EP2448063A1 - Positionneur d'antenne parabolique - Google Patents

Positionneur d'antenne parabolique Download PDF

Info

Publication number
EP2448063A1
EP2448063A1 EP11306378A EP11306378A EP2448063A1 EP 2448063 A1 EP2448063 A1 EP 2448063A1 EP 11306378 A EP11306378 A EP 11306378A EP 11306378 A EP11306378 A EP 11306378A EP 2448063 A1 EP2448063 A1 EP 2448063A1
Authority
EP
European Patent Office
Prior art keywords
rotation
axis
positioner
guide ring
cradle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11306378A
Other languages
German (de)
English (en)
Other versions
EP2448063B1 (fr
Inventor
Benoît Vion
Sandrine Jourda
Christophe Lafont
Gilles Quagliaro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2448063A1 publication Critical patent/EP2448063A1/fr
Application granted granted Critical
Publication of EP2448063B1 publication Critical patent/EP2448063B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/18Means for stabilising antennas on an unstable platform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation

Definitions

  • the invention relates to the field of satellite communications, more generally known under the name SATCOM or "Satellite Communications" in English. It relates more particularly to a satellite dish positioner to allow communication with a satellite, this positioner being particularly intended to be placed on a moving carrier.
  • satellite dish positioners for establishing communication with a satellite, these positioners being either fixed to the ground or mobile when placed on moving carriers.
  • positioners of the type Elevation on Azimuth comprise two axes of rotation, one of which makes it possible to vary the azimuth of the parabolic antenna, that is to say the horizontal angle between the direction of the satellite dish and a corresponding reference direction generally. to the geographic north, and the other to vary the elevation of the satellite dish, that is to say the vertical angle between the direction of the satellite dish and the reference direction (geographic north).
  • Such positioners have the disadvantage of presenting a singular point (better known under the name "keyhole” in English) vertically, that is to say at the zenith.
  • weight of the load is generally more distributed on one axis than the other and counterweights must therefore be added to compensate for the imbalance.
  • weight overload and unbalance are not acceptable for a parabolic antenna positioner to be placed on a moving carrier, as they penalize the dynamic performance of the positioner, and oppose the lightness requirements required in some applications such as aeronautics.
  • the demand CA 1 236 211 discloses another type of parabolic antenna positioner having three axes of rotation to allow to orient the satellite dish in all possible directions to the satellite.
  • Such a positioner has no singular point but is very complex to achieve, very cumbersome and very expensive.
  • the invention aims to provide a parabolic antenna positioner which is devoid of vertical singular point and which is balanced, without requiring the addition of counterweight on the positioner, in particular to be able to be placed on a carrier in motion.
  • the figure 1 represents in perspective an example of a positioner 1 according to the invention, equipped with a mobile assembly 10 with two degrees of freedom comprising a parabolic antenna 12 associated with a radio frequency amplifier 14 mounted on the back of the parabolic antenna 12.
  • the positioner 1 comprises a base 16, which itself comprises a plate 18 and two pads 20, the pads 20 being fixed on the plate 18.
  • a support cradle 22 comprising a guide ring 23 is mounted so as to obtain its rotation about the center O of the guide ring 23 and according to a first axis of horizontal rotation X, based on the pads 20, as it is sees on the figure 2 .
  • the concept of "horizontal axis" is well known to those skilled in the art, and refers in particular to an axis parallel to the supposed horizontal plane on which the base is placed.
  • the parabolic antenna 12 and the radio frequency amplifier 14 constitute a mass that is mobile in rotation with respect to the cradle 22.
  • the cradle 22 comprises a Y-axis rotation shaft 24 for the parabolic antenna 12 possibly associated with a radiofrequency amplifier 14, as well as actuating and measuring means 26, detailed later in the description, carried by the cradle 22.
  • the rotation shaft 24, and the actuating and measuring means 26 are such that the parabolic antenna 12 possibly associated with the radio frequency amplifier 14 is rotated relative to the cradle 22 around the horizontal axis Y, which extends orthogonally to the first axis of horizontal rotation X, being carried by the cradle 22.
  • the satellite dish 12 extends generally above the Y axis, while the radio frequency amplifier 14 extends in the semicircle delimited by the guide ring 23.
  • the parabolic antenna 12 and the radio frequency amplifier 14 are arranged on either side of the Y axis. They are, advantageously, distributed so that the center of gravity of the mobile assembly 10 formed in particular of the parabolic antenna 12 and possibly the radio frequency amplifier 14 is located on the Y axis, regardless of the angular position of this assembly 10 relative to to the crown 23.
  • the guide ring 23 has a first portion P 1 which has two ends e.
  • the first portion P 1 extends in a semicircle centered at a point O and radius r.
  • the diameter of the semicircle passing through the ends e of the first portion P 1 defines a third axis W parallel to the second axis Y and passing through O.
  • the second Y and third W axes are in the plane of the semicircle and the X axis is orthogonal to the plane of the semicircle.
  • the radius r of the semicircle is for example between 10 and 30 cm.
  • the second Y and third W axes are separated by a non-zero distance E, also called center distance E.
  • the center distance E is between 5 and 15 cm.
  • the second axis Y is balanced by a judicious distribution of the masses of the antenna 13 and the radio frequency amplifier 12.
  • the first axis of rotation X of the positioner 1 passes through the center O of the semicircle in which the first portion P 1 of the guide ring 23 extends, and intersects the third axis W.
  • the second axis of rotation Y of the positioner 1 does not pass through the center O of the semicircle, being parallel and not coincident with the third axis W. In this way, the first X and second Y axes of rotation of the positioner 1 do not intersect and are separated by a distance equal to the center distance E.
  • the center distance E is such that the center of gravity of the support cradle 22 and the moving assembly 10 is located on the axis X.
  • This center distance E allows the balancing of the X axis, centering in O the center.
  • the positioner 1 according to the invention has no singular point vertically and promises to be balanced on its two axes of rotation X and Y.
  • the positioner 1 also comprises an electric motor 28 coupled to a pinion 30, to allow the rotation of the pinion 30.
  • the electric motor 28 and the pinion 30 are fixed on the plate 18 of the base 16 between the pads 20.
  • an optical reading device 32 is placed under the guide ring 23, between the pads 20.
  • the optical reading device 32 is fixed relative to the guide ring 23.
  • the guide ring 23 further comprises two second portions P 2 respectively extending respectively from the two ends e of the first portion P 1 perpendicular to the third axis W.
  • Each portion P 2 of the guide ring 23 has an orifice to allow the passage of the rotation shaft 24, rotatably mounted relative to the guide ring 23 along the second axis of rotation Y, and secured to the latter. ci by means of rotation guidance on each portion P 2 of the guide ring 23.
  • the rotation shaft 24 forms, in cooperation with the second portions P 2 of the guide ring 23, the antenna support means parabolic 12.
  • the rotation shaft 24 allows the rotation of the parabolic antenna 12 according to the second axis of rotation Y.
  • the actuating means and measurement in rotation 26 about the Y axis are arranged on both sides. another of each P2 portion.
  • the radiofrequency amplifier 14 and the parabolic antenna 12 are mounted on the rotation shaft 24, the radiofrequency amplifier 14 being located behind the parabolic antenna 12. In this way, the assembly formed by the radio frequency amplifier 14 and the parabolic antenna 12 can be rotated about the second axis of rotation Y.
  • the radiofrequency amplifier 14 is offset from the rotation shaft 24, so that only the parabolic antenna 12 is mounted on the rotation shaft 24.
  • the transmission between the radio frequency amplifier 14 and the parabolic antenna 12 is made for example using flexible coaxial cables and / or flexible waveguides.
  • the motor 28 and the pinion 30 are in this embodiment fixed on the base 16 in the space defined by the guide ring 23.
  • the outer face 23b at the first portion P 1 comprises a ring gear 36 extending longitudinally on the outer face 23b from one end e of the first portion P 1 to the other end e.
  • the ring gear 36 cooperates with the pinion 30 so that when the electric motor 28 makes it possible to rotate the pinion 30, it causes rotation of the ring gear 36, and therefore the rotation of the guide ring 23 around the first axis of rotation X.
  • the principle of rotating such a guide ring is for example described in the application US 2002/0030631 and the patent US 4,282,529 .
  • the guiding ring 23 comprises two toothed rings 36, being for example made according to the principle described in the application WO 2009/033085 .
  • the outer face 23b of the guide ring 23 also comprises, at the level of the first portion P 1 , a graduated measurement strip (or tape) 38 extending longitudinally on the outer face 23b from an end e of the first portion P 1 towards the other end e.
  • the graded measurement band 38 provides information on the angular position of the guide ring 23 as it rotates about the first axis of rotation X.
  • the optical reading device 32 makes it possible to determine this angular position of the guide ring 23 automatically. by reading the graded measurement band 38. In this way, it is possible to avoid the presence of encoders on the axis of rotation of a guide ring to know its angular position, as taught in the prior art.
  • the ring gear 36, and if necessary, the measuring tape 38 is for example located on the inner face 23a of the guide ring 23.
  • the pads 20 comprise a support 40 for supporting the electric motor 28, the pinion 30 and the optical device 32, as shown in FIG. figure 3 .
  • the rotation of the pinion 30 is therefore on the side of the inner face 23a of the guide ring 23 to rotate the guide ring 23 via the ring gear 36.
  • the parabolic antenna 12 has for example a diameter D between 30 cm and 80 cm, being for example equal to 45 cm, 60 cm or 75 cm. Indeed, the specific design of the positioner 1 according to the invention allows a high degree of modularity in the choice of the diameter of the parabolic antenna 12.
  • the positioner 1 according to the invention makes it possible to significantly increase the pointing performance towards the satellite when it is at the vertical of the antenna, and this for X, C, Ku band communications or, preferably, Ka.
  • the positioner 1 according to the invention makes it possible to obtain the necessary precision guaranteeing nominal communications performance for the frequency bands mentioned above.
  • the total weight of the positioner 1 is reduced, being in particular less than 15 kg without the presence of the assembly consisting of the parabolic antenna 12 and possibly the radio frequency amplifier 14.
  • the assembly consisting of the parabolic antenna 12 and possibly for example, the radio frequency amplifier 14 has a weight of less than 9 kg.
  • the second axis Y being balanced by a judicious distribution of the masses of the antenna 12 and possibly the radio frequency amplifier 14.
  • the positioner 1 is driven in a rotational movement along the horizontal axes of rotation X and Y, in order to be able to point the satellite dish 12 towards the satellite.
  • the rotation along the first axis X is performed by means of the guide ring 23 which slides between the pads 20 following the driving of the pinion 30 by the electric motor 28.
  • the rotation along the second axis Y is made by rotation of the shaft 24 which carries the satellite dish 12 and possibly the radiofrequency amplifier 14.
  • the parabolic antenna positioner 1 described above has multiple advantages.
  • the positioner 1 according to the invention is balanced thanks to the non-zero spacing between the second Y and third W axes, and to the geometry of the guide ring 23. Maintaining the pointing direction of the parabolic antenna 12 to the satellite is thus improved in all circumstances, especially when moving the carrier.
  • the positioner 1 has a low mass balance that can meet all the constraints of the environment in which it is located, including aeronautical and / or tactical constraints.
  • the simplified design of the positioner 1 according to the invention also makes it possible to limit the costs and the power consumption of the positioner, while at the same time enabling the positioner to exhibit high pointing performance and considerable deflection of the parabolic antenna, making it possible, for example, to obtain a minimum elevation of the order of 10 ° to 15 °.
  • Positioner 1 does not have an azimuth axis subject to an infinite number of revolutions, as is always the case for positioners of the type Elevation on Azimuth, signal transmission can be done for example using coaxial cables flexible and / or flexible waveguides, especially in the case where the radio frequency amplifier is remote without requiring the use of rotating joints as taught by the prior art, which reduces costs.
  • the base 16 comprises a plate 18 rotating about an additional axis of azimuth to make it possible to obtain a positioner 1 along three axes of rotation, the rotary plate being for example made according to the principle described in the application CA 1 236 211 .
  • the presence of three axes of rotation allows to have no singular point in any direction.
  • the additional axis of azimuth is provided with a partial deflection (typically + -30 degrees on either side of the X axis of the figure 2 ), in which case no rotary joints are necessary.
  • the additional azimuth axis is provided with a n 360 ° travel, this time requiring a rotary joint, in which case it is possible to maintain the antenna in a fixed position both in direction and in orientation, the antenna may then not have a symmetry of rotation relative to its axis, as for example, if with a linear polarization.
  • a static rotation of the base (16) around X of approximately 15 to 45 ° degrees makes it possible to reach targets with a negative elevation. figures 5 and 6 .
  • the positioner 1 is coupled to the use of a gear set retrofit system to improve the pointing performance towards the satellite.
  • the base 16 is angularly offset relative to the guide ring 23 so that when the Y axis is horizontal, and parallel to the plate 18, the pads 20 are offset along the ring 23 relative to the projection of the center of gravity of the moving assembly 10 on the guide ring 23.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

Le positionneur (1) d'antenne parabolique comporte : - un socle (16), - un berceau de support (22) étant monté de manière rotative par rapport au socle (16) selon un premier axe de rotation (X), - un ensemble mobile (10) comportant une antenne parabolique (12), portés par le berceau de support (22), et monté de manière rotative par rapport au berceau de support (22) selon un deuxième axe de rotation (Y), orthogonal au premier axe de rotation (X). Le deuxième axe de rotation (Y) est séparé de l'axe (X) de rotation du berceau de support (22) d'une distance (E) non nulle mesurée dans le plan de rotation du berceau (22).

Description

  • L'invention concerne le domaine des communications par satellite, plus généralement connu sous la dénomination SATCOM ou « Satellite Communications » en anglais. Elle se rapporte plus particulièrement à un positionneur d'antenne parabolique pour permettre la communication avec un satellite, ce positionneur étant notamment destiné à être placé sur un porteur en mouvement.
  • Il existe actuellement différents types de positionneurs d'antenne parabolique pour permettre d'établir une communication avec un satellite, ces positionneurs étant soit fixes par rapport au sol, soit mobiles lorsqu'ils sont placés sur des porteurs en mouvement.
  • La demande WO 2009/033085 et le brevet US 6,285,338 décrivent par exemple des positionneurs du type Elévation sur Azimut. Ces positionneurs comportent deux axes de rotation, l'un permettant de faire varier l'azimut de l'antenne parabolique, c'est-à-dire l'angle horizontal entre la direction de l'antenne parabolique et une direction de référence correspondant généralement au nord géographique, et l'autre permettant de faire varier l'élévation de l'antenne parabolique, c'est-à-dire l'angle vertical entre la direction de l'antenne parabolique et la direction de référence (nord géographique). De tels positionneurs ont cependant comme inconvénient de présenter un point singulier (plus connu sous la dénomination « keyhole » en anglais) à la verticale, c'est-à-dire au zénith. La notion de point singulier, bien connue de l'homme du métier, désigne un point où la communication entre le satellite et l'antenne parabolique est difficile, voire impossible, du fait des contraintes dynamiques de positionnement de l'antenne parabolique dans la direction du point singulier. Dans le cas particulier d'un positionneur du type Elévation sur Azimut, la rotation Azimut de l'antenne parabolique atteint des vitesses de rotation très importantes, voire infinies, au passage en proximité du point singulier à la verticale si bien que l'antenne ne parvient que difficilement à s'aligner avec un satellite situé à la verticale. Cette difficulté de communication est problématique si le positionneur est sur un porteur en mouvement du fait de la dynamique que le mouvement du porteur apporte à l'antenne parabolique. Aussi, il est difficile d'utiliser de tels positionneurs dans des zones terrestres où les satellites sont situés à la verticale des antennes paraboliques, notamment dans les zones équatoriales.
  • Les demandes US 2002/0030631 , GB 735 359 et US 2003/0141420 décrivent des positionneurs du type XY, permettant une rotation de l'antenne parabolique selon deux axes horizontaux perpendiculaires X et Y, et pour lesquels aucun point singulier n'apparaît à la verticale. Ces positionneurs du type XY connus présentent toutefois l'inconvénient de ne pas être équilibrés ou bien alors de ne pouvoir être équilibrés que par l'ajout de contrepoids qui augmentent significativement la masse totale des positionneurs. En effet, pour être équilibré, un positionneur du type XY doit être tel que le centre de gravité de sa charge, notamment de l'antenne parabolique, se situe sur les axes de rotation X et Y de la charge. Or, le poids de la charge est généralement davantage réparti sur un axe que sur l'autre et des contrepoids doivent donc être ajoutés pour compenser le déséquilibre. De telles caractéristiques de surcharge de poids et de déséquilibrage ne sont pas acceptables pour un positionneur d'antenne parabolique destiné à être placé sur un porteur en mouvement, car elles pénalisent les performances dynamiques du positionneur, et s'opposent aux exigences de légèreté demandées dans certaines applications comme celles du domaine aéronautique.
  • Enfin, la demande CA 1 236 211 décrit un autre type de positionneur d'antenne parabolique comportant trois axes de rotation pour permettre d'orienter l'antenne parabolique dans toutes les directions possibles vers le satellite. Un tel positionneur ne présente aucun point singulier mais s'avère très complexe à réaliser, très encombrant et très coûteux.
  • Dans ce contexte, l'invention vise à proposer un positionneur d'antenne parabolique qui soit dépourvu de point singulier à la verticale et qui soit équilibré, sans nécessiter l'ajout de contrepoids sur le positionneur, notamment pour être apte à être placé sur un porteur en mouvement.
  • A cette fin, l'invention a pour objet, selon un premier aspect, un positionneur d'antenne parabolique parabolique comportant :
    • un socle,
    • un berceau de support étant monté de manière rotative par rapport au socle selon un premier axe de rotation,
    • un ensemble mobile comportant une antenne parabolique, portés par le berceau de support, et monté de manière rotative par rapport au berceau de support selon un deuxième axe de rotation, orthogonal au premier axe de rotation,
    caractérisé en ce que le deuxième axe de rotation est séparé de l'axe de rotation du berceau de support d'une distance non nulle mesurée dans le plan de rotation du berceau.
  • Le positionneur peut également présenter une ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou suivant toutes les combinaisons techniquement possibles :
    • la distance est telle que le centre de gravité du berceau de support et de l'ensemble mobile soit situé sur le premier axe de rotation ;
    • la distance séparant le deuxième axe et le premier axe de rotation du berceau de support est comprise entre 5 et 15 cm ;
    • le berceau de support comporte une couronne de guidage ayant une première portion s'étendant selon un demi-cercle d'axe et deux deuxièmes partions s'étendant respectivement depuis chacune des extrémités de la première portion de la couronne de guidage, perpendiculairement au troisième axe, l'ensemble mobile étant articulé sur les deux deuxièmes portions ;
    • la couronne de guidage, notamment la première portion de la couronne de guidage, comporte un rail de guidage, notamment deux rails de guidage disposés respectivement sur chacun des deux bords longitudinaux d'une face de la couronne de guidage ;
    • le socle comporte un patin dans lequel coulisse le rail de guidage, notamment deux patins dans lesquels coulissent respectivement les deux rails de guidage de la couronne de guidage ;
    • la couronne de guidage, notamment la première portion de la couronne de guidage, comporte une couronne dentée s'étendant longitudinalement sur une face de la couronne de guidage, notamment depuis une extrémité de la première portion vers l'autre extrémité et le socle comporte un moteur électrique et un pignon, le moteur électrique entraînant en rotation le pignon, et le pignon étant apte à entraîner en rotation la couronne de guidage en agissant sur la couronne dentée ;
    • le berceau de support comporte une bande de mesure graduée s'étendant longitudinalement sur une face du berceau, il comporte un dispositif de lecture optique, placé notamment sur le socle, afin de déterminer la position angulaire du berceau de guidage par lecture optique de la bande de mesure graduée.
    • l'ensemble mobile comporte, outre l'antenne parabolique, un amplificateur radiofréquence, l'antenne parabolique et l'amplificateur radiofréquence étant disposés de part et d'autre du deuxième axe de rotation ;
    • le berceau de support est essentiellement dépourvu de masselottes d'équilibrage.
  • D'autres caractéristiques et avantages de l'invention ressortiront de la description d'exemples de réalisation conformes à l'invention qui en sont donnés ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures du dessin annexé, parmi lesquelles :
    • la figure 1 est une vue en élévation d'un positionneur conforme à l'invention équipé d'une antenne parabolique et d'un amplificateur radiofréquence ;
    • la figure 2 est une autre vue en perspective du positionneur de la figure 1 ;
    • la figure 3 est une vue en élévation d'un positionneur conforme à l'invention équipé d'une antenne parabolique, l'amplificateur radiofréquence étant déporté ;
    • la figure 4 est une autre vue en perspective du positionneur de la figure 3 ; et
    • les figures 5 et 6 sont des vues en élévation respectivement de variantes de réalisation des modes de réalisation des figures 1 et 3.
  • La figure 1 représente en perspective un exemple de positionneur 1 conforme à l'invention, équipé d'un ensemble mobile 10 à deux degrés de liberté comprenant une antenne parabolique 12 associée à un amplificateur radiofréquence 14 monté au dos de l'antenne parabolique 12.
  • Le positionneur 1 est destiné à permettre à l'antenne parabolique 12 d'être pointée en direction d'un satellite donné, notamment un satellite situé aux environs de la verticale du positionneur 1. Le positionneur 1 est destiné à être placé sur un porteur en mouvement, lequel peut être de tout type. En particulier, le positionneur 1 est utilisé pour des applications civiles et/ou militaires, et le porteur est un porteur du type maritime, aérien et/ou terrestre. Le porteur est par exemple un aéronef, un véhicule terrestre et/ou un navire.
  • Le positionneur 1 comporte un socle 16, qui comporte lui-même un plateau 18 et deux patins 20, les patins 20 étant fixés sur le plateau 18.
  • Un berceau de support 22 comportant une couronne de guidage 23 est monté de manière à obtenir sa rotation autour du centre O de la couronne de guidage 23 et selon un premier axe de rotation horizontal X en s'appuyant sur les patins 20, comme on le voit sur la figure 2. La notion d' « axe horizontal » est bien connue de l'homme du métier, et se réfère notamment à un axe parallèle au plan supposé horizontal sur lequel est placé le socle.
  • L'antenne parabolique 12 et de l'amplificateur radiofréquence 14 constituent une masse mobile en rotation par rapport au berceau 22. A cet effet, le berceau 22 comporte un arbre de rotation 24 d'axe Y pour l'antenne parabolique 12 associée éventuellement à un amplificateur radiofréquence 14, ainsi que des moyens d'actionnement et de mesure 26, détaillés plus loin dans la description, portés par le berceau 22.
  • L'arbre de rotation 24, et les moyens d'actionnement et de mesure 26 sont tels que l'antenne parabolique 12 associée éventuellement à l'amplificateur radiofréquence 14 est entraînée en rotation par rapport au berceau 22 autour de l'axe horizontal Y, lequel s'étend orthogonalement au premier axe de rotation horizontal X, en étant porté par le berceau 22.
  • L'antenne parabolique 12 s'étend globalement au dessus de l'axe Y, alors que l'amplificateur radiofréquence 14 s'étend dans le demi-cercle délimité par la couronne de guidage 23. Ainsi, avantageusement, l'antenne parabolique 12 et l'amplificateur radiofréquence 14 sont disposés de part et d'autre de l'axe Y. Ils sont, avantageusement, répartis de sorte que le centre de gravité de l'ensemble mobile 10 formé notamment de l'antenne parabolique 12 et éventuellement de l'amplificateur radiofréquence 14 soit situé sur l'axe Y, quelle que soit la position angulaire de cet ensemble 10 par rapport à la couronne 23.
  • La couronne de guidage 23 comporte une première portion P1 qui présente deux extrémités e. La première portion P1 s'étend selon un demi-cercle centré en un point O et de rayon r. Le diamètre du demi-cercle passant par les extrémités e de la première portion P1 définit un troisième axe W parallèle au deuxième axe Y et passant par O. De plus, les deuxième Y et troisième W axes sont dans le plan du demi-cercle et l'axe X est orthogonal au plan du demi-cercle. Le rayon r du demi-cercle est par exemple compris entre 10 et 30 cm.
  • Les deuxième Y et troisième W axes sont séparés d'une distance E non nulle, appelée également entraxe E. L'entraxe E est compris entre 5 et 15 cm.
  • Le deuxième axe Y est équilibré par une répartition judicieuse des masses de l'antenne 13 et de l'amplificateur radiofréquence 12.
  • Le premier axe de rotation X du positionneur 1 passe par le centre O du demi-cercle selon lequel s'étend la première portion P1 de la couronne de guidage 23, et intersecte le troisième axe W. En revanche, le deuxième axe de rotation Y du positionneur 1 ne passe pas par le centre O du demi-cercle, étant parallèle et non confondu avec le troisième axe W. De la sorte, les premier X et deuxième Y axes de rotation du positionneur 1 ne s'intersectent pas et sont séparés d'une distance égale à l'entraxe E.
  • L'entraxe E est tel que le centre de gravité du berceau de support 22 et de l'ensemble mobile 10 soit situé sur l'axe X. Cet entraxe E permet l'équilibrage de l'axe X, en centrant en O le centre de gravité des masses tournant autour de X. Ainsi, le positionneur 1 selon l'invention ne présente pas de point singulier à la verticale et promet d'être équilibré sur ses deux axes de rotation X et Y.
  • Le positionneur 1 comporte également un moteur électrique 28 accouplé à un pignon 30, pour permettre la rotation du pignon 30. Le moteur électrique 28 et le pignon 30 sont fixés sur le plateau 18 du socle 16 entre les patins 20.
  • Par ailleurs, un dispositif de lecture optique 32 est placé sous la couronne de guidage 23, entre les patins 20. Le dispositif de lecture optique 32 est fixe relativement à la couronne de guidage 23.
  • La couronne de guidage 23 comporte de plus deux deuxièmes portions P2 s'étendant respectivement chacune depuis les deux extrémités e de la première portion P1, perpendiculairement au troisième axe W.
  • Chaque portion P2 de la couronne de guidage 23 comporte un orifice pour permettre le passage de l'arbre de rotation 24, monté de manière rotative par rapport à la couronne de guidage 23 selon le deuxième axe de rotation Y, et solidarisé à celle-ci au moyen de guidage en rotation sur chaque portion P2 de la couronne de guidage 23. L'arbre de rotation 24 forme, en coopération avec les deuxièmes portions P2 de la couronne de guidage 23, les moyens de support de l'antenne parabolique 12. L'arbre de rotation 24 permet la rotation de l'antenne parabolique 12 selon le deuxième axe de rotation Y. Les moyens d'actionnement et de mesure en rotation 26 autour de l'axe Y sont disposés de part et d'autre de chaque portion P2.
  • Dans l'exemple représenté sur les figures 1 et 2, l'amplificateur radiofréquence 14 et l'antenne parabolique 12 sont montés sur l'arbre de rotation 24, l'amplificateur radiofréquence 14 se situant derrière l'antenne parabolique 12. De la sorte, l'ensemble formé par l'amplificateur radiofréquence 14 et l'antenne parabolique 12 peut être entraîné en rotation autour du deuxième axe de rotation Y.
  • En variante, comme représenté sur les figures 3 et 4, l'amplificateur radiofréquence 14 est déporté de l'arbre de rotation 24, de sorte que seule l'antenne parabolique 12 est montée sur l'arbre de rotation 24. Dans ce cas, la transmission entre l'amplificateur radiofréquence 14 et l'antenne parabolique 12 se fait par exemple à l'aide de câbles coaxiaux souples et/ou des guides d'ondes souples. Le moteur 28 et le pignon 30 sont dans ce mode de réalisation fixés sur le socle 16 dans l'espace délimité par la couronne de guidage 23.
  • La couronne de guidage 23 comporte deux faces extérieure 23b et intérieure 23a, opposées l'une à l'autre. La face extérieure 23b au niveau de la première portion P1, opposée à l'antenne parabolique 12, comporte sur chacun de ses deux bords longitudinaux un rail de guidage 34, destiné à permettre le coulissement de la couronne de guidage 23 dans les patins 20 lors de la rotation de la couronne de guidage 23 autour du premier axe de rotation X.
  • Par ailleurs, la face extérieure 23b au niveau de la première portion P1 comporte une couronne dentée 36 s'étendant longitudinalement sur la face extérieure 23b depuis une extrémité e de la première portion P1vers l'autre extrémité e.
  • La couronne dentée 36 coopère avec le pignon 30 de sorte que lorsque le moteur électrique 28 permet de mettre en rotation le pignon 30, celui-ci entraîne la rotation de la couronne dentée 36, et donc la rotation de la couronne de guidage 23 autour du premier axe de rotation X.
  • Le principe de mise en rotation d'une telle couronne de guidage est par exemple décrit dans la demande US 2002/0030631 et le brevet US 4,282,529 . En variante, la couronne de guidage 23 comporte deux couronnes dentées 36, étant par exemple réalisée selon le principe décrit dans la demande WO 2009/033085 .
  • La face extérieure 23b de la couronne de guidage 23 comporte encore, au niveau de la première portion P1, une bande (ou ruban) de mesure graduée 38 s'étendant longitudinalement sur la face extérieure 23b depuis une extrémité e de la première portion P1vers l'autre extrémité e.
  • La bande de mesure graduée 38 renseigne sur la position angulaire de la couronne de guidage 23 lors de sa rotation autour du premier axe de rotation X. Le dispositif de lecture optique 32 permet de déterminer cette position angulaire de la couronne de guidage 23 de façon automatique par lecture de la bande de mesure graduée 38. De la sorte, il est possible d'éviter la présence de codeurs sur l'axe de rotation d'une couronne de guidage pour connaître sa position angulaire, comme enseigné dans l'art antérieur.
  • Dans le cas où l'amplificateur radiofréquence 14 est déporté, la couronne dentée 36, et le cas échéant, la bande de mesure graduée 38, est par exemple située sur la face intérieure 23a de la couronne de guidage 23. Les patins 20 comportent un support 40 permettant de supporter le moteur électrique 28, le pignon 30 et le dispositif optique 32, comme représenté sur la figure 3. La rotation du pignon 30 se fait donc du côté de la face intérieure 23a de la couronne de guidage 23 pour entraîner en rotation la couronne de guidage 23 par l'intermédiaire de la couronne dentée 36.
  • L'antenne parabolique 12 présente par exemple un diamètre D compris entre 30 cm et 80 cm, étant par exemple égal à 45 cm, 60 cm ou 75 cm. En effet, la conception spécifique du positionneur 1 selon l'invention permet une forte modularité dans le choix du diamètre de l'antenne parabolique 12.
  • Le positionneur 1 selon l'invention permet d'accroître significativement les performances de pointage en direction du satellite lorsque celui-ci est à la vertical de l'antenne, et ce pour des communications en bandes X, C, Ku ou, de préférence, Ka. Le positionneur 1 selon l'invention permet d'obtenir la précision nécessaire garantissant des performances de communications nominales pour les bandes de fréquence citées précédemment.
  • Le poids total du positionneur 1 est réduit, étant notamment inférieur à 15 kg sans la présence de l'ensemble constitué de l'antenne parabolique 12 et éventuellement de l'amplificateur radiofréquence 14. L'ensemble constitué de l'antenne parabolique 12 et éventuellement de l'amplificateur radiofréquence 14 a par exemple, quant à lui, un poids inférieur à 9 kg.
  • La géométrie particulière à l'invention de la couronne de guidage 23, le choix du ou des matériaux constitutifs de la couronne de guidage 23 et le choix de la valeur de l'entraxe E, associées ou non au positionnement de l'amplificateur radiofréquence 14 sur l'arbre de rotation 24 derrière l'antenne parabolique 12, permet de résoudre les problèmes d'équilibrage des positionneurs d'antenne parabolique du type XY connus. Le deuxième axe Y étant équilibré par une répartition judicieuse des masses de l'antenne 12 et éventuellement de l'amplificateur radiofréquence 14.
  • En fonctionnement, le positionneur 1 est animé d'un mouvement en rotation selon les axes de rotation horizontaux X et Y, afin de pouvoir pointer l'antenne parabolique 12 en direction du satellite. La rotation selon le premier axe X est réalisée par l'intermédiaire de la couronne de guidage 23 qui coulisse entre les patins 20 suite à l'entraînement du pignon 30 par le moteur électrique 28. La rotation selon le deuxième axe Y est réalisée par rotation de l'arbre 24 qui porte l'antenne parabolique 12 et éventuellement l'amplificateur radiofréquence 14.
  • Le positionneur 1 d'antenne parabolique décrit ci-dessus présente de multiples avantages.
  • Le positionneur 1 selon l'invention est équilibré grâce à l'entraxe non nul entre les deuxième Y et troisième W axes, et à la géométrie de la couronne de guidage 23. Le maintien de la direction de pointage de l'antenne parabolique 12 vers le satellite s'en trouve ainsi amélioré en toute circonstance, notamment lors du déplacement du porteur. Le positionneur 1 présente un bilan de masse faible qui permet de répondre à toutes les contraintes de l'environnement dans lequel il se situe, notamment aux contraintes aéronautiques et/ou tactiques.
  • La conception simplifiée du positionneur 1 selon l'invention permet également de limiter les coûts, et la consommation électrique du positionneur, tout en permettant au positionneur de présenter des performances de pointage importantes et un débattement important de l'antenne parabolique, permettant par exemple d'obtenir une élévation minimale de l'ordre de 10°à 15°.
  • Le positionneur 1 ne comportant pas d'axe azimut assujetti à un nombre infini de tours, comme c'est toujours le cas pour les positionneurs du type Elévation sur Azimut, la transmission des signaux peut se faire par exemple à l'aide de câbles coaxiaux souples et/ou de guides d'ondes souples, notamment dans le cas où l'amplificateur radiofréquence est déporté, sans nécessiter l'utilisation de joints tournants comme enseigné par l'art antérieur, ce qui réduit les coûts.
  • Bien entendu, l'invention n'est pas limitée au mode de réalisation qui vient d'être décrit.
  • En variante, le socle 16 comporte un plateau 18 tournant autour d'un axe supplémentaire d'azimut pour permettre d'obtenir un positionneur 1 selon trois axes de rotation, le plateau tournant étant par exemple réalisé selon le principe décrit dans la demande CA 1 236 211 . La présence de trois axes de rotation permet de n'avoir aucun point singulier dans aucune direction. Dans une première variante, l'axe supplémentaire d'azimut est doté d'un débattement partiel (typiquement +-30 degrés de part et d'autre de l'axe X de la figure 2), auquel cas aucun joint tournant n'est nécessaire. Dans une deuxième variante, l'axe supplémentaire d'azimut est doté d'un débattement n fois 360° nécessitant cette fois un joint tournant, auquel cas il est possible de maintenir l'antenne dans une position fixe à la fois en direction et en orientation, l'antenne pouvant alors ne pas présenter une symétrie de rotation par rapport à son axe, comme par exemple, si dotée d'une polarisation linéaire. Dans une troisième variante reprenant l'une ou l'autre des deux variantes ci dessus, une rotation statique du socle (16) autour de X de 15 à 45° degrés environ permet d'atteindre des visées à élévation négative voir les figures 5 et 6.
  • En variante également, le positionneur 1 est couplé à l'utilisation d'un système à rattrapage de jeu d'engrenage pour améliorer les performances de pointage en direction du satellite.
  • Sur les figures 5 et 6 sont décrites des variantes de réalisation dans lesquelles le socle 16 est décalé angulairement par rapport à la couronne de guidage 23 de sorte que lorsque l'axe Y est horizontal, et parallèle au plateau 18, les patins 20 sont déportés le long de la couronne 23 par rapport à la projection du centre de gravité de l'ensemble mobile 10 sur la couronne de guidage 23.

Claims (9)

  1. Positionneur (1) d'antenne parabolique comportant :
    - un socle (16),
    - un berceau de support (22) étant monté de manière rotative par rapport au socle (16) selon un premier axe de rotation (X)
    - un ensemble mobile (10) comportant une antenne parabolique (12), portés par le berceau de support (22), et monté de manière rotative par rapport au berceau de support (22) selon un deuxième axe de rotation (Y), orthogonal au premier axe de rotation (X), le deuxième axe de rotation (Y) étant séparé de l'axe (X) de rotation du berceau de support (22) d'une distance (E) non nulle mesurée dans le plan de rotation du berceau (22),
    caractérisé en ce que la distance (E) est telle que le centre de gravité du berceau de support (22) et de l'ensemble mobile (10) soit situé sur le premier axe de rotation (X).
  2. Positionneur (1) selon la revendication 1, caractérisé en ce que la distance (E) séparant le deuxième axe (Y) et le premier axe (X) de rotation du berceau de support (22) est comprise entre 5 et 15 cm.
  3. Positionneur (1) selon la revendication 1 ou 2, caractérisé en ce le berceau de support (22) comporte une couronne de guidage (23) ayant une première portion (P1) s'étendant selon un demi-cercle d'axe (X) et deux deuxièmes portions (P2) s'étendant respectivement depuis chacune des extrémités (e) de la première portion (P1) de la couronne de guidage (23), perpendiculairement au troisième axe (W), l'ensemble mobile (10) étant articulé sur les deux deuxièmes portions (P2).
  4. Positionneur (1) selon la revendication 3, caractérisé en ce que la couronne de guidage (23), notamment la première portion (P1) de la couronne de guidage (23), comporte un rail de guidage (34), notamment deux rails de guidage (34) disposés respectivement sur chacun des deux bords longitudinaux d'une face (23a, 23b) de la couronne de guidage (23).
  5. Positionneur (1) selon la revendication précédente, caractérisé en ce que le socle (16) comporte un patin (20) dans lequel coulisse le rail de guidage (34), notamment deux patins (20) dans lesquels coulissent respectivement les deux rails de guidage (34) de la couronne de guidage (23).
  6. Positionneur (1) selon l'une quelconque des revendications 3 et 4, caractérisé en ce que la couronne de guidage (23), notamment la première portion (P1) de la couronne de guidage (23), comporte une couronne dentée (36) s'étendant longitudinalement sur une face (23a, 23b) de la couronne de guidage (23), notamment depuis une extrémité (e) de la première portion (P1) vers l'autre extrémité (e) et en ce que le socle (16) comporte un moteur électrique (28) et un pignon (30), le moteur électrique (28) entraînant en rotation le pignon (30), et le pignon (30) étant apte à entraîner en rotation la couronne de guidage (23) en agissant sur la couronne dentée (36).
  7. Positionneur (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que le berceau de support (22) comporte une bande de mesure graduée (38) s'étendant longitudinalement sur une face (23a, 23b) du berceau (22),et en ce qu'il comporte un dispositif de lecture optique (32), placé notamment sur le socle (16), afin de déterminer la position angulaire du berceau de guidage (22) par lecture optique de la bande de mesure graduée (38).
  8. Positionneur (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ensemble mobile (10) comporte, outre l'antenne parabolique (12), un amplificateur radiofréquence (14), l'antenne parabolique (12) et l'amplificateur radiofréquence (14) étant disposés de part et d'autre du deuxième axe de rotation (Y).
  9. Positionneur (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que le berceau de support (22) est essentiellement dépourvu de masselottes d'équilibrage.
EP11306378.8A 2010-10-26 2011-10-25 Positionneur d'antenne parabolique Active EP2448063B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1004199A FR2966646B1 (fr) 2010-10-26 2010-10-26 Positionneur d'antenne parabolique

Publications (2)

Publication Number Publication Date
EP2448063A1 true EP2448063A1 (fr) 2012-05-02
EP2448063B1 EP2448063B1 (fr) 2016-01-13

Family

ID=44147617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11306378.8A Active EP2448063B1 (fr) 2010-10-26 2011-10-25 Positionneur d'antenne parabolique

Country Status (5)

Country Link
US (1) US8681065B2 (fr)
EP (1) EP2448063B1 (fr)
ES (1) ES2568226T3 (fr)
FR (1) FR2966646B1 (fr)
IL (1) IL215916A (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820537A (zh) * 2012-08-27 2012-12-12 中国电子科技集团公司第五十四研究所 一种x-y轴天线座架
EP3280003A1 (fr) * 2016-08-04 2018-02-07 Thales Positionneur pour antenne

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847584B2 (en) * 2014-12-02 2017-12-19 Ubiquiti Networks, Inc. Multi-panel antenna system
FR3042917B1 (fr) * 2015-10-22 2018-12-07 Zodiac Data Systems Dispositif d'antenne d'aide a l'acquisition et systeme d'antenne pour le suivi d'une cible en mouvement associe
EP4224627A1 (fr) * 2018-03-08 2023-08-09 ViaSat Inc. Positionneur d'antenne avec mécanisme de position d'inclinaison excentrique
CN111175711B (zh) * 2020-01-08 2024-01-05 中国船舶集团有限公司第七二四研究所 一种组合式雷达馈源调整装置
CN113067154B (zh) * 2021-03-31 2022-08-02 大连海事大学 一种紧凑的超宽带三陷波分形天线
CN113922088A (zh) * 2021-10-18 2022-01-11 北京微纳星空科技有限公司 一种低轨卫星天线转台和低轨卫星天线

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB735359A (en) 1953-01-09 1955-08-17 English Electric Co Ltd Improvements relating to gimbal mechanisms
US4282529A (en) 1978-12-18 1981-08-04 General Dynamics, Pomona Division Differential drive rolling arc gimbal
FR2589633A1 (fr) * 1985-10-31 1987-05-07 Grip Rolf Antenne de pointage du type actif
CA1236211A (fr) 1985-03-19 1988-05-03 Michael R. Davenport Systeme stabilisateur pour antenne de poursuite de satellites
WO1998057389A1 (fr) * 1997-06-13 1998-12-17 Trulstech Innovation Kb Systeme comprenant un reflecteur d'antenne et un cornet emetteur-recepteur qui sont combines de maniere a former une antenne compacte
US6285338B1 (en) 2000-01-28 2001-09-04 Motorola, Inc. Method and apparatus for eliminating keyhole problem of an azimuth-elevation gimbal antenna
US20020030631A1 (en) 2000-06-12 2002-03-14 Neil Verkerk Gimbal system for satellite antenna
US20030141420A1 (en) 1999-08-18 2003-07-31 Richard Knight Moving yoke
US20070241244A1 (en) * 2006-04-18 2007-10-18 X-Ether, Inc. Method and apparatus for eliminating keyhole problems in an X-Y gimbal assembly
WO2009033085A1 (fr) 2007-09-05 2009-03-12 Viasat, Inc. Positionneur d'antenne à base de galets

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227806A (en) * 1991-03-20 1993-07-13 Japan Radio Co., Ltd. Stabilized ship antenna system for satellite communication
US6333718B1 (en) * 1997-10-29 2001-12-25 Dassault Electronique Continuous multi-satellite tracking
CA2453902A1 (fr) * 2003-01-30 2004-07-30 Brian A. Harron Plate-forme de montage de reflecteur suspendu a la cardan
KR20070060630A (ko) * 2005-12-09 2007-06-13 한국전자통신연구원 위성추적 안테나 시스템
US7463206B1 (en) * 2007-06-11 2008-12-09 Naval Electronics Ab Antenna

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB735359A (en) 1953-01-09 1955-08-17 English Electric Co Ltd Improvements relating to gimbal mechanisms
US4282529A (en) 1978-12-18 1981-08-04 General Dynamics, Pomona Division Differential drive rolling arc gimbal
CA1236211A (fr) 1985-03-19 1988-05-03 Michael R. Davenport Systeme stabilisateur pour antenne de poursuite de satellites
FR2589633A1 (fr) * 1985-10-31 1987-05-07 Grip Rolf Antenne de pointage du type actif
WO1998057389A1 (fr) * 1997-06-13 1998-12-17 Trulstech Innovation Kb Systeme comprenant un reflecteur d'antenne et un cornet emetteur-recepteur qui sont combines de maniere a former une antenne compacte
US20030141420A1 (en) 1999-08-18 2003-07-31 Richard Knight Moving yoke
US6285338B1 (en) 2000-01-28 2001-09-04 Motorola, Inc. Method and apparatus for eliminating keyhole problem of an azimuth-elevation gimbal antenna
US20020030631A1 (en) 2000-06-12 2002-03-14 Neil Verkerk Gimbal system for satellite antenna
US20070241244A1 (en) * 2006-04-18 2007-10-18 X-Ether, Inc. Method and apparatus for eliminating keyhole problems in an X-Y gimbal assembly
WO2009033085A1 (fr) 2007-09-05 2009-03-12 Viasat, Inc. Positionneur d'antenne à base de galets

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820537A (zh) * 2012-08-27 2012-12-12 中国电子科技集团公司第五十四研究所 一种x-y轴天线座架
EP3280003A1 (fr) * 2016-08-04 2018-02-07 Thales Positionneur pour antenne
FR3054933A1 (fr) * 2016-08-04 2018-02-09 Thales Positionneur pour antenne

Also Published As

Publication number Publication date
US20120098727A1 (en) 2012-04-26
FR2966646A1 (fr) 2012-04-27
US8681065B2 (en) 2014-03-25
FR2966646B1 (fr) 2013-10-04
IL215916A0 (en) 2012-02-29
IL215916A (en) 2015-11-30
ES2568226T3 (es) 2016-04-28
EP2448063B1 (fr) 2016-01-13

Similar Documents

Publication Publication Date Title
EP2448063B1 (fr) Positionneur d'antenne parabolique
EP0142397B1 (fr) Dispositif de stabilisation et de pointage d'antenne, notamment sur navire
EP2798314B1 (fr) Plateforme stabilisée
WO2000039885A1 (fr) Procede et dispositif de pointage et de positionnement d'une antenne multisatellite
FR2966645A1 (fr) Positionneur tri axe pour antenne
CA2729190A1 (fr) Perfectionnements a la determination d'au moins une grandeur associee au rayonnement electromagnetique d'un objet sous test
EP2256039A1 (fr) Pivot traversant à éléments flexibles et engin spatial comportant un tel pivot
FR2545619A1 (fr) Systeme de miroirs rotatifs pour produire des images du globe terrestre a partir d'un aeronef
EP3144228A1 (fr) Actionneur gyroscopique a double guidage cardan, element de suspension et element de butee
EP3291367B1 (fr) Système de montage de deux pièces dans un dispositif de transmission de mouvement
FR2761286A1 (fr) Positionneur multiaxe
EP1964778A1 (fr) Pivot traversant à lames
EP0032081B1 (fr) Antenne à faisceau orientable pour satellite de télécommunications
EP3280003B1 (fr) Positionneur pour antenne
FR2502404A1 (fr) Dispositif de montage articule, notamment d'un sous-ensemble de satellite artificiel
FR2646023A1 (fr) Dispositif de pointage d'antenne, satellite equipe d'un tel dispositif et procede de pointage d'antenne utilisant un tel dispositif
EP1635485B1 (fr) Procédé de transmission optique entre un terminal embarqué sur un engin spatial et un terminal distant, et engin spatial adapté pour un tel procédé
EP0498699B1 (fr) Mécanisme de pointage d'une charge utile, notamment d'une antenne de satellite
CA3165023C (fr) Radiateur a ensoleillement reduit et systeme de guidage pour satellite geostationnaire
FR2690532A1 (fr) Dispositif de pointage pour appareil optique.
EP0455543B1 (fr) Dispositif de pointage d'un réflecteur d'antenne
EP3839604A1 (fr) Dispositif de scan à excentrique amélioré
WO2021170723A1 (fr) Support d'antenne mobile
WO2022069682A1 (fr) Dispositif pour le positionnement d'une antenne
EP0424238A1 (fr) Dispositif de visée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121003

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 1/18 20060101ALI20150622BHEP

Ipc: H01Q 19/19 20060101ALN20150622BHEP

Ipc: H01Q 1/12 20060101ALN20150622BHEP

Ipc: H01Q 3/08 20060101AFI20150622BHEP

INTG Intention to grant announced

Effective date: 20150717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 771054

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011022599

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2568226

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160428

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 771054

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160414

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160513

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160513

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011022599

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

26N No opposition filed

Effective date: 20161014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161025

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161025

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111025

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230926

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231114

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231009

Year of fee payment: 13

Ref country code: FR

Payment date: 20231023

Year of fee payment: 13

Ref country code: DE

Payment date: 20231011

Year of fee payment: 13