EP2450130A2 - Die casting of component having integral seal - Google Patents
Die casting of component having integral seal Download PDFInfo
- Publication number
- EP2450130A2 EP2450130A2 EP11187956A EP11187956A EP2450130A2 EP 2450130 A2 EP2450130 A2 EP 2450130A2 EP 11187956 A EP11187956 A EP 11187956A EP 11187956 A EP11187956 A EP 11187956A EP 2450130 A2 EP2450130 A2 EP 2450130A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- die
- die cavity
- component
- recited
- seal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004512 die casting Methods 0.000 title claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000008018 melting Effects 0.000 claims description 18
- 238000002844 melting Methods 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 7
- 238000013461 design Methods 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 19
- 230000007246 mechanism Effects 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000005495 investment casting Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 206010053615 Thermal burn Diseases 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
- B22D17/22—Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
- B22D17/24—Accessories for locating and holding cores or inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/005—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure using two or more fixed moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/15—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
- F01D11/122—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/21—Manufacture essentially without removing material by casting
Definitions
- This disclosure generally relates to die casting, and more particularly to die casting components with integral seals.
- Gas turbine engines generally include a compressor section, a combustor section, and a turbine section circumferentially disposed about an engine centerline axis. At least the compressor section and the turbine section include alternating rows of rotating rotor blades and static stator vanes. As airflow is communicated through the gas turbine engine, the rotor blades increase the velocity of the oncoming airflow. The stator vanes convert the velocity into pressure and prepare the airflow for the next set of rotor blades.
- Gas turbine engine components can be manufactured in a number of ways including machining operations, forging operations or casting operations. Gas turbine engine components are often manufactured in an investment casting process. Investment casting involves pouring molten metal into a ceramic shell having a cavity in the shape of the component to be cast. An abradable seal, such as a honeycomb seal, can be brazed onto the gas path side of a gas turbine engine component to improve the seal between the gas turbine engine component and any surrounding components.
- a method of die casting a component having an integral seal which includes defining a first portion of a die cavity of a die to include an open cell structure. A second portion of the die is defined without the open cell structure. Molten metal is injected into the die cavity, and the molten metal is solidified within the die cavity to form the component having the integral seal.
- a die casting machine in another exemplary embodiment, includes a die comprised of a plurality of die elements that define a die cavity, a shot tube in fluid communication with the die cavity, and a shot tube plunger moveable within the shot tube.
- the die cavity includes a first portion having an open cell structure and a second portion without the open cell structure.
- the shot tube plunger is moveable within the shot tube to communicate a molten metal into the die cavity to die cast a component having an integral seal.
- Figure 1 illustrates a gas turbine engine 10, such as a turbofan gas turbine engine, that is circumferentially disposed about an engine centerline (or axial centerline axis) 12.
- the gas turbine engine 10 includes a fan section 14, a compressor section 15 having a low pressure compressor 16 and a high pressure compressor 18, a combustor 20, and a turbine section 21 including a high pressure turbine 22 and a low pressure turbine 24.
- This disclosure can also extend to engines without a fan, and with more or fewer sections.
- air is compressed in the low pressure compressor 16 and the high pressure compressor 18, is mixed with fuel and burned in the combustor 20, and is expanded in the high pressure turbine 22 and the low pressure turbine 24.
- Rotor assemblies 26 rotate in response to the expansion, driving the low pressure and high pressure compressors 16, 18 and the fan section 14.
- the compressor section 15 and the turbine section 21 may include alternating rows of rotating rotor blades 28 and static stator vanes 30.
- Figure 2 illustrates a portion of the gas turbine engine 10.
- the portion depicted is the high pressure turbine 22 of the gas turbine engine 10.
- this disclosure is not limited to applications within the high pressure turbine 22, and could extend to other sections of a gas turbine engine 10, including but not limited to, the low pressure turbine 24 and the compressor section 15.
- selected features of the high pressure turbine 22 are shown enlarged in order to illustrated specific details and are not shown to the scale they would be in operation.
- the high pressure turbine section 22 includes a rotor assembly 26 having a plurality of rotor blades 28 (one depicted) extending outwardly from the circumference of the rotor assembly 26.
- the rotor blades 28 extend between a rim 27 of the rotor assembly 26 and a blade tip 40.
- An outer casing 42 extends circumferentially about the high pressure turbine section 22 at a position radially outward from the rotor blades 28.
- the outer casing 42 includes a plurality of blade outer air seals (BOAS) 44 positioned between the blade tips 40 of the rotor blades 28 and the outer casing 42.
- the BOAS 44 includes an integral seal 46, such as an abradable seal, that interacts with the rotor blades 28 to mitigate gas leakage.
- the rotor blades 28 rotate about the engine centerline axis 12 and at least partially wear away a portion of the integral seal 46 to seal and mitigate gas leakage around the components within the high pressure turbine section 22. In the illustrated example, a portion 45 has been partially worn away by the rotor blade 28.
- Figure 3 illustrates a die casting system 48 for die casting a component, such as the BOAS 44 or other seals.
- a component such as the BOAS 44 or other seals.
- this disclosure is not limited to the die casting of BOAS, and it should be understood that any aeronautical or non-aeronautical component can be die cast with an integral seal according to the example methodologies of this disclosure.
- the die casting system 48 includes a reusable die 50 having a plurality of die elements 52, 54 that function to cast the component. Although two die elements 52, 54 are depicted in Figure 3 , it should be understood that the die 50 could include more or fewer die elements, as well as other parts and configurations.
- the die 50 is assembled by positioning the die elements 52, 54 together and holding the die elements 52, 54 at a desired position via a mechanism 56.
- the mechanism 56 could include a clamping mechanism of appropriate hydraulic, pneumatic, electromechanical and/or other configurations.
- the mechanism 56 also separates the die elements 52, 54 subsequent to casting.
- the die elements 52, 54 define internal surfaces that cooperate to define a die cavity 58.
- a shot tube 53 is in fluid communication with the die cavity 58 via one or more ports 60 located in the die element 52, the die element 54 or both.
- a shot tube plunger 62 is received within the shot tube 53 and is moveable between a retracted and injected position (in the direction of arrow A) within the shot tube 53 by a mechanism 64.
- the mechanism 64 could include a hydraulic assembly or other suitable mechanism, including, but not limited to, pneumatic, electromechanical or any combination thereof.
- the shot tube 53 is positioned to receive a molten metal from a melting unit 66, such as a crucible, for example.
- the melting unit 66 may utilize any known technique for melting an ingot of metallic material to prepare molten metal for delivery to the shot tube 53, including but not limited to, vacuum induction melting, electron beam melting and induction scald melting.
- the molten metal is melted by the melting unit 66 at a location that is separate from the shot tube 53 and the die 50.
- the melting unit 66 is positioned in relatively close proximity to the shot tube 53 to reduce the required transfer distance between the molten metal and the shot tube 53.
- Example molten metals capable of being used to die cast a component include, but are not limited to, nickel base super alloys, cobalt alloys, titanium alloys, high temperature aluminum alloys, copper based alloys, iron alloys, molybdenum, tungsten, niobium, or other refractory metals. This disclosure is not limited to use of the disclosed alloys, and it should be understood that any high melting temperature material may be utilized to die cast a component. As used herein, the term "high melting temperature material” is intended to include materials having a melting temperature of approximately 1500°F (815°C) and higher.
- the molten metal is transferred from the melting unit 66 to the shot tube 53 in a known manner, such as pouring the molten metal into a pour hole 55 in the shot tube 53, for example.
- a sufficient amount of molten metal is communicated into the shot tube 53 to fill the die cavity 58.
- the shot tube plunger 62 is actuated to inject the molten metal under pressure from the shot tube 53 into the die cavity 58 to cast the component.
- the die casting system 48 could be configured to cast multiple components in a single shot.
- the example die casting system 48 can be positioned within a vacuum chamber 70 that includes a vacuum source 72.
- a vacuum is applied in the vacuum chamber 70 by the vacuum source 72 to render a vacuum die casting process.
- the vacuum chamber 70 provides a non-reactive environment for the die casting system 48 that reduces reaction, contamination or other conditions that could detrimentally affect the quality of the cast component, such as excess porosity of the cast component that occurs as a result of exposure to oxygen.
- the vacuum chamber 70 is maintained at a pressure between 1 ⁇ 10 -3 Torr and 1 ⁇ 10 -4 Torr, although other pressures are contemplated. The actual pressure of the vacuum chamber 70 will vary based upon the type of component being cast, among other conditions and factors.
- each of the melting unit 66, the shot tube 53 and the die 50 are positioned with the vacuum chamber 70 during the die casting process such that the melting, injecting and solidifying of the metal are all performed under vacuum.
- the vacuum chamber 34 is backfilled with an inert gas, such as Argon, for example.
- the example die casting system 48 depicted in Figure 3 is illustrative only and could include more or less sections, parts and/or components. This disclosure extends to all forms of die casting, including but not limited to, horizontal, inclined or vertical die casting systems.
- Figure 4 illustrates an example die 150 for use with a die casting system, such as the die casting system 48 depicted in Figure 3 .
- a die casting system such as the die casting system 48 depicted in Figure 3 .
- like reference numerals signify like features, and reference numerals identified in multiples of 100 signify slightly modified features.
- select features of one example embodiment may be combined with selected features of other example embodiments.
- the die 150 may be used to die cast a component, such as a BOAS having an integral seal, or any other component.
- the die 150 includes a die cavity 158 that is defined by a plurality of die elements 152, 154.
- the die cavity 158 includes a first portion 80 and a second portion 82.
- the first portion 80 and the second portion 82 are openings within the die 150.
- the example die cavity 158 is depicted as including two portions, it should be understood that more or less portions may define the die cavity 158.
- the size of shape of the first portion 80 and the second portion 82 will vary depending upon design specific parameters including, but not limited to, the type of component being cast.
- the first portion 80 of the die cavity 158 is configured to receive an insert 84.
- the insert 84 is generally sized and shaped similar to the first portion 80.
- the insert 84 is a honeycomb seal made of a Nickel Alloy or other high melting temperature material that includes an open cell structure 85 that defines walls 87 having openings 88 therebetween, such as diamond shaped openings (See Figure 5 ).
- Other inserts having different structures are contemplated as being within the scope of this disclosure.
- the insert 84 is positioned within the first portion 80 of the die cavity 158 either manually or automatically, such as with a robot, for example.
- the second portion 82 of the die cavity 158 does not include the open cell structure. Therefore, the second portion 82 represents a void or opening within the die 150 that is sized and shaped to correspond to the component being cast.
- the second portion 82 of the die cavity 158 receives molten metal M from a die casting system, such as the die casting system 48 detailed above. Molten metal M is injected into the die cavity 158 via the shot tube 53 and the shot tube plunger 62 and is solidified within the die cavity 158. The molten metal M locally bonds with the insert 84 at an interface I during solidification of the molten metal M to cast a component having an integral seal. In other words, the component is die cast against the insert 84, thereby overcasting the component (the portion solidified in the second portion 82) having an integral seal (the locally bonded insert 84 located in the first portion 80) in a single operation.
- Figure 6 illustrates another exemplary die 250 that may be used with a die casting system, such as the die casting system 48 depicted above.
- the die 250 is utilized to die cast a component having an integral seal, such as a BOAS having a honeycomb seal, for example.
- Other aeronautical and non-aeronautical components may also be cast using the die 250.
- the die 250 includes a die cavity 258 defined by a plurality of die elements 252, 254.
- the die cavity 258 defines a first portion 280 and a second portion 282, although more or fewer portions may be defined within the die cavity 258. Also, the size of shape of the first portion 280 and the second portion 282 will vary depending upon design specific parameters including, but not limited to, the type of component being cast.
- the first portion 280 of the die cavity 258 is pre-defined with an open cell structure 285 that corresponds to a desired structure of an integral seal. That is, the first portion 280 of the die cavity 258 is formed with design features, such as a honeycomb, open cell structure, that are automatically form corresponding features within a cast component once molten metal is injected into the die cavity 258, i.e., no inserts are required.
- the open cell structure 285 may be formed within the first portion 280 of the die cavity 258 in any known manner.
- the first portion 280 defines the integral seal on the cast component.
- the second portion 282 is defined without an open cell structure. Therefore, the second portion 282 represents a void or opening within the die 250 that is sized and shaped to correspond to the component being cast.
- the second portion 282 of the die cavity 258 is made larger by a distance X to define the first portion 280, which forms the integral seal portion of the cast component. That is, enlarging the second portion 282 of the die cavity 258 by a distance X allows the integral seal to be die cast as a feature of the component during the die casting process.
- molten metal M is injected into the die cavity 258 and is communicated to both the first portion 280 and the second portion 282 of the die cavity 258.
- the molten metal solidifies within the die cavity 258 to form a component having an integral seal. Because the first portion 280 is defined with an open cell structure, once solidified, the molten metal forms a component having an integral seal with a desired structure, such as a honeycomb seal structure, for example.
- Figure 7 illustrates a component 29 that may be die cast using the example dies 150, 250 described above.
- the component 29 includes a body portion 31 and an integral seal 33.
- Each of the body portion 31 and the integral seal 33 may be made from nickel based super alloys, cobalt alloys, titanium alloys, high temperature aluminum alloys, copper based alloys, iron alloys, molybdenum, tungsten, niobium, other refractory metals, or any combination of such materials. Any high melting temperature material may be utilized to die cast the component 29.
- the component 29 is a seal having an integral seal 33 with an open cell structure 35, although other components may also be cast using the example dies 150, 250, including but limited to BOAS, inner air seals and 1-2 seals.
- the integral seal 33 is a honeycomb abradeable seal such that contact with a rotor blade partially wears away the integral seal 33.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
- This disclosure generally relates to die casting, and more particularly to die casting components with integral seals.
- Gas turbine engines generally include a compressor section, a combustor section, and a turbine section circumferentially disposed about an engine centerline axis. At least the compressor section and the turbine section include alternating rows of rotating rotor blades and static stator vanes. As airflow is communicated through the gas turbine engine, the rotor blades increase the velocity of the oncoming airflow. The stator vanes convert the velocity into pressure and prepare the airflow for the next set of rotor blades.
- Gas turbine engine components can be manufactured in a number of ways including machining operations, forging operations or casting operations. Gas turbine engine components are often manufactured in an investment casting process. Investment casting involves pouring molten metal into a ceramic shell having a cavity in the shape of the component to be cast. An abradable seal, such as a honeycomb seal, can be brazed onto the gas path side of a gas turbine engine component to improve the seal between the gas turbine engine component and any surrounding components.
- A method of die casting a component having an integral seal is disclosed which includes defining a first portion of a die cavity of a die to include an open cell structure. A second portion of the die is defined without the open cell structure. Molten metal is injected into the die cavity, and the molten metal is solidified within the die cavity to form the component having the integral seal.
- In another exemplary embodiment, a die casting machine includes a die comprised of a plurality of die elements that define a die cavity, a shot tube in fluid communication with the die cavity, and a shot tube plunger moveable within the shot tube. The die cavity includes a first portion having an open cell structure and a second portion without the open cell structure. The shot tube plunger is moveable within the shot tube to communicate a molten metal into the die cavity to die cast a component having an integral seal.
- The various features and advantages of this disclosure will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
-
-
Figure 1 illustrates a simplified cross-sectional view of a standard gas turbine engine. -
Figure 2 illustrates a cross-sectional view of a portion of the gas turbine engine depicted inFigure 1 . -
Figure 3 illustrates an example die casting system. -
Figure 4 illustrates an example die for use with a die casting system. -
Figure 5 illustrates an insert having an open cell structure that can be used with the die ofFigure 4 . -
Figure 6 illustrates another example die for use with the die casting system ofFigure 3 . -
Figure 7 illustrates a component having an integral seal that can be cast using the die ofFigure 4 orFigure 6 . -
Figure 1 illustrates agas turbine engine 10, such as a turbofan gas turbine engine, that is circumferentially disposed about an engine centerline (or axial centerline axis) 12. Thegas turbine engine 10 includes afan section 14, acompressor section 15 having alow pressure compressor 16 and ahigh pressure compressor 18, acombustor 20, and aturbine section 21 including ahigh pressure turbine 22 and alow pressure turbine 24. This disclosure can also extend to engines without a fan, and with more or fewer sections. - As is known, air is compressed in the
low pressure compressor 16 and thehigh pressure compressor 18, is mixed with fuel and burned in thecombustor 20, and is expanded in thehigh pressure turbine 22 and thelow pressure turbine 24. Rotor assemblies 26 rotate in response to the expansion, driving the low pressure andhigh pressure compressors fan section 14. Thecompressor section 15 and theturbine section 21 may include alternating rows of rotatingrotor blades 28 andstatic stator vanes 30. - It should be understood that this view is included simply to provide a basic understanding of the sections of a
gas turbine engine 10 and not to limit the disclosure. This disclosure extends to all types ofgas turbine engines 10 for all types of applications. -
Figure 2 illustrates a portion of thegas turbine engine 10. In this example, the portion depicted is thehigh pressure turbine 22 of thegas turbine engine 10. However, this disclosure is not limited to applications within thehigh pressure turbine 22, and could extend to other sections of agas turbine engine 10, including but not limited to, thelow pressure turbine 24 and thecompressor section 15. In addition, selected features of thehigh pressure turbine 22 are shown enlarged in order to illustrated specific details and are not shown to the scale they would be in operation. - The high
pressure turbine section 22 includes arotor assembly 26 having a plurality of rotor blades 28 (one depicted) extending outwardly from the circumference of therotor assembly 26. Therotor blades 28 extend between arim 27 of therotor assembly 26 and ablade tip 40. - An
outer casing 42 extends circumferentially about the highpressure turbine section 22 at a position radially outward from therotor blades 28. Theouter casing 42 includes a plurality of blade outer air seals (BOAS) 44 positioned between theblade tips 40 of therotor blades 28 and theouter casing 42. The BOAS 44 includes anintegral seal 46, such as an abradable seal, that interacts with therotor blades 28 to mitigate gas leakage. During operation, therotor blades 28 rotate about theengine centerline axis 12 and at least partially wear away a portion of theintegral seal 46 to seal and mitigate gas leakage around the components within the highpressure turbine section 22. In the illustrated example, aportion 45 has been partially worn away by therotor blade 28. -
Figure 3 illustrates adie casting system 48 for die casting a component, such as the BOAS 44 or other seals. However, this disclosure is not limited to the die casting of BOAS, and it should be understood that any aeronautical or non-aeronautical component can be die cast with an integral seal according to the example methodologies of this disclosure. - The
die casting system 48 includes a reusable die 50 having a plurality of dieelements die elements Figure 3 , it should be understood that thedie 50 could include more or fewer die elements, as well as other parts and configurations. - The die 50 is assembled by positioning the die
elements elements mechanism 56. Themechanism 56 could include a clamping mechanism of appropriate hydraulic, pneumatic, electromechanical and/or other configurations. Themechanism 56 also separates the dieelements - The die
elements cavity 58. Ashot tube 53 is in fluid communication with thedie cavity 58 via one ormore ports 60 located in the dieelement 52, thedie element 54 or both. Ashot tube plunger 62 is received within theshot tube 53 and is moveable between a retracted and injected position (in the direction of arrow A) within theshot tube 53 by amechanism 64. Themechanism 64 could include a hydraulic assembly or other suitable mechanism, including, but not limited to, pneumatic, electromechanical or any combination thereof. - The
shot tube 53 is positioned to receive a molten metal from amelting unit 66, such as a crucible, for example. Themelting unit 66 may utilize any known technique for melting an ingot of metallic material to prepare molten metal for delivery to theshot tube 53, including but not limited to, vacuum induction melting, electron beam melting and induction scald melting. The molten metal is melted by themelting unit 66 at a location that is separate from theshot tube 53 and thedie 50. In this example, themelting unit 66 is positioned in relatively close proximity to theshot tube 53 to reduce the required transfer distance between the molten metal and theshot tube 53. - Example molten metals capable of being used to die cast a component include, but are not limited to, nickel base super alloys, cobalt alloys, titanium alloys, high temperature aluminum alloys, copper based alloys, iron alloys, molybdenum, tungsten, niobium, or other refractory metals. This disclosure is not limited to use of the disclosed alloys, and it should be understood that any high melting temperature material may be utilized to die cast a component. As used herein, the term "high melting temperature material" is intended to include materials having a melting temperature of approximately 1500°F (815°C) and higher.
- The molten metal is transferred from the
melting unit 66 to theshot tube 53 in a known manner, such as pouring the molten metal into a pourhole 55 in theshot tube 53, for example. A sufficient amount of molten metal is communicated into theshot tube 53 to fill thedie cavity 58. Theshot tube plunger 62 is actuated to inject the molten metal under pressure from theshot tube 53 into thedie cavity 58 to cast the component. Although the casting of a single component is depicted, thedie casting system 48 could be configured to cast multiple components in a single shot. - Although not necessary, at least a portion of the example die
casting system 48 can be positioned within avacuum chamber 70 that includes avacuum source 72. A vacuum is applied in thevacuum chamber 70 by thevacuum source 72 to render a vacuum die casting process. Thevacuum chamber 70 provides a non-reactive environment for thedie casting system 48 that reduces reaction, contamination or other conditions that could detrimentally affect the quality of the cast component, such as excess porosity of the cast component that occurs as a result of exposure to oxygen. In one example, thevacuum chamber 70 is maintained at a pressure between 1×10-3 Torr and 1×10-4 Torr, although other pressures are contemplated. The actual pressure of thevacuum chamber 70 will vary based upon the type of component being cast, among other conditions and factors. In the illustrated example, each of themelting unit 66, theshot tube 53 and the die 50 are positioned with thevacuum chamber 70 during the die casting process such that the melting, injecting and solidifying of the metal are all performed under vacuum. In another example, the vacuum chamber 34 is backfilled with an inert gas, such as Argon, for example. - The example die
casting system 48 depicted inFigure 3 is illustrative only and could include more or less sections, parts and/or components. This disclosure extends to all forms of die casting, including but not limited to, horizontal, inclined or vertical die casting systems. -
Figure 4 illustrates an example die 150 for use with a die casting system, such as thedie casting system 48 depicted inFigure 3 . In this disclosure, like reference numerals signify like features, and reference numerals identified in multiples of 100 signify slightly modified features. Moreover, select features of one example embodiment may be combined with selected features of other example embodiments. Thedie 150 may be used to die cast a component, such as a BOAS having an integral seal, or any other component. - The
die 150 includes adie cavity 158 that is defined by a plurality ofdie elements die cavity 158 includes afirst portion 80 and asecond portion 82. In the illustrated example, thefirst portion 80 and thesecond portion 82 are openings within thedie 150. Although the example diecavity 158 is depicted as including two portions, it should be understood that more or less portions may define thedie cavity 158. Also, the size of shape of thefirst portion 80 and thesecond portion 82 will vary depending upon design specific parameters including, but not limited to, the type of component being cast. - In this example, the
first portion 80 of thedie cavity 158 is configured to receive aninsert 84. Theinsert 84 is generally sized and shaped similar to thefirst portion 80. In the example embodiment, theinsert 84 is a honeycomb seal made of a Nickel Alloy or other high melting temperature material that includes anopen cell structure 85 that defineswalls 87 havingopenings 88 therebetween, such as diamond shaped openings (SeeFigure 5 ). Other inserts having different structures are contemplated as being within the scope of this disclosure. Theinsert 84 is positioned within thefirst portion 80 of thedie cavity 158 either manually or automatically, such as with a robot, for example. - The
second portion 82 of thedie cavity 158 does not include the open cell structure. Therefore, thesecond portion 82 represents a void or opening within thedie 150 that is sized and shaped to correspond to the component being cast. Thesecond portion 82 of thedie cavity 158 receives molten metal M from a die casting system, such as thedie casting system 48 detailed above. Molten metal M is injected into thedie cavity 158 via theshot tube 53 and theshot tube plunger 62 and is solidified within thedie cavity 158. The molten metal M locally bonds with theinsert 84 at an interface I during solidification of the molten metal M to cast a component having an integral seal. In other words, the component is die cast against theinsert 84, thereby overcasting the component (the portion solidified in the second portion 82) having an integral seal (the locally bondedinsert 84 located in the first portion 80) in a single operation. -
Figure 6 illustrates anotherexemplary die 250 that may be used with a die casting system, such as thedie casting system 48 depicted above. Thedie 250 is utilized to die cast a component having an integral seal, such as a BOAS having a honeycomb seal, for example. Other aeronautical and non-aeronautical components may also be cast using thedie 250. - The
die 250 includes adie cavity 258 defined by a plurality ofdie elements die cavity 258 defines afirst portion 280 and asecond portion 282, although more or fewer portions may be defined within thedie cavity 258. Also, the size of shape of thefirst portion 280 and thesecond portion 282 will vary depending upon design specific parameters including, but not limited to, the type of component being cast. - In this example, the
first portion 280 of thedie cavity 258 is pre-defined with anopen cell structure 285 that corresponds to a desired structure of an integral seal. That is, thefirst portion 280 of thedie cavity 258 is formed with design features, such as a honeycomb, open cell structure, that are automatically form corresponding features within a cast component once molten metal is injected into thedie cavity 258, i.e., no inserts are required. Theopen cell structure 285 may be formed within thefirst portion 280 of thedie cavity 258 in any known manner. Thefirst portion 280 defines the integral seal on the cast component. - The
second portion 282 is defined without an open cell structure. Therefore, thesecond portion 282 represents a void or opening within thedie 250 that is sized and shaped to correspond to the component being cast. Thesecond portion 282 of thedie cavity 258 is made larger by a distance X to define thefirst portion 280, which forms the integral seal portion of the cast component. That is, enlarging thesecond portion 282 of thedie cavity 258 by a distance X allows the integral seal to be die cast as a feature of the component during the die casting process. - Subsequent to melting, molten metal M is injected into the
die cavity 258 and is communicated to both thefirst portion 280 and thesecond portion 282 of thedie cavity 258. The molten metal solidifies within thedie cavity 258 to form a component having an integral seal. Because thefirst portion 280 is defined with an open cell structure, once solidified, the molten metal forms a component having an integral seal with a desired structure, such as a honeycomb seal structure, for example. -
Figure 7 illustrates acomponent 29 that may be die cast using the example dies 150, 250 described above. Thecomponent 29 includes a body portion 31 and anintegral seal 33. Each of the body portion 31 and theintegral seal 33 may be made from nickel based super alloys, cobalt alloys, titanium alloys, high temperature aluminum alloys, copper based alloys, iron alloys, molybdenum, tungsten, niobium, other refractory metals, or any combination of such materials. Any high melting temperature material may be utilized to die cast thecomponent 29. In this example, thecomponent 29 is a seal having anintegral seal 33 with anopen cell structure 35, although other components may also be cast using the example dies 150, 250, including but limited to BOAS, inner air seals and 1-2 seals. Theintegral seal 33 is a honeycomb abradeable seal such that contact with a rotor blade partially wears away theintegral seal 33. - The foregoing description shall be interpreted as illustrative and not in any limiting sense. A worker of ordinary skill in the art having the benefit of this disclosure would recognize that certain modifications could come within the scope of the disclosure. For these reasons, the following claims should be studied to determine the true scope and content of this disclosure.
Claims (15)
- A method of die casting a component (29) with an integral seal (33), comprising the step of:(a) defining a first portion (80;280) of a die cavity (158;258) of a die (150;250) to include an open cell structure (85;285);(b) defining a second portion (82;282) of the die cavity (158;258) without the open cell structure (85;285);(c) injecting molten metal (M) into the die cavity (158;258);(d) solidifying the molten metal (M) within the die cavity (158;258) to form the component (29) with the integral seal (33).
- The method as recited in claim 1, wherein said step (a) includes:positioning an insert (84) that defines the open cell structure (85) within the first portion (80) of the die cavity (158).
- The method as recited in claim 2, wherein said step (d) includes:locally bonding the insert (84) with the component (29) to provide the component (29) with the integral seal (33).
- The method as recited in claim 2 or 3, wherein the insert (84) is a honeycomb abradeable seal.
- The method as recited in claim 1, wherein said step (a) includes:pre-defining the open cell structure (285) in the first portion (280) of the die cavity (258).
- The method as recited in claim 5, wherein said step (a) includes:forming honeycomb design features within the first portion (280) of the die cavity (258).
- The method as recited in any preceding claim, wherein said step (c) includes:melting an ingot of material to prepare the molten metal (M);communicating the molten metal (M) into a shot tube (53); andinjecting the molten metal (M) into the die cavity (158;258) with a shot tube plunger (62).
- The method as recited in any preceding claim, wherein the component (29) is a seal having an integral honeycomb abradeable seal (33).
- The method as recited in any preceding claim, comprising the step of:(e) positioning the die (150;250) within a vacuum chamber (70).
- The method as recited in any preceding claim, wherein the first portion (80;280) and the second portion (82;282) of the die cavity (158;258) are openings within the die (150;250), and the first portion (80;280) defines the integral seal (43) and the second portion (82;282) defines the component (29).
- A die casting system, comprising:a die (150;250) comprising a plurality of die components (152,154;252,254) that define a die cavity (158;258), wherein a first portion (80;280) of said die cavity (158;258) includes an open cell structure (85;285) and a second portion (82;282) of said die cavity (158;258) is without said open cell structure (85;285);a shot tube (73) in fluid communication with said die cavity (85;285); anda shot tube plunger (62) moveable within said shot tube (73) to communicate a molten metal (M) into said die cavity (158;258) to cast a component (29) that includes an integral seal (33).
- The system as recited in claim 11, wherein said component (29) includes one of an outer seal and an inner seal.
- The system as recited in claim 11 or 12, wherein said integral seal (33) is a honeycomb abradeable seal.
- The system as recited in claim 11, 12 or 13, wherein said die casting system is positioned within a vacuum chamber (70).
- The system as recited in any of claims 11 to 14, comprising an insert (84) received within said first portion (80) of said die cavity (158), wherein said insert (84) defines said open cell structure (85).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/940,087 US20120111521A1 (en) | 2010-11-05 | 2010-11-05 | Die casting of component having integral seal |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2450130A2 true EP2450130A2 (en) | 2012-05-09 |
EP2450130A3 EP2450130A3 (en) | 2016-01-20 |
EP2450130B1 EP2450130B1 (en) | 2019-09-11 |
Family
ID=44905707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11187956.5A Not-in-force EP2450130B1 (en) | 2010-11-05 | 2011-11-04 | Die casting of component having integral seal |
Country Status (3)
Country | Link |
---|---|
US (2) | US20120111521A1 (en) |
EP (1) | EP2450130B1 (en) |
SG (1) | SG180154A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112108623A (en) * | 2020-09-17 | 2020-12-22 | 江西吉事达厨房用品有限公司 | Die-casting forming device of aluminum alloy pot |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120273539A1 (en) * | 2011-04-28 | 2012-11-01 | GM Global Technology Operations LLC | Support structure and method of manufacturing the same |
US8978388B2 (en) * | 2011-06-03 | 2015-03-17 | General Electric Company | Load member for transition duct in turbine system |
US10927692B2 (en) | 2018-08-06 | 2021-02-23 | General Electric Company | Turbomachinery sealing apparatus and method |
US10987731B1 (en) * | 2020-07-30 | 2021-04-27 | Exco Technologies Limited | Die-casting piston, and die-casting apparatus incorporating same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995021319A1 (en) * | 1994-02-01 | 1995-08-10 | United Technologies Corporation | Honeycomb abradable seals |
US6085830A (en) * | 1997-03-24 | 2000-07-11 | Fujikura Ltd. | Heat sink, and process and apparatus for manufacturing the same |
US20020005233A1 (en) * | 1998-12-23 | 2002-01-17 | John J. Schirra | Die cast nickel base superalloy articles |
DE19917175A1 (en) * | 1999-04-16 | 2000-10-19 | Daimler Chrysler Ag | Component, especially an automobile part or a cooling body for power electronics or fuel cells, is produced by positioning a binder-freed porous ceramic green body in a die casting die prior to light metal pressure infiltration |
GB0008892D0 (en) * | 2000-04-12 | 2000-05-31 | Rolls Royce Plc | Abradable seals |
DE102006004090A1 (en) * | 2006-01-28 | 2007-08-02 | Mtu Aero Engines Gmbh | Guide blade segment for gas turbine, has guide blade and inner cover band, where integral component of inner cover band, is sealing element, which seals radial inner gap between guide blade segment and gas turbine rotor |
GB2468834B (en) * | 2008-12-22 | 2011-02-09 | Rolls Royce Plc | A composite component |
-
2010
- 2010-11-05 US US12/940,087 patent/US20120111521A1/en not_active Abandoned
-
2011
- 2011-11-04 EP EP11187956.5A patent/EP2450130B1/en not_active Not-in-force
- 2011-11-04 SG SG2011081445A patent/SG180154A1/en unknown
-
2015
- 2015-11-11 US US14/937,988 patent/US20160074933A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112108623A (en) * | 2020-09-17 | 2020-12-22 | 江西吉事达厨房用品有限公司 | Die-casting forming device of aluminum alloy pot |
Also Published As
Publication number | Publication date |
---|---|
EP2450130A3 (en) | 2016-01-20 |
US20120111521A1 (en) | 2012-05-10 |
US20160074933A1 (en) | 2016-03-17 |
SG180154A1 (en) | 2012-05-30 |
EP2450130B1 (en) | 2019-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160074933A1 (en) | Die casting of component having integral seal | |
US20180304345A1 (en) | Additively manufactured casting articles for manufacturing gas turbine engine parts | |
US10415394B2 (en) | Gas turbine engine blade with ceramic tip and cooling arrangement | |
EP3162459A1 (en) | Additively manufactured core for use in casting an integral cooling circuit of a gas turbine engine component | |
EP3015190B1 (en) | Casting article for manufacturing gas turbine engine parts | |
US9908175B2 (en) | Die casting system and method utilizing sacrificial core | |
CN105312702A (en) | Braze methods and components for turbine buckets | |
EP2450125A2 (en) | Die casting system machine configurations | |
US20190299278A1 (en) | Die casting system and method utilizing high melting temperature materials | |
US20200182069A1 (en) | Axial flow cooling scheme with castable structural rib for a gas turbine engine | |
EP2551038B1 (en) | Die casting system and method | |
EP2450127B1 (en) | High temperature die casting apparatus and method therefor | |
US8356655B2 (en) | Shot tube plunger for a die casting system | |
EP2450124A2 (en) | Shot tube plunger for a die casting system | |
EP2450131B1 (en) | Melting unit for a die casting system | |
US20130277004A1 (en) | Shot tube plunger tip portion | |
EP3360624A1 (en) | Axisymmetic single crystal shot tube for high temperature die casting | |
EP2354464B1 (en) | Cast shroud slots with pre-swirled leakage | |
US8784066B2 (en) | Die casting to produce a hybrid component | |
CN100591440C (en) | Casting method and casting article | |
EP2574413A2 (en) | Method and system for die casting a hybrid component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22D 17/24 20060101AFI20151211BHEP Ipc: F01D 11/12 20060101ALI20151211BHEP Ipc: B22D 19/00 20060101ALI20151211BHEP |
|
17P | Request for examination filed |
Effective date: 20160720 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNITED TECHNOLOGIES CORPORATION |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180307 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190318 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1177789 Country of ref document: AT Kind code of ref document: T Effective date: 20190915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011061949 Country of ref document: DE Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190911 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191212 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1177789 Country of ref document: AT Kind code of ref document: T Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200113 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011061949 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191104 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200112 |
|
26N | No opposition filed |
Effective date: 20200615 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20201021 Year of fee payment: 10 Ref country code: GB Payment date: 20201021 Year of fee payment: 10 Ref country code: DE Payment date: 20201020 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111104 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011061949 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211104 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |