EP2438646A1 - Measuring coupler using strip conductor technology - Google Patents

Measuring coupler using strip conductor technology

Info

Publication number
EP2438646A1
EP2438646A1 EP10725018A EP10725018A EP2438646A1 EP 2438646 A1 EP2438646 A1 EP 2438646A1 EP 10725018 A EP10725018 A EP 10725018A EP 10725018 A EP10725018 A EP 10725018A EP 2438646 A1 EP2438646 A1 EP 2438646A1
Authority
EP
European Patent Office
Prior art keywords
conductor
coaxial
band
measuring
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10725018A
Other languages
German (de)
French (fr)
Other versions
EP2438646B1 (en
Inventor
Ralf JÜNEMANN
Alexander Bayer
Michael Freissl
Christian Evers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Rohde and Schwarz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde and Schwarz GmbH and Co KG filed Critical Rohde and Schwarz GmbH and Co KG
Publication of EP2438646A1 publication Critical patent/EP2438646A1/en
Application granted granted Critical
Publication of EP2438646B1 publication Critical patent/EP2438646B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips

Definitions

  • the invention relates to a measuring coupler for acting upon a test object with a measuring signal, in particular within an ultra-wideband frequency range.
  • Electronic measuring devices for microwave technology usually have to be designed in an ultra-wideband manner in order to cover all possible applications of the customers.
  • the lower frequency limit is then e.g. at 10 MHz and an upper frequency limit at 60 GHz.
  • the generation and processing of such a frequency range is split internally into several sensible subranges, which are ultimately combined with each other at the front of a meter. Such a combination can be done in many ways.
  • the use of couplers has proven to be the best solution.
  • US 5,055,807 Bl shows the switching between signals of different frequency ranges by means of a coupler and a switch.
  • the disadvantage here however, the unfavorable electrical properties of the switch, in particular its high insertion loss.
  • Another disadvantage is the high production costs and the low long-term stability of such a device.
  • Measuring coupler suitable for use of various partial signals.
  • the invention is based on the object to provide a measuring coupler, which supplies the signals of a lower and an upper frequency range to a measurement object.
  • the object is achieved by the features of independent claim 1.
  • Advantageous developments are the subject of the dependent claims.
  • Measuring object with measuring signals includes a first coaxial connection, a waveguide connection and a first band conductor. Measurement signals of a lower frequency range are input to the first coaxial terminal. Measurement signals of an upper frequency range are fed to the waveguide terminal. The measuring coupler feeds the measuring signals on the first strip conductor to the measuring object. Thus, the combination of a lower with an upper frequency range is guaranteed with low production costs.
  • the waveguide connection is preferably connected to a waveguide.
  • the waveguide is preferably connected to a waveguide-band conductor junction.
  • the waveguide-band conductor transition is preferably connected to a second band conductor.
  • the waveguide-to-band transition converts measuring signals of the upper frequency range of waves preferably guided in the waveguide into waves guided on the second band conductor. The conversion of a guided wave in the waveguide to a guided on the stripline wave is achieved with little effort.
  • the first coaxial terminal is preferably connected to a first ribbon conductor coaxial conductor junction.
  • the first ribbon conductor is preferably connected to the first ribbon conductor coaxial conductor transition.
  • the first band-conductor coaxial conductor transition preferably converts lower frequency range measurement signals from coaxially guided waves Waves rippled on the first bandline. The conversion of a coaxially guided wave into a guided on the stripline shaft is thus achieved with little effort.
  • the first band conductor and the second band conductor form a feedforward coupler.
  • the feed forward coupler feeds measurement signals of the lower frequency range or of the upper frequency range on the first band conductor to the measurement object.
  • the measured object on the first strip conductor either a signal from the lower or from the upper frequency range can be supplied.
  • the measuring coupler further includes a second coaxial connection.
  • the measurement object is connected by means of the second coaxial connection.
  • the second coaxial terminal is connected to a second ribbon conductor coaxial conductor junction.
  • the first band conductor is with the second
  • the second stripline coaxial conductor transition converts the measurement signals from waves carried on the stripline into coaxially guided waves and preferably feeds them to the second coaxial terminal.
  • the conversion of guided on the stripline waves in coaxial waves is thus achieved with low production costs.
  • the measuring coupler preferably also has a third coaxial connection and a fourth
  • the third coaxial terminal and the fourth coaxial terminal are preferably connected by means of a third band conductor.
  • the third band conductor and the second band conductor preferably form one Reverse coupler.
  • the third coaxial terminal preferably outputs signals which are proportional to signals reflected by the measurement object.
  • the fourth coaxial terminal preferably outputs reference signals which are largely proportional to measurement signals of the lower frequency range.
  • the third coaxial terminal is preferably connected to a third band conductor coaxial conductor junction.
  • the third band-conductor coaxial conductor transition converts waves guided on the band conductor into coaxially guided waves.
  • the fourth coaxial terminal is preferably connected to a fourth bandline coaxial conductor junction.
  • the fourth co-conductor coaxial conductor transition converts waves guided on the ribbon conductor into coaxially guided waves.
  • the third coaxial terminal and the fourth coaxial terminal are preferably connected by means of the third band conductor coaxial conductor transition, the fourth band conductor coaxial conductor transition and the third band conductor.
  • an attenuator is inserted in the third band conductor. This avoids that reflections of the measurement setup surrounding the measuring coupler transform via a cable connected to the fourth coaxial connection to the directional coupler and impair its directivity.
  • the band-conductor coaxial conductor junctions preferably have compensations which provide for a low-reflection conversion of the waves guided by the ribbon conductors into coaxially guided waves. This ensures a very low-reflection conversion.
  • the first strip conductor is preferably designed in two parts.
  • the two parts of the first strip conductor are preferably intermeshed at a connection point. The separation into two parts takes place for manufacturing reasons. So a very low production cost is achievable.
  • the second band conductor is preferably connected to an absorber. A secure operation of the feedforward coupler is guaranteed.
  • the band conductors preferably have a characteristic impedance of 50 ⁇ . So a simple integration into existing systems is possible.
  • the measuring coupler has a housing, which is preferably composed of at least two housing parts. All band conductors are preferably arranged in the housing.
  • the housing serves as a shield and / or counterelectrode for the strip conductors. Furthermore, a mechanical protection of the band conductor structures is achieved with low production costs.
  • Capacitive disturbances of the strip conductors caused by the fastening of the strip conductors in the housing are preferably eliminated as far as possible by compensations.
  • a secure positioning of the band conductor is achieved with very low electromagnetic interference. This further reduces transmission disruptions.
  • At least part of the inside of the housing is preferably lined with an absorber material.
  • the feed forward coupler and the feedback coupler are preferably implemented in stripline technology. An interface between different ones
  • Fig. 1 is a schematic representation of the coupler according to the invention.
  • Fig. 2 shows an embodiment of the invention
  • FIG. 3 shows the embodiment of the measuring coupler according to the invention in a side view with the lid closed
  • FIG. 4 shows the embodiment of the measuring coupler according to the invention in a first detail view
  • 5 shows the embodiment of the measuring coupler according to the invention in a second detail view
  • 6 shows the embodiment of the measuring coupler according to the invention in a third detail view
  • FIG. 7 shows the embodiment of the measuring coupler according to the invention in a fourth detail view
  • FIG. 8 shows the embodiment of the measuring coupler according to the invention in a fifth detail view
  • FIG. 12 shows the exemplary embodiment of the measuring coupler according to the invention in a ninth detail view.
  • FIGS. 1-3 the general structure and operation of the coupler according to the invention will be explained with reference to FIGS. 1-3.
  • FIGS. 4 to 12 the structure and mode of operation will be clarified on the basis of several detailed views. Identical elements have not been repeatedly shown and described in similar figures.
  • Fig. 1 shows the schematic representation of the coupler according to the invention.
  • a first strip conductor 1 is composed of the two sections 14, 16. These are connected to one another at a connection point 15. At its two ends, the first band conductor 1, the coaxial terminals 13, 17. In spatial proximity to the first portion 14 of the first strip conductor 1 is a second strip conductor 12. This is connected at its first end with an absorber 10. At its second end is the second Band conductor 12 is connected to a waveguide band conductor junction 11 which is connected to a waveguide terminal 24.
  • a third band conductor 19 In the vicinity of the second portion 16 of the first strip conductor 1 is a third band conductor 19.
  • the third band conductor 19 has at its two ends via the coaxial terminals 18, 23. On the side of its second terminal 23, the third band conductor 19 is still interrupted. At two connection points 20, 21 an attenuator 22 is inserted.
  • the first section 14 of the first strip conductor 1 and the second strip conductor 12 form a feedforward coupler. That a signal of the upper frequency range fed in via the waveguide connection 24 and the waveguide-band conductor junction 11 is transmitted with low attenuation to the coaxial connection 13 of the first section 14 of the first band conductor 1. The signal is at the same time only with a very high attenuation to the second
  • Portion 16 of the first strip conductor 1 transmitted.
  • a waveguide not shown here, is attached.
  • a signal of the upper frequency range is fed.
  • Coaxial terminal 13 of the first strip conductor 1 a measured object is connected.
  • Forward coupler is either a signal of the lower frequency range fed to the coaxial terminal 17 or a signal of the upper frequency range fed to the waveguide-band conductor junction 11 via the Coaxial terminal 13 is supplied to the measurement object, not shown here.
  • a part of the measurement signal passes through the measurement object not shown here and is optionally measured at another gate of the measurement object. However, part of the measurement signal is reflected by the measurement object and reappears at the coaxial terminal 13 of the first section 14 of the first strip conductor 1 in the measurement coupler according to the invention.
  • the reflected signal is transmitted from the coaxial terminal 13 to the first portion 14 of the first strip conductor 1. Via the connection point 15, it passes into the second part 16 of the first strip conductor 1.
  • the second section 16 of the first strip conductor 1 and the third strip conductor 19 form a backward coupler. That Signals fed in at the connection point 15 are transmitted with low attenuation to the coaxial terminal 18 of the third band conductor.
  • the connection point 15 is isolated from the coaxial terminal 23, so that signals from the connection point 15 are transmitted only under high attenuation to the coaxial terminal 23 of the third band conductor. By the attenuator 22, these signals are additionally attenuated.
  • signals fed to the coaxial connection 17 of the second section 16 of the first strip conductor 1 are coupled with low attenuation to the connection 23 of the third strip conductor.
  • attenuator 22 attenuates these signals, terminal 23 maintains a sufficiently high level. This signal is used as a reference signal for the measurement.
  • the signals output at the coaxial terminal 18 of the third band conductor 19, which are proportional to the signals reflected at the measurement object, are used as measurement signals.
  • FIG. 2 shows a concrete exemplary embodiment of the measuring coupler according to the invention.
  • the basic structure and the principal function largely correspond to the construction shown in FIG. 1 and the function shown there.
  • a first band conductor 41 consists of a first portion 42 and a second portion 48, which are connected at a connection point 40.
  • the first section 42 of the first strip conductor 41 has a coaxial connection 43.
  • the second section 48 of the first strip conductor 41 has a coaxial connection 47.
  • a second strip conductor 32 has at its one end a waveguide band conductor junction 33 and at its other end via an absorber 30.
  • the second strip conductor 32 is at least partially in spatial proximity to the first section 42 of the first strip conductor 41 and is coupled thereto.
  • a dielectric 39 is located between the second strip conductor 32 and the first section 42 of the first strip conductor 41.
  • the first section 42 of the first strip conductor 41 and the second strip conductor 32 are located in a first housing 31. It is preferably made of metal or another conductive material and serves as a shield and / or counter electrode and / or protection for the band conductor.
  • the waveguide band-conductor junction 33 allows the low reflection transmission of a in the
  • Waveguide connection 34 fed shaft on the second band conductor 32.
  • the connecting waveguide between the waveguide terminal 34 and the waveguide-band conductor transition is located within the two sub-housing 35, 38, which in turn form the housing 31.
  • the connecting waveguide is not visible in this illustration.
  • the waveguide terminal 34 has pins 36, 37 in order to ensure a precisely fitting connection with an external waveguide, with the aid of which a signal of the upper frequency range is fed into the measuring coupler.
  • the second section 48 of the first strip conductor 41 is at least partially in spatial proximity to a third strip conductor 45.
  • the third strip conductor 45 has at its two ends in each case via a coaxial connection 44, 50. On the side of the connection 50, the third strip conductor 45 is through inserted attenuator 49 interrupted.
  • the second section 48 of the first strip conductor 41 and the third strip conductor 45 are located in a second housing 46.
  • the first housing 31 and the second housing 46 are, for example, by means of
  • the two housings 31, 46 form a common housing.
  • Fig. 3 shows again the embodiment of the coupler according to the invention.
  • the view shown here shows the measuring coupler with the housing closed.
  • the first housing 62 is connected to the second housing 71.
  • the first housing 62 has a coaxial connection 60.
  • the housing cover 75 is connected by screws 69 to the individual housings 62, 71 and has fastening bores 61, 68, 73.
  • the housing cover 75 is used jointly by the housings 62, 71.
  • the first housing 62 consists, as already shown with reference to FIG. 2, of two partial housings 64, 67, which each have a dowel pin 76, 66 on the waveguide connection 63.
  • the second housing 71 has three coaxial connections 70, 72, 74.
  • FIG. 4 shows the exemplary embodiment of the measuring coupler according to the invention in a detailed view. Shown here is a partial housing 85 which corresponds to one of the partial housings 35, 38, 64, 67 from FIG. 2 or FIG. 3.
  • the sub-housing 85 is by means of screws 84 with the second Part housing, which is not shown here, and the lid 89 connected. Between the sub-housing 85 and the lid 89, a strip conductor 81 runs insulated.
  • the housing 85 together with the cover 89 forms the shielding and / or counter-electrode for the strip conductor 81.
  • the sub-housing 85 and the cover 89 are connected to one another via screws 80. One end of the strip conductor 81 protrudes into the end of a waveguide 87.
  • the end of the strip conductor 81 and the end of the waveguide 87 form a waveguide-strip conductor transition 82.
  • a signal fed into the waveguide 87 moves along the waveguide 87 and strikes
  • the end of the waveguide 87 forms preferably a ⁇ / 4 short circuit for the signals of the upper frequency range.
  • the signal couples to the band conductor 81 and is forwarded by this.
  • the sub-housing 85 further has a bore 83 in the region of the waveguide-band conductor transition 82 for receiving a tuning screw 90.
  • a capacitive compensation of the waveguide-band conductor transition 82 is possible. This will be discussed in more detail with reference to FIG. 5.
  • the sub-housing 85 further has a dowel pin 88 and a mounting hole 86th
  • FIG. 5 shows the exemplary embodiment of the measuring coupler according to the invention in a further detailed view. Shown here is the area around the waveguide-band conductor transition.
  • a strip conductor 101 is held in position by fastening means 107.
  • the end 103 of the strip conductor 101 is made narrower than the strip conductor 101 and protrudes through a narrow opening 102 in the waveguide 108.
  • the width of the strip conductor 101 has in the direction of its end 103 a jump 105.
  • This jump 105 acts capacitively, but can Total electromagnetic inductive behavior of the waveguide band-conductor transition does not compensate. Therefore, with the tuning screw 104 In the waveguide 108 an additional capacitive compensation of the total inductive electromagnetic behavior of the waveguide-band conductor transition allows.
  • the housing surrounding the strip conductor 101 is lined with an absorber material 100.
  • FIG. 6 shows the exemplary embodiment of the measuring coupler according to the invention in a further detailed view.
  • the waveguide-strip conductor transition is shown in detail here.
  • a ribbon conductor 120 is held in place by fasteners 121.
  • An end 124 of the strip conductor 120 projects through an opening 123 into the waveguide 125.
  • the housing surrounding the strip conductor 120 is lined with an absorber material 122.
  • Fig. 7 the embodiment of the invention Meßkopplers is shown in a further detail view.
  • the area around the coaxial terminal 130 is shown, to which the measurement object is connected. This corresponds to the terminal 13 of FIG. 1.
  • a band conductor 136 is held in position by fasteners 133.
  • the ribbon conductor 136 is connected to a ribbon conductor coaxial conductor junction 137.
  • the band conductor coaxial conductor junction 137 is connected to the coaxial terminal 130.
  • a compensation bore 134 is used on both sides.
  • the compensation bore 134 adjusts the field image of a wave guided on the ribbon conductor 136 to the field image of a wave guided in the coaxial connection 130.
  • the housing surrounding the band conductor 136 is further lined with an absorber material 135.
  • the housing consists of two housing parts, which are fixed to each other with fixing pins 131 and screws, not shown here.
  • the embodiment of the invention Meßkopplers is shown in a further detailed view.
  • the damping element is shown, which is inserted in the band conductor at the reference terminal.
  • the damping element corresponds to the damping element 22 of FIG. 1.
  • a first strip conductor element 150 and a second strip conductor element 155 are placed on two conductive
  • the strip conductor elements 150, 155 form a common, discontinuous strip conductor, which corresponds to the strip conductor 45 from FIG. 2.
  • the conductive surfaces 152, 154 are connected to the damping element 153.
  • the damping element 153 is realized by brought to the surface of the substrate 151 in thin-film technology resistors. Alternatively, damping elements made of SMD resistors can be used. It is a series and parallel connection of several resistive elements.
  • the pins 156 ensure a secure contact between the strip conductor elements 150, 155 and the contacts 152, 154 of the substrate 151. By dispensing with soldering, very precisely determinable electromagnetic properties are achieved.
  • FIG. 9 shows the embodiment of the measuring coupler according to the invention in a further detailed view.
  • a sectional view of the surroundings of the damping element already shown in Fig. 8 is shown.
  • the strip conductor 174 which is interrupted by the damping element 176 and corresponds to the strip conductor elements 150, 155 from FIG. 8, is held in position by fastening elements 172. The contact between the ends of the interrupted
  • Strip conductor 174 and the damping element 176 which corresponds to the substrate 151 of FIG. 8, as shown here for a contact, made by means of the pin 173.
  • the spring 171 presses with the pin 173 Band conductor 174 on the substrate 151.
  • the set screw 170 is used. Also visible in this figure is a coaxial port 175, which feeds a low-frequency signal into the meter coupler.
  • Fig. 10 the embodiment of the measuring coupler according to the invention is shown in a further detailed view.
  • the area around the absorber is shown, which has already been explained with reference to FIGS. 1-3.
  • a first ribbon conductor 190 and a second ribbon conductor 192 are guided by a dielectric 191. After leaving the dielectric 191, the second ribbon conductor 192 buckles 90 degrees. He is held by fasteners 193 in this position.
  • the end of the second ribbon conductor 192 is pressed by a pin 195 onto the substrate 196.
  • the substrate 196 contains at least one damping element with nominally 50 [o] characteristic impedance switched by the strip conductor against the housing ground.
  • two damping elements are preferably connected in parallel, one of which is located on the front side and the second on the rear side of the substrate 196.
  • Ground connection is achieved by contacting the surrounding housing.
  • part of the surrounding housing is provided with absorber material 194.
  • absorber material 194 To improve the contacting of the substrate 196 with the strip conductor 192, a spring 197 pushes the strip conductor 192 onto the substrate 196 with the pin 195, as already described with reference to FIG. 9.
  • Fig. 11 the embodiment of the Messkopplers invention is shown in a further detail view. Here also the area around the absorber is shown.
  • the ribbon conductor 210 from the pin 214 on a conductive surface 212 of Substrate 211 pressed.
  • the conductive surface is connected to one or more series and parallel resistor elements 213.
  • the parallel resistance elements 213 are connected by means of conductive connecting elements 215 at one end to the housing ground.
  • FIG. 12 shows the embodiment of the measuring coupler according to the invention in a further detailed view.
  • connection point 234 of the two sections of the first strip conductor 1 from FIG. 1 is shown.
  • a first portion 236 is connected to a second portion 231.
  • the first section is held in position by means of the fastening elements 235.
  • the second section 231 is held in position by means of the fastening elements 230.
  • the ends of the band conductors 231, 236 consist of a plurality of fingers 232, 233, which are interlaced.
  • the finger structure 232, 233 establishes a secure contacting of the two strip conductors 231, 236 by elastic forces.
  • the housing which is the
  • Connection point 234 surrounds, lined with an absorber material 237.

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

A measuring coupler for applying measuring signals to a measurement object contains a first coaxial connection (47), a waveguide connection (34), and a first strip conductor (41). Lower frequency range measuring signals are applied to the first coaxial connection (47). Higher frequency range measuring signals are applied to the waveguide connection (34). The measuring coupler routes the measuring signals to the measurement object via the first strip conductor (41).

Description

Messkoppler in Bandleitertechnik Measuring coupler in stripline technology
Die Erfindung betrifft einen Messkoppler zur Beaufschlagung eines Messobjekts mit einem Messsignal, insbesondere innerhalb eines ultrabreitbandigen Frequenzbereichs .The invention relates to a measuring coupler for acting upon a test object with a measuring signal, in particular within an ultra-wideband frequency range.
Elektronische Messgeräte für die Mikrowellentechnik müssen in der Regel ultrabreitbandig ausgeführt sein, um alle möglichen Anwendungen der Kunden abdecken zu können. Die untere Frequenzgrenze liegt dann z.B. bei 10 MHz und eine obere Frequenzgrenze bei 60 GHz. Die Erzeugung und Verarbeitung eines solchen Frequenzbereichs wird intern in mehrere sinnvolle Teilbereiche aufgespaltet, welche letztendlich aber an der Frontbuchse eines Messgeräts miteinander kombiniert werden. Eine solche Kombination kann auf vielfältige Art und Weise geschehen. Der Einsatz von Kopplern hat sich dabei als die beste Lösung erwiesen.Electronic measuring devices for microwave technology usually have to be designed in an ultra-wideband manner in order to cover all possible applications of the customers. The lower frequency limit is then e.g. at 10 MHz and an upper frequency limit at 60 GHz. The generation and processing of such a frequency range is split internally into several sensible subranges, which are ultimately combined with each other at the front of a meter. Such a combination can be done in many ways. The use of couplers has proven to be the best solution.
So zeigt die US 5,055,807 Bl die Umschaltung zwischen Signalen verschiedener Frequenzbereiche mittels eines Kopplers und eines Schalters. Nachteilhaft sind hier jedoch die ungünstigen elektrischen Eigenschaften des Schalters, insbesondere seine hohe Einfügedämpfung. Weiterhin nachteilhaft sind die hohen Herstellungskosten und die geringe Langzeitstabilität einer solchen Vorrichtung .Thus, US 5,055,807 Bl shows the switching between signals of different frequency ranges by means of a coupler and a switch. The disadvantage here, however, the unfavorable electrical properties of the switch, in particular its high insertion loss. Another disadvantage is the high production costs and the low long-term stability of such a device.
Aus der DE 10 2006 038 029 Al ist ein Richtkoppler in Bandleitertechnik bekannt, der sich aber nicht alsFrom DE 10 2006 038 029 Al a directional coupler in strip conductor technology is known, but not as
Messkoppler zur Nutzung verschiedener Teilsignale eignet.Measuring coupler suitable for use of various partial signals.
Der Erfindung liegt die Aufgabe zu Grunde, einen Messkoppler zu schaffen, welcher die Signale eines unteren und eines oberen Frequenzbereichs einem Messobjekt zuführt . Die Aufgabe wird erfindungsgemäß durch die Merkmale des unabhängigen Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der hierauf rückbezogenen Unteransprüche .The invention is based on the object to provide a measuring coupler, which supplies the signals of a lower and an upper frequency range to a measurement object. The object is achieved by the features of independent claim 1. Advantageous developments are the subject of the dependent claims.
Ein erfindungsgemäßer Messkoppler zur Beaufschlagung einesAn inventive measuring coupler for acting on a
Messobjekts mit Messsignalen beinhaltet einen ersten Koaxialanschluss, einen Hohlleiteranschluss und einen ersten Bandleiter. Messsignale eines unteren Frequenzbereichs werden an dem ersten Koaxialanschluss eingespeist. Messsignale eines oberen Frequenzbereichs werden an dem Hohlleiteranschluss eingespeist. Der Messkoppler führt die Messsignale auf dem ersten Bandleiter dem Messobjekt zu. So ist die Kombination eines unteren mit einem oberen Frequenzbereich bei geringem Herstellungsaufwand gewährleistet .Measuring object with measuring signals includes a first coaxial connection, a waveguide connection and a first band conductor. Measurement signals of a lower frequency range are input to the first coaxial terminal. Measurement signals of an upper frequency range are fed to the waveguide terminal. The measuring coupler feeds the measuring signals on the first strip conductor to the measuring object. Thus, the combination of a lower with an upper frequency range is guaranteed with low production costs.
Der Hohlleiteranschluss ist bevorzugt mit einem Hohlleiter verbunden. Der Hohlleiter ist bevorzugt mit einem Hohlleiter-Bandleiter-Übergang verbunden. Der Hohlleiter- Bandleiter-Übergang ist bevorzugt mit einem zweiten Bandleiter verbunden. Der Hohlleiter-Bandleiter-Übergang wandelt Messsignale des oberen Frequenzbereichs von bevorzugt im Hohlleiter geführten Wellen in auf dem zweiten Bandleiter geführte Wellen um. Die Umwandlung einer im Hohlleiter geführten Welle zu einer auf dem Bandleiter geführten Welle wird so mit geringem Aufwand erreicht .The waveguide connection is preferably connected to a waveguide. The waveguide is preferably connected to a waveguide-band conductor junction. The waveguide-band conductor transition is preferably connected to a second band conductor. The waveguide-to-band transition converts measuring signals of the upper frequency range of waves preferably guided in the waveguide into waves guided on the second band conductor. The conversion of a guided wave in the waveguide to a guided on the stripline wave is achieved with little effort.
Der erste Koaxialanschluss ist bevorzugt mit einem ersten Bandleiter-Koaxialleiter-Übergang verbunden. Der erste Bandleiter ist bevorzugt mit dem ersten Bandleiter- Koaxialleiter-Übergang verbunden. Der erste Bandleiter- Koaxialleiter-Übergang wandelt bevorzugt Messsignale des unteren Frequenzbereichs von koaxial geführten Wellen in auf dem ersten Bandleiter geführte Wellen um. Die Umwandlung einer koaxial geführten Welle in eine auf dem Bandleiter geführte Welle wird so mit geringem Aufwand erreicht .The first coaxial terminal is preferably connected to a first ribbon conductor coaxial conductor junction. The first ribbon conductor is preferably connected to the first ribbon conductor coaxial conductor transition. The first band-conductor coaxial conductor transition preferably converts lower frequency range measurement signals from coaxially guided waves Waves rippled on the first bandline. The conversion of a coaxially guided wave into a guided on the stripline shaft is thus achieved with little effort.
Vorteilhafterweise bilden der erste Bandleiter und der zweite Bandleiter einen Vorwärtskoppler .Advantageously, the first band conductor and the second band conductor form a feedforward coupler.
Vorteilhafterweise führt der Vorwärtskoppler Messsignale des unteren Frequenzbereichs oder des oberen Frequenzbereichs auf dem ersten Bandleiter dem Messobjekt zu. So kann dem Messobjekt auf dem ersten Bandleiter entweder ein Signal aus dem unteren oder aber aus dem oberen Frequenzbereich zugeführt werden.Advantageously, the feed forward coupler feeds measurement signals of the lower frequency range or of the upper frequency range on the first band conductor to the measurement object. Thus, the measured object on the first strip conductor either a signal from the lower or from the upper frequency range can be supplied.
Bevorzugt beinhaltet der Messkoppler weiterhin einen zweiten Koaxialanschluss . Bevorzugt ist das Messobjekt mittels des zweiten Koaxialanschlusses angeschlossen. Bevorzugt ist der zweite Koaxialanschluss mit einem zweiten Bandleiter-Koaxialleiter-Übergang verbunden. Bevorzugt ist der erste Bandleiter mit dem zweitenPreferably, the measuring coupler further includes a second coaxial connection. Preferably, the measurement object is connected by means of the second coaxial connection. Preferably, the second coaxial terminal is connected to a second ribbon conductor coaxial conductor junction. Preferably, the first band conductor is with the second
Bandleiter-Koaxialleiter-Übergang verbunden. Bevorzugt wandelt der zweite Bandleiter-Koaxialleiter-Übergang die Messsignale von auf dem Bandleiter geführten Wellen in koaxial geführte Wellen um und führt sie bevorzugt dem zweiten Koaxialanschluss zu. Die Umwandlung von auf dem Bandleiter geführten Wellen in koaxial geführte Wellen wird so mit geringem Herstellungsaufwand erreicht.Band conductor coaxial conductor junction connected. Preferably, the second stripline coaxial conductor transition converts the measurement signals from waves carried on the stripline into coaxially guided waves and preferably feeds them to the second coaxial terminal. The conversion of guided on the stripline waves in coaxial waves is thus achieved with low production costs.
Der Messkoppler verfügt bevorzugt weiterhin über einen dritten Koaxialanschluss und einen viertenThe measuring coupler preferably also has a third coaxial connection and a fourth
Koaxialanschluss. Der dritte Koaxialanschluss und der vierte Koaxialanschluss sind bevorzugt mittels eines dritten Bandleiters verbunden. Der dritte Bandleiter und der zweite Bandleiter bilden bevorzugt einen Rückwärtskoppler . Der dritte Koaxialanschluss gibt bevorzugt Signale aus, welche vom Messobjekt reflektierten Signalen proportional sind. Der vierte Koaxialanschluss gibt bevorzugt Referenzsignale, welche weitgehend Messsignalen des unteren Frequenzbereichs proportional sind, aus. So wird für den unteren Frequenzbereich eine sichere Trennung der in das Messobjekt hineinlaufenden Wellen von den von dem Messobjekt reflektierten Wellen erreicht .Coaxial connector. The third coaxial terminal and the fourth coaxial terminal are preferably connected by means of a third band conductor. The third band conductor and the second band conductor preferably form one Reverse coupler. The third coaxial terminal preferably outputs signals which are proportional to signals reflected by the measurement object. The fourth coaxial terminal preferably outputs reference signals which are largely proportional to measurement signals of the lower frequency range. Thus, for the lower frequency range, a reliable separation of the waves running into the measurement object from the waves reflected by the measurement object is achieved.
Der dritte Koaxialanschluss ist bevorzugt mit einem dritten Bandleiter-Koaxialleiter-Übergang verbunden. Der dritte Bandleiter-Koaxialleiter-Übergang wandelt auf dem Bandleiter geführte Wellen in koaxial geführte Wellen um. Der vierte Koaxialanschluss ist bevorzugt mit einem vierten Bandleiter-Koaxialleiter-Übergang verbunden. Der vierte Bandleiter-Koaxialleiter-Übergang wandelt auf dem Bandleiter geführte Wellen in koaxial geführte Wellen um. Der dritte Koaxialanschluss und der vierte Koaxialanschluss sind bevorzugt mittels des dritten Bandleiter-Koaxialleiter-Übergangs, des vierten Bandleiter-Koaxialleiter-Übergangs und des dritten Bandleiters verbunden. So wird eine reflektionsarme Umwandlung der unterschiedlich geführten Wellen bei geringem Herstellungsaufwand erreicht.The third coaxial terminal is preferably connected to a third band conductor coaxial conductor junction. The third band-conductor coaxial conductor transition converts waves guided on the band conductor into coaxially guided waves. The fourth coaxial terminal is preferably connected to a fourth bandline coaxial conductor junction. The fourth co-conductor coaxial conductor transition converts waves guided on the ribbon conductor into coaxially guided waves. The third coaxial terminal and the fourth coaxial terminal are preferably connected by means of the third band conductor coaxial conductor transition, the fourth band conductor coaxial conductor transition and the third band conductor. Thus, a low-reflection conversion of differently guided waves is achieved with low production costs.
Bevorzugt ist in den dritten Bandleiter ein Dämpfungsglied eingefügt. So wird vermieden, dass sich Reflektionen des den Messkoppler umgebenden Messaufbaus über ein mit dem vierten Koaxialanschluss verbundenes Kabel an den Richtkoppler transformieren und dessen Direktivität verschlechtern . Die Bandleiter-Koaxialleiter-Übergänge weisen bevorzugt Kompensationen auf, welche für eine reflexionsarme Umwandlung der von den Bandleitern geführten Wellen in koaxial geführte Wellen sorgen. So ist eine sehr reflektionsarme Umwandlung gewährleistet.Preferably, an attenuator is inserted in the third band conductor. This avoids that reflections of the measurement setup surrounding the measuring coupler transform via a cable connected to the fourth coaxial connection to the directional coupler and impair its directivity. The band-conductor coaxial conductor junctions preferably have compensations which provide for a low-reflection conversion of the waves guided by the ribbon conductors into coaxially guided waves. This ensures a very low-reflection conversion.
Der erste Bandleiter ist bevorzugt zweiteilig ausgeführt. Die zwei Teile des ersten Bandleiters sind bevorzugt an einem Verbindungspunkt ineinander verzahnt. Das Trennen in zwei Teile erfolgt dabei aus Fertigungsgründen. So ist ein sehr geringer Herstellungsaufwand erreichbar.The first strip conductor is preferably designed in two parts. The two parts of the first strip conductor are preferably intermeshed at a connection point. The separation into two parts takes place for manufacturing reasons. So a very low production cost is achievable.
Der zweite Bandleiter ist bevorzugt mit einem Absorber verbunden. Eine sichere Funktionsweise des Vorwärtskopplers wird so gewährleistet.The second band conductor is preferably connected to an absorber. A secure operation of the feedforward coupler is guaranteed.
Die Bandleiter weisen bevorzugt einen Wellenwiderstand von 50Ω auf. So ist eine einfache Integration in bestehende Systeme möglich.The band conductors preferably have a characteristic impedance of 50Ω. So a simple integration into existing systems is possible.
Der Messkoppler weist ein Gehäuse auf, das bevorzugt aus zumindest zwei Gehäuseteilen zusammengesetzt. Sämtliche Bandleiter sind bevorzugt in dem Gehäuse angeordnet. Das Gehäuse dient als Abschirmung und/oder Gegenelektrode für die Bandleiter. Ferner wird ein mechanischer Schutz der Bandleiteraufbauten bei geringem Herstellungsaufwand erreicht .The measuring coupler has a housing, which is preferably composed of at least two housing parts. All band conductors are preferably arranged in the housing. The housing serves as a shield and / or counterelectrode for the strip conductors. Furthermore, a mechanical protection of the band conductor structures is achieved with low production costs.
Durch die Befestigung der Bandleiter in dem Gehäuse verursachte kapazitive Störungen der Bandleiter sind bevorzugt durch Kompensationen weitestgehend eliminiert. So wird eine sichere Positionierung der Bandleiter bei sehr geringen elektromagnetischen Störungen erreicht. So werden Übertragungsstörungen weiter reduziert. Zumindest ein Teil der Innenseite des Gehäuses ist bevorzugt mit einem Absorbermaterial ausgekleidet. So werden Gehäuseresonanzen vermieden und eine weitere Verbesserung der elektromagnetischen Eigenschaften des Messkopplers erreicht.Capacitive disturbances of the strip conductors caused by the fastening of the strip conductors in the housing are preferably eliminated as far as possible by compensations. Thus, a secure positioning of the band conductor is achieved with very low electromagnetic interference. This further reduces transmission disruptions. At least part of the inside of the housing is preferably lined with an absorber material. Thus, housing resonances are avoided and achieved a further improvement of the electromagnetic properties of the coupler.
Der Vorwärtskoppler und der Rückwärtskoppler sind bevorzugt in Bandleitertechnik ausgeführt. Eine Schnittstelle zwischen unterschiedlichenThe feed forward coupler and the feedback coupler are preferably implemented in stripline technology. An interface between different ones
Wellenleitertypen, welche die Direktivität des Rückwärtswellenkopplers verschlechtern würde, wird so vermieden.Waveguide types that would degrade the directivity of the backward wave coupler are thus avoided.
Nachfolgend wird die Erfindung anhand der Zeichnung, in der ein vorteilhaftes Ausführungsbeispiel der Erfindung dargestellt ist, beispielhaft beschrieben. In der Zeichnung zeigen:The invention will be described by way of example with reference to the drawing, in which an advantageous embodiment of the invention is shown. In the drawing show:
Fig. 1 eine schematische Darstellung des erfindungsgemäßen Messkopplers;Fig. 1 is a schematic representation of the coupler according to the invention;
Fig. 2 ein Ausführungsbeispiel des erfindungsgemäßenFig. 2 shows an embodiment of the invention
Messkopplers in einer Seitenansicht mit geöffnetem Deckel;Messkopplers in a side view with lid open;
Fig. 3 das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer Seitenansicht mit geschlossenem Deckel;3 shows the embodiment of the measuring coupler according to the invention in a side view with the lid closed;
Fig. 4 das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer ersten Detailansicht;4 shows the embodiment of the measuring coupler according to the invention in a first detail view;
Fig. 5 das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer zweiten Detailansicht; Fig. 6 das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer dritten Detailansicht;5 shows the embodiment of the measuring coupler according to the invention in a second detail view; 6 shows the embodiment of the measuring coupler according to the invention in a third detail view;
Fig. 7 das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer vierten Detailansicht;7 shows the embodiment of the measuring coupler according to the invention in a fourth detail view;
Fig. 8 das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer fünften Detailansicht;8 shows the embodiment of the measuring coupler according to the invention in a fifth detail view;
Fig. 9 das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer sechsten Detailansicht;9 shows the embodiment of the measuring coupler according to the invention in a sixth detail view;
Fig. 10 das Ausführungsbeispiel des erfindungsgemäßen10 shows the embodiment of the invention
Messkopplers in einer siebten Detailansicht;Measuring coupler in a seventh detail view;
Fig. 11 das Ausführungsbeispiel des erfindungsgemäßenFig. 11, the embodiment of the invention
Messkopplers in einer achten Detailansicht, undMeasuring coupler in an eighth detail view, and
Fig. 12 das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer neunten Detailansicht.12 shows the exemplary embodiment of the measuring coupler according to the invention in a ninth detail view.
Zunächst werden anhand der Fig. 1 - 3 der generelle Aufbau und die Funktionsweise des erfindungsgemäßen Messkopplers erläutert. Mittels Fig. 4 - 12 werden anhand mehrerer Detailansichten der Aufbau und die Funktionsweise weiter verdeutlicht. Identische Elemente wurden in ähnlichen Abbildungen zum Teil nicht wiederholt dargestellt und beschrieben.First, the general structure and operation of the coupler according to the invention will be explained with reference to FIGS. 1-3. By means of FIGS. 4 to 12, the structure and mode of operation will be clarified on the basis of several detailed views. Identical elements have not been repeatedly shown and described in similar figures.
Fig. 1 zeigt die schematische Darstellung des erfindungsgemäßen Messkopplers. Ein erster Bandleiter 1 ist aus den beiden Teilstücken 14, 16 zusammengesetzt. Diese sind an einer Verbindungsstelle 15 miteinander verbunden. An seinen beiden Enden weist der erste Bandleiter 1 die Koaxialanschlüsse 13, 17 auf. In räumlicher Nähe zu dem ersten Teilstück 14 des ersten Bandleiters 1 befindet sich ein zweiter Bandleiter 12. Dieser ist an seinem ersten Ende mit einem Absorber 10 verbunden. An seinem zweiten Ende ist der zweite Bandleiter 12 mit einem Hohlleiter-Bandleiter-Übergang 11 verbunden, welcher mit einem Hohlleiter-Anschluss 24 verbunden ist.Fig. 1 shows the schematic representation of the coupler according to the invention. A first strip conductor 1 is composed of the two sections 14, 16. These are connected to one another at a connection point 15. At its two ends, the first band conductor 1, the coaxial terminals 13, 17. In spatial proximity to the first portion 14 of the first strip conductor 1 is a second strip conductor 12. This is connected at its first end with an absorber 10. At its second end is the second Band conductor 12 is connected to a waveguide band conductor junction 11 which is connected to a waveguide terminal 24.
In räumlicher Nähe zu dem zweiten Teilstück 16 des ersten Bandleiters 1 befindet sich ein dritter Bandleiter 19. Der dritte Bandleiter 19 verfügt an seinen beiden Enden über die Koaxialanschlüsse 18, 23. Auf der Seite seines zweiten Anschlusses 23 ist der dritte Bandleiter 19 weiterhin unterbrochen. An zwei Anschlusspunkten 20, 21 ist ein Dämpfungsglied 22 eingefügt.In the vicinity of the second portion 16 of the first strip conductor 1 is a third band conductor 19. The third band conductor 19 has at its two ends via the coaxial terminals 18, 23. On the side of its second terminal 23, the third band conductor 19 is still interrupted. At two connection points 20, 21 an attenuator 22 is inserted.
Das erste Teilstück 14 des ersten Bandleiters 1 und der zweite Bandleiter 12 bilden einen Vorwärtskoppler . D.h. ein über den Hohlleiter-Anschluss 24 und den Hohlleiter- Bandleiter-Übergang 11 eingespeistes Signal des oberen Frequenzbereichs wird mit geringer Dämpfung an den Koaxialanschluss 13 des ersten Teilstücks 14 des ersten Bandleiters 1 übertragen. Das Signal wird gleichzeitig lediglich mit einer sehr hohen Dämpfung an das zweiteThe first section 14 of the first strip conductor 1 and the second strip conductor 12 form a feedforward coupler. That a signal of the upper frequency range fed in via the waveguide connection 24 and the waveguide-band conductor junction 11 is transmitted with low attenuation to the coaxial connection 13 of the first section 14 of the first band conductor 1. The signal is at the same time only with a very high attenuation to the second
Teilstück 16 des ersten Bandleiters 1 übertragen. An dem Hohlleiter-Anschluss 24 ist ein hier nicht dargestellter Hohlleiter angebracht. Über den Hohlleiter-Anschluss 24 wird ein Signal des oberen Frequenzbereichs eingespeist. Über den zweiten Koaxialanschluss 17 des erstenPortion 16 of the first strip conductor 1 transmitted. At the waveguide terminal 24, a waveguide, not shown here, is attached. Via the waveguide connection 24, a signal of the upper frequency range is fed. Via the second coaxial connection 17 of the first
Bandleiters 1 wird ein Signal des unteren Frequenzbereichs eingespeist. So wird an den ersten Koaxialanschluss 13 des ersten Bandleiters 1 entweder ein Signal des unteren Frequenzbereichs oder aber ein Signal des oberen Frequenzbereichs übertragen. An diesem erstenBandleiter 1 a signal of the lower frequency range is fed. Thus, either a signal of the lower frequency range or a signal of the upper frequency range is transmitted to the first coaxial terminal 13 of the first band conductor 1. At this first
Koaxialanschluss 13 des ersten Bandleiters 1 ist ein Messobjekt angeschlossen.Coaxial terminal 13 of the first strip conductor 1, a measured object is connected.
Durch den von dem ersten Teilstück 14 des ersten Bandleiters 1 und dem zweiten Bandleiter 12 gebildetenBy formed by the first portion 14 of the first strip conductor 1 and the second strip conductor 12
Vorwärtskoppler wird entweder ein an dem Koaxialanschluss 17 eingespeistes Signal des unteren Frequenzbereichs oder ein an dem Hohlleiter-Bandleiter-Übergang 11 eingespeistes Signal des oberen Frequenzbereichs über den Koaxialanschluss 13 dem hier nicht dargestellten Messobjekt zugeführt. Ein Teil des Messsignals durchläuft das hier nicht dargestellte Messobjekt und wird optional an einem weiteren Tor des Messobjekts gemessen. Ein Teil des Messsignals wird von dem Messobjekt jedoch reflektiert und tritt an dem Koaxialanschluss 13 des ersten Teilstücks 14 des ersten Bandleiters 1 erneut in den erfindungsgemäßen Messkoppler ein.Forward coupler is either a signal of the lower frequency range fed to the coaxial terminal 17 or a signal of the upper frequency range fed to the waveguide-band conductor junction 11 via the Coaxial terminal 13 is supplied to the measurement object, not shown here. A part of the measurement signal passes through the measurement object not shown here and is optionally measured at another gate of the measurement object. However, part of the measurement signal is reflected by the measurement object and reappears at the coaxial terminal 13 of the first section 14 of the first strip conductor 1 in the measurement coupler according to the invention.
Das reflektierte Signal wird von dem Koaxialanschluss 13 an das erste Teilstück 14 des ersten Bandleiters 1 übertragen. Über die Verbindungsstelle 15 gelangt es in den zweiten Teil 16 des ersten Bandleiters 1. Das zweite Teilstück 16 des ersten Bandleiters 1 und der dritte Bandleiter 19 bilden einen Rückwärtskoppler . D.h. an dem Verbindungspunkt 15 eingespeiste Signale werden mit geringer Dämpfung an den Koaxialanschluss 18 des dritten Bandleiters übertragen. Gleichzeitig ist der Verbindungspunkt 15 von dem Koaxialanschluss 23 isoliert, so dass Signale vom Verbindungspunkt 15 nur unter hoher Dämpfung an den Koaxialanschluss 23 des dritten Bandleiters übertragen werden. Durch das Dämpfungsglied 22 werden diese Signale zusätzlich gedämpft. Weiterhin werden an dem Koaxialanschluss 17 des zweiten Teilstücks 16 des ersten Bandleiters 1 eingespeiste Signale mit geringer Dämpfung auf den Anschluss 23 des dritten Bandleiters gekoppelt. Obwohl das Dämpfungsglied 22 diese Signale dämpft, verbleibt am Anschluss 23 ein ausreichend hoher Pegel. Dieses Signal wird als Referenzsignal für die Messung herangezogen. Die am Koaxialanschluss 18 des dritten Bandleiters 19 ausgegebenen Signale, die den am Messobjekt reflektierten Signalen proportional sind, werden als Messsignale genutzt.The reflected signal is transmitted from the coaxial terminal 13 to the first portion 14 of the first strip conductor 1. Via the connection point 15, it passes into the second part 16 of the first strip conductor 1. The second section 16 of the first strip conductor 1 and the third strip conductor 19 form a backward coupler. That Signals fed in at the connection point 15 are transmitted with low attenuation to the coaxial terminal 18 of the third band conductor. At the same time, the connection point 15 is isolated from the coaxial terminal 23, so that signals from the connection point 15 are transmitted only under high attenuation to the coaxial terminal 23 of the third band conductor. By the attenuator 22, these signals are additionally attenuated. Furthermore, signals fed to the coaxial connection 17 of the second section 16 of the first strip conductor 1 are coupled with low attenuation to the connection 23 of the third strip conductor. Although attenuator 22 attenuates these signals, terminal 23 maintains a sufficiently high level. This signal is used as a reference signal for the measurement. The signals output at the coaxial terminal 18 of the third band conductor 19, which are proportional to the signals reflected at the measurement object, are used as measurement signals.
In Fig. 2 wird ein konkretes Ausführungsbeispiel des erfindungsgemäßen Messkopplers gezeigt. Der prinzipielle Aufbau und die prinzipielle Funktion entsprechen dabei weitgehend dem in Fig. 1 gezeigten Aufbau und der dort gezeigten Funktion. Ein erster Bandleiter 41 besteht aus einem ersten Teilstück 42 und einem zweiten Teilstück 48, welche an einem Verbindungspunkt 40 verbunden sind. Das erste Teilstück 42 des ersten Bandleiters 41 verfügt über einen Koaxialanschluss 43. Das zweite Teilstück 48 des ersten Bandleiters 41 verfügt über einen Koaxialanschluss 47. Ein zweiter Bandleiter 32 verfügt an seinem einen Ende über einen Hohlleiter-Bandleiter-Übergang 33 und an seinem anderen Ende über einen Absorber 30.FIG. 2 shows a concrete exemplary embodiment of the measuring coupler according to the invention. The basic structure and the principal function largely correspond to the construction shown in FIG. 1 and the function shown there. A first band conductor 41 consists of a first portion 42 and a second portion 48, which are connected at a connection point 40. The first section 42 of the first strip conductor 41 has a coaxial connection 43. The second section 48 of the first strip conductor 41 has a coaxial connection 47. A second strip conductor 32 has at its one end a waveguide band conductor junction 33 and at its other end via an absorber 30.
Der zweite Bandleiter 32 befindet sich zumindest abschnittsweise in räumlicher Nähe zu dem ersten Teilstück 42 des ersten Bandleiters 41 und ist mit diesem gekoppelt. Um eine Vorwärtskopplung zu erreichen, befindet sich zwischen dem zweiten Bandleiter 32 und dem ersten Teilstück 42 des ersten Bandleiters 41 ein Dielektrikum 39.The second strip conductor 32 is at least partially in spatial proximity to the first section 42 of the first strip conductor 41 and is coupled thereto. In order to achieve a feedforward coupling, a dielectric 39 is located between the second strip conductor 32 and the first section 42 of the first strip conductor 41.
Das erste Teilstück 42 des ersten Bandleiters 41 und der zweite Bandleiter 32 befinden sich dabei in einem ersten Gehäuse 31. Es besteht bevorzugt aus Metall oder einem anderen leitfähigem Werkstoff und dient als Abschirmung und/oder Gegenelektrode und/oder Schutz für die Bandleiter.The first section 42 of the first strip conductor 41 and the second strip conductor 32 are located in a first housing 31. It is preferably made of metal or another conductive material and serves as a shield and / or counter electrode and / or protection for the band conductor.
Der Hohleiter-Bandleiter-Übergang 33 gestattet die reflektionsarme Übertragung einer in denThe waveguide band-conductor junction 33 allows the low reflection transmission of a in the
Hohlleiteranschluss 34 eingespeisten Welle auf den zweiten Bandleiter 32. Der verbindende Hohleiter zwischen dem Hohlleiteranschluss 34 und dem Hohlleiter-Bandleiter- Übergang befindet sich innerhalb der beiden Teilgehäuse 35, 38, die ihrerseits das Gehäuse 31 formen. Der verbindende Hohlleiter ist in dieser Darstellung nicht zu sehen. Der Hohlleiteranschluss 34 besitzt Stifte 36, 37, um eine passgenaue Verbindung mit einem externen Hohlleiter zu gewährleisten, mit dessen Hilfe ein Signal des oberen Frequenzbereichs in den Messkoppler eingespeist wird. Das zweite Teilstück 48 des ersten Bandleiters 41 befindet sich zumindest abschnittsweise in räumlicher Nähe zu einem dritten Bandleiter 45. Der dritte Bandleiter 45 verfügt an seinen beiden Enden jeweils über einen Koaxialanschluss 44, 50. Auf Seite des Anschlusses 50 ist der dritte Bandleiter 45 durch ein eingefügtes Dämpfungsglied 49 unterbrochen. Das zweite Teilstück 48 des ersten Bandleiters 41 und der dritte Bandleiter 45 befinden sich dabei in einem zweiten Gehäuse 46. Das erste Gehäuse 31 und das zweite Gehäuse 46 sind dabei z.B. mittelsWaveguide connection 34 fed shaft on the second band conductor 32. The connecting waveguide between the waveguide terminal 34 and the waveguide-band conductor transition is located within the two sub-housing 35, 38, which in turn form the housing 31. The connecting waveguide is not visible in this illustration. The waveguide terminal 34 has pins 36, 37 in order to ensure a precisely fitting connection with an external waveguide, with the aid of which a signal of the upper frequency range is fed into the measuring coupler. The second section 48 of the first strip conductor 41 is at least partially in spatial proximity to a third strip conductor 45. The third strip conductor 45 has at its two ends in each case via a coaxial connection 44, 50. On the side of the connection 50, the third strip conductor 45 is through inserted attenuator 49 interrupted. The second section 48 of the first strip conductor 41 and the third strip conductor 45 are located in a second housing 46. The first housing 31 and the second housing 46 are, for example, by means of
Verschraubungen miteinander verbunden. Die beiden Gehäuse 31, 46 bilden dabei ein gemeinsames Gehäuse.Glands connected together. The two housings 31, 46 form a common housing.
Bezüglich der Funktion des hier dargestellten Messkopplers wird auf die Ausführungen zu Fig. 1 verwiesen.With regard to the function of the measuring coupler shown here, reference is made to the comments on FIG. 1.
Fig. 3 zeigt nochmal das Ausführungsbeispiel des erfindungsgemäßen Messkopplers. Die hier dargestellte Ansicht zeigt den Messkoppler bei geschlossenem Gehäuse. Das erste Gehäuse 62 ist mit dem zweiten Gehäuse 71 verbunden. Das erste Gehäuse 62 verfügt über einen Koaxialanschluss 60. Der Gehäusedeckel 75 ist über Schrauben 69 mit den einzelnen Gehäusen 62, 71 verbunden und besitzt Befestigungsbohrungen 61, 68, 73. Der Gehäusedeckel 75 wird dabei gemeinsam von den Gehäusen 62, 71 genutzt. Das erste Gehäuse 62 besteht, wie bereits anhand von Fig. 2 gezeigt, aus zwei Teilgehäusen 64, 67, welche jeweils am Hohlleiteranschluss 63 über einen Passstift 76, 66 verfügen. Durch die Befestigungsbohrungen 61, 68, 73 können z. B. Schrauben geführt werden, mittels derer der Gehäusedeckel 75 auf einer Oberfläche befestigt werden kann. Das zweite Gehäuse 71 verfügt dabei über drei Koaxialanschlüsse 70, 72, 74.Fig. 3 shows again the embodiment of the coupler according to the invention. The view shown here shows the measuring coupler with the housing closed. The first housing 62 is connected to the second housing 71. The first housing 62 has a coaxial connection 60. The housing cover 75 is connected by screws 69 to the individual housings 62, 71 and has fastening bores 61, 68, 73. The housing cover 75 is used jointly by the housings 62, 71. The first housing 62 consists, as already shown with reference to FIG. 2, of two partial housings 64, 67, which each have a dowel pin 76, 66 on the waveguide connection 63. By the mounting holes 61, 68, 73 z. B. screws are guided by means of which the housing cover 75 can be mounted on a surface. The second housing 71 has three coaxial connections 70, 72, 74.
Fig. 4 zeigt das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer Detailansicht. Hier dargestellt ist ein Teilgehäuse 85, welches einem der Teilgehäuse 35, 38, 64, 67 aus Fig. 2 bzw. Fig. 3 entspricht. Das Teilgehäuse 85 ist dabei mittels Schrauben 84 mit dem zweiten Teilgehäuse, welches hier nicht dargestellt ist, und dem Deckel 89 verbunden. Zwischen dem Teilgehäuse 85 und dem Deckel 89 verläuft isoliert ein Bandleiter 81. Das Gehäuse 85 bildet dabei zusammen mit dem Deckel 89 die Schirmung und/oder die Gegenelektrode für den Bandleiter 81. Das Teilgehäuse 85 und der Deckel 89 sind über Schrauben 80 miteinander verbunden. Ein Ende des Bandleiters 81 ragt in das Ende eines Hohlleiters 87. Das Ende des Bandleiters 81 und das Ende des Hohlleiters 87 bilden dabei einen Hohlleiter-Bandleiter-Übergang 82. Ein in den Hohlleiter 87 eingespeistes Signal bewegt sich entlang des Hohlleiters 87 und trifft an dessen Ende auf den Bandleiter 81. Das Ende des Hohlleiters 87 bildet dabei vorzugsweise einen λ/4 Kurzschluss für die Signale des oberen Frequenzbereichs. Das Signal koppelt auf den Bandleiter 81 und wird von diesem weitergeleitet.4 shows the exemplary embodiment of the measuring coupler according to the invention in a detailed view. Shown here is a partial housing 85 which corresponds to one of the partial housings 35, 38, 64, 67 from FIG. 2 or FIG. 3. The sub-housing 85 is by means of screws 84 with the second Part housing, which is not shown here, and the lid 89 connected. Between the sub-housing 85 and the lid 89, a strip conductor 81 runs insulated. The housing 85 together with the cover 89 forms the shielding and / or counter-electrode for the strip conductor 81. The sub-housing 85 and the cover 89 are connected to one another via screws 80. One end of the strip conductor 81 protrudes into the end of a waveguide 87. The end of the strip conductor 81 and the end of the waveguide 87 form a waveguide-strip conductor transition 82. A signal fed into the waveguide 87 moves along the waveguide 87 and strikes The end of the waveguide 87 forms preferably a λ / 4 short circuit for the signals of the upper frequency range. The signal couples to the band conductor 81 and is forwarded by this.
Zur reflektionsarmen Einstellung der elektromagnetischen Eigenschaften des Hohlleiter-Bandleiter-Übergangs verfügt das Teilgehäuse 85 weiterhin über eine Bohrung 83 im Bereich des Hohlleiter-Bandleiter-Übergangs 82 zur Aufnahme einer Abstimmschraube 90. Damit ist eine kapazitive Kompensation des Hohlleiter-Bandleiter- Übergangs 82 möglich. Hierauf wird anhand von Fig. 5 näher eingegangen. Das Teilgehäuse 85 verfügt dabei weiterhin über einen Passstift 88 und eine Befestigungsbohrung 86.For low-reflection adjustment of the electromagnetic properties of the waveguide-strip conductor transition, the sub-housing 85 further has a bore 83 in the region of the waveguide-band conductor transition 82 for receiving a tuning screw 90. Thus, a capacitive compensation of the waveguide-band conductor transition 82 is possible. This will be discussed in more detail with reference to FIG. 5. The sub-housing 85 further has a dowel pin 88 and a mounting hole 86th
Fig. 5 zeigt das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer weiteren Detailansicht. Hier dargestellt ist der Bereich um den Hohlleiter-Bandleiter- Übergang. Ein Bandleiter 101 wird von Befestigungsmitteln 107 in Position gehalten. Das Ende 103 des Bandleiters 101 ist dabei schmaler ausgeführt als der Bandleiter 101 und ragt durch eine schmale Öffnung 102 in den Hohlleiter 108. Die Breite des Bandleiters 101 hat in Richtung seines Endes 103 einen Sprung 105. Dieser Sprung 105 wirkt kapazitiv, kann aber das insgesamt elektromagnetisch induktive Verhalten des Hohlleiter-Bandleiter-Übergangs nicht kompensieren. Daher wird mit der Abstimmschraube 104 im Hohlleiter 108 eine zusätzliche kapazitive Kompensation des insgesamt induktiven elektromagnetischen Verhaltens des Hohlleiter-Bandleiter-Übergangs ermöglicht. Zur Vermeidung von Gehäuseresonanzen ist das den Bandleiter 101 umgebende Gehäuse mit einem Absorbermaterial 100 ausgekleidet.5 shows the exemplary embodiment of the measuring coupler according to the invention in a further detailed view. Shown here is the area around the waveguide-band conductor transition. A strip conductor 101 is held in position by fastening means 107. The end 103 of the strip conductor 101 is made narrower than the strip conductor 101 and protrudes through a narrow opening 102 in the waveguide 108. The width of the strip conductor 101 has in the direction of its end 103 a jump 105. This jump 105 acts capacitively, but can Total electromagnetic inductive behavior of the waveguide band-conductor transition does not compensate. Therefore, with the tuning screw 104 In the waveguide 108 an additional capacitive compensation of the total inductive electromagnetic behavior of the waveguide-band conductor transition allows. To avoid housing resonances, the housing surrounding the strip conductor 101 is lined with an absorber material 100.
Fig. 6 zeigt das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer weiteren Detailansicht. Wie auch in Fig. 5 ist hier der Hohlleiter-Bandleiter-Übergang im Detail dargestellt. Ein Bandleiter 120 wird von Befestigungsmitteln 121 in Position gehalten. Ein Ende 124 des Bandleiters 120 ragt durch eine Öffnung 123 in den Hohlleiter 125. Zur Vermeidung von Gehäuseresonanzen ist das den Bandleiter 120 umgebende Gehäuse mit einem Absorbermaterial 122 ausgekleidet.6 shows the exemplary embodiment of the measuring coupler according to the invention in a further detailed view. As in FIG. 5, the waveguide-strip conductor transition is shown in detail here. A ribbon conductor 120 is held in place by fasteners 121. An end 124 of the strip conductor 120 projects through an opening 123 into the waveguide 125. To avoid housing resonances, the housing surrounding the strip conductor 120 is lined with an absorber material 122.
In Fig. 7 wird das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer weiteren Detailansicht gezeigt. Hier ist der Bereich um den Koaxialanschluss 130 dargestellt, an welchem das Messobjekt angeschlossen wird. Dies entspricht dem Anschluss 13 aus Fig. 1. Ein Bandleiter 136 wird von Befestigungselementen 133 in Position gehalten. Der Bandleiter 136 ist mit einem Bandleiter-Koaxialleiter- Übergang 137 verbunden. Der Bandleiter-Koaxialleiter- Übergang 137 ist mit dem Koaxialanschluss 130 verbunden.In Fig. 7, the embodiment of the invention Meßkopplers is shown in a further detail view. Here, the area around the coaxial terminal 130 is shown, to which the measurement object is connected. This corresponds to the terminal 13 of FIG. 1. A band conductor 136 is held in position by fasteners 133. The ribbon conductor 136 is connected to a ribbon conductor coaxial conductor junction 137. The band conductor coaxial conductor junction 137 is connected to the coaxial terminal 130.
Zur Verbesserung der Übertragungseigenschaften des Bandleiter-Koaxialleiter-Übergangs 132 wird auf beiden Seiten eine Kompensationsbohrung 134 eingesetzt. Die Kompensationsbohrung 134 passt das Feldbild einer auf dem Bandleiter 136 geführten Welle an das Feldbild einer im Koaxialanschluss 130 geführten Welle an. Zur Vermeidung von Gehäuseresonanzen ist das den Bandleiter 136 umgebende Gehäuse weiterhin mit einem Absorbermaterial 135 ausgekleidet. Das Gehäuse besteht hier aus zwei Gehäuseteilen, welche mit Befestigungsstiften 131 und hier nicht dargestellten Schrauben aneinander fixiert sind. In Fig. 8 ist das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer weiteren Detailansicht dargestellt. Hier ist das Dämpfungselement gezeigt, welches in den Bandleiter am Referenzanschluss eingefügt ist. Das Dämpfungselement entspricht dem Dämpfungselement 22 aus Fig. 1.To improve the transmission characteristics of the stripline coaxial conductor transition 132, a compensation bore 134 is used on both sides. The compensation bore 134 adjusts the field image of a wave guided on the ribbon conductor 136 to the field image of a wave guided in the coaxial connection 130. To avoid housing resonances, the housing surrounding the band conductor 136 is further lined with an absorber material 135. The housing consists of two housing parts, which are fixed to each other with fixing pins 131 and screws, not shown here. In Fig. 8, the embodiment of the invention Meßkopplers is shown in a further detailed view. Here, the damping element is shown, which is inserted in the band conductor at the reference terminal. The damping element corresponds to the damping element 22 of FIG. 1.
Ein erstes Bandleiterelement 150 und ein zweites Bandleiterelement 155 werden auf zwei leitfähigeA first strip conductor element 150 and a second strip conductor element 155 are placed on two conductive
Kontaktflächen 152, 154 an den Enden eines Substrats 151 mit Hilfe von Stiften 156 gedrückt. Die Bandleiterelemente 150, 155 bilden dabei einen gemeinsamen, unterbrochenen Bandleiter, welcher dem Bandleiter 45 aus Fig. 2 entspricht. Die leitfähigen Flächen 152, 154 sind mit dem Dämpfungselement 153 verbunden. Das Dämpfungselement 153 ist durch auf die Oberfläche des Substrats 151 in Dünnschichttechnik gebrachte Widerstände realisiert. Alternativ können Dämpfungselemente aus SMD-Widerständen eingesetzt werden. Es handelt sich dabei um eine Serien- und Parallelschaltung mehrerer Widerstandselemente. Die Stifte 156 sorgen für einen sicheren Kontakt zwischen den Bandleiter-Elementen 150, 155 und den Kontakten 152, 154 des Substrats 151. Durch den Verzicht auf eine Verlötung werden besonders genau bestimmbare elektromagnetische Eigenschaften erreicht.Contact surfaces 152, 154 at the ends of a substrate 151 by means of pins 156 pressed. The strip conductor elements 150, 155 form a common, discontinuous strip conductor, which corresponds to the strip conductor 45 from FIG. 2. The conductive surfaces 152, 154 are connected to the damping element 153. The damping element 153 is realized by brought to the surface of the substrate 151 in thin-film technology resistors. Alternatively, damping elements made of SMD resistors can be used. It is a series and parallel connection of several resistive elements. The pins 156 ensure a secure contact between the strip conductor elements 150, 155 and the contacts 152, 154 of the substrate 151. By dispensing with soldering, very precisely determinable electromagnetic properties are achieved.
Fig. 9 zeigt das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer weiteren Detailansicht. Hier wird eine Schnittansicht der Umgebung des bereits in Fig. 8 dargestellten Dämpfungselements gezeigt. Der durch das Dämpfungselement 176 unterbrochene Bandleiter 174, welcher den Bandleiterelementen 150, 155 aus Fig. 8 entspricht, wird durch Befestigungselemente 172 in Position gehalten. Der Kontakt zwischen den Enden des unterbrochenen9 shows the embodiment of the measuring coupler according to the invention in a further detailed view. Here, a sectional view of the surroundings of the damping element already shown in Fig. 8 is shown. The strip conductor 174, which is interrupted by the damping element 176 and corresponds to the strip conductor elements 150, 155 from FIG. 8, is held in position by fastening elements 172. The contact between the ends of the interrupted
Bandleiters 174 und dem Dämpfungselement 176, welches dem Substrat 151 aus Fig. 8 entspricht, wird, wie hier für einen Kontakt dargestellt, mittels des Stifts 173 hergestellt. Die Feder 171 drückt mit dem Stift 173 den Bandleiter 174 auf das Substrat 151. Zur Einstellung der Federspannung wird die Stellschraube 170 eingesetzt. In dieser Abbildung ebenfalls sichtbar ist ein Koaxial- Anschluss 175, über welchen ein Signal des unteren Frequenzbereichs in den Messkoppler gespeist wird.Strip conductor 174 and the damping element 176, which corresponds to the substrate 151 of FIG. 8, as shown here for a contact, made by means of the pin 173. The spring 171 presses with the pin 173 Band conductor 174 on the substrate 151. To adjust the spring tension, the set screw 170 is used. Also visible in this figure is a coaxial port 175, which feeds a low-frequency signal into the meter coupler.
In Fig. 10 wird das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer weiteren Detailansicht dargestellt. Hier ist der Bereich um den Absorber gezeigt, welcher anhand von Fig. 1 - 3 bereits erläutert wurde. Ein erster Bandleiter 190 und ein zweiter Bandleiter 192 werden von einem Dielektrikum 191 geführt. Nach dem Verlassen des Dielektrikums 191 knickt der zweite Bandleiter 192 um 90 Grad ab. Er wird von Befestigungselementen 193 in dieser Position gehalten. Das Ende des zweiten Bandleiters 192 wird von einem Stift 195 auf das Substrat 196 gedrückt. Das Substrat 196 enthält dabei zumindest ein vom Bandleiter gegen die Gehäusemasse geschaltetes Dämpfungselement mit nominell 50Ω Wellenwiderstand.In Fig. 10, the embodiment of the measuring coupler according to the invention is shown in a further detailed view. Here, the area around the absorber is shown, which has already been explained with reference to FIGS. 1-3. A first ribbon conductor 190 and a second ribbon conductor 192 are guided by a dielectric 191. After leaving the dielectric 191, the second ribbon conductor 192 buckles 90 degrees. He is held by fasteners 193 in this position. The end of the second ribbon conductor 192 is pressed by a pin 195 onto the substrate 196. In this case, the substrate 196 contains at least one damping element with nominally 50 [o] characteristic impedance switched by the strip conductor against the housing ground.
Zur Verbesserung der elektromagnetischen Eigenschaften sind bevorzugt zwei Dämpfungselemente parallel geschaltet, wovon sich eines auf der Vorderseite und das zweite auf der Rückseite des Substrats 196 befindet. DerTo improve the electromagnetic properties, two damping elements are preferably connected in parallel, one of which is located on the front side and the second on the rear side of the substrate 196. Of the
Masseanschluss wird dabei durch eine Kontaktierung des umgebenden Gehäuses erreicht. Zur Vermeidung von Gehäuseresonanzen ist ein Teil des umgebenden Gehäuses mit Absorbermaterial 194 versehen. Zur Verbesserung der Kontaktierung des Substrats 196 durch den Bandleiter 192 drückt eine Feder 197 mit dem Stift 195, wie auch bereits anhand von Fig. 9 beschrieben, den Bandleiter 192 auf das Substrat 196.Ground connection is achieved by contacting the surrounding housing. In order to avoid housing resonances, part of the surrounding housing is provided with absorber material 194. To improve the contacting of the substrate 196 with the strip conductor 192, a spring 197 pushes the strip conductor 192 onto the substrate 196 with the pin 195, as already described with reference to FIG. 9.
In Fig. 11 wird das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer weiteren Detailansicht gezeigt. Hier ist ebenfalls der Bereich um den Absorber dargestellt. Dabei wird der Bandleiter 210 von dem Stift 214 auf eine leitfähige Fläche 212 des Substrats 211 gedrückt. Die leitfähige Fläche ist mit einem oder mehreren seriellen und parallelen Widerstandselementen 213 verbunden. Die parallelen Widerstandselemente 213 sind dabei mittels leitfähiger Verbindungselemente 215 an je einem Ende mit der Gehäusemasse verbunden. Alternativ können auch rein serielle oder rein parallele Widerstandselemente eingesetzt werden.In Fig. 11, the embodiment of the Messkopplers invention is shown in a further detail view. Here also the area around the absorber is shown. In this case, the ribbon conductor 210 from the pin 214 on a conductive surface 212 of Substrate 211 pressed. The conductive surface is connected to one or more series and parallel resistor elements 213. The parallel resistance elements 213 are connected by means of conductive connecting elements 215 at one end to the housing ground. Alternatively, it is also possible to use purely serial or purely parallel resistance elements.
Fig. 12 zeigt das Ausführungsbeispiel des erfindungsgemäßen Messkopplers in einer weiteren Detailansicht. Hier ist der Verbindungspunkt 234 der zwei Teilstücke des ersten Bandleiters 1 aus Fig. 1 dargestellt. Ein erstes Teilstück 236 ist mit einem zweiten Teilstück 231 verbunden. Das erste Teilstück wird mittels der Befestigungselemente 235 in Position gehalten. Das zweite Teilstück 231 wird mittels der Befestigungselemente 230 in Position gehalten.FIG. 12 shows the embodiment of the measuring coupler according to the invention in a further detailed view. Here, the connection point 234 of the two sections of the first strip conductor 1 from FIG. 1 is shown. A first portion 236 is connected to a second portion 231. The first section is held in position by means of the fastening elements 235. The second section 231 is held in position by means of the fastening elements 230.
Am Verbindungspunkt 234 bestehen die Enden der Bandleiter 231, 236 aus mehreren Fingern 232, 233, die ineinander verschränkt sind. Die Fingerstruktur 232, 233 stellt durch elastische Kräfte eine sichere Kontaktierung der beiden Bandleiter 231, 236 her. Zur Vermeidung von Gehäuseresonanzen ist das Gehäuse, welches denAt the connection point 234, the ends of the band conductors 231, 236 consist of a plurality of fingers 232, 233, which are interlaced. The finger structure 232, 233 establishes a secure contacting of the two strip conductors 231, 236 by elastic forces. To avoid housing resonances, the housing, which is the
Verbindungspunkt 234 umgibt, mit einem Absorbermaterial 237 ausgekleidet.Connection point 234 surrounds, lined with an absorber material 237.
Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt. Alle vorstehend beschriebenen Merkmale oder in den Figuren gezeigten Merkmale sind im Rahmen der Erfindung beliebig vorteilhaft miteinander kombinierbar. Beispielsweise können auch andere Hohlleiter-Bandleiter-Übergänge zum Einsatz kommen. The invention is not limited to the illustrated embodiment. All features described above or features shown in the figures can be combined with each other in any advantageous manner within the scope of the invention. For example, other waveguide band conductor junctions can be used.

Claims

Ansprüche claims
1. Messkoppler zur Beaufschlagung eines Messobjekts mit Messsignalen, mit einem ersten Koaxialanschluss (17, 47, 72, 175), einem Hohlleiteranschluss (24, 34, 63) und einem ersten Bandleiter (1, 41, 136) , wobei Messsignale eines unteren Frequenzbereichs an dem ersten Koaxialanschluss (17, 47, 72, 175) eingespeist werden, wobei Messsignale eines oberen Frequenzbereichs an dem Hohlleiteranschluss (24, 34, 63) eingespeist werden, wobei der Messkoppler die Messsignale auf dem ersten Bandleiter (1, 41, 136) dem Messobjekt zuführt.1. Measuring coupler for measuring objects with a first coaxial connection (17, 47, 72, 175), a waveguide connection (24, 34, 63) and a first band conductor (1, 41, 136), wherein measuring signals of a lower frequency range be fed to the first coaxial terminal (17, 47, 72, 175), wherein measuring signals of an upper frequency range at the waveguide terminal (24, 34, 63) are fed, wherein the measuring coupler, the measuring signals on the first band conductor (1, 41, 136) feeds the test object.
2. Messkoppler nach Anspruch 1, dadurch gekennzeichnet, dass der Hohlleiteranschluss (24, 34, 63) mit einem2. Measuring coupler according to claim 1, characterized in that the waveguide connection (24, 34, 63) with a
Hohlleiter (87, 108, 125) verbunden ist, dass der Hohlleiter (87, 108, 125) mit einem Hohlleiter- Bandleiter-Übergang (11, 33, 82) verbunden ist, dass der Hohlleiter-Bandleiter-Übergang (11, 33, 82) mit einem zweiten Bandleiter (12, 32, 81, 101, 120, 192, 210) verbunden ist und dass der Hohlleiter-Bandleiter-Übergang (11, 33, 82) Messsignale des oberen Frequenzbereichs von im Hohlleiter geführten Wellen in auf dem zweiten Bandleiter (12, 32,Waveguide (87, 108, 125) is connected, that the waveguide (87, 108, 125) is connected to a waveguide-strip conductor junction (11, 33, 82) that the waveguide-strip conductor transition (11, 33, 82) is connected to a second strip conductor (12, 32, 81, 101, 120, 192, 210) and that the waveguide-strip conductor junction (11, 33, 82) measuring signals of the upper frequency range of guided in the waveguide waves in on the second band conductor (12, 32,
81, 101, 120, 192, 210) geführte Wellen umwandelt.81, 101, 120, 192, 210) converts guided waves.
3. Messkoppler nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Koaxialanschluss (17, 47, 72, 175) mit einem ersten Bandleiter-Koaxialleiter-Übergang verbunden ist, dass der erste Bandleiter (1, 41, 136) mit dem ersten Bandleiter-Koaxialleiter-Übergang verbunden ist und dass der erste Bandleiter-Koaxialleiter-Übergang Messsignale des unteren Frequenzbereichs von koaxial geführten Wellen in auf dem ersten Bandleiter (1, 41, 136) geführte Wellen umwandelt.3. Messkoppler according to claim 1 or 2, characterized in that the first coaxial terminal (17, 47, 72, 175) is connected to a first band-conductor coaxial conductor transition, in that the first strip conductor (1, 41, 136) is connected to the first strip conductor coaxial conductor transition and that the first strip conductor coaxial conductor transition comprises lower frequency range measuring signals of coaxially guided waves in the first strip conductor (1, 41, 136) converted waves converted.
4. Messkoppler nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der erste Bandleiter (1, 41, 136) und der zweite Bandleiter (12, 32, 81, 101, 120, 192, 210) einen Vorwärtskoppler bilden, und dass der Vorwärtskoppler Messsignale des unteren Frequenzbereichs oder des oberen Frequenzbereichs auf dem ersten Bandleiter (1, 41, 136) dem Messobjekt zuführt.4. A measuring coupler according to claim 2 or 3, characterized in that the first band conductor (1, 41, 136) and the second band conductor (12, 32, 81, 101, 120, 192, 210) form a feedforward coupler, and that the feedforward coupler Inputs measuring signals of the lower frequency range or the upper frequency range on the first band conductor (1, 41, 136) to the measurement object.
5. Messkoppler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Messkoppler weiterhin einen zweiten Koaxialanschluss (130) beinhaltet, dass das Messobjekt mittels des zweiten Koaxialanschlusses (130) angeschlossen ist, dass der zweite Koaxialanschluss (130) mit einem zweiten Bandleiter-Koaxialleiter-Übergang (137) verbunden ist, dass der erste Bandleiter (136) mit dem zweiten5. Measuring coupler according to one of claims 1 to 4, characterized in that the measuring coupler further includes a second coaxial terminal (130), that the measuring object is connected by means of the second coaxial terminal (130), that the second coaxial terminal (130) with a second band conductor Coaxial conductor transition (137) is connected, that the first band conductor (136) with the second
Bandleiter-Koaxialleiter-Übergang (137) verbunden ist, und dass der zweite Bandleiter-Koaxialleiter-Übergang (137) Messsignale von auf dem Bandleiter geführten Wellen in koaxial geführte Wellen umwandelt und dem zweiten Koaxialanschluss (130) zuführt.Band conductor coaxial conductor transition (137) is connected, and that the second band-conductor coaxial conductor transition (137) converts measurement signals from guided on the band conductor waves in coaxial guided waves and the second coaxial terminal (130).
6. Messkoppler nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Messkoppler weiterhin über einen dritten Koaxialanschluss (18, 44, 70) und einen vierten Koaxialanschluss (23, 50, 74) verfügt, dass der dritte Koaxialanschluss (18, 44, 70) und der vierte Koaxialanschluss (23, 50, 74) mittels eines dritten Bandleiters (19, 45, 174) verbunden sind, dass der dritte Bandleiter (19, 45, 174) und der zweite Bandleiter (12, 32, 81, 101, 120, 192, 210) einen Rückwärtskoppler bilden, dass der dritte Koaxialanschluss (18, 44, 70) Signale ausgibt, welche vom Messobjekt reflektierten Signalen weitgehend proportional sind, und dass der vierte Koaxialanschluss (23, 50, 74) Referenzsignale ausgibt, welche Messsignalen des unteren Frequenzbereichs weitgehend proportional sind.6. Messkoppler according to one of claims 1 to 5, characterized in that the measuring coupler furthermore has a third coaxial connection (18, 44, 70) and a fourth coaxial connection (23, 50, 74), that the third coaxial connection (18, 44, 70) and the fourth coaxial connection (23, 50, 74) by means of a third strip conductor (19, 45, 174), that the third strip conductor (19, 45, 174) and the second strip conductor (12, 32, 81, 101, 120, 192, 210) form a feedback coupler, that the third coaxial terminal (18, 44, 70) outputs signals which are largely proportional to signals reflected from the measurement object, and that the fourth coaxial terminal (23, 50, 74) outputs reference signals which are largely proportional to lower frequency range measurement signals.
7. Messkoppler nach Anspruch 6, dadurch gekennzeichnet, dass der dritte Koaxialanschluss (18, 44, 70) mit einem dritten Bandleiter-Koaxialleiter-Übergang verbunden ist, dass der dritte Bandleiter-Koaxialleiter-Übergang von dem Messobjekt reflektierte Signale in koaxial geführte Wellen umwandelt, dass der vierte Koaxialanschluss (23, 50, 74) mit einem vierten Bandleiter-Koaxialleiter-Übergang verbunden ist, dass der vierte Bandleiter-Koaxialleiter-Übergang die Referenzsignale in koaxial geführte Wellen umwandelt, und dass der dritte Koaxialanschluss (18, 44, 70) und der vierte Koaxialanschluss (23, 50, 74) mittels des dritten Bandleiter-Koaxialleiter-Übergangs und des vierten Bandleiter-Koaxialleiter-Übergangs und des dritten Bandleiters (19, 45, 174) verbunden sind.7. A measuring coupler according to claim 6, characterized in that the third coaxial terminal (18, 44, 70) is connected to a third band-coaxial conductor transition that the third band-coaxial conductor transition from the measurement object reflected signals converted into coaxial guided waves in that the fourth coaxial terminal (23, 50, 74) is connected to a fourth band-line coaxial conductor junction, that the fourth band-line coaxial conductor transition converts the reference signals to coaxially guided waves, and that the third coaxial terminal (18, 44, 70 ) and the fourth coaxial terminal (23, 50, 74) are connected by means of the third band conductor coaxial conductor junction and the fourth band conductor coaxial conductor junction and the third band conductor (19, 45, 174).
8. Messkoppler nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass in den dritten Bandleiter (19, 45, 174) ein Dämpfungsglied (22, 49, 153) eingefügt ist.8. A measuring coupler according to claim 6 or 7, characterized in that in the third band conductor (19, 45, 174) an attenuator (22, 49, 153) is inserted.
9. Messkoppler nach einem der Ansprüche 3 bis 5 oder 7 oder 8, dadurch gekennzeichnet, dass die Bandleiter-Koaxialleiter-Übergänge Kompensationen aufweisen, welche für eine reflektionsarme Umwandlung der von den Bandleitern geführten Wellen in koaxial geführte Wellen sorgen.9. A measuring coupler according to any one of claims 3 to 5 or 7 or 8, characterized in that the band-conductor coaxial conductor transitions have compensations, which provide for a low-reflection conversion of the guided from the strip conductors waves in coaxial guided waves.
10. Messkoppler nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der erste Bandleiter (1, 41, 136) zweiteilig ausgeführt ist und dass die zwei Teile (14, 16, 42, 48, 136, 190, 231, 236) des ersten Bandleiters (1, 41, 136) an einem Verbindungspunkt (15, 40, 234) ineinander verzahnt sind.10. Measuring coupler according to one of claims 1 to 9, characterized in that the first strip conductor (1, 41, 136) is designed in two parts and that the two parts (14, 16, 42, 48, 136, 190, 231, 236) of the first strip conductor (1, 41, 136) are intermeshed at a connection point (15, 40, 234).
11. Messkoppler nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der zweite Bandleiter (12, 32, 81, 101, 120, 192, 210) mit einem Absorber (10, 30, 196, 213) verbunden ist.11. Measuring coupler according to one of claims 1 to 10, characterized in that the second strip conductor (12, 32, 81, 101, 120, 192, 210) with an absorber (10, 30, 196, 213) is connected.
12. Messkoppler nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Messkoppler zumindest ein Gehäuse (31, 46, 62, 71) aufweist, dass das Gehäuse (31, 62) aus zumindest zwei Gehäuseteilen (35, 38, 64, 67, 85) zusammengesetzt ist und dass sämtliche Bandleiter (1, 12, 19, 32, 41, 45, 81, 101, 120, 136, 150, 155, 174, 192, 210, 231, 236) in dem Gehäuse angeordnet sind. 12. Measuring coupler according to one of claims 1 to 11, characterized in that the measuring coupler at least one housing (31, 46, 62, 71), that the housing (31, 62) from at least two housing parts (35, 38, 64, 67, 85) is assembled and that all band conductors (1, 12, 19, 32, 41, 45, 81, 101, 120, 136, 150, 155, 174, 192, 210, 231, 236) are arranged in the housing ,
13. Messkoppler nach Anspruch 12, dadurch gekennzeichnet, dass zumindest ein Teil der Bandleiter (1, 12, 19, 32, 41, 45, 81, 101, 120, 136, 150, 155, 174, 192, 210, 231, 236) in dem Gehäuse (31, 46, 62, 71) mittels Stiften (156, 173, 195, 214) befestigt sind, und dass die Stifte (156, 173, 195, 214) die Bandleiter (1, 12, 19, 32, 41, 45, 81, 101, 120, 136, 150, 155, 174, 192, 210, 231, 236) auf deren breiten Seiten kontaktieren und in Position halten.13. A measuring coupler according to claim 12, characterized in that at least a part of the band conductors (1, 12, 19, 32, 41, 45, 81, 101, 120, 136, 150, 155, 174, 192, 210, 231, 236 ) are secured in the housing (31, 46, 62, 71) by means of pins (156, 173, 195, 214) and in that the pins (156, 173, 195, 214) enclose the band conductors (1, 12, 19, 32 , 41, 45, 81, 101, 120, 136, 150, 155, 174, 192, 210, 231, 236) contact and hold in position on their broad sides.
14. Messkoppler nach Anspruch 13, dadurch gekennzeichnet, dass durch die Befestigung der Bandleiter (1, 12, 19, 32, 41, 45, 81, 101, 120, 136, 150, 155, 174, 192, 210, 231, 236) in dem Gehäuse (31, 46, 62, 71) verursachte kapazitive Störungen der Bandleiter (1, 12, 19, 32, 41, 45, 81, 101, 120, 136, 150, 155, 174, 192, 210, 231, 236) durch Kompensationen weitgehend eliminiert sind.14. A measuring coupler according to claim 13, characterized in that by fixing the band conductor (1, 12, 19, 32, 41, 45, 81, 101, 120, 136, 150, 155, 174, 192, 210, 231, 236 ) in the housing (31, 46, 62, 71) caused capacitive disturbances of the band conductors (1, 12, 19, 32, 41, 45, 81, 101, 120, 136, 150, 155, 174, 192, 210, 231 , 236) are largely eliminated by compensations.
15. Messkoppler nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass zumindest ein Teil der Innenseite des Gehäuses (31, 46, 62, 71) mit einem Absorbermaterial (100, 122, 135, 194, 237) ausgekleidet ist.15. Measuring coupler according to one of claims 12 to 14, characterized in that at least part of the inside of the housing (31, 46, 62, 71) with an absorber material (100, 122, 135, 194, 237) is lined.
16. Messkoppler nach Anspruch 5 und 6, dadurch gekennzeichnet, dass der Vorwärtskoppler und der Rückwärtskoppler in Bandleitertechnik ausgeführt sind. 16. A measuring coupler according to claim 5 and 6, characterized in that the forward coupler and the backward coupler are carried out in strip conductor technology.
EP10725018.5A 2009-06-04 2010-05-27 Measuring coupler using strip conductor technology Active EP2438646B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009023872 2009-06-04
DE102009040725 2009-09-09
DE102009051370A DE102009051370A1 (en) 2009-06-04 2009-10-30 Measuring coupler in stripline technology
PCT/EP2010/003230 WO2010139420A1 (en) 2009-06-04 2010-05-27 Measuring coupler using strip conductor technology

Publications (2)

Publication Number Publication Date
EP2438646A1 true EP2438646A1 (en) 2012-04-11
EP2438646B1 EP2438646B1 (en) 2017-09-20

Family

ID=43049418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10725018.5A Active EP2438646B1 (en) 2009-06-04 2010-05-27 Measuring coupler using strip conductor technology

Country Status (4)

Country Link
US (1) US8928345B2 (en)
EP (1) EP2438646B1 (en)
DE (1) DE102009051370A1 (en)
WO (1) WO2010139420A1 (en)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810981A (en) * 1987-06-04 1989-03-07 General Microwave Corporation Assembly of microwave components
US5055807A (en) 1989-01-09 1991-10-08 Wiltron Company Method and apparatus for multiplexing broad band high frequency signals for use in network analyzers
US4983933A (en) * 1989-10-05 1991-01-08 Sedco Systems Inc. Waveguide-to-stripline directional coupler
JPH0634715A (en) * 1992-07-17 1994-02-10 Mitsubishi Electric Corp High-frequency band probe head
US5308250A (en) * 1992-10-30 1994-05-03 Hewlett-Packard Company Pressure contact for connecting a coaxial shield to a microstrip ground plane
US5477159A (en) * 1992-10-30 1995-12-19 Hewlett-Packard Company Integrated circuit probe fixture with detachable high frequency probe carrier
US6728648B1 (en) 1999-09-24 2004-04-27 Tektronix, Inc. Test and measurement instrument having telecommunications mask testing capability with an autofit to mask feature
US7159187B2 (en) 2001-11-06 2007-01-02 Tektronix, Inc. In-context creation and editing of masks and waveforms
KR100506728B1 (en) 2001-12-21 2005-08-08 삼성전기주식회사 Dual band coupler
US6759922B2 (en) * 2002-05-20 2004-07-06 Anadigics, Inc. High directivity multi-band coupled-line coupler for RF power amplifier
KR100905133B1 (en) * 2002-10-31 2009-06-29 주식회사 아도반테스토 Device under test mounting board and device interface unit
US6724205B1 (en) * 2002-11-13 2004-04-20 Cascade Microtech, Inc. Probe for combined signals
US7002433B2 (en) * 2003-02-14 2006-02-21 Microlab/Fxr Microwave coupler
US7627445B2 (en) * 2003-11-26 2009-12-01 Advantest Corporation Apparatus for testing a device with a high frequency signal
DE112004002554T5 (en) * 2003-12-24 2006-11-23 Cascade Microtech, Inc., Beaverton Active wafer sample
US7873486B2 (en) 2004-07-29 2011-01-18 Tektronix, Inc. Spectrogram mask trigger
US7348786B2 (en) * 2004-08-31 2008-03-25 Georgia Tech Research Corporation Probe module for testing chips with electrical and optical input/output interconnects, methods of use, and methods of fabrication
US7429903B2 (en) * 2006-03-24 2008-09-30 R&D Microwaves Llc Dual directional coupler with multi-stepped forward and reverse coupling rods
DE102006038029A1 (en) 2006-08-14 2008-02-21 Rohde & Schwarz Gmbh & Co. Kg directional coupler
US7683633B2 (en) 2006-10-19 2010-03-23 Anritsu Company Apparatus for extending the bandwidth of vector network analyzer receivers
FR2920915B1 (en) * 2007-09-07 2009-10-23 Thales Sa OMT TYPE BROADBAND MULTIBAND MULTIBAND TRANSCEIVER SEPARATOR - SEPARATOR FOR MICROWAVE TELECOMMUNICATIONS ANTENNAS.
US8199149B2 (en) 2007-12-13 2012-06-12 Tektronix, Inc. Automatic generation of frequency domain mask

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010139420A1 *

Also Published As

Publication number Publication date
US20110187401A1 (en) 2011-08-04
DE102009051370A1 (en) 2010-12-09
US8928345B2 (en) 2015-01-06
EP2438646B1 (en) 2017-09-20
WO2010139420A1 (en) 2010-12-09

Similar Documents

Publication Publication Date Title
DE69112669T2 (en) Coupler between a coaxial transmission line and a strip line.
EP1774616B1 (en) Device for transmitting broadband high-frequency signals
DE60301628T2 (en) Directional coupler with an adjustment
DE112016006983B4 (en) coaxial waveguide-hollow waveguide transition circuit
EP3244483B1 (en) Screened casing for use in hf applications
DE102009060537B4 (en) SAR and HAC-reduced antenna for a portable electronic device
DE19729162C2 (en) Connector between a daughter board and a mother board
DE1043429B (en) Coupling device on a high-frequency line
EP2489095B1 (en) Antenna coupler
DE69714444T2 (en) CERAMIC FILTER WITH COPLANAR SHIELDING
BE1026802B1 (en) Connectors
EP0772253B1 (en) Angled connector
EP2438646B1 (en) Measuring coupler using strip conductor technology
DE102005005751B4 (en) Test device with reflection-poor signal distribution
EP2438645B1 (en) Forward coupler comprising strip conductors
EP3791441A1 (en) Electronic unit having a housing and an antenna assembly
WO2001003243A1 (en) Subassembly with an antenna
EP2137787B1 (en) Isolation amplifier
DE4321411C1 (en) Balancing circuit
DE102019134174A1 (en) Directional coupler
DE102008009955A1 (en) Device for transferring electrical signals comprises strip lines having several crossover points which are distributed over the length of the strip lines
WO2010105588A1 (en) Assembly comprising an electric conductive track carrier and an optoelectronic component and method for producing such an assembly
EP0428987A1 (en) Test adapter
DE10058863A1 (en) antenna
DE19610628A1 (en) Device for transmitting microwave or digital signals between moving parts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170602

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 930820

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010014177

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180120

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010014177

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

26N No opposition filed

Effective date: 20180621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 930820

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240522

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240517

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 15