EP2440490A1 - Method for hydrogen chloride oxidation at a catalyst having low surface roughness - Google Patents

Method for hydrogen chloride oxidation at a catalyst having low surface roughness

Info

Publication number
EP2440490A1
EP2440490A1 EP10724763A EP10724763A EP2440490A1 EP 2440490 A1 EP2440490 A1 EP 2440490A1 EP 10724763 A EP10724763 A EP 10724763A EP 10724763 A EP10724763 A EP 10724763A EP 2440490 A1 EP2440490 A1 EP 2440490A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
ruthenium
hydrogen chloride
fluidized bed
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10724763A
Other languages
German (de)
French (fr)
Inventor
Guido Henze
Heiko Urtel
Martin Sesing
Martin Karches
Peter VAN DEN ABEL
Kai Thiele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP10724763A priority Critical patent/EP2440490A1/en
Publication of EP2440490A1 publication Critical patent/EP2440490A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/20Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/42Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using halogen-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/50Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids
    • B01J38/54Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids halogen-containing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/68Liquid treating or treating in liquid phase, e.g. dissolved or suspended including substantial dissolution or chemical precipitation of a catalyst component in the ultimate reconstitution of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a process for the catalytic oxidation of hydrogen chloride over a catalyst containing ruthenium on a particulate carrier with low surface roughness.
  • EP-A 0 743 277 discloses a process for the preparation of chlorine by catalytic hydrogen chloride oxidation, in which a ruthenium-containing supported catalyst is used. Ruthenium is applied to the carrier in the form of ruthenium chloride, ruthenium oxychlorides, chlororuthenate complexes, ruthenium hydroxide, ruthenium-amine complexes or in the form of further ruthenium complexes.
  • the catalyst may contain as further metals palladium, copper, chromium, vanadium, manganese, alkali, alkaline earth and rare earth metals.
  • ruthenium (III) chloride on alumina is used as catalyst in a process of catalytic hydrogen chloride oxidation.
  • Suitable promoters for doping are alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, more preferably magnesium, rare earth metals such as Scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof, also called titanium, manganese, molybdenum and tin.
  • alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, more preferably magnesium, rare earth metals such as Scandium, yttrium, lanthanum, cerium, p
  • a fluidized bed catalyst operated in a reactor made of nickel containing steels produces corrosion of erosion from the reactor during the Deacon reaction. The continued erosion impairs the life of the fluidized bed reactor.
  • the object of the present invention is to remedy the disadvantages described above.
  • the object is achieved by a process for the catalytic oxidation of hydrogen chloride with oxygen to chlorine in a fluidized bed process in the presence of a catalyst containing ruthenium on a particulate support of alpha alumina having an average particle size of 10 to 200 .mu.m, characterized in that the catalyst support has a low surface roughness and is obtainable from a used catalyst which has been used for at least 500 operating hours in a fluidized bed process.
  • a fluidized bed catalyst based on carrier particles of alpha-alumina which were recovered from a used fluidized bed catalyst, causes a significantly lower abrasion on the wall of the fluidized bed reactor, if the used fluidized bed catalyst previously used at least 500 operating hours in a fluidized bed process has been.
  • the used fluidized bed catalyst was used for at least 1000 operating hours in a fluidized bed process.
  • the catalyst support preferably has an average diameter (d 50 value) of preferably 30 to 100, particularly preferably 40 to 80.
  • the fluidized bed reactors used in the process according to the invention are reactors made of a nickel-containing material.
  • the nickel content is at least 10 wt .-%.
  • the ckel inconveniencen materials still contain one or more other metals as alloying constituents, for example selected from iron, molybdenum, chromium and titanium.
  • nickel-containing materials are HC4 (2.4810 NiCM 5 Fe) and Inconel 600 (Ni-Mo16Cr16Ti).
  • the fluidized bed is operated at a gas velocity which is generally 3 to 500 times, preferably 10 to 200 times, more preferably 30 to 100 times the gas velocity at the vortex point (i.e., at the onset of fluidization).
  • the powdery catalyst support used according to the invention is obtained from previously used in the Deacon process, used ruthenium-containing catalysts containing alpha alumina as a carrier, optionally in admixture with other carrier materials.
  • the carrier consists essentially of alpha-alumina, but may contain other carrier materials, for example graphite, silicon dioxide, titanium dioxide and / or zirconium dioxide, preferably titanium dioxide and / or zirconium dioxide.
  • the carrier used according to the invention can be obtained from a used catalyst containing ruthenium oxide by
  • the catalyst containing ruthenium oxide in a gas stream containing hydrogen chloride and optionally an inert gas at a temperature of 300 to 500 0 C is reduced;
  • step b) the reduced catalyst from step a) is treated with hydrochloric acid in the presence of an oxygen-containing gas, the metallic ruthenium present on the support being dissolved as ruthenium chloride and being separated off as aqueous ruthenium chloride solution,
  • the catalyst containing ruthenium oxide in a gas stream containing hydrogen and optionally an inert gas at a temperature of 150 to 600 0 C is reduced;
  • step b) the reduced catalyst from step a) is treated with hydrochloric acid in the presence of an oxygen-containing gas, wherein the carrier present on the support ing metallic ruthenium is dissolved as ruthenium chloride and separated as an aqueous ruthenium chloride solution.
  • the ruthenium chloride solution can, if appropriate after concentration, be used to prepare a new catalyst.
  • the catalysts used according to the invention are obtained by impregnation of the used support material with aqueous solutions of salts of the metals.
  • the metals are usually applied as aqueous solutions of their chlorides, oxychlorides or oxides on the support.
  • the specific surface area of the alpha alumina support before the metal salt deposition is generally in the range of 0.1 to 10 m 2 / g.
  • Alpha-alumina can be prepared by heating gamma-alumina to temperatures in excess of 1000 ° C, preferably it is prepared. Generally calcined for 2 to 24 hours.
  • the catalyst according to the invention may contain, in addition to ruthenium, further metals. These are usually contained in the catalyst in amounts of up to 10% by weight, based on the weight of the catalyst.
  • the catalyst used according to the invention has, in addition to ruthenium, nickel. It has been found that a nickel-doped ruthenium-containing catalyst has a higher activity than a catalyst without nickel. It is believed that this increase in activity is due both to the promoting properties of the nickel chloride and to the better dispersity of the active component on the surface of the catalyst caused by the nickel chloride.
  • ruthenium is present on the catalyst according to the invention in fresh or regenerated form as RuO 2 crystallites with a crystallite size ⁇ 7 nm. The crystallite size is determined by the half-width of the reflection of the species in the XRD measurement.
  • the ruthenium-containing catalysts for the catalytic hydrogen chloride oxidation may additionally contain compounds of one or more further noble metals selected from palladium, platinum, iridium and silver.
  • the catalysts may further contain rhenium.
  • the catalysts may also be doped with one or more further metals.
  • alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, particularly preferably potassium, alkaline earth metals such as magnesium, Calcium, strontium and barium, preferably magnesium, rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof, furthermore titanium.
  • alkaline earth metals such as magnesium, Calcium, strontium and barium
  • rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof, furthermore titanium.
  • the weights are based on the weight of the metal, even if the metals are usually present in oxidic or chloridic form on the support.
  • the catalyst used in the invention contains 0.5 to 5 wt .-% ruthenium and 0.5 to 5 wt .-% nickel, based on the weight of the catalyst.
  • the catalyst according to the invention contains about 1 to 3 wt .-% ruthenium and 1 to 3.5 wt .-% nickel on alpha alumina as a carrier and next to no further active metals and promoter metals, wherein ruthenium is present as RuC> 2 ,
  • the ruthenium-supported catalysts can be obtained, for example, by impregnation of the support material with aqueous solutions of RuCl.sub.2 and optionally NiCl.sub.2 and of the further promoters for doping, preferably in the form of their chlorides.
  • the powder can then be carried out at temperatures of 100 to 500 0 C, preferably 100 to 300 0 C, for example under a nitrogen, argon or air atmosphere getrock- net and optionally calcined.
  • the powders are first dried at 100 to 150 0 C and then calcined at 200 to 500 0 C.
  • the support After deactivation of the catalyst, the support can be recovered and reused to prepare a ruthenium supported catalyst.
  • a hydrogen chloride stream and an oxygen-containing stream are fed to the fluidized bed reactor and partially oxidized hydrogen chloride in the presence of the catalyst to give a product gas stream containing chlorine, unreacted oxygen, unreacted hydrogen chloride and water vapor.
  • the hydrogen chloride stream which may originate from an isocyanate-producing plant, may contain impurities such as phosgene and carbon monoxide.
  • Typical reaction temperatures are between 150 and 500 0 C, usual reaction pressures are between 1 and 25 bar, for example 4 bar.
  • the reaction temperature is> 300 0 C, more preferably it is between 350 0 C and 420 0 C.
  • oxygen in superstoichiometric amounts. For example, a 1.5 to 4-fold excess of oxygen is customary. Since no selectivity losses are to be feared, it may be economically advantageous to work at relatively high pressures and, accordingly, at longer residence times than normal pressure.
  • the catalyst fluidized bed may contain, in addition to the catalyst, additional inert material, preferably in the form of additional, inactive carrier material.
  • additional inert material is also used carrier material, which has a low surface roughness due to the use in a fluidized bed process over a period of at least 500 operating hours.
  • Inert material can be used in amounts of 0 to 90 wt .-%, preferably 10 to 50 wt .-%, based on the sum of catalyst and inert material.
  • the conversion of hydrogen chloride in a single pass can be limited to 15 to 90%, preferably 40 to 85%. Unreacted hydrogen chloride can be partially or completely recycled to the catalytic hydrogen chloride oxidation after separation.
  • the volume ratio of hydrogen chloride to oxygen at the reactor inlet is generally between 1: 1 and 20: 1, preferably between 1, 5: 1 and 8: 1, more preferably between 1, 5: 1 and 5: 1.
  • the chlorine formed can subsequently be separated off in a customary manner.
  • the separation usually comprises several stages, namely the separation and, if appropriate, recycling of unreacted hydrogen chloride from the product gas stream of the catalytic hydrogen chloride oxidation, the drying of the product obtained, consisting essentially of chlorine and oxygen residual gas stream and the separation of chlorine from the dried stream.
  • a ruthenium-containing hydrogen chloride oxidation catalyst used according to the invention can also be obtained by regeneration of a used fluidized bed catalyst which has been used for at least 500 operating hours in a hydrogen chloride oxidation process. This can be regenerated, for example, by:
  • RuC> 2 can be reduced with hydrogen chloride. It is believed that reduction takes place via RuCl 3 to elemental ruthenium. Thus, treating a partially deactivated ruthenium oxide-containing catalyst with hydrogen chloride, presumably, after a sufficiently long treatment time, ruthenium oxide is quantitatively reduced to ruthenium. This reduction destroys the RuO 2 crystallites and redisperses the ruthenium, which may be present as elemental ruthenium, as a mixture of ruthenium chloride and elemental ruthenium, or as ruthenium chloride, on the support. After the reduction, the ruthenium can be reoxidized with an oxygen-containing gas, for example with air, to give the catalytically active RuO 2 . It was found that the catalyst thus obtained again has approximately the activity of the fresh catalyst. An advantage of the method is that the catalyst can be regenerated in situ in the reactor and does not need to be removed.
  • the regenerated catalyst has a low surface roughness corresponding to the operating time.
  • the fresh catalyst has a very rough surface and therefore produces a high reactor removal in the fluidized bed process.
  • 600 g of the catalyst are operated in a fluidized bed reactor with a diameter of 44 mm, a height of 990 mm and a bed height of 300 to 350 mm at 400 0 C with 200 NLh "1 HCl and 100 NL-h " 1 O 2 .
  • the catalyst is in the form of a powder with an average diameter of 50 micrometers (d 50 value). In this case, a hydrogen chloride conversion of 61% is obtained.
  • the catalyst is operated between 360 and 380 0 C.
  • FIG. 1 shows a picture of the fresh catalyst.
  • FIG. 2 shows a picture of the catalyst after 675 operating hours.
  • FIG. 3 shows a picture of the catalyst after 7175 operating hours.
  • FIG. 4 shows a picture of the catalyst after 9485 operating hours.
  • the fresh catalyst shows a rough surface and causes an average erosion rate of the reactor wall of 0.30 mm / year. After 675 hours, a slight rounding off of the catalyst surface can be seen, which is expressed by a slightly reduced erosion rate of 0.28 mm / year. After 7175 hours, the catalyst is rounded off to such an extent that the erosion rate drops to 0.04 mm / year. Finally, after 9485 hours, the erosion rate is virtually zero due to the smooth catalyst surface.
  • a recycling of the carrier allows the preparation of a fresh catalyst, which causes almost no erosion of the reactor wall from the beginning and thus increases the lifetime of the reactor by a multiple.
  • the supernatant Ru- and Ni-containing solution is separated by filtration from the solid (carrier) and the filter cake is washed with 500 mL of water.
  • the combined aqueous phases contain> 98% of the ruthenium and the nickel. Evaporation of a portion of this solution to 18 mL gives a solution containing 4.2% by weight of ruthenium and 7.0% by weight of nickel.
  • a deactivated fluidized bed catalyst which was obtained after 9485 operating hours in the fluidized bed reactor described in Example 1, are subjected to the recycling process for recovering the carrier described in Example 2.
  • the dried material is calcined at 380 ° C. under air for 1 h.
  • the resulting RuO 2 -containing catalyst can be used again for the catalytic HCl oxidation with O 2 .
  • 21 kg of the used catalyst from Example 2 (RuO 2 to Ci-Al 2 O 3 containing 2.5 wt .-% nickel chloride) are in a fluidized bed reactor with a diameter of 108 mm, a height of 4 to 4.5 m and a Bed height of 2.5 to 3 m at 400 0 C with 10.5 kg-h "1 HCl, 4.6 kg-h " 1 O 2 and 0.9 N 2 kg-h "1.
  • the catalyst is located in Forming a powder with a mean diameter of 50 microns (d 50 value) .This results in a conversion of HCl of 77% .Then after 20 h at 400 0 C, the oxygen is switched off and instead to 10.0 kg-h "1 HCl converted.
  • the catalyst is recalcined at 400 ° C. for 30 minutes at 2.0 kg-h -1 O 2 and 8.0 kg-h -1 N 2 and so reactivated.
  • the catalyst at 400 0 C with 10.5 kg-h "1 HCl, 4.6 kg-h " 1 O 2 and 0.9 N 2 kg-h "1 shows a conversion of 84% with respect to HCl.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a method for the catalytic oxidation of hydrogen chloride with oxygen to form chloride in a fluidized bed method in the presence of a catalyst containing ruthenium on a particulate carrier made of alpha-aluminum oxide having an average particle size of 10 to 200 µm, characterized in that the catalyst carrier has a low surface roughness and can be obtained from a used catalyst, which has been used for at least 500 operating hours in a fluidized bed method.

Description

Verfahren zur Chlorwasserstoffoxidation an einem Katalysator mit geringer Oberflächenrauhigkeit Process for hydrogen chloride oxidation on a catalyst with low surface roughness
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zur katalytischen Oxidation von Chlorwasserstoff an einem Katalysator enthaltend Ruthenium auf einem partikulären Träger mit geringer Oberflächenrauhigkeit.The invention relates to a process for the catalytic oxidation of hydrogen chloride over a catalyst containing ruthenium on a particulate carrier with low surface roughness.
In dem von Deacon 1868 entwickelten Verfahren der katalytischen Chlorwasserstoff- Oxidation wird Chlorwasserstoff mit Sauerstoff in einer exothermen Gleichgewichtsreaktion zu Chlor oxidiert. Durch Überführung von Chlorwasserstoff in Chlor kann die Chlorherstellung von der Natronlaugeherstellung durch Chloralkalielektrolyse entkop- pelt werden. Eine solche Entkoppelung ist attraktiv, da weltweit der Chlorbedarf stärker als die Nachfrage nach Natronlauge wächst. Zudem fällt Chlorwasserstoff in großen Mengen beispielsweise bei Phosgenierungsreaktionen, etwa bei der Isocyanather- stellung, als Koppelprodukt an.In the process of catalytic hydrogen chloride oxidation developed by Deacon in 1868, hydrogen chloride is oxidized with oxygen in an exothermic equilibrium reaction to form chlorine. By converting hydrogen chloride into chlorine, chlorine production can be decoupled from sodium hydroxide production by chloralkali electrolysis. Such decoupling is attractive, as the demand for chlorine worldwide grows faster than the demand for caustic soda. In addition, hydrogen chloride precipitates in large quantities, for example in phosgenation reactions, for example in the preparation of isocyanate, as coproduct.
In EP-A 0 743 277 ist ein Verfahren zur Herstellung von Chlor durch katalytische Chlorwasserstoff -Oxidation offenbart, bei dem ein Ruthenium enthaltender Trägerkatalysator eingesetzt wird. Ruthenium wird dabei in Form von Rutheniumchlorid, Rutheni- umoxichloriden, Chlorruthenat-Komplexen, Rutheniumhydroxid, Ruthenium-Amin- Komplexen oder in Form weiterer Ruthenium-Komplexe auf den Träger aufgebracht. Der Katalysator kann als weitere Metalle Palladium, Kupfer, Chrom, Vanadium, Mangan, Alkali-, Erdalkali- und Seltenerdmetalle enthalten.EP-A 0 743 277 discloses a process for the preparation of chlorine by catalytic hydrogen chloride oxidation, in which a ruthenium-containing supported catalyst is used. Ruthenium is applied to the carrier in the form of ruthenium chloride, ruthenium oxychlorides, chlororuthenate complexes, ruthenium hydroxide, ruthenium-amine complexes or in the form of further ruthenium complexes. The catalyst may contain as further metals palladium, copper, chromium, vanadium, manganese, alkali, alkaline earth and rare earth metals.
Gemäß GB 1 ,046,313 wird in einem Verfahren der katalytischen Chlorwasserstoff- Oxidation als Katalysator Ruthenium(lll)chlorid auf Aluminiumoxid eingesetzt.According to GB 1, 046,313, ruthenium (III) chloride on alumina is used as catalyst in a process of catalytic hydrogen chloride oxidation.
DE 10 2005 040286 A1 offenbart einen mechanisch stabilen Katalysator für die Chlorwasserstoffoxidation, enthaltend auf alpha-Aluminiumoxid als TrägerDE 10 2005 040286 A1 discloses a mechanically stable catalyst for the hydrogen chloride oxidation, containing on alpha-alumina as a carrier
a) 0,001 bis 10 Gew.-% Ruthenium, Kupfer und/oder Gold, b) 0 bis 5 Gew.-% eines oder mehrerer Erdalkalimetalle, c) 0 bis 5 Gew.-% eines oder mehrerer Alkalimetalle, d) 0 bis 10 Gew.-% eines oder mehrerer Seltenerdmetalle, e) 0 bis 10 Gew.-% eines oder mehrerer weiterer Metalle, ausgewählt aus der Gruppe bestehend aus Palladium, Platin, Osmium, Iridium, Silber und Rhenium. Als zur Dotierung geeignete Promotoren werden Alkalimetalle wie Lithium, Natrium, Kalium, Rubidium und Cäsium, bevorzugt Lithium, Natrium und Kalium, besonders bevorzugt Kalium, Erdalkalimetalle wie Magnesium, Calcium, Strontium und Barium, bevorzugt Magnesium und Calcium, besonders bevorzugt Magnesium, Seltenerdmetalle wie Scandium, Yttrium, Lanthan, Cer, Praseodym und Neodym, bevorzugt Scandi- um, Yttrium, Lanthan und Cer, besonders bevorzugt Lanthan und Cer, oder deren Gemische, ferner Titan, Mangan, Molybdän und Zinn genannt.a) 0.001 to 10 wt .-% of ruthenium, copper and / or gold, b) 0 to 5 wt .-% of one or more alkaline earth metals, c) 0 to 5 wt .-% of one or more alkali metals, d) 0 to 10 Wt .-% of one or more rare earth metals, e) 0 to 10 wt .-% of one or more other metals selected from the group consisting of palladium, platinum, osmium, iridium, silver and rhenium. Suitable promoters for doping are alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, more preferably magnesium, rare earth metals such as Scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof, also called titanium, manganese, molybdenum and tin.
Ein Wirbelschichtkatalysator, welcher in einem Reaktor betrieben wird, der aus nickel- haltigen Stählen (z.B. HC4, Inconel 600 etc.) gefertigt ist, erzeugt während der Dea- con-Reaktion durch Korrosion und Erosion einen Abtrag von NiC^ vom Reaktor. Die fortgesetzte Erosion beeinträchtigt die Lebensdauer des Wirbelschichtreaktors.A fluidized bed catalyst operated in a reactor made of nickel containing steels (e.g., HC4, Inconel 600, etc.) produces corrosion of erosion from the reactor during the Deacon reaction. The continued erosion impairs the life of the fluidized bed reactor.
Aufgabe der vorliegenden Erfindung ist es, den oben beschriebenen Nachteilen abzuhelfen.The object of the present invention is to remedy the disadvantages described above.
Gelöst wird die Aufgabe durch ein Verfahren zur katalytischen Oxidation von Chlorwasserstoff mit Sauerstoff zu Chlor in einem Wirbelschichtverfahren in Gegenwart ei- nes Katalysators enthaltend Ruthenium auf einem partikulären Träger aus alpha- Aluminiumoxid mit einer mittleren Teilchengröße von 10 bis 200μm, dadurch gekennzeichnet, dass der Katalysatorträger eine geringe Oberflächenrauhigkeit aufweist und aus einem gebrauchten Katalysator, der mindestens 500 Betriebsstunden in einem Wirbelschichtverfahren eingesetzt wurde, erhältlich ist.The object is achieved by a process for the catalytic oxidation of hydrogen chloride with oxygen to chlorine in a fluidized bed process in the presence of a catalyst containing ruthenium on a particulate support of alpha alumina having an average particle size of 10 to 200 .mu.m, characterized in that the catalyst support has a low surface roughness and is obtainable from a used catalyst which has been used for at least 500 operating hours in a fluidized bed process.
Es wurde gefunden, dass ein Wirbelschichtkatalysator auf Basis von Trägerpartikeln aus alpha-Aluminiumoxid, welche aus einem gebrauchten Wirbelschichtkatalysator wieder gewonnen wurden, einen deutlich geringeren Abrieb an der Wand des Wirbelschichtreaktors bewirkt, wenn der gebrauchte Wirbelschichtkatalysator zuvor mindes- tens 500 Betriebsstunden in einem Wirbelschichtverfahren eingesetzt wurde. Vorzugsweise wurde der gebrauchte Wirbelschichtkatalysator mindestens 1000 Betriebsstunden in einem Wirbelschichtverfahren eingesetzt.It was found that a fluidized bed catalyst based on carrier particles of alpha-alumina, which were recovered from a used fluidized bed catalyst, causes a significantly lower abrasion on the wall of the fluidized bed reactor, if the used fluidized bed catalyst previously used at least 500 operating hours in a fluidized bed process has been. Preferably, the used fluidized bed catalyst was used for at least 1000 operating hours in a fluidized bed process.
Der Katalysatorträger weist bevorzugt einen mittleren Durchmesser (d50-Wert) von be- vorzugt 30 bis 100, besonders bevorzugt 40 bis 80 auf.The catalyst support preferably has an average diameter (d 50 value) of preferably 30 to 100, particularly preferably 40 to 80.
Im Allgemeinen handelt es sich bei den in dem erfindungsgemäßen Verfahren eingesetzten Wirbelschichtreaktoren um Reaktoren aus einem nickelhaltigen Werkstoff. Vorzugsweise beträgt der Nickelgehalt mindestens 10 Gew.-%. Daneben können die ni- ckelhaltigen Werkstoffe noch ein oder mehrere weitere Metalle als Legierungsbestandteile enthalten, beispielsweise ausgewählt aus Eisen, Molybdän, Chrom und Titan. Beispiele für nickelhaltige Werkstoffe sind HC4 (2.4810 NiCM 5Fe) und Inconel 600 (Ni- Mo16Cr16Ti).In general, the fluidized bed reactors used in the process according to the invention are reactors made of a nickel-containing material. Preferably, the nickel content is at least 10 wt .-%. In addition, the ckelhaltigen materials still contain one or more other metals as alloying constituents, for example selected from iron, molybdenum, chromium and titanium. Examples of nickel-containing materials are HC4 (2.4810 NiCM 5 Fe) and Inconel 600 (Ni-Mo16Cr16Ti).
Die Wirbelschicht wird mit einer Gasgeschwindigkeit betrieben, die im Allgemeinen das 3 bis 500-fache, bevorzugt das 10 bis 200-fache, besonders bevorzugt das 30 bis 100- fache der Gasgeschwindigkeit am Wirbelpunk (d.h. beim Einsetzen der Fluidisation) beträgt.The fluidized bed is operated at a gas velocity which is generally 3 to 500 times, preferably 10 to 200 times, more preferably 30 to 100 times the gas velocity at the vortex point (i.e., at the onset of fluidization).
Vorzugsweise wird der erfindungsgemäß eingesetzte pulverförmige Katalysatorträger aus zuvor im Deacon-Verfahren eingesetzten, gebrauchten Ruthenium-haltigen Katalysatoren gewonnen, welche als Träger alpha-Aluminiumoxid, gegebenenfalls im Gemisch mit weiteren Trägermaterialien, enthalten. Im Allgemeinen besteht der Träger im Wesentlichen aus alpha-Aluminiumoxid, kann aber weitere Trägermaterialien, beispielsweise Graphit, Siliciumdioxid, Titandioxid und/oder Zirkondioxid, bevorzugt Titandioxid und/oder Zirkondioxid, enthalten.Preferably, the powdery catalyst support used according to the invention is obtained from previously used in the Deacon process, used ruthenium-containing catalysts containing alpha alumina as a carrier, optionally in admixture with other carrier materials. In general, the carrier consists essentially of alpha-alumina, but may contain other carrier materials, for example graphite, silicon dioxide, titanium dioxide and / or zirconium dioxide, preferably titanium dioxide and / or zirconium dioxide.
Der erfindungsgemäß eingesetzte Träger kann aus einem gebrauchten, Ruthenium- oxid enthaltenden Katalysator erhalten werden, indemThe carrier used according to the invention can be obtained from a used catalyst containing ruthenium oxide by
a) der Rutheniumoxid enthaltende Katalysator in einem Gasstrom enthaltend Chlorwasserstoff und gegebenenfalls ein Inertgas bei einer Temperatur von 300 bis 500 0C reduziert wird;a) the catalyst containing ruthenium oxide in a gas stream containing hydrogen chloride and optionally an inert gas at a temperature of 300 to 500 0 C is reduced;
b) der reduzierte Katalysator aus Schritt a) mit Salzsäure in Gegenwart eines sauerstoffhaltigen Gases behandelt wird, wobei das auf dem Träger vorliegende metallische Ruthenium als Rutheniumchlorid gelöst und als wässrige Rutheniumchlorid-Lösung abgetrennt wird,b) the reduced catalyst from step a) is treated with hydrochloric acid in the presence of an oxygen-containing gas, the metallic ruthenium present on the support being dissolved as ruthenium chloride and being separated off as aqueous ruthenium chloride solution,
oderor
a) der Rutheniumoxid enthaltende Katalysator in einem Gasstrom enthaltend Wasserstoff und gegebenenfalls ein Inertgas bei einer Temperatur von 150 bis 600 0C reduziert wird;a) the catalyst containing ruthenium oxide in a gas stream containing hydrogen and optionally an inert gas at a temperature of 150 to 600 0 C is reduced;
b) der reduzierte Katalysator aus Schritt a) mit Salzsäure in Gegenwart eines sauerstoffhaltigen Gases behandelt wird, wobei das auf dem Träger vorlie- gende metallische Ruthenium als Rutheniumchlorid gelöst und als wässrige Rutheniumchlorid-Lösung abgetrennt wird.b) the reduced catalyst from step a) is treated with hydrochloric acid in the presence of an oxygen-containing gas, wherein the carrier present on the support ing metallic ruthenium is dissolved as ruthenium chloride and separated as an aqueous ruthenium chloride solution.
Die Rutheniumchlorid-Lösung kann, gegebenenfalls nach Aufkonzentrierung, zur Her- Stellung eines neuen Katalysators eingesetzt werden.The ruthenium chloride solution can, if appropriate after concentration, be used to prepare a new catalyst.
Die erfindungsgemäß eingesetzten Katalysatoren werden durch Tränkung des gebrauchten Trägermaterials mit wässrigen Lösungen von Salzen der Metalle erhalten. Die Metalle werden üblicher Weise als wässrige Lösungen ihrer Chloride, Oxichloride oder Oxide auf den Träger aufgebracht.The catalysts used according to the invention are obtained by impregnation of the used support material with aqueous solutions of salts of the metals. The metals are usually applied as aqueous solutions of their chlorides, oxychlorides or oxides on the support.
Die spezifische Oberfläche des alpha-Aluminiumoxidträgers vor der Metallsalz- Ablagerung liegt im Allgemeinen im Bereich von 0,1 bis 10 m2/g. alpha-Aluminiumoxid kann durch Erhitzen von gamma-Aluminiumoxid auf Temperaturen oberhalb von 1000 0C hergestellt werden, vorzugsweise wird es so hergestellt. Im Allgemeinen wird 2 bis 24 h lang calciniert.The specific surface area of the alpha alumina support before the metal salt deposition is generally in the range of 0.1 to 10 m 2 / g. Alpha-alumina can be prepared by heating gamma-alumina to temperatures in excess of 1000 ° C, preferably it is prepared. Generally calcined for 2 to 24 hours.
Als Promotoren kann der erfindungsgemäße Katalysator neben Ruthenium weitere Metalle enthalten. Diese sind üblicher Weise in Mengen bis zu 10 Gew.-%, bezogen auf das Katalysatorgewicht, in dem Katalysator enthalten.As promoters, the catalyst according to the invention may contain, in addition to ruthenium, further metals. These are usually contained in the catalyst in amounts of up to 10% by weight, based on the weight of the catalyst.
In einer bevorzugten Ausführungsform weist der erfindungsgemäß eingesetzte Katalysator neben Ruthenium noch Nickel auf. Es wurde gefunden, dass ein mit Nickel dotierter Ruthenium enthaltender Katalysator eine höhere Aktivität aufweist als ein Kata- lysator ohne Nickel. Es wird vermutet, dass diese Aktivitätssteigerung sowohl auf die promotierenden Eigenschaften des Nickelchlorids als auch auf die durch das Nickelchlorid bewirkte bessere Dispersität der Aktivkomponente auf der Oberfläche des Katalysators zurückzuführen ist. So liegt Ruthenium auf dem erfindungsgemäßen Katalysator in frischer oder regenerierter Form als RuO2-Kristallite mit einer Kristallitgröße < 7 nm vor. Die Kristallitgröße wird über die Halbwertsbreite des Reflexes der Spezies bei der XRD-Messung bestimmt.In a preferred embodiment, the catalyst used according to the invention has, in addition to ruthenium, nickel. It has been found that a nickel-doped ruthenium-containing catalyst has a higher activity than a catalyst without nickel. It is believed that this increase in activity is due both to the promoting properties of the nickel chloride and to the better dispersity of the active component on the surface of the catalyst caused by the nickel chloride. Thus, ruthenium is present on the catalyst according to the invention in fresh or regenerated form as RuO 2 crystallites with a crystallite size <7 nm. The crystallite size is determined by the half-width of the reflection of the species in the XRD measurement.
Die Ruthenium enthaltenden Katalysatoren für die katalytische Chlorwasserstoff- Oxidation können zusätzlich Verbindungen eines oder mehrerer weiterer Edelmetalle, ausgewählt aus Palladium, Platin, Iridium und Silber, enthalten. Die Katalysatoren können weiterhin Rhenium enthalten. Die Katalysatoren können ferner mit einem oder mehreren weiteren Metallen dotiert sein. Zur Dotierung eignen sich als Promotoren Alkalimetalle wie Lithium, Natrium, Kalium, Rubidium und Cäsium, bevorzugt Lithium, Natrium und Kalium, besonders bevorzugt Kalium, Erdalkalimetalle wie Magnesium, Calcium, Strontium und Barium, bevorzugt Magnesium, Seltenerdmetalle wie Scandi- um, Yttrium, Lanthan, Cer, Praseodym und Neodym, bevorzugt Scandium, Yttrium, Lanthan und Cer, besonders bevorzugt Lanthan und Cer, oder deren Gemische, ferner Titan.The ruthenium-containing catalysts for the catalytic hydrogen chloride oxidation may additionally contain compounds of one or more further noble metals selected from palladium, platinum, iridium and silver. The catalysts may further contain rhenium. The catalysts may also be doped with one or more further metals. For doping are suitable as promoters alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, particularly preferably potassium, alkaline earth metals such as magnesium, Calcium, strontium and barium, preferably magnesium, rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof, furthermore titanium.
Für die Chlorwasserstoff-Oxidation bevorzugte Katalysatoren enthaltenFor the hydrogen chloride oxidation preferred catalysts
a) 0,1 bis 10 Gew.-% Ruthenium, b) 0 bis 10 Gew.-% Nickel, c) 0 bis 5 Gew.-% eines oder mehrerer Erdalkalimetalle, d) 0 bis 5 Gew.-% eines oder mehrerer Alkalimetalle, e) 0 bis 5 Gew.-% eines oder mehrerer Seltenerdmetalle, f) 0 bis 5 Gew.-% eines oder mehrerer weiterer Metalle, ausgewählt aus der Gruppe bestehend aus Palladium, Platin, Iridium, Silber und Rhenium,a) 0.1 to 10 wt .-% ruthenium, b) 0 to 10 wt .-% nickel, c) 0 to 5 wt .-% of one or more alkaline earth metals, d) 0 to 5 wt .-% of one or more Alkali metals, e) 0 to 5% by weight of one or more rare earth metals, f) 0 to 5% by weight of one or more further metals selected from the group consisting of palladium, platinum, iridium, silver and rhenium,
jeweils bezogen auf das Gesamtgewicht des Katalysators. Die Gewichtsangaben beziehen sich auf das Gewicht des Metalls, auch wenn die Metalle in der Regel in oxidischer oder chloridischer Form auf dem Träger vorliegen.in each case based on the total weight of the catalyst. The weights are based on the weight of the metal, even if the metals are usually present in oxidic or chloridic form on the support.
Im Allgemeinen beträgt der Gehalt an weiteren Metallen c) bis f), die neben Ruthenium und gegebenenfalls Nickel vorliegen, insgesamt nicht mehr als 5 Gew.-%.In general, the content of other metals c) to f), which are present in addition to ruthenium and optionally nickel, a total of not more than 5 wt .-%.
Ganz besonders bevorzugte enthält der erfindungsgemäß eingesetzte Katalysator 0,5 bis 5 Gew.-% Ruthenium und 0,5 bis 5 Gew.-% Nickel, bezogen auf das Gewicht des Katalysators. In einer speziellen Ausführungsform enthält der erfindungsgemäße Katalysator ca. 1 bis 3 Gew.-% Ruthenium und 1 bis 3,5 Gew.-% Nickel auf alpha- Aluminiumoxid als Träger und daneben keine weiteren Aktivmetalle und Promotormetalle, wobei Ruthenium als RuC>2 vorliegt.Most preferably, the catalyst used in the invention contains 0.5 to 5 wt .-% ruthenium and 0.5 to 5 wt .-% nickel, based on the weight of the catalyst. In a specific embodiment, the catalyst according to the invention contains about 1 to 3 wt .-% ruthenium and 1 to 3.5 wt .-% nickel on alpha alumina as a carrier and next to no further active metals and promoter metals, wherein ruthenium is present as RuC> 2 ,
Die Rutheniumträgerkatalysatoren können beispielsweise durch Tränkung des Trägermaterials mit wässrigen Lösungen von RuClß und gegebenenfalls NiC^ sowie der weiteren Promotoren zur Dotierung, bevorzugt in Form ihrer Chloride, erhalten werden. Die Pulver können anschließend bei Temperaturen von 100 bis 500 0C, bevorzugt 100 bis 300 0C beispielsweise unter einer Stickstoff-, Argon- oder Luftatmosphäre getrock- net und gegebenenfalls calciniert werden. Bevorzugt werden die Pulver zunächst bei 100 bis 150 0C getrocknet und anschließend bei 200 bis 500 0C calciniert.The ruthenium-supported catalysts can be obtained, for example, by impregnation of the support material with aqueous solutions of RuCl.sub.2 and optionally NiCl.sub.2 and of the further promoters for doping, preferably in the form of their chlorides. The powder can then be carried out at temperatures of 100 to 500 0 C, preferably 100 to 300 0 C, for example under a nitrogen, argon or air atmosphere getrock- net and optionally calcined. Preferably, the powders are first dried at 100 to 150 0 C and then calcined at 200 to 500 0 C.
Nach Deaktivierung des Katalysators kann der Träger wiedergewonnen und erneut zur Herstellung eines Rutheniumträgerkatalysators eingesetzt werden. Zur Durchführung der Chlorwasserstoffoxidation wird ein Chlorwasserstoffstrom und ein Sauerstoff enthaltender Strom in den Wirbelschichtreaktor eingespeist und Chlorwasserstoff in Gegenwart des Katalysators teilweise zu Chlor oxidiert, wobei ein Pro- duktgasstrom erhalten wird, der Chlor, nicht umgesetzten Sauerstoff, nicht umgesetzten Chlorwasserstoff und Wasserdampf enthält. Der Chlorwasserstoffstrom, der aus einer Anlage zur Herstellung von Isocyanaten stammen kann, kann Verunreinigungen wie Phosgen und Kohlenmonoxid enthalten.After deactivation of the catalyst, the support can be recovered and reused to prepare a ruthenium supported catalyst. To carry out the hydrogen chloride oxidation, a hydrogen chloride stream and an oxygen-containing stream are fed to the fluidized bed reactor and partially oxidized hydrogen chloride in the presence of the catalyst to give a product gas stream containing chlorine, unreacted oxygen, unreacted hydrogen chloride and water vapor. The hydrogen chloride stream, which may originate from an isocyanate-producing plant, may contain impurities such as phosgene and carbon monoxide.
Übliche Reaktionstemperaturen liegen zwischen 150 und 500 0C, übliche Reaktionsdrücke liegen zwischen 1 und 25 bar, beispielsweise 4 bar. Bevorzugt beträgt die Reaktionstemperatur > 300 0C, besonders bevorzugt liegt sie zwischen 350 0C und 420 0C. Ferner ist es zweckmäßig, Sauerstoff in überstöchiometrischen Mengen einzusetzen. Üblich ist beispielsweise ein 1 ,5- bis vierfacher Sauerstoff-Überschuss. Da keine Selektivitätsverluste zu befürchten sind, kann es wirtschaftlich vorteilhaft sein, bei relativ hohen Drücken und dementsprechend bei gegenüber Normaldruck längeren Verweilzeiten zu arbeiten.Typical reaction temperatures are between 150 and 500 0 C, usual reaction pressures are between 1 and 25 bar, for example 4 bar. Preferably, the reaction temperature is> 300 0 C, more preferably it is between 350 0 C and 420 0 C. It is also expedient to use oxygen in superstoichiometric amounts. For example, a 1.5 to 4-fold excess of oxygen is customary. Since no selectivity losses are to be feared, it may be economically advantageous to work at relatively high pressures and, accordingly, at longer residence times than normal pressure.
Die Katalysator-Wirbelschicht kann neben dem Katalysator zusätzliches Inertmaterial, vorzugsweise in Form von zusätzlichem, inaktivem Trägermaterial enthalten. Bei dem inaktiven Inertmaterial handelt es sich ebenfalls um gebrauchtes Trägermaterial, welches aufgrund der Verwendung in einem Wirbelschichtverfahren über einen Zeitraum von mindestens 500 Betriebsstunden eine geringe Oberflächenrauhigkeit aufweist. Inertmaterial kann in Mengen von 0 bis 90 Gew.-%, bevorzugt 10 bis 50 Gew.-%, be- zogen auf die Summe von Katalysator und Inertmaterial, eingesetzt werden.The catalyst fluidized bed may contain, in addition to the catalyst, additional inert material, preferably in the form of additional, inactive carrier material. The inactive inert material is also used carrier material, which has a low surface roughness due to the use in a fluidized bed process over a period of at least 500 operating hours. Inert material can be used in amounts of 0 to 90 wt .-%, preferably 10 to 50 wt .-%, based on the sum of catalyst and inert material.
Der Umsatz an Chlorwasserstoff im einfachen Durchgang kann auf 15 bis 90 %, bevorzugt 40 bis 85 % begrenzt werden. Nicht umgesetzter Chlorwasserstoff kann nach der Abtrennung teilweise oder vollständig in die katalytische Chlorwasserstoff- Oxidation zurückgeführt werden. Das Volumenverhältnis von Chlorwasserstoff zu Sauerstoff am Reaktoreintritt liegt in der Regel zwischen 1 :1 und 20:1 , bevorzugt zwischen 1 ,5:1 und 8:1 , besonders bevorzugt zwischen 1 ,5:1 und 5:1.The conversion of hydrogen chloride in a single pass can be limited to 15 to 90%, preferably 40 to 85%. Unreacted hydrogen chloride can be partially or completely recycled to the catalytic hydrogen chloride oxidation after separation. The volume ratio of hydrogen chloride to oxygen at the reactor inlet is generally between 1: 1 and 20: 1, preferably between 1, 5: 1 and 8: 1, more preferably between 1, 5: 1 and 5: 1.
Aus dem bei der katalytischen Chlorwasserstoff-Oxidation erhaltenen Produktgasstrom kann nachfolgend in üblicher Weise das gebildete Chlor abgetrennt werden. Die Abtrennung umfasst üblicher Weise mehrere Stufen, nämlich die Abtrennung und gegebenenfalls Rückführung von nicht umgesetztem Chlorwasserstoff aus dem Produktgasstrom der katalytischen Chlorwasserstoff-Oxidation, die Trocknung des erhaltenen, im Wesentlichen aus Chlor und Sauerstoff bestehenden Restgasstroms sowie die Abtrennung von Chlor aus dem getrockneten Strom.From the product gas stream obtained in the catalytic hydrogen chloride oxidation, the chlorine formed can subsequently be separated off in a customary manner. The separation usually comprises several stages, namely the separation and, if appropriate, recycling of unreacted hydrogen chloride from the product gas stream of the catalytic hydrogen chloride oxidation, the drying of the product obtained, consisting essentially of chlorine and oxygen residual gas stream and the separation of chlorine from the dried stream.
Ein erfindungsgemäß eingesetzter, Ruthenium enthaltender Chlorwasserstoff- Oxidationskatalysator lässt sich auch erhalten durch Regenerierung eines gebrauchten Wirbelschichtkatalysators, der mindestens 500 Betriebsstunden in einem Chlorwasser- stoff-Oxidationsverfahren eingesetzt wurde. Dieser lässt sich beispielsweise regenerieren durch:A ruthenium-containing hydrogen chloride oxidation catalyst used according to the invention can also be obtained by regeneration of a used fluidized bed catalyst which has been used for at least 500 operating hours in a hydrogen chloride oxidation process. This can be regenerated, for example, by:
a) Reduzieren des Katalysators in einem Gasstrom enthaltend Chlorwasserstoff und gegebenenfalls ein Inertgas bei einer Temperatur von 300 bis 500 0C,a) reducing the catalyst in a gas stream containing hydrogen chloride and optionally an inert gas at a temperature of 300 to 500 0 C,
b) Recalcinieren des Katalysators in einem Sauerstoff enthaltenden Gasstrom bei einer Temperatur von 200 bis 450 0C.b) Recalcining of the catalyst in an oxygen-containing gas stream at a temperature of 200 to 450 0 C.
Es wurde gefunden, dass sich RuC>2 mit Chlorwasserstoff reduzieren lässt. Es wird angenommen, dass die Reduktion über RuCI3 bis zum elementaren Ruthenium erfolgt. Behandelt man also einen teilweise deaktivierten rutheniumoxidhaltigen Katalysator mit Chlorwasserstoff, so wird vermutlich nach einer ausreichend langen Behandlungszeit Rutheniumoxid quantitativ zu Ruthenium reduziert. Durch diese Reduktion werden die RuO2-Kristallite zerstört und wird das Ruthenium, welches als elementares Ruthenium, als Gemisch aus Rutheniumchlorid und elementarem Ruthenium, oder als Rutheniumchlorid vorliegen kann, auf dem Träger redispergiert. Nach der Reduktion lässt sich das Ruthenium wieder mit einem sauerstoffhaltigen Gas, beispielsweise mit Luft, zum kata- lytisch aktiven RuO2 reoxidieren. Es wurde gefunden, dass der so erhaltene Katalysator wieder annähernd die Aktivität des frischen Katalysators aufweist. Ein Vorteil des Verfahrens liegt darin, dass der Katalysator in situ im Reaktor regeneriert werden kann und nicht ausgebaut werden muss.It has been found that RuC> 2 can be reduced with hydrogen chloride. It is believed that reduction takes place via RuCl 3 to elemental ruthenium. Thus, treating a partially deactivated ruthenium oxide-containing catalyst with hydrogen chloride, presumably, after a sufficiently long treatment time, ruthenium oxide is quantitatively reduced to ruthenium. This reduction destroys the RuO 2 crystallites and redisperses the ruthenium, which may be present as elemental ruthenium, as a mixture of ruthenium chloride and elemental ruthenium, or as ruthenium chloride, on the support. After the reduction, the ruthenium can be reoxidized with an oxygen-containing gas, for example with air, to give the catalytically active RuO 2 . It was found that the catalyst thus obtained again has approximately the activity of the fresh catalyst. An advantage of the method is that the catalyst can be regenerated in situ in the reactor and does not need to be removed.
Der regenerierte Katalysator weist eine der Betriebsdauer entsprechende geringe Oberflächenrauhigkeit auf.The regenerated catalyst has a low surface roughness corresponding to the operating time.
Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.The invention is further illustrated by the following examples.
BeispieleExamples
Beispiel 1 Der Frischkatalysator wird hergestellt durch Tränkung des Trägers (α-AI2O3-Pulver, d50 = 50 μm) mit einer wässrigen RuCI3-Lösung, Trocknen und Kalzinieren bei 300 bis 450 0C für 0,5 bis 5,0 h. Der Frischkatalysator hat eine sehr raue Oberfläche und erzeugt daher einen hohen Reaktorabtrag im Wirbelschichtverfahren.example 1 The fresh catalyst is prepared by impregnation of the carrier (α-Al 2 O 3 powder, d 50 = 50 microns) with an aqueous RuCl 3 solution, drying and calcining at 300 to 450 0 C for 0.5 to 5.0 h , The fresh catalyst has a very rough surface and therefore produces a high reactor removal in the fluidized bed process.
600 g des Katalysators werden in einem Wirbelbettreaktor mit einem Durchmesser von 44 mm, einer Höhe von 990 mm und einer Betthöhe von 300 bis 350 mm bei 400 0C mit 200 NLh"1 HCl und 100 NL-h"1 O2 betrieben. Der Katalysator liegt in Form eines Pulvers mit einem mittleren Durchmesser von 50 Mikrometern (d50-Wert) vor. Dabei wird ein Chlorwasserstoff-Umsatz von 61 % erhalten. Der Katalysator wird zwischen 360 und 380 0C betrieben.600 g of the catalyst are operated in a fluidized bed reactor with a diameter of 44 mm, a height of 990 mm and a bed height of 300 to 350 mm at 400 0 C with 200 NLh "1 HCl and 100 NL-h " 1 O 2 . The catalyst is in the form of a powder with an average diameter of 50 micrometers (d 50 value). In this case, a hydrogen chloride conversion of 61% is obtained. The catalyst is operated between 360 and 380 0 C.
Figur 1 zeigt eine Aufnahme des frischen Katalysators. Figur 2 zeigt eine Aufnahme des Katalysators nach 675 Betriebsstunden. Figur 3 zeigt eine Aufnahme des Katalysators nach 7175 Betriebsstunden. Figur 4 zeigt eine Aufnahme des Katalysators nach 9485 Betriebsstunden.FIG. 1 shows a picture of the fresh catalyst. FIG. 2 shows a picture of the catalyst after 675 operating hours. FIG. 3 shows a picture of the catalyst after 7175 operating hours. FIG. 4 shows a picture of the catalyst after 9485 operating hours.
Der Frischkatalysator zeigt eine raue Oberfläche und bewirkt durch diese eine durch- schnittliche Erosionsrate der Reaktorwand von 0,30 mm/Jahr. Nach 675 Stunden ist eine leichte Abrundung der Katalysatoroberfläche zu erkennen, welches sich durch eine leicht gesunkene Erosionsrate von 0,28 mm/Jahr ausdrückt. Nach 7175 Stunden ist der Katalysator soweit abgerundet, dass die Erosionsrate auf 0,04 mm/Jahr zurückgeht. Nach 9485 Stunden schließlich ist die Erosionsrate aufgrund der glatten Kataly- satoroberfläche praktisch gleich null.The fresh catalyst shows a rough surface and causes an average erosion rate of the reactor wall of 0.30 mm / year. After 675 hours, a slight rounding off of the catalyst surface can be seen, which is expressed by a slightly reduced erosion rate of 0.28 mm / year. After 7175 hours, the catalyst is rounded off to such an extent that the erosion rate drops to 0.04 mm / year. Finally, after 9485 hours, the erosion rate is virtually zero due to the smooth catalyst surface.
Ein Recycling des Trägers ermöglicht die Präparation eines Frischkatalysators, welcher von Anfang an so gut wie keine Erosion der Reaktorwand verursacht und somit die Lebensdauer des Reaktors um ein Vielfaches erhöht.A recycling of the carrier allows the preparation of a fresh catalyst, which causes almost no erosion of the reactor wall from the beginning and thus increases the lifetime of the reactor by a multiple.
Beispiel 2Example 2
585 g eines gebrauchten und deaktivierten Wirbelschichtkatalysators, der 2 Gew.-% RuO2 auf alpha-AI2O3, (mittlerer Durchmesser (d50-Wert): 50 μm) und, als Folge von Korrosion und Erosion des nickelhaltigen Reaktors, 2,5 Gew.-% Nickelchlorid enthält, werden in dem in Beispiel 1 beschriebenen Wirbelbettreaktor 70 h lang mit 100 NL/h gasförmiger HCl bei 430 0C behandelt. Der so erhaltene reduzierte Katalysator wird in einem 2500 ml_ Glasreaktor mit 2000 ml_ einer 20 %igen HCI-Lösung unter intensivem Rühren für 96 h bei 100 0C behandelt. Während der gesamten Behandlungsdauer werden 20 NL/h Luft eingeperlt. Die überstehende Ru- und Ni-haltige Lösung wird durch Filtration vom Feststoff (Träger) getrennt und der Filterkuchen mit 500 mL Wasser gewaschen. Die kombinierten wässrigen Phasen enthalten > 98 % des Rutheniums und des Nickels. Durch Eindampfen eines Teils dieser Lösung auf 18 mL erhält man eine Lösung, welche 4,2 Gew.-% Ruthenium und 7,0 Gew.-% Nickel enthält.585 g of a used and deactivated fluidized bed catalyst containing 2% by weight of RuO 2 on alpha-Al 2 O 3 , (average diameter (d 50 value): 50 μm) and, as a result of corrosion and erosion of the nickel-containing reactor, 2 , 5 wt .-% nickel chloride, are treated in the fluidized bed reactor described in Example 1 for 70 h with 100 NL / h of gaseous HCl at 430 0 C. The reduced catalyst so obtained is treated in a 2500 mL glass reactor with 2000 ml of a 20% HCl solution with vigorous stirring for 96 h at 100 0 C. During the entire treatment period 20 NL / h air are bubbled. The supernatant Ru- and Ni-containing solution is separated by filtration from the solid (carrier) and the filter cake is washed with 500 mL of water. The combined aqueous phases contain> 98% of the ruthenium and the nickel. Evaporation of a portion of this solution to 18 mL gives a solution containing 4.2% by weight of ruthenium and 7.0% by weight of nickel.
Beispiel 3Example 3
200 g eines deaktivierten Wirbelschichtkatalysators, welcher nach 9485 Betriebsstunden in dem in Beispiel 1 beschriebenen Wirbelschichtreaktor erhalten wurde, werden dem in Beispiel 2 beschriebenen Recycling-Verfahren zur Wiedergewinnung des Trägers unterworfen. 50 g des dabei erhaltenen abgerundeten Trägers werden mit 18 mL einer wässrigen RuCI3-Lösung (Ru-Gehalt = 4,2 Gew.-%) im Sprühverfahren in einem drehenden Glaskolben getränkt und der resultierende Feststoff für 16 h bei 120 0C getrocknet. Das getrocknete Material wird 1 h bei 380 0C unter Luft calciniert. Der so entstandene, RuO2-haltige Katalysator kann erneut für die katalytische HCI-Oxidation mit O2 eingesetzt werden.200 g of a deactivated fluidized bed catalyst, which was obtained after 9485 operating hours in the fluidized bed reactor described in Example 1, are subjected to the recycling process for recovering the carrier described in Example 2. 50 g of the resulting rounded support are impregnated with 18 ml of an aqueous RuCl 3 solution (Ru content = 4.2% by weight) by spraying in a rotating glass flask and the resulting solid is dried at 120 ° C. for 16 h. The dried material is calcined at 380 ° C. under air for 1 h. The resulting RuO 2 -containing catalyst can be used again for the catalytic HCl oxidation with O 2 .
2 g dieses Katalysators werden mit 118 g α-AI2O3 gemischt und in einem Wirbelschichtreaktor (d = 29 mm; Höhe des Wirbelbettes 20 bis 25 cm) bei 360 0C mit 9,0 NL/h HCl und 4,5 NL/h O2 von unten über eine Glasfritte durchströmt und der HCI- Umsatz durch Einleiten des resultierenden Gasstromes in eine Kaliumiodidlösung und anschließende Titration des entstandenen lods mit einer Natriumthiosulfatlösung be- stimmt. Es wird ein HCI-Umsatz von 37,7 % festgestellt.2 g of this catalyst are mixed with 118 g of α-Al 2 O 3 and in a fluidized bed reactor (d = 29 mm, height of the fluidized bed 20 to 25 cm) at 360 0 C with 9.0 NL / h HCl and 4.5 NL / h O 2 flows through from below over a glass frit and determines the HCI conversion by introducing the resulting gas stream into a potassium iodide solution and subsequent titration of the resulting iodine with a sodium thiosulfate solution. An HCI conversion of 37.7% is found.
Beispiel 4Example 4
21 kg des gebrauchten Katalysators aus Beispiel 2 (RuO2 auf Ci-AI2O3 enthaltend 2,5 Gew.-% Nickelchlorid) werden in einem Wirbelbettreaktor mit einem Durchmesser von 108 mm, einer Höhe von 4 bis 4,5 m und einer Betthöhe von 2,5 bis 3 m bei 400 0C mit 10,5 kg-h"1 HCl, 4,6 kg-h"1 O2 und 0,9 N2 kg-h"1 betrieben. Der Katalysator liegt in Form eines Pulvers mit einem mittleren Durchmesser von 50 Mikrometern (d50-Wert) vor. Dabei wird ein Umsatz des HCl von 77 % erhalten. Danach wird für 20 h bei 400 0C der Sauerstoff ausgeschaltet und stattdessen auf 10,0 kg-h"1 HCl umgestellt. Nach 20 h wird der Katalysator bei 400 0C für 30 min bei 2,0 kg-h"1 O2 und 8,0 kg-h"1 N2 wieder recalciniert und so reaktiviert. Nach dieser Behandlung zeigt der Katalysator bei 400 0C mit 10,5 kg-h"1 HCl, 4,6 kg-h"1 O2 und 0,9 N2 kg-h"1 einen Umsatz von 84 % bezüglich HCl. 21 kg of the used catalyst from Example 2 (RuO 2 to Ci-Al 2 O 3 containing 2.5 wt .-% nickel chloride) are in a fluidized bed reactor with a diameter of 108 mm, a height of 4 to 4.5 m and a Bed height of 2.5 to 3 m at 400 0 C with 10.5 kg-h "1 HCl, 4.6 kg-h " 1 O 2 and 0.9 N 2 kg-h "1. The catalyst is located in Forming a powder with a mean diameter of 50 microns (d 50 value) .This results in a conversion of HCl of 77% .Then after 20 h at 400 0 C, the oxygen is switched off and instead to 10.0 kg-h "1 HCl converted. After 20 hours, the catalyst is recalcined at 400 ° C. for 30 minutes at 2.0 kg-h -1 O 2 and 8.0 kg-h -1 N 2 and so reactivated. After this treatment, the catalyst at 400 0 C with 10.5 kg-h "1 HCl, 4.6 kg-h " 1 O 2 and 0.9 N 2 kg-h "1 shows a conversion of 84% with respect to HCl.

Claims

Patentansprüche claims
1. Verfahren zur katalytischen Oxidation von Chlorwasserstoff mit Sauerstoff zu Chlor in einem Wirbelschichtverfahren in Gegenwart eines Katalysators enthaltend Ruthenium auf einem partikulären Träger aus alpha-Aluminiumoxid mit einer mittleren Teilchengröße von 10 bis 200 μm, dadurch gekennzeichnet, dass der Katalysatorträger eine geringe Oberflächenrauhigkeit aufweist und aus einem gebrauchten Katalysator, der mindestens 500 Betriebsstunden in einem Wirbel- schichtverfahren eingesetzt wurde, erhältlich ist.1. A process for the catalytic oxidation of hydrogen chloride with oxygen to chlorine in a fluidized bed process in the presence of a catalyst containing ruthenium on a particulate support of alpha-alumina having an average particle size of 10 to 200 microns, characterized in that the catalyst support has a low surface roughness and from a used catalyst that has been used for at least 500 hours in a fluidized bed process.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der partikuläre Träger im Wesentlichen aus alpha-Aluminiumoxid besteht.2. The method according to claim 1, characterized in that the particulate carrier consists essentially of alpha-alumina.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Katalysator3. The method according to claim 1 or 2, characterized in that the catalyst
a) 0,1 bis 10 Gew.-% Ruthenium, b) 0 bis 10 Gew.-% Nickel, c) 0 bis 5 Gew.-% eines oder mehrerer Erdalkalimetalle, d) 0 bis 5 Gew.-% eines oder mehrerer Alkalimetalle, e) 0 bis 5 Gew.-% eines oder mehrerer Seltenerdmetalle, f) 0 bis 5 Gew.-% eines oder mehrerer weiterer Metalle, ausgewählt aus der Gruppe bestehend aus Palladium, Platin, Iridium und Rhenium,a) 0.1 to 10 wt .-% ruthenium, b) 0 to 10 wt .-% nickel, c) 0 to 5 wt .-% of one or more alkaline earth metals, d) 0 to 5 wt .-% of one or more Alkali metals, e) 0 to 5% by weight of one or more rare earth metals, f) 0 to 5% by weight of one or more further metals selected from the group consisting of palladium, platinum, iridium and rhenium,
jeweils bezogen auf das Gesamtgewicht des Katalysators, enthält.each based on the total weight of the catalyst.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Katalysatorträger aus einem gebrauchten, Rutheniumoxid enthaltenden Kataly- sator erhalten wird, indem4. The method according to any one of claims 1 to 3, characterized in that the catalyst support is obtained from a used catalyst containing ruthenium oxide by
a) der Rutheniumoxid enthaltende Katalysator in einem Gasstrom enthaltenda) containing the catalyst containing ruthenium oxide in a gas stream
Chlorwasserstoff und gegebenenfalls ein Inertgas bei einer Temperatur vonHydrogen chloride and optionally an inert gas at a temperature of
300 bis 500 0C reduziert wird oder in einem Gasstrom enthaltend Wasser- stoff und gegebenenfalls ein Inertgas bei einer Temperatur von 150 bis 600300 to 500 0 C is reduced or in a gas stream containing hydrogen and optionally an inert gas at a temperature of 150 to 600
0C reduziert wird; b) der reduzierte Katalysator aus Schritt a) mit Salzsäure in Gegenwart eines sauerstoffhaltigen Gases behandelt wird, wobei das auf dem Träger vorliegende metallische Ruthenium als Rutheniumchlorid gelöst und als wässrige Rutheniumchlorid-Lösung abgetrennt wird. 0 C is reduced; b) the reduced catalyst from step a) is treated with hydrochloric acid in the presence of an oxygen-containing gas, wherein the metallic ruthenium present on the support is dissolved as ruthenium chloride and separated off as aqueous ruthenium chloride solution.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Katalysator durch Imprägnieren des Trägers mit einer oder mehreren Metallsalzlösungen, welche Ruthenium und gegebenenfalls ein- oder mehrere weitere Promotormetalle enthalten, Trocknen und Calcinieren des imprägnierten Trägers erhältlich ist. 5. The method according to any one of claims 1 to 4, characterized in that the catalyst by impregnation of the carrier with one or more metal salt solutions containing ruthenium and optionally one or more further promoter metals, drying and calcination of the impregnated carrier is available.
EP10724763A 2009-06-10 2010-06-04 Method for hydrogen chloride oxidation at a catalyst having low surface roughness Withdrawn EP2440490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10724763A EP2440490A1 (en) 2009-06-10 2010-06-04 Method for hydrogen chloride oxidation at a catalyst having low surface roughness

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09162365 2009-06-10
EP10724763A EP2440490A1 (en) 2009-06-10 2010-06-04 Method for hydrogen chloride oxidation at a catalyst having low surface roughness
PCT/EP2010/057814 WO2010142604A1 (en) 2009-06-10 2010-06-04 Method for hydrogen chloride oxidation at a catalyst having low surface roughness

Publications (1)

Publication Number Publication Date
EP2440490A1 true EP2440490A1 (en) 2012-04-18

Family

ID=42348115

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10724763A Withdrawn EP2440490A1 (en) 2009-06-10 2010-06-04 Method for hydrogen chloride oxidation at a catalyst having low surface roughness

Country Status (7)

Country Link
US (2) US20120087855A1 (en)
EP (1) EP2440490A1 (en)
JP (1) JP2012529415A (en)
KR (1) KR20120036956A (en)
CN (1) CN102803130B (en)
BR (1) BRPI1011010A2 (en)
WO (1) WO2010142604A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110961095B (en) * 2018-09-30 2022-06-28 中国石油化工股份有限公司 Fischer-Tropsch synthesis catalyst and preparation method and application thereof
KR102262496B1 (en) * 2018-12-21 2021-06-07 한화솔루션 주식회사 A process for producing a ruthenium oxide supported catalyst for chlorine production, and a catalyst thereof
KR102287846B1 (en) * 2018-12-21 2021-08-06 한화솔루션 주식회사 Catalyst for Hydrogen Chloride Oxidation Reaction for Chlorine Production and Preparation Method thereof
CN115155672A (en) * 2022-06-24 2022-10-11 西安近代化学研究所 Regeneration method of hydrogen chloride oxidation catalyst
CN116550321A (en) * 2023-05-22 2023-08-08 康纳新型材料(杭州)有限公司 High-dispersity ruthenium catalyst for preparing chlorine by hydrogen chloride oxidation and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076262A1 (en) * 2008-12-30 2010-07-08 Basf Se Catalyst for hydrogen chloride oxidation containing ruthenium and nickel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4147660A (en) * 1976-12-22 1979-04-03 Osaka Gas Company, Ltd. Method for reactivation of platinum group metal catalyst with aqueous alkaline and/or reducing solutions
CA1260229A (en) * 1986-06-30 1989-09-26 Mitsui Chemicals, Inc. Production process of chlorine
US5707919A (en) * 1994-11-14 1998-01-13 Mitsui Toatsu Chemicals, Inc. Catalyst for preparing chlorine from hydrogen chloride
DE19748299A1 (en) * 1996-10-31 1998-05-07 Sumitomo Chemical Co Production of chlorine@
DE10361519A1 (en) * 2003-12-23 2005-07-28 Basf Ag Process for the production of chlorine by gas phase oxidation of hydrogen chloride
DE102005040286A1 (en) * 2005-08-25 2007-03-01 Basf Ag Mechanically stable catalyst based on alpha-alumina
DE102005061954A1 (en) * 2005-12-23 2007-07-05 Basf Ag Recycling of ruthenium from an used ruthenium catalyst comprises treating the catalyst containing ruthenium oxide in a hydrogen stream and treating the carrier material containing ruthenium metal with hydrochloric acid
WO2007125004A1 (en) * 2006-04-26 2007-11-08 Basf Aktiengesellschaft Method for manufacturing catalysts for catalytic hydrogen chloride oxidation
JP5169047B2 (en) * 2007-07-23 2013-03-27 住友化学株式会社 Chlorine production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076262A1 (en) * 2008-12-30 2010-07-08 Basf Se Catalyst for hydrogen chloride oxidation containing ruthenium and nickel

Also Published As

Publication number Publication date
CN102803130A (en) 2012-11-28
KR20120036956A (en) 2012-04-18
WO2010142604A1 (en) 2010-12-16
US20150360210A1 (en) 2015-12-17
CN102803130B (en) 2015-07-15
JP2012529415A (en) 2012-11-22
US20120087855A1 (en) 2012-04-12
BRPI1011010A2 (en) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2010076262A1 (en) Catalyst for hydrogen chloride oxidation containing ruthenium and nickel
EP1966400B1 (en) Method for the recovery of ruthenium from used ruthenium oxide-containing catalysts
EP1919611A1 (en) Mechanically stable catalyst based on alpha-alumina
EP2391740B1 (en) Method for recovering ruthenium from spent catalysts containing ruthenium oxide
EP2384239B1 (en) Method for regenerating a catalyst containing ruthenium oxide for hydrogen chloride oxidation
WO2008131856A2 (en) Method for the recovery of ruthenium from a supported catalyst material containing ruthenium
EP2027062A2 (en) Method for producing chlorine by gas phase oxidation
WO2012025483A2 (en) Catalyst and method for the production of chlorine by gas phase oxidation
EP2142296A1 (en) Ruthenium catalysts for the catalytic gas-phase oxidation of hydrogen chloride with oxygen (deacon method)
US20150360210A1 (en) Process for the oxidation of hydrogen chloride over a catalyst having a low surface roughness
EP2401072B1 (en) Catalyst for hydrogen chloride oxidation comprising ruthenium and silver and/or calcium
WO2004031074A1 (en) Catalyst for the catalytic oxidation of hydrogen chloride
EP2177268A1 (en) Catalyst and method for producing chlorine by gas phase oxidation
DE102007033113A1 (en) Stable, high activity hydrogen chloride oxidation catalyst, for producing chlorine, comprises active component supported on carrier based on uranium compound
WO2007134723A2 (en) Method for producing chlorine by gas phase oxidation
WO2007125004A1 (en) Method for manufacturing catalysts for catalytic hydrogen chloride oxidation
WO2017134230A1 (en) Catalyst and method for producing chlorine by means of gas phase oxidation
DE102007033114A1 (en) Production of chlorine by catalytic gas-phase oxidation of hydrogen chloride with oxygen, involves using a supported catalyst in which the active component is uranium or a uranium compound

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131021

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN