EP2437521A1 - Method for frequency compression with harmonic adjustment and corresponding device - Google Patents

Method for frequency compression with harmonic adjustment and corresponding device Download PDF

Info

Publication number
EP2437521A1
EP2437521A1 EP11178306A EP11178306A EP2437521A1 EP 2437521 A1 EP2437521 A1 EP 2437521A1 EP 11178306 A EP11178306 A EP 11178306A EP 11178306 A EP11178306 A EP 11178306A EP 2437521 A1 EP2437521 A1 EP 2437521A1
Authority
EP
European Patent Office
Prior art keywords
frequency
harmonic
channel
channels
frequency channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11178306A
Other languages
German (de)
French (fr)
Other versions
EP2437521B1 (en
EP2437521B2 (en
Inventor
Robert BÄUML
Ulrich Kornagel
Thomas Pilgrim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Siemens Medical Instruments Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44508965&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2437521(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Medical Instruments Pte Ltd filed Critical Siemens Medical Instruments Pte Ltd
Publication of EP2437521A1 publication Critical patent/EP2437521A1/en
Publication of EP2437521B1 publication Critical patent/EP2437521B1/en
Application granted granted Critical
Publication of EP2437521B2 publication Critical patent/EP2437521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/353Frequency, e.g. frequency shift or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility

Definitions

  • the present invention relates to a method of frequency-compressing an audio signal having a fundamental frequency and at least one harmonic by providing the audio signal in a plurality of frequency channels and shifting or mapping the harmonics of the audio signal from a first frequency channel of the plurality of frequency channels to a second frequency channel of the plurality of frequency channels.
  • the present invention relates to a corresponding device for frequency compression.
  • such a device can be used in a listening device.
  • a hearing device is understood here to be any sound-emitting device that can be worn in or on the ear, in particular a hearing device, a headset, headphones and the like.
  • Hearing aids are portable hearing aids that are used to care for the hearing impaired.
  • different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (ITE), e.g. Concha hearing aids or canal hearing aids (ITE, CIC).
  • BTE behind-the-ear hearing aids
  • RIC hearing aid with external receiver
  • ITE in-the-ear hearing aids
  • ITE in-the-ear hearing aids
  • ITE in-the-ear hearing aids
  • ITE concha hearing aids or canal hearing aids
  • the hearing aids listed by way of example are worn on the outer ear or in the ear canal.
  • bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.
  • Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer.
  • the input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic receiver, for. B. an induction coil.
  • the output transducer is usually used as an electroacoustic transducer, z. B. miniature speakers, or as an electromechanical transducer, z. B. bone conduction, realized.
  • the amplifier is usually integrated in a signal processing unit.
  • FIG. 1 shown using the example of a behind-the-ear hearing aid.
  • a hearing aid housing 1 for carrying behind the ear one or more microphones 2 for receiving the sound from the environment are installed.
  • a signal processing unit 3 which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them.
  • the output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal.
  • the sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier.
  • the power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5
  • Dead regions are frequency ranges in which spectral components can no longer be audibly amplified.
  • FIG. 2 shows the principle of frequency compression by simply copying channels as it is already used for hearing aids.
  • the channel 14 ' (indicated by its center frequency 14) is copied to the channel 11' (indicated by its center frequency 11).
  • the channel 14 ' there is a tone 14 "(eg a harmonic) which is shifted to the tone 11" in the target channel 11'.
  • the pitch of the sound 14 "to the center frequency 14 is identical to the pitch of the sound 11" to the center frequency 11.
  • a harmonic correction occurs during or after the shifting or mapping of the harmonics into another frequency channel.
  • the harmonic is set to a frequency position, which is also an integer multiple of the fundamental frequency.
  • the harmonic represents a harmonic even after moving. This significantly reduces the artifacts.
  • the first frequency channel is completely shifted into the second frequency channel. This allows, for example, a frequency channel from a dead region in an audible range of a hearing aid wearer move. If there is a harmonic in the first frequency channel, then it is completely shifted with the frequency channel. Their distance from the center frequency of the channel remains unchanged.
  • One of the harmonics associated with the frequency channel may be estimated, and the shifted harmonic may then be further shifted to the first frequency in the second frequency channel. This means that the move takes place in two steps. First, the entire frequency channel is shifted and then within the frequency channel, the original harmonic is pushed back to a harmonic frequency position.
  • the further shifting to the first frequency in the second shift step can be effected, for example, by amplitude modulation. This can be realized in the time domain by a simple multiplication by a factor exp (j ⁇ ⁇ ⁇ t).
  • the harmonic in the first frequency channel represents a dominant frequency.
  • its position can be estimated relatively accurately before and after the shift.
  • the harmonic is mapped to the estimated first frequency by obtaining a signal synthetically generated in the second frequency channel, the amplitude of the harmonics in the first frequency channel, and the estimated frequency of the second frequency channel. It is therefore not necessary here to make a second shift step, for example by amplitude modulation, since a synthetic signal is used at the appropriate, harmonic point. However, this has the disadvantage that under some circumstances phase information is lost.
  • the inventive device for frequency compression has a signal processing device, which preferably has a polyphase filter bank. This makes it possible to generate only positive frequency components in the channels.
  • the device according to the invention is particularly advantageously used in a listening device and in particular in a hearing aid.
  • a frequency compression in hearing aid users can be realized with fewer artifacts.
  • FIG. 3 a frequency compression according to the prior art shown in detail.
  • frequencies are compressed according to a frequency mapping curve (eg, SPINC, BARK, ).
  • a frequency mapping curve eg, SPINC, BARK, .
  • the amplitude response a is plotted against the frequency f.
  • the line spectrum has numerous harmonics 20 which form the spectral fine structure of the harmonic signal.
  • the amplitudes of the harmonics 20 can be controlled by a spectral envelope 21 connect.
  • the distance f 0 between two harmonics 20 corresponds to the fundamental frequency in the entire spectral range.
  • the spectrum should now be compressed above a frequency f c .
  • Compression is channel-wise by copying selected channels of the original spectrum to lower-level channels.
  • the channels usually have a different bandwidth than the distance f 0 between the harmonics.
  • the harmonics 20 land when shifting to frequency positions outside the in FIG. 3 above shown line grid.
  • FIG. 3 below shows such a compressed spectrum.
  • the distances f 1 , f 2 between the individual lines 22, which represent the shifted harmonics, are no longer constant and in particular not equal to f 0 .
  • the envelope 23 of the compressed spectrum shows in the compressed region the shifted formands 24 and 25 as they originate from the original spectrum, the spacing of the lines 22 is uneven, thus destroying the spectral fine structure and thus the structure of the harmonic signal. Corresponding artifacts are the result.
  • the spectrum is compressed above the cutoff frequency f c .
  • the envelope 23 of the compressed spectrum has the same shape as that of FIG. 3 below. Ie. also the formands 24 and 25 can be seen in the compressed area.
  • the lines 26 of the spectrum in the compressed area above f c have each other the same distance f 0 as the lines or harmonics 20 in the uncompressed area. This means that the fine structure of the spectrum of the harmonic signal is unaffected by the compression. Accordingly, there are fewer artifacts.
  • the frequency structure of the harmonic raster of the uncompressed signal is estimated, ie the positions of the harmonics in the frequency domain are determined.
  • FIG. 5 this is explained in more detail above, which again shows a section of an uncompressed spectrum and below the section of a compressed spectrum.
  • the section of the displayed spectrum here has a line or harmonic 30. This lies in a frequency channel 31, which in turn has a center frequency f 31 .
  • Below the first frequency channel 31 is a second frequency channel 32, which has the center frequency f 32 .
  • the first frequency channel 31 is now shifted to the second frequency channel 32, copied or mapped. This represents a first step 33 of the frequency compression.
  • This step 33 corresponds to the compression according to the prior art of FIG.
  • the harmonic 30 of the first frequency channel 31 is pushed onto the line 34, which is assigned a frequency f 34 (also referred to as second frequency hereinafter).
  • the distance ⁇ f between the frequencies f 31 and f 30 is identical to the distance between the frequencies f 32 and f 34 .
  • the frequency f 34 does not correspond to a harmonic of the fundamental frequency. Rather, would be at the frequency position f 35 in the second frequency channel 32 is a harmonic. This can be determined, for example, by a first frequency estimate in the target frequency range, ie in the second frequency channel 32, to which the first frequency channel 31 is imaged or shifted.
  • the line 34 must therefore be shifted to the frequency f 35 in order to obtain the fine structure of the harmonic signal.
  • the frequency structure of the still uncorrected compressed spectral components is estimated in a second estimation.
  • the frequency f 34 of the line 34 is estimated or determined after the shift in the first step 33.
  • the frequency offset ie the distance between the frequencies f 34 and f 35 can be determined.
  • the offset is compensated by means of a modulation in a second step 36, whereby the harmonic raster is restored.
  • the line 34 is pushed to the frequency f 35 , resulting in the line 35 results.
  • the modulation can be achieved for example on the basis of the analytical signal by multiplication with a suitable complex rotational factor.
  • the shift by an angular frequency ⁇ 1 corresponds to a multiplication by the factor exp (j ⁇ ⁇ 1 ⁇ t).
  • the resulting modulation corresponds to an amplitude modulation.
  • this method can be used in a polyphase filter bank that generates only the complex-valued, analytical signal (only positive frequency component of a Fourier transformation) in the channels.
  • each channel can be cyclically modulated so that the frequency components in it are correspondingly cyclically shifted by the angular frequency ⁇ 1.
  • the above-described embodiment is based on actually shifting the harmonic 30 as a signal component of the audio signal.
  • the compressed spectral components are generated semi-synthetically.
  • the information about the frequency position of the semi-synthetically generated spectral components is obtained from the estimate of the uncompressed harmonic structure, ie the frequency 35 is determined as in the example above.
  • a synthetic signal is now generated.
  • the amplitude of this synthetic signal is adjusted to correspond to the amplitude of the original harmonic 30, ie the associated amplitude is obtained from the source spectrum. This also allows a frequency compression can be achieved in which the harmonic grid is maintained.
  • mapping rule of source frequency to target frequency for frequency compression is performed in audiology in a known manner.
  • the harmonic correction or compliance with the harmonic structure of the compressed spectral components is then achieved according to the invention.
  • the artefacts of the simple mapping rule according to the prior art are massively reduced.

Abstract

The method involves providing the audio signal into several frequency channels (31,32). The frequency associated with the fundamental frequency, in the frequency channel (32) is estimated as harmonic (20,30). The harmonics of the audio signal is moved or mapped from a frequency channel (31) in frequency channel (32). An independent claim is included for device for frequency compression of audio signal.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Frequenzkompression eines Audiosignals, das eine Grundfrequenz und mindestens eine Harmonische besitzt, durch Bereitstellen des Audiosignals in mehreren Frequenzkanälen und Verschieben oder Abbilden der Harmonischen des Audiosignals von einem ersten Frequenzkanal der mehreren Frequenzkanäle in einen zweiten Frequenzkanal der mehreren Frequenzkanäle. Darüber hinaus betrifft die vorliegende Erfindung eine entsprechende Vorrichtung zur Frequenzkompression. Insbesondere ist eine derartige Vorrichtung einsetzbar in einer Höreinrichtung. Unter einer Höreinrichtung wird hier jedes im oder am Ohr tragbare schallausgebende Gerät, insbesondere ein Hörgerät, ein Headset, Kopfhörer und dergleichen verstanden.The present invention relates to a method of frequency-compressing an audio signal having a fundamental frequency and at least one harmonic by providing the audio signal in a plurality of frequency channels and shifting or mapping the harmonics of the audio signal from a first frequency channel of the plurality of frequency channels to a second frequency channel of the plurality of frequency channels. Moreover, the present invention relates to a corresponding device for frequency compression. In particular, such a device can be used in a listening device. A hearing device is understood here to be any sound-emitting device that can be worn in or on the ear, in particular a hearing device, a headset, headphones and the like.

Hörgeräte sind tragbare Hörvorrichtungen, die zur Versorgung von Schwerhörenden dienen. Um den zahlreichen individuellen Bedürfnissen entgegenzukommen, werden unterschiedliche Bauformen von Hörgeräten wie Hinter-dem-Ohr-Hörgeräte (HdO), Hörgerät mit externem Hörer (RIC: receiver in the canal) und In-dem-Ohr-Hörgeräte (IdO), z.B. auch Concha-Hörgeräte oder Kanal-Hörgeräte (ITE, CIC), bereitgestellt. Die beispielhaft aufgeführten Hörgeräte werden am Außenohr oder im Gehörgang getragen. Darüber hinaus stehen auf dem Markt aber auch Knochenleitungshörhilfen, implantierbare oder vibrotaktile Hörhilfen zur Verfügung. Dabei erfolgt die Stimulation des geschädigten Gehörs entweder mechanisch oder elektrisch.Hearing aids are portable hearing aids that are used to care for the hearing impaired. In order to meet the numerous individual needs, different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (ITE), e.g. Concha hearing aids or canal hearing aids (ITE, CIC). The hearing aids listed by way of example are worn on the outer ear or in the ear canal. In addition, bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.

Hörgeräte besitzen prinzipiell als wesentliche Komponenten einen Eingangswandler, einen Verstärker und einen Ausgangswandler. Der Eingangswandler ist in der Regel ein Schallempfänger, z. B. ein Mikrofon, und/oder ein elektromagnetischer Empfänger, z. B. eine Induktionsspule. Der Ausgangswandler ist meist als elektroakustischer Wandler, z. B. Miniaturlautsprecher, oder als elektromechanischer Wandler, z. B. Knochenleitungshörer, realisiert. Der Verstärker ist üblicherweise in eine Signalverarbeitungseinheit integriert. Dieser prinzipielle Aufbau ist in FIG 1 am Beispiel eines Hinter-dem-Ohr-Hörgeräts dargestellt. In ein Hörgerätegehäuse 1 zum Tragen hinter dem Ohr sind ein oder mehrere Mikrofone 2 zur Aufnahme des Schalls aus der Umgebung eingebaut. Eine Signalverarbeitungseinheit 3, die ebenfalls in das Hörgerätegehäuse 1 integriert ist, verarbeitet die Mikrofonsignale und verstärkt sie. Das Ausgangssignal der Signalverarbeitungseinheit 3 wird an einen Lautsprecher bzw. Hörer 4 übertragen, der ein akustisches Signal ausgibt. Der Schall wird gegebenenfalls über einen Schallschlauch, der mit einer Otoplastik im Gehörgang fixiert ist, zum Trommelfell des Geräteträgers übertragen. Die Energieversorgung des Hörgeräts und insbesondere die der Signalverarbeitungseinheit 3 erfolgt durch eine ebenfalls ins Hörgerätegehäuse 1 integrierte Batterie 5.Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer. The input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic receiver, for. B. an induction coil. The output transducer is usually used as an electroacoustic transducer, z. B. miniature speakers, or as an electromechanical transducer, z. B. bone conduction, realized. The amplifier is usually integrated in a signal processing unit. This basic structure is in FIG. 1 shown using the example of a behind-the-ear hearing aid. In a hearing aid housing 1 for carrying behind the ear, one or more microphones 2 for receiving the sound from the environment are installed. A signal processing unit 3, which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them. The output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal. The sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier. The power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5

Viele Hörverluste können durch eine frequenzabhängige Verstärkung in Kombination mit einer Dynamikkompression ausgeglichen werden. Es gibt jedoch auch Hörverluste, bei denen eine Verstärkung keinen Effekt hat bzw. nachteilig ist. Ein Beispiel hierfür sind Hörverluste mit sog. "toten Regionen". Tote Regionen sind Frequenzbereiche, in denen Spektralanteile nicht mehr durch Verstärkung hörbar gemacht werden können.Many hearing losses can be compensated by a frequency-dependent amplification in combination with a dynamic compression. However, there are also hearing losses where amplification has no effect or is detrimental. An example of this is hearing loss with so-called "dead regions". Dead regions are frequency ranges in which spectral components can no longer be audibly amplified.

Eine mögliche Technik, um mit obigem Problem umzugehen, ist die Frequenzkompression. Hierbei werden Strahlanteile Spektralanteile aus einem Quellfrequenzbereich, der typischerweise bei höheren Frequenzen liegt und in dem keine Verstärkung angewendet werden soll (z. B. tote Region), in einen tieferliegenden Zielfrequenzbereich geschoben. In diesem Zielfrequenzbereich ist in der Regel Hörbarkeit prinzipiell gewährleistet, weswegen eine Verstärkung angewendet werden kann.One possible technique to deal with the above problem is frequency compression. In this case, beam components spectral components from a source frequency range, which is typically at higher frequencies and in which no amplification is to be applied (eg dead region), are pushed into a lower-lying target frequency range. Audibility is generally guaranteed in this target frequency range, which is why amplification can be used.

Es sind Hörgeräte bekannt, die eine derartige Frequenzkompression unterstützen. Bei dem Kompressionsverfahren werden beispielsweise die Eigenschaften einer Filterbank für eine einfache Implementierung genutzt. Es werden selektiv einzelne Kanäle, unter anderem abhängig von deren Momentanleistung, auf andere Kanäle kopiert, sodass die in diesen Kanälen enthaltenen Frequenzanteile am Ausgang verschoben in einem anderen Frequenzbereich wieder auftauchen. Wohin die Kanäle abgebildet werden, bestimmt eine Abbildungsvorschrift, die einstellbar ist, sodass verschiedene Kompressionsverhältnisse realisierbar sind.There are known hearing aids that support such frequency compression. In the compression method, for example, the properties of a filter bank for a easy implementation used. Individual channels are selectively copied to other channels, depending on their instantaneous power, for example, so that the frequency components contained in these channels reappear on the output in a different frequency range. Where the channels are shown determines a mapping rule, which is adjustable, so that different compression ratios can be realized.

FIG 2 zeigt das Prinzip der Frequenzkompression durch einfaches Kopieren von Kanälen, wie es bereits für Hörgeräte verwendet wird. Es wird beispielsweise der Kanal 14' (gekennzeichnet durch seine Mittenfrequenz 14) auf den Kanal 11' (gekennzeichnet durch seine Mittenfrequenz 11) kopiert bzw. verschoben). In dem Kanal 14' befindet sich ein Ton 14" (z. B. eine Harmonische) der auf den Ton 11" in dem Zielkanal 11' verschoben wird. Der Abstand des Tons 14" zu der Mittenfrequenz 14 ist identisch zu dem Abstand des Tons 11" zu der Mittenfrequenz 11. FIG. 2 shows the principle of frequency compression by simply copying channels as it is already used for hearing aids. For example, the channel 14 '(indicated by its center frequency 14) is copied to the channel 11' (indicated by its center frequency 11). In the channel 14 'there is a tone 14 "(eg a harmonic) which is shifted to the tone 11" in the target channel 11'. The pitch of the sound 14 "to the center frequency 14 is identical to the pitch of the sound 11" to the center frequency 11.

Diese einfache Abbildungsvorschrift bringt bei harmonischen Signalen Probleme mit sich. Harmonische Signale treten z. B. bei stimmhaften Lauten in der Sprache, beispielsweise bei Vokalen, auf. Hierbei hat das unkomprimierte Spektrum linienartige Struktur, wobei Spektrallinien bei der Sprachgrundfrequenz und bei deren ganzzahligen Vielfachen auftreten. Das Raster der harmonischen Signale (Linienstruktur) wird bei der einfachen Abbildungsvorschrift gemäß dem Stand der Technik nicht berücksichtigt und daher zerstört, d. h. die Spektrallinien treten nicht mehr garantiert auf einem ganzzahligen Vielfachen der Sprachgrundfrequenz auf. Dies äußert sich in deutlich wahrnehmbaren Artefakten (Signalanteile, die bei ganzzahligen Vielfachen der Grundfrequenz auftreten, werden hier kurz "Harmonische" genannt).This simple mapping rule brings with harmonic signals problems. Harmonic signals occur, for. For example, in voiced sounds in the language, such as vowels on. In this case, the uncompressed spectrum has a line-like structure, with spectral lines occurring at the speech fundamental frequency and at their integer multiples. The raster of the harmonic signals (line structure) is not considered in the simple mapping rule according to the prior art and therefore destroyed, d. H. the spectral lines are no longer guaranteed to be at an integer multiple of the speech fundamental frequency. This manifests itself in clearly perceptible artifacts (signal components occurring at integer multiples of the fundamental frequency are called "harmonics" for short).

Die Aufgabe der vorliegenden Erfindung besteht somit darin, Artefakte bei der Frequenzkompression weiter zu reduzieren. Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren zur Frequenzkompression eines Audiosignals, das eine Grundfrequenz und mindestens eine Harmonische besitzt, durch

  • Bereitstellen des Audiosignals in mehreren Frequenzkanälen
    und
  • Verschieben oder Abbilden der Harmonischen des Audiosignals von einem ersten Frequenzkanal der mehreren Frequenzkanäle in einem zweiten Frequenzkanal der mehreren Frequenzkanäle, sowie
  • Schätzen einer ersten Frequenz, die zu der Grundfrequenz ebenfalls harmonisch ist, in dem zweiten Frequenzkanal, wobei
  • die Harmonische auf die geschätzte erste Frequenz verschoben oder abgebildet wird.
The object of the present invention is thus to further reduce artifacts in frequency compression. According to the invention this object is achieved by a method for frequency compression of an audio signal having a fundamental frequency and at least one harmonic, by
  • Providing the audio signal in multiple frequency channels
    and
  • Shifting or mapping the harmonics of the audio signal from a first frequency channel of the plurality of frequency channels in a second frequency channel of the plurality of frequency channels, as well
  • Estimating a first frequency which is also harmonic to the fundamental frequency in the second frequency channel, wherein
  • the harmonic is shifted or mapped to the estimated first frequency.

Darüber hinaus wird erfindungsgemäß bereitgestellt eine Vorrichtung zur Frequenzkompression eines Audiosignals, das eine Grundfrequenz und mindestens eine Harmonische besitzt mit

  • einer Signalverarbeitungseinrichtung zum Bereitstellen des Audiosignals in mehreren Frequenzkanälen und
  • einer Verschiebeeinrichtung zum Verschieben oder Abbilden der Harmonischen des Audiosignals von einem ersten Frequenzkanal der mehreren Frequenzkanäle in einen zweiten Frequenzkanal der mehreren Frequenzkanäle, sowie mit
  • einer Schätzeinrichtung zum Schätzen einer ersten Frequenz, die zu der Grundfrequenz ebenfalls harmonisch ist, in dem zweiten Frequenzkanal, wobei
  • die Harmonische durch die Verschiebeeinrichtung auf die geschätzte erste Frequenz verschoben oder abgebildet wird.
In addition, the invention provides a device for frequency compression of an audio signal having a fundamental frequency and at least one harmonic
  • a signal processing device for providing the audio signal in a plurality of frequency channels and
  • a shifting device for shifting or mapping the harmonics of the audio signal from a first frequency channel of the plurality of frequency channels into a second frequency channel of the plurality of frequency channels, and with
  • an estimator for estimating a first frequency, which is also harmonic to the fundamental frequency, in the second frequency channel, wherein
  • the harmonic is shifted or imaged by the shifter to the estimated first frequency.

In vorteilhafter Weise erfolgt beim oder nach dem Verschieben bzw. Abbilden der Harmonischen in einen anderen Frequenzkanal eine harmonische Korrektur. Dies bedeutet, dass die Harmonische auf eine Frequenzposition gesetzt wird, die ebenfalls ein ganzzahliges Vielfaches der Grundfrequenz darstellt. Damit stellt die Harmonische auch nach dem Verschieben eine Harmonische dar. Dies reduziert die Artefakte deutlich.Advantageously, a harmonic correction occurs during or after the shifting or mapping of the harmonics into another frequency channel. This means that the harmonic is set to a frequency position, which is also an integer multiple of the fundamental frequency. Thus, the harmonic represents a harmonic even after moving. This significantly reduces the artifacts.

In einer Ausführungsform wird der erste Frequenzkanal vollständig in den zweiten Frequenzkanal verschoben. Damit lässt sich beispielsweise ein Frequenzkanal aus einer toten Region in einen hörbaren Bereich eines Hörgeräteträgers verschieben. Liegt in dem ersten Frequenzkanal eine Harmonische, so wird sie vollständig mit dem Frequenzkanal verschoben. Ihr Abstand zur Mittenfrequenz des Kanals bleibt dabei zunächst unverändert.In one embodiment, the first frequency channel is completely shifted into the second frequency channel. This allows, for example, a frequency channel from a dead region in an audible range of a hearing aid wearer move. If there is a harmonic in the first frequency channel, then it is completely shifted with the frequency channel. Their distance from the center frequency of the channel remains unchanged.

Eine der mit dem Frequenzkanal verschobenen Harmonischen zugeordnete zweite Frequenz kann geschätzt werden, und die verschobene Harmonische kann dann in dem zweiten Frequenzkanal weiter auf die erste Frequenz verschoben werden. Dies bedeutet, dass das Verschieben in zwei Schritten erfolgt. Zunächst wird der gesamte Frequenzkanal verschoben und anschließend wird innerhalb des Frequenzkanals die ursprüngliche Harmonische wieder auf eine harmonische Frequenzposition geschoben.One of the harmonics associated with the frequency channel may be estimated, and the shifted harmonic may then be further shifted to the first frequency in the second frequency channel. This means that the move takes place in two steps. First, the entire frequency channel is shifted and then within the frequency channel, the original harmonic is pushed back to a harmonic frequency position.

Das Weiterverschieben auf die erste Frequenz in dem zweiten Schiebeschritt kann beispielsweise durch Amplitudenmodulation erfolgen. Dies lässt sich im Zeitbereich durch eine einfache Multiplikation mit einem Faktor exp(j·ω·t) realisieren.The further shifting to the first frequency in the second shift step can be effected, for example, by amplitude modulation. This can be realized in the time domain by a simple multiplication by a factor exp (j · ω · t).

Vorzugsweise stellt die Harmonische in dem ersten Frequenzkanal eine dominante Frequenz dar. Damit lässt sich ihre Position vor und nach dem Verschieben verhältnismäßig genau schätzen.Preferably, the harmonic in the first frequency channel represents a dominant frequency. Thus, its position can be estimated relatively accurately before and after the shift.

In einer alternativen Ausführungsform wird die Harmonische auf die geschätzte erste Frequenz abgebildet, indem ein im zweiten Frequenzkanal synthetisch erzeugtes Signal die Amplitude der Harmonischen im ersten Frequenzkanal erhält und die geschätzte Frequenz des zweiten Frequenzkanals. Es muss also hier kein zweiter Verschiebeschritt beispielsweise durch Amplitudenmodulation erfolgen, denn es wird ein synthetisches Signal an der passenden, harmonischen Stelle verwendet. Dies hat allerdings den Nachteil, dass unter Umständen Phaseninformation verloren geht.In an alternative embodiment, the harmonic is mapped to the estimated first frequency by obtaining a signal synthetically generated in the second frequency channel, the amplitude of the harmonics in the first frequency channel, and the estimated frequency of the second frequency channel. It is therefore not necessary here to make a second shift step, for example by amplitude modulation, since a synthetic signal is used at the appropriate, harmonic point. However, this has the disadvantage that under some circumstances phase information is lost.

Die erfindungsgemäße Vorrichtung zur Frequenzkompression besitzt eine Signalverarbeitungseinrichtung, die vorzugsweise eine Polyphasen-Filterbank aufweist. Damit ist es möglich, in den Kanälen nur positive Frequenzanteile zu erzeugen.The inventive device for frequency compression has a signal processing device, which preferably has a polyphase filter bank. This makes it possible to generate only positive frequency components in the channels.

Besonders vorteilhaft wird die erfindungsgemäße Vorrichtung in einer Höreinrichtung und insbesondere in einem Hörgerät eingesetzt. Damit kann eine Frequenzkompression bei Hörgeräteträgern mit weniger Artefakten realisiert werden.The device according to the invention is particularly advantageously used in a listening device and in particular in a hearing aid. Thus, a frequency compression in hearing aid users can be realized with fewer artifacts.

Die vorliegende Erfindung wird anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:

FIG 1
den prinzipiellen Aufbau eines Hörgeräts gemäß dem Stand der Technik;
FIG 2
das Prinzip der Frequenzkompression durch einfaches Kopieren von Kanälen gemäß dem Stand der Technik;
FIG 3
eine Kompression gemäß dem Stand der Technik;
FIG 4
eine Kompression gemäß der vorliegenden Erfindung; und
FIG 5
einen Ausschnitt eines unkomprimierten Spektrums und einen Ausschnitt eines komprimierten Spektrums.
The present invention will be further explained with reference to the accompanying drawings, in which:
FIG. 1
the basic structure of a hearing aid according to the prior art;
FIG. 2
the principle of frequency compression by simply copying channels according to the prior art;
FIG. 3
a compression according to the prior art;
FIG. 4
a compression according to the present invention; and
FIG. 5
a section of an uncompressed spectrum and a section of a compressed spectrum.

Die nachfolgend näher geschilderten Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar.The embodiments described in more detail below represent preferred embodiments of the present invention.

Zum besseren Verständnis der Erfindung wird jedoch zunächst anhand von FIG 3 eine Frequenzkompression gemäß dem Stand der Technik im Detail dargestellt. Demnach werden Frequenzen gemäß einer Frequenz-Abbildungskurve (z. B. SPINC, BARK, ...) komprimiert. Ausgangsbasis ist beispielsweise ein Linienspektrum, wie es in FIG 3 oben dargestellt ist. Die Amplitudenantwort a ist über der Frequenz f aufgetragen. Das Linienspektrum besitzt zahlreiche Harmonische 20, die die spektrale Feinstruktur des harmonischen Signals bilden. Die Amplituden der Harmonischen 20 lassen sich durch eine spektrale Einhüllende 21 verbinden. Der Abstand f0 zwischen zwei Harmonischen 20 entspricht im gesamten Spektralbereich der Grundfrequenz. Das Spektrum soll nun oberhalb einer Frequenz fc komprimiert werden. Das Komprimieren erfolgt kanalweise, indem ausgewählte Kanäle des Originalspektrums in tiefergelegene Kanäle kopiert werden. Die Kanäle besitzen jedoch in der Regel eine andere Bandbreite als der Abstand f0 zwischen den Harmonischen. Aufgrund dessen landen die Harmonischen 20 beim Verschieben auf Frequenzpositionen außerhalb des in FIG 3 oben dargestellten Linienrasters. FIG 3 unten zeigt ein derartiges komprimiertes Spektrum. Die Abstände f1, f2 zwischen den einzelnen Linien 22, die die verschobenen Harmonischen darstellen, sind nicht mehr konstant und insbesondere ungleich f0. Die Einhüllende 23 des komprimierten Spektrums zeigt zwar in dem komprimierten Bereich die verschobenen Formanden 24 und 25, wie sie aus dem Originalspektrum hervorgehen, aber der Abstand der Linien 22 ist ungleichmäßig, wodurch also die spektrale Feinstruktur und damit die Struktur des harmonischen Signals zerstört ist. Entsprechende Artefakte sind die Folge.For a better understanding of the invention, however, is first based on FIG. 3 a frequency compression according to the prior art shown in detail. Thus, frequencies are compressed according to a frequency mapping curve (eg, SPINC, BARK, ...). Starting basis is, for example, a line spectrum, as in FIG. 3 is shown above. The amplitude response a is plotted against the frequency f. The line spectrum has numerous harmonics 20 which form the spectral fine structure of the harmonic signal. The amplitudes of the harmonics 20 can be controlled by a spectral envelope 21 connect. The distance f 0 between two harmonics 20 corresponds to the fundamental frequency in the entire spectral range. The spectrum should now be compressed above a frequency f c . Compression is channel-wise by copying selected channels of the original spectrum to lower-level channels. However, the channels usually have a different bandwidth than the distance f 0 between the harmonics. As a result, the harmonics 20 land when shifting to frequency positions outside the in FIG. 3 above shown line grid. FIG. 3 below shows such a compressed spectrum. The distances f 1 , f 2 between the individual lines 22, which represent the shifted harmonics, are no longer constant and in particular not equal to f 0 . Although the envelope 23 of the compressed spectrum shows in the compressed region the shifted formands 24 and 25 as they originate from the original spectrum, the spacing of the lines 22 is uneven, thus destroying the spectral fine structure and thus the structure of the harmonic signal. Corresponding artifacts are the result.

Eine deutliche Verbesserung insbesondere für Sprachsignale ist erreichbar, wenn zusätzlich zu der einfachen Abbildungsvorschrift gemäß dem Stand der Technik eine harmonische Korrektur durchgeführt wird, was anhand von FIG 4 näher erläutert wird. Im oberen Teil der Figur ist nochmals das Originalspektrum mit seinen Harmonischen 20 und der Einhüllenden 21 wie in FIG 3 oben dargestellt. Der Abstand der einzelnen Harmonischen 20 entspricht im gesamten Originalspektrum der Grundfrequenz f0.A clear improvement, in particular for speech signals, can be achieved if, in addition to the simple mapping rule according to the prior art, a harmonic correction is performed, which is based on FIG. 4 is explained in more detail. In the upper part of the figure is again the original spectrum with its harmonics 20 and the envelope 21 as in FIG. 3 shown above. The spacing of the individual harmonics 20 corresponds to the fundamental frequency f 0 in the entire original spectrum.

In FIG 4 unten ist das durch die Erfindung angestrebte Ziel beispielhaft dargestellt. Das Spektrum ist oberhalb der Grenzfrequenz fc komprimiert. Die Einhüllende 23 des komprimierten Spektrums besitzt die gleiche Form wie diejenige von FIG 3 unten. D. h. auch die Formanden 24 und 25 sind im komprimierten Bereich zu erkennen. Die Linien 26 des Spektrums im komprimierten Bereich oberhalb von fc besitzen untereinander den gleichen Abstand f0 wie die Linien bzw. Harmonischen 20 im nicht komprimierten Bereich. Dies bedeutet, dass die Feinstruktur des Spektrums des harmonischen Signals von der Kompression unberührt ist. Dementsprechend kommt es zu weniger Artefakten.In FIG. 4 Below, the goal sought by the invention is exemplified. The spectrum is compressed above the cutoff frequency f c . The envelope 23 of the compressed spectrum has the same shape as that of FIG FIG. 3 below. Ie. also the formands 24 and 25 can be seen in the compressed area. The lines 26 of the spectrum in the compressed area above f c have each other the same distance f 0 as the lines or harmonics 20 in the uncompressed area. This means that the fine structure of the spectrum of the harmonic signal is unaffected by the compression. Accordingly, there are fewer artifacts.

Zu dem Zweck der Frequenzkompression mit harmonischer Korrektur wird zunächst die Frequenzstruktur des harmonischen Rasters des unkomprimierten Signals geschätzt d.h. es werden die Positionen der Harmonischen im Frequenzbereich ermittelt. Anhand von FIG 5 sei dies näher erläutert, die oben wieder einen Ausschnitt eines unkomprimierten Spektrums und unten den Ausschnitt eines komprimierten Spektrums darstellt. Der Abschnitt des dargestellten Spektrums weist hier eine Linie bzw. Harmonische 30 auf. Diese liegt in einem Frequenzkanal 31, welcher seinerseits eine Mittenfrequenz f31 besitzt. Unterhalb des ersten Frequenzkanals 31 befindet sich ein zweiter Frequenzkanal 32, welcher die Mittenfrequenz f32 besitzt. Für die Kompression wird nun der erste Frequenzkanal 31 auf den zweiten Frequenzkanal 32 verschoben, kopiert oder abgebildet. Dies stellt einen ersten Schritt 33 der Frequenzkompression dar. Dieser Schritt 33 entspricht der Kompression gemäß dem Stand der Technik von FIG 3. Demnach wird die Harmonische 30 des ersten Frequenzkanals 31 auf die Linie 34 geschoben, der eine Frequenz f34 zugeordnet ist (im Weiteren auch zweite Frequenz genannt). Der Abstand Δf zwischen den Frequenzen f31 und f30 ist identisch mit dem Abstand zwischen den Frequenzen f32 und f34. Die Frequenz f34 entspricht jedoch nicht einer Harmonischen der Grundfrequenz. Vielmehr würde an der Frequenzposition f35 in dem zweiten Frequenzkanal 32 eine Harmonische liegen. Dies kann beispielsweise durch eine erste Frequenzschätzung im Zielfrequenzbereich, d. h. in dem zweiten Frequenzkanal 32, auf den der erste Frequenzkanal 31 abgebildet bzw. verschoben wird, ermittelt werden. Die Linie 34 muss also auf die Frequenz f35 geschoben werden, um die Feinstruktur des harmonischen Signals zu erhalten. Hierzu wird die Frequenzstruktur der noch unkorrigierten komprimierten Spektralanteile in einer zweiten Schätzung geschätzt. In dem vereinfachten Beispiel von FIG 5, bei dem nur ein Kanal verschoben wird, wird also nach der Verschiebung im ersten Schritt 33 die Frequenz f34 der Linie 34 geschätzt bzw. ermittelt. Aus den beiden Frequenzschätzungen kann der Frequenzversatz, d. h. der Abstand zwischen den Frequenzen f34 und f35 ermittelt werden. Der Versatz wird mit Hilfe einer Modulation in einem zweiten Schritt 36 kompensiert, wobei das harmonische Raster wiederhergestellt wird. Dabei wird die Linie 34 auf die Frequenz f35 geschoben, wodurch sich die Linie 35 ergibt.For the purpose of frequency compression with harmonic correction, first the frequency structure of the harmonic raster of the uncompressed signal is estimated, ie the positions of the harmonics in the frequency domain are determined. Based on FIG. 5 this is explained in more detail above, which again shows a section of an uncompressed spectrum and below the section of a compressed spectrum. The section of the displayed spectrum here has a line or harmonic 30. This lies in a frequency channel 31, which in turn has a center frequency f 31 . Below the first frequency channel 31 is a second frequency channel 32, which has the center frequency f 32 . For compression, the first frequency channel 31 is now shifted to the second frequency channel 32, copied or mapped. This represents a first step 33 of the frequency compression. This step 33 corresponds to the compression according to the prior art of FIG. 3 , Accordingly, the harmonic 30 of the first frequency channel 31 is pushed onto the line 34, which is assigned a frequency f 34 (also referred to as second frequency hereinafter). The distance Δf between the frequencies f 31 and f 30 is identical to the distance between the frequencies f 32 and f 34 . However, the frequency f 34 does not correspond to a harmonic of the fundamental frequency. Rather, would be at the frequency position f 35 in the second frequency channel 32 is a harmonic. This can be determined, for example, by a first frequency estimate in the target frequency range, ie in the second frequency channel 32, to which the first frequency channel 31 is imaged or shifted. The line 34 must therefore be shifted to the frequency f 35 in order to obtain the fine structure of the harmonic signal. For this purpose, the frequency structure of the still uncorrected compressed spectral components is estimated in a second estimation. In the simplified example of FIG. 5 , in which only one channel is shifted, so the frequency f 34 of the line 34 is estimated or determined after the shift in the first step 33. From the two frequency estimates, the frequency offset, ie the distance between the frequencies f 34 and f 35 can be determined. The offset is compensated by means of a modulation in a second step 36, whereby the harmonic raster is restored. The line 34 is pushed to the frequency f 35 , resulting in the line 35 results.

Die Modulation kann beispielsweise auf der Basis des analytischen Signals durch Multiplikation mit einem geeigneten komplexen Drehfaktor erreicht werden. So entspricht die Verschiebung um eine Kreisfrequenz ω1 einer Multiplikation mit dem Faktor exp(j·ω1·t). Die resultierende Modulation entspricht einer Amplitudenmodulation.The modulation can be achieved for example on the basis of the analytical signal by multiplication with a suitable complex rotational factor. Thus, the shift by an angular frequency ω1 corresponds to a multiplication by the factor exp (j · ω1 · t). The resulting modulation corresponds to an amplitude modulation.

Vorteilhaft lässt sich dieses Verfahren bei einer Polyphasen-Filterbank einsetzen, die nur das komplex-wertige, analytische Signal (nur positiver Frequenzanteil einer FourierTransformation) in den Kanälen erzeugt. Hierbei lässt sich mittels Modulation mit dem Modulationsterm exp(j·ω1·t) jeder Kanal zyklisch modulieren, sodass die Frequenzanteile darin entsprechend zyklisch um die Kreisfrequenz ω1 verschoben werden.Advantageously, this method can be used in a polyphase filter bank that generates only the complex-valued, analytical signal (only positive frequency component of a Fourier transformation) in the channels. In this case, by modulating with the modulation term exp (j * ω1 * t), each channel can be cyclically modulated so that the frequency components in it are correspondingly cyclically shifted by the angular frequency ω1.

Grundsätzlich sind bei der Schätzung der (dominanten) Frequenz zwei Fälle zu unterscheiden:

  1. 1) Es existiert eine dominante Frequenz, die gut geschätzt werden kann, d. h. es existiert ein starker tonaler Anteil in diesem Kanal. Damit kann eine gute Korrektur des harmonischen Rasters erreicht werden.
  2. 2) Es existiert keine dominante Frequenz, d. h. das Signal in dem Kanal ist rauschartig. Die Frequenzschätzung führt zu einer mehr oder weniger zufälligen Momentanfrequenz. Dies wiederum führt bei der Abbildung auf eine Zielfrequenz zu einer Phasenrandomisierung bzw. zufälligen Modulation in dem Kanal, was bei rauschartigen Kanälen kaum Einfluss auf den Höreindruck bewirkt.
Basically, two cases have to be distinguished when estimating the (dominant) frequency:
  1. 1) There is a dominant frequency that can be well estimated, ie there is a strong tonal component in this channel. Thus, a good correction of the harmonic grid can be achieved.
  2. 2) There is no dominant frequency, ie the signal in the channel is noisy. The frequency estimate leads to a more or less random instantaneous frequency. This in turn leads to a target frequency in the mapping to a phase randomization or random modulation in the channel, which causes little impact on the listening experience in noise-like channels.

Das oben geschilderte Ausführungsbeispiel basiert darauf, dass die Harmonische 30 als Signalanteil des Audiosignals tatsächlich verschoben wird. Gemäß einer alternativen Ausführungsform werden die komprimierten Spektralanteile halb-synthetisch erzeugt. Die Information über die Frequenzposition der halb-synthetisch erzeugten Spektralanteile wird aus der Schätzung der unkomprimierten harmonischen Struktur gewonnen, d. h. die Frequenz 35 wird wie in dem obigen Beispiel ermittelt. Bei der Frequenz f35 wird nun jedoch ein synthetisches Signal erzeugt. Die Amplitude dieses synthetischen Signals wird so eingestellt, dass sie der Amplitude der ursprünglichen Harmonischen 30 entspricht, d. h. die zugehörige Amplitude wird aus dem Quellspektrum gewonnen. Auch hierdurch lässt sich eine Frequenzkompression erreichen, bei der das harmonische Raster erhalten bleibt.The above-described embodiment is based on actually shifting the harmonic 30 as a signal component of the audio signal. According to an alternative embodiment, the compressed spectral components are generated semi-synthetically. The information about the frequency position of the semi-synthetically generated spectral components is obtained from the estimate of the uncompressed harmonic structure, ie the frequency 35 is determined as in the example above. At the frequency f 35 , however, a synthetic signal is now generated. The amplitude of this synthetic signal is adjusted to correspond to the amplitude of the original harmonic 30, ie the associated amplitude is obtained from the source spectrum. This also allows a frequency compression can be achieved in which the harmonic grid is maintained.

Die Abbildungsvorschrift von Quellfrequenz nach Zielfrequenz für die Frequenzkompression wird in der Audiologie in bekannter Weise durchgeführt. Die harmonische Korrektur bzw. die Einhaltung der harmonischen Struktur der komprimierten Spektralkomponenten wird dann erfindungsgemäß erzielt. Damit werden die Artefakte der einfachen Abbildungsvorschrift gemäß dem Stand der Technik massiv reduziert.The mapping rule of source frequency to target frequency for frequency compression is performed in audiology in a known manner. The harmonic correction or compliance with the harmonic structure of the compressed spectral components is then achieved according to the invention. Thus, the artefacts of the simple mapping rule according to the prior art are massively reduced.

Claims (9)

Verfahren zur Frequenzkompression eines Audiosignals, das eine Grundfrequenz und mindestens eine Harmonische (20, 30) besitzt, durch - Bereitstellen des Audiosignals in mehreren Frequenzkanälen (31, 32) und - Verschieben oder Abbilden der Harmonischen (20, 30) des Audiosignals von einem ersten Frequenzkanal (31) der mehreren Frequenzkanäle in einem zweiten Frequenzkanal (32) der mehreren Frequenzkanäle,
gekennzeichnet durch
- Schätzen einer ersten Frequenz (f35), die zu der Grundfrequenz ebenfalls harmonisch ist, in dem zweiten Frequenzkanal (32), wobei - die Harmonische (20, 30) auf die geschätzte erste Frequenz (f35) verschoben oder abgebildet wird.
A method of frequency compression of an audio signal having a fundamental frequency and at least one harmonic (20, 30) - Providing the audio signal in a plurality of frequency channels (31, 32) and Shifting or mapping the harmonics (20, 30) of the audio signal from a first frequency channel (31) of the plurality of frequency channels in a second frequency channel (32) of the plurality of frequency channels,
marked by
- estimating a first frequency (f 35 ), which is also harmonic to the fundamental frequency, in the second frequency channel (32), wherein - the harmonic (20, 30) is shifted or mapped to the estimated first frequency (f 35 ).
Verfahren nach Anspruch 1, wobei der erste Frequenzkanal (31) vollständig in den zweiten Frequenzkanal (32) verschoben wird.The method of claim 1, wherein the first frequency channel (31) is completely shifted into the second frequency channel (32). Verfahren nach Anspruch 2, wobei eine der verschobenen Harmonischen zugeordnete zweite Frequenz (f34) geschätzt und die verschobene Harmonische (20, 30) in dem zweiten Frequenzkanal (32) weiter auf die erste Frequenz (f35) verschoben wird.The method of claim 2, wherein a second frequency (f 34 ) associated with the shifted harmonics is estimated, and the shifted harmonic (20, 30) in the second frequency channel (32) is further shifted to the first frequency (f 35 ). Verfahren nach Anspruch 3, wobei das Weiterverschieben auf die erste Frequenz (f35) durch Amplitudenmodulation erfolgt.The method of claim 3, wherein said further shifting to said first frequency (f 35 ) is by amplitude modulation. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Harmonische (20, 30) in dem ersten Frequenzkanal (31) eine dominante Frequenz darstellt.Method according to one of the preceding claims, wherein the harmonic (20, 30) in the first frequency channel (31) represents a dominant frequency. Verfahren nach Anspruch 1, wobei die Harmonische (20, 30) auf die geschätzte erste Frequenz (f35) abgebildet wird, indem ein im zweiten Frequenzkanal (32) synthetisch erzeugtes Signal die Amplitude der Harmonischen (20, 30) im ersten Frequenzkanal (31) erhält.The method of claim 1, wherein the harmonic (20, 30) is mapped to the estimated first frequency (f 35 ) by synthesizing one in the second frequency channel (32) Signal receives the amplitude of the harmonics (20, 30) in the first frequency channel (31). Vorrichtung zur Frequenzkompression eines Audiosignals, das eine Grundfrequenz und mindestens eine Harmonische (20, 30) besitzt mit - einer Signalverarbeitungseinrichtung zum Bereitstellen des Audiosignals in mehreren Frequenzkanälen (31, 32) und - einer Verschiebeeinrichtung zum Verschieben oder Abbilden der Harmonischen (20, 30) des Audiosignals von einem ersten Frequenzkanal (31) der mehreren Frequenzkanäle in einen zweiten Frequenzkanal (32) der mehreren Frequenzkanäle,
gekennzeichnet durch
- eine Schätzeinrichtung zum Schätzen einer ersten Frequenz (f35), die zu der Grundfrequenz ebenfalls harmonisch ist, in dem zweiten Frequenzkanal (32), wobei - die Harmonische (20, 30) durch die Verschiebeeinrichtung auf die geschätzte erste Frequenz (f35) verschoben oder abgebildet wird.
Apparatus for frequency compression of an audio signal having a fundamental frequency and at least one harmonic (20, 30) with - A signal processing means for providing the audio signal in a plurality of frequency channels (31, 32) and a shifting device for shifting or mapping the harmonics (20, 30) of the audio signal from a first frequency channel (31) of the plurality of frequency channels into a second frequency channel (32) of the plurality of frequency channels,
marked by
- estimation means for estimating a first frequency (f 35 ), which is also harmonic to the fundamental frequency, in the second frequency channel (32), - the harmonic (20, 30) is shifted or imaged by the shifter to the estimated first frequency (f 35 ).
Vorrichtung nach Anspruch 7, wobei die Signalverarbeitungseinrichtung eine Polyphasen-Filterbank aufweist.Apparatus according to claim 7, wherein the signal processing means comprises a polyphase filterbank. Höreinrichtung mit einer Vorrichtung nach Anspruch 7 oder 8.Audio device with a device according to claim 7 or 8.
EP11178306.4A 2010-09-29 2011-08-22 Method for frequency compression with harmonic adjustment and corresponding device Active EP2437521B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010041644.4A DE102010041644B4 (en) 2010-09-29 2010-09-29 Frequency compression method with harmonic correction and device

Publications (3)

Publication Number Publication Date
EP2437521A1 true EP2437521A1 (en) 2012-04-04
EP2437521B1 EP2437521B1 (en) 2014-04-30
EP2437521B2 EP2437521B2 (en) 2017-09-13

Family

ID=44508965

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11178306.4A Active EP2437521B2 (en) 2010-09-29 2011-08-22 Method for frequency compression with harmonic adjustment and corresponding device

Country Status (6)

Country Link
US (1) US9258655B2 (en)
EP (1) EP2437521B2 (en)
CN (1) CN102436817B (en)
AU (1) AU2011226820B2 (en)
DE (1) DE102010041644B4 (en)
DK (1) DK2437521T4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504282B (en) * 2012-07-20 2015-10-11 Unlimiter Mfa Co Ltd Method and hearing aid of enhancing sound accuracy heard by a hearing-impaired listener
CN114038473A (en) * 2019-01-29 2022-02-11 桂林理工大学南宁分校 Interphone system for processing single-module data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2613513A1 (en) * 1976-03-30 1977-10-06 Albert Dipl Ing Kremer Hearing aid adapting output to wearers disability - halves frequencies and mixes them back with original microphone output
US6577739B1 (en) * 1997-09-19 2003-06-10 University Of Iowa Research Foundation Apparatus and methods for proportional audio compression and frequency shifting
WO2009143898A1 (en) * 2008-05-30 2009-12-03 Phonak Ag Method for adapting sound in a hearing aid device by frequency modification and such a device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634625A (en) * 1968-09-23 1972-01-11 Westinghouse Electric Corp Speech unscrambler
US4051331A (en) * 1976-03-29 1977-09-27 Brigham Young University Speech coding hearing aid system utilizing formant frequency transformation
US4637402A (en) * 1980-04-28 1987-01-20 Adelman Roger A Method for quantitatively measuring a hearing defect
FR2494988B1 (en) 1980-11-28 1985-07-05 Lafon Jean Claude IMPROVEMENTS ON HEARING AID DEVICES
JP2884163B2 (en) 1987-02-20 1999-04-19 富士通株式会社 Coded transmission device
US5285144A (en) * 1988-09-02 1994-02-08 Board Of Regents, The University Of Texas System Generation of multi-phase multiple-order harmonics of a fundamental frequency source with adjustable phase angle capability
AT398670B (en) 1991-11-13 1995-01-25 Viennatone Gmbh METHOD FOR SHIFTING THE FREQUENCY OF SIGNALS
US5864813A (en) 1996-12-20 1999-01-26 U S West, Inc. Method, system and product for harmonic enhancement of encoded audio signals
US7003120B1 (en) * 1998-10-29 2006-02-21 Paul Reed Smith Guitars, Inc. Method of modifying harmonic content of a complex waveform
AU2002300314B2 (en) 2002-07-29 2009-01-22 Hearworks Pty. Ltd. Apparatus And Method For Frequency Transposition In Hearing Aids
US20040175010A1 (en) * 2003-03-06 2004-09-09 Silvia Allegro Method for frequency transposition in a hearing device and a hearing device
US7248711B2 (en) * 2003-03-06 2007-07-24 Phonak Ag Method for frequency transposition and use of the method in a hearing device and a communication device
EP1920632B1 (en) * 2005-06-27 2009-11-18 Widex A/S Hearing aid with enhanced high frequency reproduction and method for processing an audio signal
DK1742509T3 (en) 2005-07-08 2013-11-04 Oticon As A system and method for eliminating feedback and noise in a hearing aid
US8000487B2 (en) 2008-03-06 2011-08-16 Starkey Laboratories, Inc. Frequency translation by high-frequency spectral envelope warping in hearing assistance devices
US8019431B2 (en) 2008-06-02 2011-09-13 University Of Washington Enhanced signal processing for cochlear implants
DE102009058415B4 (en) 2009-12-16 2012-12-06 Siemens Medical Instruments Pte. Ltd. Method for frequency transposition in a hearing aid device and hearing aid device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2613513A1 (en) * 1976-03-30 1977-10-06 Albert Dipl Ing Kremer Hearing aid adapting output to wearers disability - halves frequencies and mixes them back with original microphone output
US6577739B1 (en) * 1997-09-19 2003-06-10 University Of Iowa Research Foundation Apparatus and methods for proportional audio compression and frequency shifting
WO2009143898A1 (en) * 2008-05-30 2009-12-03 Phonak Ag Method for adapting sound in a hearing aid device by frequency modification and such a device

Also Published As

Publication number Publication date
US20120076332A1 (en) 2012-03-29
CN102436817A (en) 2012-05-02
DE102010041644B4 (en) 2019-07-11
DK2437521T3 (en) 2014-08-11
EP2437521B1 (en) 2014-04-30
US9258655B2 (en) 2016-02-09
CN102436817B (en) 2013-10-30
DK2437521T4 (en) 2017-12-18
EP2437521B2 (en) 2017-09-13
DE102010041644A1 (en) 2012-03-29
AU2011226820B2 (en) 2013-10-03
AU2011226820A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
EP2437258B1 (en) Method and device for frequency compression with selective frequency shifting
EP2919485B1 (en) Transmission of a wind-reduced signal with reduced latency
DE102010026884B4 (en) Method for operating a hearing device with two-stage transformation
EP3461147B1 (en) Method for operating a hearing device
EP2229010A2 (en) Method for compensating for interference in a hearing aid, hearing aid and method for adjusting same
EP3926982A2 (en) Method for direction-dependent noise suppression for a hearing system comprising a hearing device
EP2811762B1 (en) Logic-based binaural beam forming system
EP2503795A2 (en) Hearing aid with feedback suppression device and method for operating a hearing aid
DE102008024535A1 (en) Method for optimizing a multi-level filter bank and corresponding filter bank and hearing device
DE102006047694B4 (en) Method for dynamic compression of an audio signal and corresponding hearing device
EP2822300B1 (en) Detection of listening situations with different signal sources
EP2437521B1 (en) Method for frequency compression with harmonic adjustment and corresponding device
DE102008024534A1 (en) Hearing device with an equalization filter in the filter bank system
DE102007008739A1 (en) Hearing device with noise separation and corresponding method
DE102010041435A1 (en) Method for reconstructing a speech signal and hearing device
EP2606660B1 (en) Method for fitting a hearing device using percentile analysis
EP2190218B1 (en) Filter bank system with specific stop-band attenuation for a hearing device
DE102006046699B3 (en) Hearing device particularly hearing aid, has signal processing mechanism by which signals are processed in multiple frequency channels and adjusting mechanism is used for adjusting levels of individual frequency channels
EP2622879B1 (en) Method and device for frequency compression
DE102011087692B4 (en) Hearing apparatus and method for improving the visibility of a portion of an input signal for a user of the hearing device
WO2012041372A1 (en) Method for frequency compression, adjustment device and hearing device
DE102009015564A1 (en) Directional signal generating method for use in e.g. hearing-device, involve reducing artifacts due to solid-borne sounds using transmission functions or solid-borne sound signals, during obtaining directional signal
EP2418876A1 (en) Method for reducing interference and hearing aid
EP2699020A2 (en) Method and device for determining a gain factor of a hearing aid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120423

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101AFI20131014BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 665791

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011002885

Country of ref document: DE

Effective date: 20140618

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140804

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140830

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502011002885

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: OTICON A/S / GN RESOUND A/S / WIDEX A/S

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502011002885

Country of ref document: DE

Effective date: 20150130

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011002885

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011002885

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011002885

Country of ref document: DE

Owner name: SIVANTOS PTE. LTD., SG

Free format text: FORMER OWNER: SIEMENS MEDICAL INSTRUMENTS PTE. LTD., SINGAPORE, SG

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIVANTOS PTE. LTD.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110822

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

27A Patent maintained in amended form

Effective date: 20170913

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502011002885

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

Ref country code: CH

Ref legal event code: PFA

Owner name: SIVANTOS PTE. LTD., SG

Free format text: FORMER OWNER: SIEMENS MEDICAL INSTRUMENTS PTE. LTD., SG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 665791

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160822

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

Effective date: 20171212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 13

Ref country code: CH

Payment date: 20230902

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 13

Ref country code: DK

Payment date: 20230823

Year of fee payment: 13

Ref country code: DE

Payment date: 20230822

Year of fee payment: 13