (4) in each case as a connection layer (5) provided with one or more openings (5c).
  14. Broad stripe laser according to any of the preceding Claims 11 to 13, wherein
    a passivation layer is arranged in the regions between the ridges (4) and the connection layer (5).
  15. Method for producing a broad stripe laser (1) according to any of the preceding claims, comprising the following method steps:
    - epitaxial growth of a layer stack (2) on a growth substrate, wherein the layer stack (2) has a top side (22) and an underside (23),
    - top-side etching of the layer stack (2) at two opposite edges (24a, 24b) of the layer stack (2) in such a way that a broad stripe laser structure is formed,
    - top-side etching of trenches (3) in the layer stack (2) in the region of the broad stripe laser structure in such a way that ridges (4) are formed, each having a width (d1) of at most 20 µm, wherein adjacent ridges (4) are at a distance (d2) from one another of at most 20 µm.
EP10740507.8A 2009-07-31 2010-06-28 Broad stripe laser having an epitaxial layer stack and method for producing the same Active EP2460241B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009035639.8A DE102009035639B4 (en) 2009-07-31 2009-07-31 Broad strip laser with an epitaxial layer stack and method for its production
PCT/DE2010/000751 WO2011012100A1 (en) 2009-07-31 2010-06-28 Broad area laser having an epitaxial stack of layers and method for the production thereof

Publications (2)

Publication Number Publication Date
EP2460241A1 EP2460241A1 (en) 2012-06-06
EP2460241B1 true EP2460241B1 (en) 2013-08-07

Family

ID=42734568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10740507.8A Active EP2460241B1 (en) 2009-07-31 2010-06-28 Broad stripe laser having an epitaxial layer stack and method for producing the same

Country Status (8)

Country Link
US (1) US8619833B2 (en)
EP (1) EP2460241B1 (en)
JP (1) JP5701296B2 (en)
KR (2) KR101714596B1 (en)
CN (1) CN102474078B (en)
DE (1) DE102009035639B4 (en)
TW (1) TWI416829B (en)
WO (1) WO2011012100A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010020625B4 (en) 2010-05-14 2024-02-22 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Method for producing an edge-emitting semiconductor laser
US10179918B2 (en) 2015-05-07 2019-01-15 Sangamo Therapeutics, Inc. Methods and compositions for increasing transgene activity
US9800020B2 (en) 2015-06-17 2017-10-24 Ii-Vi Laser Enterprise Gmbh Broad area laser including anti-guiding regions for higher-order lateral mode suppression
DE102018106685A1 (en) 2018-03-21 2019-09-26 Osram Opto Semiconductors Gmbh SEMICONDUCTOR LASER AND PROJECTOR
CN108400522A (en) * 2018-04-27 2018-08-14 中国科学院半导体研究所 The preparation method of Wavelength stabilized Distributed Feedback Laser and apodization grating
JP7407027B2 (en) 2020-03-09 2023-12-28 パナソニックホールディングス株式会社 semiconductor light emitting device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400813A (en) * 1981-07-20 1983-08-23 Bell Telephone Laboratories, Incorporated Crenelated-ridge waveguide laser
US4525841A (en) * 1981-10-19 1985-06-25 Nippon Electric Co., Ltd. Double channel planar buried heterostructure laser
JPS6257275A (en) 1985-09-06 1987-03-12 Sharp Corp Semiconductor laser array device
JPH0821759B2 (en) * 1987-06-22 1996-03-04 日本電信電話株式会社 Semiconductor laser array
JPH01175281A (en) 1987-12-29 1989-07-11 Sharp Corp Semiconductor laser array device
JPH03196588A (en) * 1989-12-26 1991-08-28 Sony Corp Semiconductor laser diode
JPH05190972A (en) * 1992-01-13 1993-07-30 Eastman Kodak Japan Kk Laser diode
JPH06326412A (en) * 1993-05-17 1994-11-25 Mitsubishi Electric Corp Semiconductor laser device
JPH0854049A (en) * 1994-08-10 1996-02-27 Mitsuba Electric Mfg Co Ltd Actuator
GB2388958B (en) 2002-05-25 2005-08-31 Marconi Corp Plc Optical device
JP2004172252A (en) * 2002-11-19 2004-06-17 Sony Corp Semiconductor laser device and array-type semiconductor laser device
JP2005005511A (en) 2003-06-12 2005-01-06 Fanuc Ltd Semiconductor laser apparatus
EP1710876B1 (en) * 2003-12-22 2009-12-02 Panasonic Corporation Semiconductor laser device and laser projector
GB2432456A (en) * 2005-11-21 2007-05-23 Bookham Technology Plc High power semiconductor laser diode
JP4911957B2 (en) 2005-12-02 2012-04-04 シャープ株式会社 Semiconductor laser device and application system
JP2007258260A (en) 2006-03-20 2007-10-04 Kyoto Univ Two-dimensional photonic crystal surface-emitting laser
US7949031B2 (en) 2006-06-16 2011-05-24 Pbc Lasers Gmbh Optoelectronic systems providing high-power high-brightness laser light based on field coupled arrays, bars and stacks of semicondutor diode lasers
JP2009088425A (en) 2007-10-03 2009-04-23 Sony Corp Semiconductor laser, and manufacturing method therefor
DE102008012859B4 (en) * 2007-12-21 2023-10-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Laser light source with a filter structure

Also Published As

Publication number Publication date
DE102009035639A1 (en) 2011-02-17
KR101714596B1 (en) 2017-03-09
TW201115870A (en) 2011-05-01
US20120213241A1 (en) 2012-08-23
CN102474078B (en) 2014-09-17
CN102474078A (en) 2012-05-23
JP2013501347A (en) 2013-01-10
KR20120043037A (en) 2012-05-03
KR20170027884A (en) 2017-03-10
WO2011012100A1 (en) 2011-02-03
TWI416829B (en) 2013-11-21
JP5701296B2 (en) 2015-04-15
KR101824613B1 (en) 2018-02-01
DE102009035639B4 (en) 2019-10-24
US8619833B2 (en) 2013-12-31
EP2460241A1 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
DE112017003576B4 (en) Semiconductor laser diode with a trench structure
DE102011100175B4 (en) Laser light source with a ridge waveguide structure and a mode filter structure
EP2460241B1 (en) Broad stripe laser having an epitaxial layer stack and method for producing the same
DE102013114226B4 (en) A semiconductor laser diode, a method of manufacturing a semiconductor laser diode and a semiconductor laser diode array
DE102010046793B4 (en) Edge-emitting semiconductor laser diode and method for its manufacture
DE102016125857B4 (en) semiconductor laser diode
DE102009054564A1 (en) A laser diode array and method of making a laser diode array
DE102008013896A1 (en) Laser light source
DE102012220911A1 (en) Semiconductor laser with improved current conduction
DE102006011284A1 (en) Semiconductor laser device, has pumping radiation source and vertical section is configured so as to be index guiding for pumping radiation in lateral direction perpendicular to main direction of pumping radiation
JP2013501347A5 (en)
EP2617110B1 (en) Laser diode with high efficiency
DE102005036820A1 (en) Solid state vertical laser has current blocking and transmitting regions formed in layered structure
EP3918679A1 (en) Device for generating a laser beam
DE102013223499A1 (en) Wide-band laser and method for producing a wide-band laser
DE102010045782B4 (en) Method for producing an edge-emitting semiconductor laser and edge-emitting semiconductor laser
DE102016110790B4 (en) semiconductor laser diode
DE112016001301B4 (en) laser diode
DE112022002708T5 (en) METHOD FOR PRODUCING A SEMICONDUCTOR COMPONENT AND SEMICONDUCTOR COMPONENT
DE102021100391A1 (en) EDGE EMITTING SEMICONDUCTOR LASER DIODE AND METHOD FOR MANUFACTURING AN EDGE EMITTING SEMICONDUCTOR LASER DIODE
DE102021109986A1 (en) Method of manufacturing a light-emitting semiconductor chip and light-emitting semiconductor chip
WO2022100951A2 (en) Method for producing a plurality of semiconductor lasers, and semiconductor laser
WO2022243025A1 (en) Method for producing a semiconductor laser diode, and semiconductor laser diode
DE102021125119A1 (en) EDGE EMITTING SEMICONDUCTOR LASER DIODES AND PROCESSES FOR MANUFACTURING A VARIETY OF EDGE EMITTING SEMICONDUCTOR LASER DIODES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LELL, ALFRED

Inventor name: RAMMELSBERGER, STEFANIE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 626113

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010004297

Country of ref document: DE

Effective date: 20131002

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130807

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131207

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010004297

Country of ref document: DE

Effective date: 20140508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140628

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140628

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140630

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100628

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 626113

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230825