EP2433675B1 - Active implantable medical device including a means for wireless communication via electric pulses conducted by the interstitial tissue of the body - Google Patents

Active implantable medical device including a means for wireless communication via electric pulses conducted by the interstitial tissue of the body Download PDF

Info

Publication number
EP2433675B1
EP2433675B1 EP11178361A EP11178361A EP2433675B1 EP 2433675 B1 EP2433675 B1 EP 2433675B1 EP 11178361 A EP11178361 A EP 11178361A EP 11178361 A EP11178361 A EP 11178361A EP 2433675 B1 EP2433675 B1 EP 2433675B1
Authority
EP
European Patent Office
Prior art keywords
pulse
pulses
alternation
positive
biphasic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11178361A
Other languages
German (de)
French (fr)
Other versions
EP2433675A1 (en
Inventor
Ashutosh Ghildiyal
Renzo Dal Molin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sorin CRM SAS
Original Assignee
Sorin CRM SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sorin CRM SAS filed Critical Sorin CRM SAS
Publication of EP2433675A1 publication Critical patent/EP2433675A1/en
Application granted granted Critical
Publication of EP2433675B1 publication Critical patent/EP2433675B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37217Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0026Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the transmission medium
    • A61B5/0028Body tissue as transmission medium, i.e. transmission systems where the medium is the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/29Invasive for permanent or long-term implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
    • A61N1/37288Communication to several implantable medical devices within one patient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/005Transmission systems in which the medium consists of the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/162Capsule shaped sensor housings, e.g. for swallowing or implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37205Microstimulators, e.g. implantable through a cannula
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
    • A61N1/3727Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data characterised by the modulation technique

Definitions

  • the invention relates generally to the field of "active medical devices” as defined by the Council of European Communities Directive 93/42 / EC of 14 June 1993, and in particular "active implantable medical devices” as defined by Council Directive 90/385 / EEC of 20 June 1990.
  • This definition includes in particular the devices responsible for monitoring cardiac activity and generating pacing, resynchronization, defibrillation and / or cardioversion pulses in the event of arrhythmia detected by the device. It also includes neurological devices, cochlear implants, etc., as well as devices for measuring pH or intracorporeal impedance (such as measurement of transpulmonary impedance or intracardiac impedance).
  • the invention relates more particularly to those devices which implement implanted autonomous capsules and devoid of any physical connection to an implanted main device (such as a stimulation pulse generator box) or non-implanted device (external device such as as programmer or monitoring device for remote monitoring of the patient).
  • an implanted main device such as a stimulation pulse generator box
  • non-implanted device external device such as as programmer or monitoring device for remote monitoring of the patient.
  • the communication conducted by the interstitial tissues of the body, is then of the so-called "HBC" type (Human Body Communication ).
  • Such leadless capsules are for example described in US 2007/0088397 A1 and WO 2007/047681 A2 (Nanostim, Inc.) or in the US 2006/0136004 A1 (EBR Systems, Inc.).
  • These leadless capsules may in particular be epicardial capsules, attached to the outer wall of the heart, or endocardial capsules, attached to the inner wall of a ventricular or atrial cavity.
  • Their attachment to the cardiac wall is usually done by means of a protruding helical anchoring screw, axially extending the body of the capsule and intended to penetrate into the heart tissue by screwing to the implantation site.
  • Such a capsule includes detection / stimulation circuits to collect myocardial depolarization potentials and / or to apply stimulation pulses to the site where the capsule is implanted.
  • the capsule then carries a suitable electrode, which can be constituted in particular by an active part of the anchor screw. It may also incorporate one or more sensors for locally measuring the value of a parameter such as the level of oxygen in the blood, the endocavitary cardiac pressure, the acceleration of the cardiac wall, the acceleration of the patient as an indicator of activity etc.
  • these capsules incorporate wireless communication transmitter / receiver means.
  • the invention is however not limited to a particular type of capsule, and it is applicable regardless of any type of leadless capsule , regardless of its functional purpose.
  • This device may include a pacemaker, resynchronizer or implanted defibrillator, a subcutaneous defibrillator, or a long-duration recorder.
  • the US 2006/0136004 A1 proposes to transmit the data by acoustic waves propagating inside the body.
  • This technique is effective and safe; however, it has the disadvantage of requiring a relatively high transmission power given the attenuation of acoustic waves in the body, and allows a relatively low data rate.
  • the US 5,411,535A proposes another technique, based on the use of radiofrequency (RF) waves.
  • RF radiofrequency
  • the US 2007/0088397 A1 proposes also using the stimulation pulses produced by a capsule as a vehicle for the transmission of data previously collected or developed by the capsule.
  • the pulse instead of having a monotonic variation of voltage, is interrupted in a controlled manner for very short periods of time so as to create in the profile of the pulse very narrow slots whose succession corresponds to a binary coding information to be transmitted.
  • This technique makes it possible to take advantage of the high energy of the stimulation pulses to overcome the problems of attenuation within the interstitial tissues between the capsule and the device.
  • the US 2002/0099423 A1 discloses an intracorporeal wireless communication technique between an implanted medical device and an external device provided with electrodes in contact with the patient's skin.
  • the implant generates electrical pulse trains whose level is below the stimulation threshold and applies these pulses to electrodes to propagate to the patient's body surface, where they will be picked up by the patient. the electrodes of the external device and then decoded by the latter.
  • This technique has several disadvantages, including a relatively high consumption and very high variability depending on the load resistance seen by the implant between its pulse emitting electrodes. Moreover, and especially, even with biphasic pulses (as this document provides), there is a high risk that residual charges will remain, due to imperfect balancing of the positive and negative charges generated by the pulses. These residual charges will produce a polarization within the tissues, creating a risk for the patient.
  • this technique is not suitable for permanent communication between medical devices, especially between two implants (which presupposes that the pulses pass through excitable regions of the myocardium). It is moreover proposed only for a communication between an implant and an external device transcutaneously, out of danger zones. On the other hand, in the case of a brief and temporary communication (the external device is for example used to raise the level of the implant's battery from time to time), a rather high consumption is not a critical factor. .
  • the invention proposes an active implantable medical device of the general type disclosed by the US 2002/0099423 A1 aforementioned, that is to say comprising means for wirelessly communicating intracorporeally with at least one other active implantable medical device by means of signals consisting of electrical pulses able to be driven by the interstitial tissues of the body.
  • This device comprises: at least one pair of electrodes; generating means capable of generating pulse trains formed from a succession of said electrical pulses; modulator means adapted to modulate the pulse trains by digital information produced by the device, the pulses being biphasic pulses comprising a positive alternation and a negative alternation; and means for injecting the pulses between the electrodes.
  • the biphasic pulses are current pulses produced by a regulated constant current source included in the generator means.
  • HBC Human Body Communication, intracorporeal communication
  • the patient is equipped for example with an implant 10 such as an implanted defibrillator / stimulator / resynchronizer, or a subcutaneous defibrillator, or a long-term recorder.
  • This implanted device 10 is the master device of a network comprising a plurality of slave devices 12 to 18 with which it is capable of communicating via the HBC channel.
  • These devices may in particular include intracardiac or epicardial capsules 14 implanted directly on the patient's heart, other devices 16 such as myopotential sensors or neurological stimulation devices, and possibly an external device 18 disposed on a cuff and provided with electrodes in contact with the skin.
  • the device 10 can also be used as a gateway with the outside world to communicate with an external device 20 of the programmer type or data teletransmission device with which it can communicate including RF telemetry in the band MICS (Medical Implants Communication System) 402-405 MHz, or the public ISM (Industrial, Scientific and Medical) 863-870 MHz, 902-928 MHz and 2.4 GHz public standard bands used by medical devices.
  • MICS Medical Implants Communication System
  • ISM Industrial, Scientific and Medical
  • Each of the devices 10 to 18 is provided with at least a pair of electrodes which are in direct contact with the body tissues for the devices implanted, or in contact with the skin for the external device 18.
  • FIG. 2 there is shown an example of leadless type capsules implanted either on the anterior part of the myocardium, inside an atrial or ventricular cavity (endocavitary capsules 12), or on an outer wall of the same myocardium (epicardial capsules 14 ).
  • These capsules which are for example described in US 2007/0088397 A1 , WO 2007/047681 A2 and US 2006/0136004 A1 above, are attached to the cardiac wall by means of a protruding anchoring screw intended to penetrate into the heart tissue by screwing to the implantation site.
  • the screw can be either a passive screw, serving only for fixing the capsule, or an active screw, used to collect the depolarization signals propagating in the myocardial tissues and / or to deliver stimulation pulses to the site implantation, in a localized way.
  • the Figure 3 schematically illustrates the various internal circuits of the capsules 12, 14 (and, mutatis mutandis, other implanted elements provided for communicating with each other by the technique of the invention).
  • Each capsule has a pair of electrodes 22, 24, one of which may also be constituted by the anchor screw in the heart tissue. These electrodes are connected to a stimulation pulse generator circuit 26 (for an active capsule incorporating this function) and / or to a detection circuit 28 used to collect the depolarization potentials collected between the electrodes 22 and 24.
  • a central circuit 30 controls the various functions, the memorization of the signals collected, etc.
  • the capsule may also be provided with a sensor 32 such as a sensor for acceleration, pressure, a hemodynamic sensor, temperature, oxygen saturation, etc.
  • the capsule is powered by a small battery or a power recovery circuit 34 supplying the circuitry via a power management stage 36.
  • the electrodes 22 and 24 are, in all cases, also connected to a modulator / demodulator circuit 38 coupled to the central processor circuit 30 and able to transmit and / or receive pulses for communication without HBC wire, these pulses having characteristics of the invention, which will be described below.
  • the electrodes 22, 24 can provide a simple, double or triple function, namely: stimulation and / or collection of cardiac potentials (the optionally) ; and / or transmission of the information tracked by the sensor 32 (if applicable); and send / receive for HBC communication (in any case).
  • the circuit 30 includes all electronics for controlling the various functions of the capsule. It comprises a microcontroller and an oscillator generating the clock signals necessary for the operation of the microcontroller and for communication. It can also contain an analog / digital converter and a digital storage memory.
  • the Figure 4 illustrates an exemplary pulse produced by circuit 38 for providing HBC communication by means of electrical pulses driven by the interstitial tissues of the body.
  • these pulses are current pulses, and (ii) each pulse generated is a biphasic pulse, in order to minimize the residual charges injected into the core or to reduce the corrosion of the materials.
  • these pulses comprise two successive alternations, positive and negative, of square and symmetrical forms (same amplitude in absolute value, same duration for the two alternations).
  • Other waveforms are, however, conceivable, and the example set forth herein is not limiting.
  • pulse modulation results from the variable time interval separating consecutive two-phase current pulse pairs from a pulse train generated by the device.
  • Each pulse is defined by the succession, of constant duration T 0 , of two alternations of opposite sign.
  • This pulse is followed by a respectively short wait T 1 , for example to code a binary '0', or long T 2 , to encode a '1' binary.
  • modulation can however be envisaged, for example a modulation of the amplitude of the pulses, of the width of the alternations (modulation of the PWM type), instead of the modulation described here consisting of modulating the time interval T 1 or T 2 separating consecutive current pulse pairs of a given pulse train.
  • the biphasic pulse can consist of a positive alternation followed by a negative alternation ( Figures 4a and 4c ), or a negative alternation followed by a positive alternation ( Figures 4b and 4d ).
  • a pulse of a first type for example positive and negative alternation, as on the Figures 4a or 4c
  • the next pulse can be an inverse type of impulse (negative alternation then positive alternation, as on the Figures 4b or 4d ), or no inverse.
  • an error check can be implemented on the receiver side by checking the systematic presence of this alternating pattern within the received pulse train.
  • the biphasic pulses are emitted in succession in the form of pulse trains at a relatively high frequency, typically at a rate of one bit every 2 ⁇ s.
  • the duration T 0 of the pulse is of the order of 1000 ns, a value which proves to be suitable for efficient transmission within the human body.
  • the choice of a repetition frequency of the order of 500 kHz (1 bit every 2 ⁇ s on average) makes it possible to adapt the spectral content to the particular transmission channel constituted by the interstitial tissues of the body, which has a minimum attenuation relatively moderate in the band 500 kHz-10 MHz (band B).
  • the attenuation in this frequency band varies between 10 dB and 40 dB, depending on the distance between transmitter and receiver, the spacing between the respective electrodes of the pair of electrodes and the surface of these electrodes, with a value typical of the order of 20 dB at 1 MHz over a distance of 10 to 12 cm between transmitter and receiver.
  • the Figure 5 schematically illustrates the means used to transmit and receive the biphasic pulses just described.
  • the transmitter circuits 40 are located in the leadless stimulator , or in the subcutaneous apparatus, responsible for monitoring cardiac activity and generating pacing, resynchronization, defibrillation and / or cardioversion pulses. They comprise a source 42 of constant current of the order of 10 mA, periodically adjustable or on command depending on the resistance of the probe connected to the core to generate at the end of the pulse a voltage of 2 V for example.
  • the control module 30 controls the opening and closing of switches, in particular the closing of the switch 44 in order to inject the current over a predetermined time interval, for example of the order of 0.5 ⁇ s.
  • the injected current 52 will flow (via the connection capacitor 46, shared or not with the stimulation stage, to avoid any sending of DC voltage to the electrodes) through the body of the patient from one of the electrodes 22 until 24.
  • the switch 48 then discharges the capacitor 46 from the residual charge due to the compensation errors of the positive and negative pulses. After having thus injected a first alternation, the same procedure is followed to inject the following alternation by inverting the direction of the current, to obtain a pulse of the type of those illustrated. Figure 4 .
  • Reference 50 designates the circuits used on the receiver side.
  • the current flowing in the body generates between the electrodes 22 'and 24' of the receiver a potential difference which is applied to an amplifier stage 54 via the connecting capacitors 56 and 58 making it possible to eliminate any DC component.
  • the amplifier will only be powered during periods when data is being obtained to reduce power consumption.
  • the resulting amplified signal is applied to a bandpass filter 60 to filter the spurious signals out of the relevant band.
  • the filtered signal obtained is applied to a threshold comparator 62 and to a demodulator stage 64 (these circuits will be described in more detail with reference to FIG. Figures 8 and 9 ).
  • the Figures 6 and 7 illustrate a schematic diagram of two-phase current generator.
  • the constant current source 42 is connected to the electrodes 22 and 24 by two switches SW 1 and SW 2 and by the connection capacitors 46 and 46 ', themselves connected to ground via two switches SW 3 and SW 4 .
  • the Figure 7 give the chronograms different control signals S 1 to S 4 respectively applied to the switches SW 1 to SW 4 (the switch being closed when the signal is high).
  • the figure 7 also indicates the profile of the current I flowing between the two electrodes 22 and 24.
  • the period referenced OCD corresponds to the discharge of the output capacitors, which is operated via switches SW 3 and SW 4 .
  • the OCD discharge will be in refractory period only, because of its longer duration.
  • the Figure 8 describes an example of a demodulator for decoding pulses such as those illustrated Figure 4 , that is to say whose binary coding '0' or '1' corresponds to a respectively short waiting time T 1 or long T 2 from one pulse to the next.
  • This demodulator 64 receives the data from the comparator 62.
  • the data IN is then applied to an inverter 70 whose output IN / controls a flip-flop 72 whose Q output and the complementary output Q / are connected to the gate of respective symmetrical transistors 74 and 76.
  • Each of these transistors charges a capacitor 78 or 80 by a resistor 82 or 84.
  • each capacitor-resistor assembly is applied to the input of a respective comparator circuit 86 or 88 whose other input is connected to a threshold reference voltage V th .
  • the outputs O 1 and O 2 of the comparators 86 and 88 are applied to an OR circuit 90 whose output S is such that, when the load of one or the other capacitor 78 or 80 reaches the threshold value V th , the demodulator 64 transmits an output pulse O, which will go to zero with the falling edge of the input signal IN.

Description

L'invention concerne, de façon générale, le domaine des "dispositifs médicaux actifs" tels que définis par la directive 93/42/CE du 14 juin 1993 du Conseil des communautés européennes, et notamment les "dispositifs médicaux implantables actifs" tels que définis par la directive du Conseil 90/385/CEE du 20 juin 1990.The invention relates generally to the field of "active medical devices" as defined by the Council of European Communities Directive 93/42 / EC of 14 June 1993, and in particular "active implantable medical devices" as defined by Council Directive 90/385 / EEC of 20 June 1990.

Cette définition inclut en particulier les appareils chargés de surveiller l'activité cardiaque et de générer des impulsions de stimulation, de resynchronisation, de défibrillation et/ou de cardioversion en cas de trouble du rythme détecté par l'appareil. Elle inclut aussi les appareils neurologiques, les implants cochléaires, etc., ainsi que les dispositifs de mesure de pH ou encore d'impédance intracorporelle (telle que mesure d'impédance transpulmonaire ou d'impédance intracardiaque).This definition includes in particular the devices responsible for monitoring cardiac activity and generating pacing, resynchronization, defibrillation and / or cardioversion pulses in the event of arrhythmia detected by the device. It also includes neurological devices, cochlear implants, etc., as well as devices for measuring pH or intracorporeal impedance (such as measurement of transpulmonary impedance or intracardiac impedance).

L'invention concerne plus particulièrement ceux de ces dispositifs qui mettent en oeuvre des capsules autonomes implantées et dépourvues de toute liaison physique à un dispositif principal implanté (tel qu'un boîtier de générateur d'impulsions de stimulation) ou non implanté (périphérique externe tel que programmateur ou dispositif de monitoring pour le suivi à distance du patient). La communication, conduite par les tissus interstitiels du corps, est alors du type dit "HBC" (Human Body Communication, communication par voie intracorporelle).The invention relates more particularly to those devices which implement implanted autonomous capsules and devoid of any physical connection to an implanted main device (such as a stimulation pulse generator box) or non-implanted device (external device such as as programmer or monitoring device for remote monitoring of the patient). The communication, conducted by the interstitial tissues of the body, is then of the so-called "HBC" type (Human Body Communication ).

Ces capsules autonomes sont dénommées pour cette raison "capsules leadless", pour les distinguer des électrodes ou des capteurs disposés à l'extrémité distale d'une sonde (lead), cette sonde étant parcourue sur toute sa longueur par un ou plusieurs conducteurs reliant par voie galvanique l'électrode ou le capteur à un générateur connecté à l'extrémité opposée, proximale, de la sonde.These autonomous capsules are named for this reason " leadless capsules ", to distinguish them from the electrodes or sensors arranged at the distal end of a probe (lead), this probe being traversed along its length by one or more connecting conductors by Galvanically route the electrode or sensor to a generator connected to the opposite, proximal end of the probe.

De telles capsules leadless sont par exemple décrites dans les US 2007/0088397 A1 et WO 2007/047681 A2 (Nanostim, Inc.) ou encore dans le US 2006/0136004 A1 (EBR Systems, Inc.).Such leadless capsules are for example described in US 2007/0088397 A1 and WO 2007/047681 A2 (Nanostim, Inc.) or in the US 2006/0136004 A1 (EBR Systems, Inc.).

Ces capsules leadless peuvent être notamment des capsules épicardiques, fixées à la paroi extérieure du coeur, ou bien des capsules endocavitaires, fixées à la paroi intérieure d'une cavité ventriculaire ou auriculaire. Leur fixation à la paroi cardiaque se fait habituellement au moyen d'une vis d'ancrage hélicoïdale saillante, prolongeant axialement le corps de la capsule et destinée à pénétrer dans le tissu cardiaque par vissage au site d'implantation.These leadless capsules may in particular be epicardial capsules, attached to the outer wall of the heart, or endocardial capsules, attached to the inner wall of a ventricular or atrial cavity. Their attachment to the cardiac wall is usually done by means of a protruding helical anchoring screw, axially extending the body of the capsule and intended to penetrate into the heart tissue by screwing to the implantation site.

Une telle capsule comprend des circuits de détection/stimulation pour recueillir des potentiels de dépolarisation du myocarde et/ou pour appliquer des impulsions de stimulation au site où est implantée la capsule. La capsule porte alors une électrode appropriée, qui peut être notamment constituée par une partie active de la vis d'ancrage. Elle peut également incorporer un ou plusieurs capteurs permettant de mesurer localement la valeur d'un paramètre tel que le niveau d'oxygène dans le sang, la pression cardiaque endocavitaire, l'accélération de la paroi cardiaque, l'accélération du patient come indicateur de l'activité etc. Bien entendu, pour permettre l'échange de données à distance, ces capsules incorporent des moyens émetteurs/récepteurs de communication sans fil.Such a capsule includes detection / stimulation circuits to collect myocardial depolarization potentials and / or to apply stimulation pulses to the site where the capsule is implanted. The capsule then carries a suitable electrode, which can be constituted in particular by an active part of the anchor screw. It may also incorporate one or more sensors for locally measuring the value of a parameter such as the level of oxygen in the blood, the endocavitary cardiac pressure, the acceleration of the cardiac wall, the acceleration of the patient as an indicator of activity etc. Of course, to enable remote data exchange, these capsules incorporate wireless communication transmitter / receiver means.

L'invention n'est toutefois pas limitée à un type particulier de capsule, et elle est applicable indifféremment à tout type de capsule leadless, quelle que soit sa destination fonctionnelle.The invention is however not limited to a particular type of capsule, and it is applicable regardless of any type of leadless capsule , regardless of its functional purpose.

Plusieurs techniques ont été proposées pour assurer la communication sans fil entre ces capsules autonomes et un dispositif distant destiné à centraliser les informations recueillies par les capsules et à leur envoyer si nécessaire des commandes appropriées. Ce dispositif peut être notamment un stimulateur, resynchroniseur ou défibrillateur implanté, un défibrillateur sous-cutané, ou un enregistreur longue durée.Several techniques have been proposed to ensure the wireless communication between these autonomous capsules and a remote device for centralizing the information collected by the capsules and send them if necessary appropriate commands. This device may include a pacemaker, resynchronizer or implanted defibrillator, a subcutaneous defibrillator, or a long-duration recorder.

Ainsi, le US 2006/0136004 A1 propose de transmettre les données par des ondes acoustiques se propageant à l'intérieur du corps. Cette technique est efficace et sans danger ; elle présente toutefois l'inconvénient de nécessiter une puissance d'émission relativement élevée compte tenu de l'atténuation des ondes acoustiques dans le corps, et ne permet qu'un débit de données relativement faible.So, the US 2006/0136004 A1 proposes to transmit the data by acoustic waves propagating inside the body. This technique is effective and safe; however, it has the disadvantage of requiring a relatively high transmission power given the attenuation of acoustic waves in the body, and allows a relatively low data rate.

Le US 5 411 535 A propose une autre technique, basée sur l'utilisation d'ondes radiofréquence (RF). Ici encore, une puissance d'émission relativement importante est nécessaire, et l'atténuation de ces ondes par les tissus intracorporels est un obstacle important à leur propagation.The US 5,411,535A proposes another technique, based on the use of radiofrequency (RF) waves. Here again, a relatively large emission power is required, and the attenuation of these waves by the intracorporeal tissues is an important obstacle to their propagation.

Une autre technique encore a été proposée par le US 4 987 897 A , mais il s'agit d'un échange de données avec un dispositif externe (programmateur), par voie transcutanée et non plus intracorporelle. Cette transmission est assurée à courte distance entre, d'une part, le boîtier d'un stimulateur implanté dans une poche sous-cutanée et, d'autre part, un programmateur externe disposé à proximité de ce générateur. Les courants circulent donc au travers de la peau dans une région très éloignée des endroits sensibles, notamment à distance du myocarde, ce qui évite tout risque de perturbation des ondes de dépolarisation naturelle ou stimulée de ce dernier.Another technique has been proposed by the US 4,987,897 A , but it is a data exchange with an external device (programmer), transcutaneously and not intracorporeally. This transmission is provided at a short distance between, on the one hand, the housing of a pacemaker implanted in a subcutaneous pocket and, on the other hand, an external programmer disposed near this generator. The currents circulate through the skin in a region far removed from sensitive areas, especially at a distance from the myocardium, which avoids any risk of disturbance of natural or stimulated depolarization waves of the latter.

Le US 2007/0088397 A1 propose par ailleurs d'utiliser les impulsions de stimulation produites par une capsule comme véhicule pour la transmission de données préalablement recueillies ou élaborées par la capsule. Pour cela, l'impulsion, au lieu de présenter une variation monotone de tension, est interrompue de manière contrôlée pendant des durées très brèves de manière à créer dans le profil de l'impulsion de très étroits créneaux dont la succession correspond à un codage binaire de l'information à transmettre.The US 2007/0088397 A1 proposes also using the stimulation pulses produced by a capsule as a vehicle for the transmission of data previously collected or developed by the capsule. For this, the pulse, instead of having a monotonic variation of voltage, is interrupted in a controlled manner for very short periods of time so as to create in the profile of the pulse very narrow slots whose succession corresponds to a binary coding information to be transmitted.

Cette technique permet de profiter de l'énergie élevée des impulsions de stimulation pour s'affranchir des problèmes d'atténuation au sein des tissus interstitiels entre la capsule et le dispositif.This technique makes it possible to take advantage of the high energy of the stimulation pulses to overcome the problems of attenuation within the interstitial tissues between the capsule and the device.

Elle présente cependant un certain nombre d'inconvénients parmi lesquels :

  • limitation à l'émission de données par une capsule active générant des impulsions : en l'absence d'impulsions générées, il n'est possible de transmettre aucune donnée puisque l'impulsion est le véhicule de l'information ;
  • limitation à une situation où la stimulation est permanente ; sinon impossibilité de transmettre en continu des données, par exemple des signaux électriques recueillis par la capsule ou des valeurs suivies par un capteur intégré à la capsule ;
  • limitation à une communication unidirectionnelle, de la capsule active produisant l'impulsion vers le dispositif récepteur distant, mais non dans le sens inverse ;
  • faible débit de données, limitée à quelques bits d'informations par impulsion, et impossibilité de transmettre des informations à une cadence plus élevée que celle des impulsions de stimulation.
However, it has a number of disadvantages, among which:
  • limitation to the emission of data by an active capsule generating pulses: in the absence of generated pulses, it is not possible to transmit any data since the pulse is the vehicle of the information;
  • limitation to a situation where stimulation is permanent; otherwise it is impossible to transmit data continuously, for example electrical signals collected by the capsule or values followed by a sensor integrated in the capsule;
  • limiting to a unidirectional communication, the active capsule producing the pulse to the remote receiver device, but not in the opposite direction;
  • low data rate, limited to a few bits of information per pulse, and unable to transmit information at a higher rate than that of stimulation pulses.

Le US 2002/0099423 A1 décrit une technique de communication sans fil intracorporelle entre un dispositif médical implanté et un dispositif externe pourvu d'électrodes en contact avec la peau du patient. L'implant génère des trains d'impulsions électriques dont le niveau se situe au-dessous du seuil de stimulation et applique ces impulsions à des électrodes pour leur permettre de se propager jusqu'à la surface du corps du patient, où elle seront captées par les électrodes du dispositif externe puis décodées par ce dernier.The US 2002/0099423 A1 discloses an intracorporeal wireless communication technique between an implanted medical device and an external device provided with electrodes in contact with the patient's skin. The implant generates electrical pulse trains whose level is below the stimulation threshold and applies these pulses to electrodes to propagate to the patient's body surface, where they will be picked up by the patient. the electrodes of the external device and then decoded by the latter.

Cette technique présente plusieurs inconvénients, notamment une consommation relativement élevée et la très grande variabilité en fonction de la résistance de charge vue par l'implant entre ses électrodes d'émission des impulsions. En outre et surtout, même avec des impulsions biphasiques (comme le prévoit ce document), il existe un risque élevé que des charges résiduelles subsistent, du fait d'un équilibrage imparfait des charges positives et négatives générées par les impulsions. Ces charges résiduelles vont produire une polarisation au sein des tissus, créant de ce fait un risque pour le patient.This technique has several disadvantages, including a relatively high consumption and very high variability depending on the load resistance seen by the implant between its pulse emitting electrodes. Moreover, and especially, even with biphasic pulses (as this document provides), there is a high risk that residual charges will remain, due to imperfect balancing of the positive and negative charges generated by the pulses. These residual charges will produce a polarization within the tissues, creating a risk for the patient.

Pour ces raisons, cette technique n'est pas adaptée à une communication permanente entre dispositifs médicaux, notamment entre deux implants (ce qui suppose que les impulsions traversent des régions excitables du myocarde). Elle n'est d'ailleurs proposée que pour une communication entre un implant et un dispositif externe par voie transcutanée, hors zones dangereuses. D'autre part, s'agissant d'une communication brève et temporaire (le dispositif externe est par exemple utilisé pour relever de temps en temps le niveau de la pile de l'implant), une consommation assez élevée ne constitue pas un facteur critique.For these reasons, this technique is not suitable for permanent communication between medical devices, especially between two implants (which presupposes that the pulses pass through excitable regions of the myocardium). It is moreover proposed only for a communication between an implant and an external device transcutaneously, out of danger zones. On the other hand, in the case of a brief and temporary communication (the external device is for example used to raise the level of the implant's battery from time to time), a rather high consumption is not a critical factor. .

Le but de l'invention est de proposer une technique de communication sans fil par voie intracorporelle entre dispositifs médicaux implantables, typiquement entre une capsule leadless et un dispositif concentrateur implanté, par l'intermédiaire de signaux constitués d'impulsions électriques aptes à être conduites par les tissus interstitiels du corps, technique qui pallie les inconvénients précités et procure les avantages suivants :

  • possibilité de communication par tout type de capsule leadless,
  • innocuité totale pour le patient, même dans le cas de signaux transmis au sein même des tissus du myocarde ;
  • technique ne nécessitant que peu d'énergie pour établir la communication, notamment compatible avec la relativement faible autonomie des capsules leadless, dépendantes d'un système d'auto-alimentation intégré ;
  • débit de données élevé ;
  • absence de risque de perturbations par des signaux électriques parasites présents au sein des tissus du corps, notamment de perturbations par les myopotentiels présents dans l'organisme.
The object of the invention is to propose a wireless communication technique intracorporeally between implantable medical devices, typically between a leadless capsule and an implanted concentrator device, by means of signals consisting of electrical pulses able to be driven by the interstitial tissues of the body, a technique that overcomes the aforementioned drawbacks and provides the following advantages:
  • possibility of communication by any type of leadless capsule ,
  • total safety for the patient, even in the case of signals transmitted within myocardial tissues;
  • technique requiring little energy to establish communication, including compatible with the relatively low autonomy of the leadless capsules , dependent on an integrated self-feeding system;
  • high data rate;
  • no risk of disturbances by parasitic electrical signals present in the body tissues, including disturbances by the myopotentials present in the body.

A cet effet, l'invention propose un dispositif médical implantable actif du type général divulgué par le US 2002/0099423 A1 précité, c'est-à-dire comprenant des moyens pour communiquer sans fil par voie intracorporelle avec au moins un autre dispositif médical implantable actif par l'intermédiaire de signaux constitués d'impulsions électriques aptes à être conduites par les tissus interstitiels du corps. Ce dispositif comprend : au moins un couple d'électrodes ; des moyens générateurs, aptes à générer des trains d'impulsions formés d'une succession desdites impulsions électriques ; des moyens modulateurs, aptes à moduler les trains d'impulsions par des informations numériques produites par le dispositif, les impulsions étant des impulsions biphasiques comprenant une alternance positive et une alternance négative ; et des moyens pour injecter les impulsions entre les électrodes.For this purpose, the invention proposes an active implantable medical device of the general type disclosed by the US 2002/0099423 A1 aforementioned, that is to say comprising means for wirelessly communicating intracorporeally with at least one other active implantable medical device by means of signals consisting of electrical pulses able to be driven by the interstitial tissues of the body. This device comprises: at least one pair of electrodes; generating means capable of generating pulse trains formed from a succession of said electrical pulses; modulator means adapted to modulate the pulse trains by digital information produced by the device, the pulses being biphasic pulses comprising a positive alternation and a negative alternation; and means for injecting the pulses between the electrodes.

De façon caractéristique de l'invention, les impulsions biphasiques sont des impulsions de courant produites par une source de courant constant régulé comprise dans les moyens générateurs.In a characteristic manner of the invention, the biphasic pulses are current pulses produced by a regulated constant current source included in the generator means.

Selon diverses caractéristiques subsidiaires avantageuses :

  • chaque alternance positive et négative de l'impulsion de courant biphasique est de forme carrée ;
  • l'alternance négative de l'impulsion de courant biphasique suit l'alternance positive de cette même impulsion ou vice versa ;
  • les alternances négative et positive de l'impulsion de courant biphasique sont des alternances symétriques ;
  • les impulsions du train d'impulsions sont générées avec alternance de l'ordre des polarités des alternances d'une impulsion à la suivante, de sorte qu'une impulsion dont l'alternance positive précède l'alternance négative soit suivie d'une impulsion consécutive dont l'alternance négative précède l'alternance positive et vice versa : on peut ainsi avoir une impulsion positive (négative) suivie d'une impulsion négative (positive) suivie d'une impulsion négative (positive) suivie d'une impulsion positive (négative) ;
  • les moyens modulateurs sont des moyens aptes à moduler l'intervalle temporel séparant des couples d'impulsions de courant biphasiques consécutives du trains d'impulsions, ou la largeur de ces impulsions, ou bien leur amplitude ;
  • la durée de l'impulsion de courant biphasique est comprise entre 0,1 et 30 µs, de préférence 0,5 µs, la période de récurrence des impulsions de courant biphasiques est comprise entre 2 µs et 2 ms, de préférence 2 µs, et l'amplitude de chacune des alternances positive et négative de l'impulsion de courant est comprise entre 30 pA et 20 mA, de préférence 10 mA.
According to various advantageous subsidiary features:
  • each positive and negative alternation of the biphasic current pulse is of square shape;
  • the negative alternation of the biphasic current pulse follows the positive alternation of this same pulse or vice versa;
  • the negative and positive alternations of the biphasic current pulse are symmetrical alternations;
  • the pulses of the pulse train are generated alternately in the order of the polarities of the alternations from one pulse to the next, so that a pulse whose positive half-cycle precedes the negative half-cycle is followed by a consecutive pulse whose negative alternation precedes the positive alternation and vice versa: one can thus have a positive (negative) pulse followed by a negative (positive) pulse followed by a negative (positive) pulse followed by a positive (negative) pulse;
  • the modulator means are means capable of modulating the time interval between pairs of consecutive biphasic current pulses of the pulse train, or the width of these pulses, or their amplitude;
  • the duration of the biphasic current pulse is between 0.1 and 30 μs, preferably 0.5 μs, the period of recurrence of the biphasic current pulses is between 2 μs and 2 ms, preferably 2 μs, and the amplitude of each of the positive and negative halfwaves of the current pulse is between 30 pA and 20 mA, preferably 10 mA.

On va maintenant décrire un exemple de mise en oeuvre de l'invention, en référence aux dessins annexés où les mêmes références numériques désignent d'une figure à l'autre des éléments identiques ou fonctionnellement semblables.

  • La Figure 1 illustre de façon schématique un ensemble de dispositifs médicaux comprenant notamment des capsules leadless, implantées au sein du corps d'un patient.
  • La Figure 2 montre plus précisément la manière d'implanter ces capsules leadless sur la paroi interne ou externe du myocarde.
  • La Figure 3 est un schéma par blocs fonctionnels montrant les différents étages constitutifs d'une capsule leadless.
  • La Figure 4 illustre les formes d'ondes permettant la communication sans fil par voie intracorporelle selon la technique de l'invention.
  • La Figure 5 illustre schématiquement les éléments côté émetteur et côté récepteur nécessaire à la mise en oeuvre de l'invention.
  • La Figure 6 illustre schématiquement un circuit permettant de générer les impulsions de courant servant à la communication intracorporelle.
  • La Figure 7 illustre les chronogrammes de séquencement des différents interrupteurs du circuit de la Figure 6.
  • La Figure 8 illustre le circuit démodulateur permettant de décoder les impulsions générées par le circuit émetteur.
  • La Figure 9 illustre des chronogrammes de signaux pris en différents endroits du démodulateur de la Figure 8 et expliquant le fonctionnement de celui-ci.
An embodiment of the invention will now be described with reference to the appended drawings in which the same reference numerals designate elements that are identical or functionally similar from one figure to another.
  • The Figure 1 schematically illustrates a set of medical devices including leadless capsules , implanted within the body of a patient.
  • The Figure 2 shows more precisely how to implant these leadless capsules on the inner or outer wall of the myocardium.
  • The Figure 3 is a functional block diagram showing the different constituent stages of a leadless capsule .
  • The Figure 4 illustrates the waveforms allowing wireless communication intracorporeally according to the technique of the invention.
  • The Figure 5 schematically illustrates the elements on the transmitter side and receiver side necessary for the implementation of the invention.
  • The Figure 6 schematically illustrates a circuit for generating the current pulses for intracorporeal communication.
  • The Figure 7 illustrates the chronograms of sequencing of the various switches of the circuit of the Figure 6 .
  • The Figure 8 illustrates the demodulator circuit for decoding the pulses generated by the transmitter circuit.
  • The Figure 9 illustrates timing diagrams of signals taken from different locations of the demodulator of the Figure 8 and explaining how it works.

On va maintenant décrire un exemple de réalisation de l'invention.An embodiment of the invention will now be described.

Sur la Figure 1 on a illustré un ensemble de dispositifs médicaux implantés au sein du corps d'un patient, communiquant entre eux sans fil par voie "HBC" (Human Body Communication, communication par voie intracorporelle).On the Figure 1 there is illustrated a set of medical devices implanted within the body of a patient, communicating with each other wirelessly via "HBC" (Human Body Communication, intracorporeal communication).

Le patient est équipé par exemple d'un implant 10 tel qu'un défibrillateur/stimulateur/resynchroniseur implanté, ou un défibrillateur de type sous-cutané, ou encore un enregistreur longue durée. Ce dispositif implanté 10 est le dispositif maître d'un réseau comportant une pluralité de dispositifs esclaves 12 à 18 avec lesquels il est susceptible d'entrer en communication par voie HBC. Ces dispositifs peuvent notamment inclure des capsules intracardiaques 12 ou épicardiques 14 implantées directement sur le coeur du patient, d'autres dispositifs 16 tels que capteurs de myopotentiels ou dispositifs de stimulation neurologique, et éventuellement un dispositif externe 18 disposé sur un brassard et pourvu d'électrodes en contact avec la peau. Le dispositif 10 peut également être utilisé en tant que passerelle avec le monde extérieur pour communiquer avec un périphérique externe 20 du type programmateur ou dispositif de télétransmission de données avec lequel il pourra communiquer notamment par télémétrie RF dans la bande MICS (Medical Implants Communication System) 402-405 MHz, ou les bandes banalisées publiques ISM (Industriel, Scientifique et Médical) 863-870 MHz, 902-928 MHz et 2,4 GHz utilisées par les dispositifs médicaux.The patient is equipped for example with an implant 10 such as an implanted defibrillator / stimulator / resynchronizer, or a subcutaneous defibrillator, or a long-term recorder. This implanted device 10 is the master device of a network comprising a plurality of slave devices 12 to 18 with which it is capable of communicating via the HBC channel. These devices may in particular include intracardiac or epicardial capsules 14 implanted directly on the patient's heart, other devices 16 such as myopotential sensors or neurological stimulation devices, and possibly an external device 18 disposed on a cuff and provided with electrodes in contact with the skin. The device 10 can also be used as a gateway with the outside world to communicate with an external device 20 of the programmer type or data teletransmission device with which it can communicate including RF telemetry in the band MICS (Medical Implants Communication System) 402-405 MHz, or the public ISM (Industrial, Scientific and Medical) 863-870 MHz, 902-928 MHz and 2.4 GHz public standard bands used by medical devices.

Chacun des dispositifs 10 à 18 est muni d'au moins un couple d'électrodes qui se trouvent en contact direct avec les tissus du corps pour les dispositifs implantés, ou en contact avec la peau pour le dispositif externe 18.Each of the devices 10 to 18 is provided with at least a pair of electrodes which are in direct contact with the body tissues for the devices implanted, or in contact with the skin for the external device 18.

Sur la Figure 2, on a représenté un exemple de capsules de type leadless implantées soit sur la partie antérieure du myocarde, à l'intérieur d'une cavité auriculaire ou ventriculaire (capsules endocavitaires 12), soit sur une paroi externe de ce même myocarde (capsules épicardiques 14). Ces capsules, qui sont par exemple décrites dans les US 2007/0088397 A1 , WO 2007/047681 A2 et US 2006/0136004 A1 précités, sont fixées à la paroi cardiaque au moyen d'une vis d'ancrage saillante destinée à pénétrer dans le tissu cardiaque par vissage au site d'implantation. La vis peut être soit une vis passive, ne servant qu'à la fixation de la capsule, soit une vis active, servant à recueillir les signaux de dépolarisation se propageant dans les tissus du myocarde et/ou à délivrer des impulsions de stimulation au site d'implantation, de façon localisée.On the Figure 2 , there is shown an example of leadless type capsules implanted either on the anterior part of the myocardium, inside an atrial or ventricular cavity (endocavitary capsules 12), or on an outer wall of the same myocardium (epicardial capsules 14 ). These capsules, which are for example described in US 2007/0088397 A1 , WO 2007/047681 A2 and US 2006/0136004 A1 above, are attached to the cardiac wall by means of a protruding anchoring screw intended to penetrate into the heart tissue by screwing to the implantation site. The screw can be either a passive screw, serving only for fixing the capsule, or an active screw, used to collect the depolarization signals propagating in the myocardial tissues and / or to deliver stimulation pulses to the site implantation, in a localized way.

La Figure 3 illustre de façon schématique les différents circuits internes des capsules 12, 14 (et, mutatis mutandis, des autres éléments implantés prévus pour communiquer entre eux par la technique de l'invention). Chaque capsule comporte un couple d'électrodes 22, 24, l'une d'entre elles pouvant d'ailleurs être constituée par la vis d'ancrage dans le tissu du coeur. Ces électrodes sont reliées à un circuit 26 générateur d'impulsions de stimulation (pour une capsule active incorporant cette fonction) et/ou à un circuit de détection 28 servant au recueil des potentiels de dépolarisation recueillis entre les électrodes 22 et 24. Un circuit central 30 assure le pilotage des différentes fonctions, la mémorisation des signaux recueillis, etc. La capsule peut également être pourvue d'un capteur 32 tel qu'un capteur d'accélération, de pression, un capteur hémodynamique, de température, de saturation en oxygène, etc. La capsule est alimentée par une petite batterie ou un circuit de récupération d'énergie 34 alimentant l'ensemble des circuits via un étage de gestion d'énergie 36.The Figure 3 schematically illustrates the various internal circuits of the capsules 12, 14 (and, mutatis mutandis, other implanted elements provided for communicating with each other by the technique of the invention). Each capsule has a pair of electrodes 22, 24, one of which may also be constituted by the anchor screw in the heart tissue. These electrodes are connected to a stimulation pulse generator circuit 26 (for an active capsule incorporating this function) and / or to a detection circuit 28 used to collect the depolarization potentials collected between the electrodes 22 and 24. A central circuit 30 controls the various functions, the memorization of the signals collected, etc. The capsule may also be provided with a sensor 32 such as a sensor for acceleration, pressure, a hemodynamic sensor, temperature, oxygen saturation, etc. The capsule is powered by a small battery or a power recovery circuit 34 supplying the circuitry via a power management stage 36.

De façon caractéristique de l'invention, les électrodes 22 et 24 sont, dans tous les cas, également reliées à un circuit modulateur/démodulateur 38 couplé au circuit processeur central 30 et apte à émettre et/ou recevoir des impulsions servant à la communication sans fil HBC, ces impulsions présentant des caractéristiques propres à l'invention, que l'on décrira plus bas.In a characteristic manner of the invention, the electrodes 22 and 24 are, in all cases, also connected to a modulator / demodulator circuit 38 coupled to the central processor circuit 30 and able to transmit and / or receive pulses for communication without HBC wire, these pulses having characteristics of the invention, which will be described below.

Selon que les circuits de stimulation (module 26) et de recueil (module 28) sont présents ou non, les électrodes 22, 24 peuvent assurer une simple, double ou triple fonction, à savoir : stimulation et/ou recueil des potentiels cardiaques (le cas échéant) ; et/ou transmission des informations suivies par le capteur 32 (le cas échéant) ; et émission/réception pour la communication HBC (en tout état de cause).Depending on whether the stimulation circuits (module 26) and collection circuits (module 28) are present or not, the electrodes 22, 24 can provide a simple, double or triple function, namely: stimulation and / or collection of cardiac potentials (the optionally) ; and / or transmission of the information tracked by the sensor 32 (if applicable); and send / receive for HBC communication (in any case).

Le circuit 30 inclut l'ensemble de l'électronique permettant de contrôler les diverses fonctions de la capsule. Il comprend un microcontrôleur et un oscillateur générant les signaux d'horloge nécessaires au fonctionnement du microcontrôleur et à la communication. Il peut également contenir un convertisseur analogique/numérique et une mémoire de stockage numérique.The circuit 30 includes all electronics for controlling the various functions of the capsule. It comprises a microcontroller and an oscillator generating the clock signals necessary for the operation of the microcontroller and for communication. It can also contain an analog / digital converter and a digital storage memory.

La Figure 4 illustre un exemple d'impulsion produite par le circuit 38 pour assurer la communication HBC au moyen d'impulsions électriques conduites par les tissus interstitiels du corps.The Figure 4 illustrates an exemplary pulse produced by circuit 38 for providing HBC communication by means of electrical pulses driven by the interstitial tissues of the body.

De façon caractéristique de l'invention, (i) ces impulsions sont des impulsions de courant, et (ii) chaque impulsion générée est une impulsion biphasique, afin de réduire au maximum les charges résiduelles injectées dans le coeur ou réduire la corrosion des matériaux.Characteristically, (i) these pulses are current pulses, and (ii) each pulse generated is a biphasic pulse, in order to minimize the residual charges injected into the core or to reduce the corrosion of the materials.

Dans les exemples illustré Figure 4, ces impulsions comprennent deux alternances successives, positive et négative, de formes carrées et symétriques (même amplitude en valeur absolue, même durée pour les deux alternances). D'autres formes d'onde sont cependant envisageables, et l'exemple exposé ici n'est pas limitatif.In the illustrated examples Figure 4 these pulses comprise two successive alternations, positive and negative, of square and symmetrical forms (same amplitude in absolute value, same duration for the two alternations). Other waveforms are, however, conceivable, and the example set forth herein is not limiting.

Toujours dans cet exemple, la modulation des impulsions résulte de l'intervalle temporel variable séparant des couples d'impulsions de courant biphasiques consécutives d'un train d'impulsions généré par le dispositif. Chaque impulsion est définie par la succession, de durée constante T0, de deux alternances de signe opposé. Elle est suivie cette impulsion d'une attente respectivement courte T1, pour coder par exemple un '0' binaire, ou longue T2, pour coder un '1' binaire.Still in this example, pulse modulation results from the variable time interval separating consecutive two-phase current pulse pairs from a pulse train generated by the device. Each pulse is defined by the succession, of constant duration T 0 , of two alternations of opposite sign. This pulse is followed by a respectively short wait T 1 , for example to code a binary '0', or long T 2 , to encode a '1' binary.

D'autres types de modulation sont toutefois envisageables, par exemple une modulation de l'amplitude des impulsions, de la largeur des alternances (modulation du type PWM), au lieu de la modulation ici décrite consistant à moduler l'intervalle temporel T1 ou T2 séparant des couples d'impulsions de courant consécutives d'un train d'impulsions donné.Other types of modulation can however be envisaged, for example a modulation of the amplitude of the pulses, of the width of the alternations (modulation of the PWM type), instead of the modulation described here consisting of modulating the time interval T 1 or T 2 separating consecutive current pulse pairs of a given pulse train.

L'impulsion biphasique peut être constituée d'une alternance positive suivie d'une alternance négative (Figures 4a et 4c), ou bien d'une alternance négative suivie d'une alternance positive (Figures 4b et 4d). Avantageusement, pour réduire au maximum les charges résiduelles qui pourraient résulter des imperfections d'une impulsion biphasique non exactement symétrique, après avoir émis une impulsion d'un premier type (par exemple alternance positive puis alternance négative, comme sur les Figures 4a ou 4c), l'impulsion suivante pourra être une impulsion de type inverse (alternance négative puis alternance positive, comme sur les Figures 4b ou 4d), ou non inverse.The biphasic pulse can consist of a positive alternation followed by a negative alternation ( Figures 4a and 4c ), or a negative alternation followed by a positive alternation ( Figures 4b and 4d ). Advantageously, to minimize the residual charges that may result from the imperfections of a biphasic pulse not exactly symmetrical, after emitting a pulse of a first type (for example positive and negative alternation, as on the Figures 4a or 4c ), the next pulse can be an inverse type of impulse (negative alternation then positive alternation, as on the Figures 4b or 4d ), or no inverse.

Ceci permettra de compenser exactement l'injection éventuelle de charges résiduelles à chaque bit d'information envoyé, en respectant donc les normes médicales et en assurant l'innocuité des impulsions émises.This will compensate exactly the possible injection of residual charges to each bit of information sent, thus respecting medical standards and ensuring the safety of the impulses issued.

On pourra en outre mettre en place côté récepteur un contrôle d'erreur par vérification de la présence systématique de ce motif alterné au sein du train d'impulsions reçue.In addition, an error check can be implemented on the receiver side by checking the systematic presence of this alternating pattern within the received pulse train.

Les impulsions biphasiques sont émises en succession sous forme de trains d'impulsions à une fréquence relativement élevée, typiquement à une cadence d'un bit toutes les 2 µs. La durée T0 de l'impulsion est de l'ordre de 1000 ns, valeur qui s'avère adaptée à une transmission efficace au sein du corps humain.The biphasic pulses are emitted in succession in the form of pulse trains at a relatively high frequency, typically at a rate of one bit every 2 μs. The duration T 0 of the pulse is of the order of 1000 ns, a value which proves to be suitable for efficient transmission within the human body.

Le choix d'une fréquence de répétition de l'ordre de 500 kHz (1 bit toutes les 2 µs en moyenne) permet d'adapter le contenu spectral au canal de transmission particulier constitué par les tissus interstitiels du corps, qui présente une atténuation minimale relativement modérée dans la bande 500 kHz-10 MHz (bande B). De façon générale, l'atténuation dans cette bande de fréquences varie entre 10 dB et 40 dB, selon la distance entre émetteur et récepteur, l'écartement entre les électrodes respectives du couple d'électrodes et la surface de ces électrodes, avec une valeur typique de l'ordre de 20 dB à 1 MHz sur une distance de 10 à 12 cm entre émetteur et récepteur.The choice of a repetition frequency of the order of 500 kHz (1 bit every 2 μs on average) makes it possible to adapt the spectral content to the particular transmission channel constituted by the interstitial tissues of the body, which has a minimum attenuation relatively moderate in the band 500 kHz-10 MHz (band B). In general, the attenuation in this frequency band varies between 10 dB and 40 dB, depending on the distance between transmitter and receiver, the spacing between the respective electrodes of the pair of electrodes and the surface of these electrodes, with a value typical of the order of 20 dB at 1 MHz over a distance of 10 to 12 cm between transmitter and receiver.

La Figure 5 illustre schématiquement les moyens utilisés pour émettre et recevoir les impulsions biphasiques que l'on vient de décrire.The Figure 5 schematically illustrates the means used to transmit and receive the biphasic pulses just described.

Les circuits de l'émetteur 40 se trouvent dans le stimulateur leadless, ou dans l'appareil sous-cutané, chargé de surveiller l'activité cardiaque et de générer des impulsions de stimulation, de resynchronisation, de défibrillation et/ou de cardioversion. Ils comprennent une source 42 de courant constant de l'ordre de 10 mA, ajustable périodiquement ou sur commande en fonction de la résistance de la sonde connectée au coeur pour générer en fin d'impulsion une tension de 2 V par exemple. Le module de commande 30 commande l'ouverture et la fermeture d'interrupteurs, en particulier la fermeture de l'interrupteur 44 afin d'injecter le courant sur un intervalle de temps prédéterminé, par exemple de l'ordre de 0,5 µs. Le courant injecté 52 circulera (via le condensateur de liaison 46, partagé ou non avec l'étage de stimulation, permettant d'éviter tout envoi de tension continue sur les électrodes) au travers du corps du patient depuis l'une des électrodes 22 jusqu'à l'autre électrode 24. L'interrupteur 48 permet de décharger ensuite le condensateur 46 de la charge résiduelle due aux erreurs de compensation des impulsions positives et négatives. Après avoir ainsi injecté une première alternance, on procède de même pour injecter l'alternance suivante en inversant le sens du courant, pour obtenir une impulsion du type de celles illustrées Figure 4.The transmitter circuits 40 are located in the leadless stimulator , or in the subcutaneous apparatus, responsible for monitoring cardiac activity and generating pacing, resynchronization, defibrillation and / or cardioversion pulses. They comprise a source 42 of constant current of the order of 10 mA, periodically adjustable or on command depending on the resistance of the probe connected to the core to generate at the end of the pulse a voltage of 2 V for example. The control module 30 controls the opening and closing of switches, in particular the closing of the switch 44 in order to inject the current over a predetermined time interval, for example of the order of 0.5 μs. The injected current 52 will flow (via the connection capacitor 46, shared or not with the stimulation stage, to avoid any sending of DC voltage to the electrodes) through the body of the patient from one of the electrodes 22 until 24. The switch 48 then discharges the capacitor 46 from the residual charge due to the compensation errors of the positive and negative pulses. After having thus injected a first alternation, the same procedure is followed to inject the following alternation by inverting the direction of the current, to obtain a pulse of the type of those illustrated. Figure 4 .

La référence 50 désigne les circuits utilisés du côté récepteur. Le courant 52 circulant dans le corps génère entre les électrodes 22' et 24' du récepteur une différence de potentiel qui est appliquée à un étage amplificateur 54 via les condensateurs de liaison 56 et 58 permettant d'éliminer toute composante continue. L'amplificateur ne sera alimenté que durant les périodes où des données sont obtenues, afin de réduire la consommation en courant. Le signal amplifié résultant est appliqué à un filtre passe-bande 60 afin de filtrer les signaux parasites hors de la bande pertinente. Le signal filtré obtenu est appliqué à un comparateur à seuil 62 et à un étage démodulateur 64 (ces circuits seront décrits plus en détail en référence aux Figures 8 et 9).Reference 50 designates the circuits used on the receiver side. The current flowing in the body generates between the electrodes 22 'and 24' of the receiver a potential difference which is applied to an amplifier stage 54 via the connecting capacitors 56 and 58 making it possible to eliminate any DC component. The amplifier will only be powered during periods when data is being obtained to reduce power consumption. The resulting amplified signal is applied to a bandpass filter 60 to filter the spurious signals out of the relevant band. The filtered signal obtained is applied to a threshold comparator 62 and to a demodulator stage 64 (these circuits will be described in more detail with reference to FIG. Figures 8 and 9 ).

Les Figures 6 et 7 illustrent un schéma de principe de générateur de courant biphasique. La source de courant constant 42 est reliée aux électrodes 22 et 24 par deux interrupteurs SW1 et SW2 et par les condensateurs de liaison 46 et 46', eux-mêmes reliés à la masse par l'intermédiaire de deux interrupteurs SW3 et SW4. La Figure 7 donne les chronogrammes des différents signaux de commande S1 à S4 appliqués respectivement aux interrupteurs SW1 à SW4 (l'interrupteur étant fermé lorsque le signal est à l'état haut). La figure 7 indique également le profil du courant I circulant entre les deux électrodes 22 et 24. Sur ce chronogramme, on a ainsi représenté deux impulsions biphasiques successives, symétrisées, avec inversion de la séquence d'alternances (positive-puis-négative, négative-puis-positive) d'une impulsion à la suivante. Enfin, la période référencée OCD correspond à la décharge des condensateurs de sortie, qui est opérée par l'intermédiaire des interrupteurs SW3 et SW4. Dans le cas ou les condensateurs 46 et 46' sont partagés avec l'étage de stimulation, la décharge OCD se fera en période réfractaire seulement, du fait de sa durée plus longue.The Figures 6 and 7 illustrate a schematic diagram of two-phase current generator. The constant current source 42 is connected to the electrodes 22 and 24 by two switches SW 1 and SW 2 and by the connection capacitors 46 and 46 ', themselves connected to ground via two switches SW 3 and SW 4 . The Figure 7 give the chronograms different control signals S 1 to S 4 respectively applied to the switches SW 1 to SW 4 (the switch being closed when the signal is high). The figure 7 also indicates the profile of the current I flowing between the two electrodes 22 and 24. On this timing diagram, two successive biphasic pulses, symmetrized, with reversal of the sequence of alternations (positive-then-negative, negative-then- positive) from one pulse to the next. Finally, the period referenced OCD corresponds to the discharge of the output capacitors, which is operated via switches SW 3 and SW 4 . In the case where the capacitors 46 and 46 'are shared with the stimulation stage, the OCD discharge will be in refractory period only, because of its longer duration.

La Figure 8 décrit un exemple de démodulateur permettant de décoder des impulsions telles que celles illustrées Figure 4, c'est-à-dire dont le codage binaire '0' ou '1' correspond à un temps d'attente respectivement court T1 ou long T2 d'une impulsion à la suivante. Ce démodulateur 64 reçoit les données du comparateur 62. Les données IN sont ensuite appliquées à un inverseur 70 dont la sortie IN/ commande une bascule bistable 72 dont la sortie Q et la sortie complémentaire Q/ sont reliés à la grille de transistors symétriques respectifs 74 et 76. Chacun de ces transistors charge un condensateur 78 ou 80 par une résistance 82 ou 84. La tension au point commun P1 ou P2 de chaque ensemble condensateur-résistance est appliqué à l'entrée d'un circuit comparateur respectif 86 ou 88 dont l'autre entrée est reliée à une tension de référence de seuil Vth. Les sorties O1 et O2 des comparateurs 86 et 88 sont appliquées à un circuit OU 90 dont la sortie S est telle que lorsque la charge de l'un ou l'autre condensateur 78 ou 80 atteint la valeur de seuil Vth, le démodulateur 64 émet une impulsion de sortie O, qui passera à zéro avec le front descendant du signal d'entrée IN.The Figure 8 describes an example of a demodulator for decoding pulses such as those illustrated Figure 4 , that is to say whose binary coding '0' or '1' corresponds to a respectively short waiting time T 1 or long T 2 from one pulse to the next. This demodulator 64 receives the data from the comparator 62. The data IN is then applied to an inverter 70 whose output IN / controls a flip-flop 72 whose Q output and the complementary output Q / are connected to the gate of respective symmetrical transistors 74 and 76. Each of these transistors charges a capacitor 78 or 80 by a resistor 82 or 84. The common-point voltage P 1 or P 2 of each capacitor-resistor assembly is applied to the input of a respective comparator circuit 86 or 88 whose other input is connected to a threshold reference voltage V th . The outputs O 1 and O 2 of the comparators 86 and 88 are applied to an OR circuit 90 whose output S is such that, when the load of one or the other capacitor 78 or 80 reaches the threshold value V th , the demodulator 64 transmits an output pulse O, which will go to zero with the falling edge of the input signal IN.

La dernière ligne de la Figure 9 montra la manière dont on peut ainsi décoder un mot binaire '010010'.The last line of the Figure 9 showed how we can decode a binary word '010010'.

Claims (11)

  1. Active implantable medical device, comprising means for wirelessly communicating by intracorporeal pathway with at least one other active implantable medical device via signals consisting of electrical pulses which can be conducted by the interstitial tissues of the body, this device (12, 14) comprising:
    - at least one pair of electrodes (22, 24);
    - generator means, capable of generating pulse trains formed by a succession of said electrical pulses;
    - modulator means, which can modulate the pulse trains by digital information produced by the device,
    the pulses being biphasic pulses comprising a positive alternation and a negative alternation; and
    - means for injecting the pulses between the electrodes (22, 24),
    the device being characterized in that said biphasic pulses are current pulses produced by a regulated constant current source (42) included in the generator means (44, 48).
  2. Device of Claim 1, in which each positive and negative alternation of the biphasic current pulse is of square form.
  3. Device of Claim 1, in which the negative alternation of the biphasic current pulse follows the positive alternation of this same pulse, or vice versa.
  4. Device of Claim 1, in which the negative and positive alternations of the biphasic current pulse are symmetrical alternations.
  5. Device of Claim 1, in which the pulses of the pulse train are generated with alternation of the order of the polarities of the alternations from one pulse to the next, so that a pulse whose positive alternation precedes the negative alternation is followed by a consecutive pulse whose negative alternation precedes the positive alternation, and vice versa.
  6. Device of Claim 1, in which the modulator means are means which can modulate the time interval (T1, T2) separating pairs of consecutive biphasic current pulses of the pulse train.
  7. Device of Claim 1, in which the modulator means are means which can modulate the width of the successive biphasic current pulses of the pulse train.
  8. Device of Claim 1, in which the modulator means are means which can modulate the amplitude of the successive biphasic current pulses of the pulse train.
  9. Device of Claim 1, in which the duration (T0) of the biphasic current pulse is between 0.1 and 30 µs, preferably 0.5 µs.
  10. Device of Claim 1, in which the period of recurrence of the biphasic current pulses is between 2 µs and 2 ms, preferably 2 µs.
  11. Device of Claim 1, in which the amplitude of each of the positive and negative alternations of the current pulse is between 30 µA and 20 mA, preferably 10 mA.
EP11178361A 2010-09-24 2011-08-22 Active implantable medical device including a means for wireless communication via electric pulses conducted by the interstitial tissue of the body Active EP2433675B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1057691 2010-09-24

Publications (2)

Publication Number Publication Date
EP2433675A1 EP2433675A1 (en) 2012-03-28
EP2433675B1 true EP2433675B1 (en) 2013-01-09

Family

ID=43638672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11178361A Active EP2433675B1 (en) 2010-09-24 2011-08-22 Active implantable medical device including a means for wireless communication via electric pulses conducted by the interstitial tissue of the body

Country Status (2)

Country Link
US (1) US8447412B2 (en)
EP (1) EP2433675B1 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9526909B2 (en) 2014-08-28 2016-12-27 Cardiac Pacemakers, Inc. Medical device with triggered blanking period
US9592391B2 (en) 2014-01-10 2017-03-14 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
US9669230B2 (en) 2015-02-06 2017-06-06 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US9694189B2 (en) 2014-08-06 2017-07-04 Cardiac Pacemakers, Inc. Method and apparatus for communicating between medical devices
US9757570B2 (en) 2014-08-06 2017-09-12 Cardiac Pacemakers, Inc. Communications in a medical device system
US9808631B2 (en) 2014-08-06 2017-11-07 Cardiac Pacemakers, Inc. Communication between a plurality of medical devices using time delays between communication pulses to distinguish between symbols
US9853743B2 (en) 2015-08-20 2017-12-26 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US10029107B1 (en) 2017-01-26 2018-07-24 Cardiac Pacemakers, Inc. Leadless device with overmolded components
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
US10065041B2 (en) 2015-10-08 2018-09-04 Cardiac Pacemakers, Inc. Devices and methods for adjusting pacing rates in an implantable medical device
US10092760B2 (en) 2015-09-11 2018-10-09 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
US10137305B2 (en) 2015-08-28 2018-11-27 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
US10159842B2 (en) 2015-08-28 2018-12-25 Cardiac Pacemakers, Inc. System and method for detecting tamponade
US10183170B2 (en) 2015-12-17 2019-01-22 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10213610B2 (en) 2015-03-18 2019-02-26 Cardiac Pacemakers, Inc. Communications in a medical device system with link quality assessment
US10220213B2 (en) 2015-02-06 2019-03-05 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US10512784B2 (en) 2016-06-27 2019-12-24 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
US10583301B2 (en) 2016-11-08 2020-03-10 Cardiac Pacemakers, Inc. Implantable medical device for atrial deployment
US10583303B2 (en) 2016-01-19 2020-03-10 Cardiac Pacemakers, Inc. Devices and methods for wirelessly recharging a rechargeable battery of an implantable medical device
US10617874B2 (en) 2016-10-31 2020-04-14 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10632313B2 (en) 2016-11-09 2020-04-28 Cardiac Pacemakers, Inc. Systems, devices, and methods for setting cardiac pacing pulse parameters for a cardiac pacing device
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
US10688304B2 (en) 2016-07-20 2020-06-23 Cardiac Pacemakers, Inc. Method and system for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10722720B2 (en) 2014-01-10 2020-07-28 Cardiac Pacemakers, Inc. Methods and systems for improved communication between medical devices
US10737102B2 (en) 2017-01-26 2020-08-11 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
US10758724B2 (en) 2016-10-27 2020-09-01 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
US10765871B2 (en) 2016-10-27 2020-09-08 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10780278B2 (en) 2016-08-24 2020-09-22 Cardiac Pacemakers, Inc. Integrated multi-device cardiac resynchronization therapy using P-wave to pace timing
US10821288B2 (en) 2017-04-03 2020-11-03 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US10835753B2 (en) 2017-01-26 2020-11-17 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
US10870008B2 (en) 2016-08-24 2020-12-22 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US10881863B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
US10905889B2 (en) 2016-09-21 2021-02-02 Cardiac Pacemakers, Inc. Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
US10994145B2 (en) 2016-09-21 2021-05-04 Cardiac Pacemakers, Inc. Implantable cardiac monitor
US11052258B2 (en) 2017-12-01 2021-07-06 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
US11065459B2 (en) 2017-08-18 2021-07-20 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US11071870B2 (en) 2017-12-01 2021-07-27 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
US11116988B2 (en) 2016-03-31 2021-09-14 Cardiac Pacemakers, Inc. Implantable medical device with rechargeable battery
US11147979B2 (en) 2016-11-21 2021-10-19 Cardiac Pacemakers, Inc. Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
US11207527B2 (en) 2016-07-06 2021-12-28 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
US11235163B2 (en) 2017-09-20 2022-02-01 Cardiac Pacemakers, Inc. Implantable medical device with multiple modes of operation
US11260216B2 (en) 2017-12-01 2022-03-01 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
US11285326B2 (en) 2015-03-04 2022-03-29 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US11305125B2 (en) 2016-10-27 2022-04-19 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
US11813463B2 (en) 2017-12-01 2023-11-14 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532933B2 (en) 2004-10-20 2009-05-12 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
US7848823B2 (en) 2005-12-09 2010-12-07 Boston Scientific Scimed, Inc. Cardiac stimulation system
US7840281B2 (en) 2006-07-21 2010-11-23 Boston Scientific Scimed, Inc. Delivery of cardiac stimulation devices
US8644934B2 (en) * 2006-09-13 2014-02-04 Boston Scientific Scimed Inc. Cardiac stimulation using leadless electrode assemblies
EP2254663B1 (en) 2008-02-07 2012-08-01 Cardiac Pacemakers, Inc. Wireless tissue electrostimulation
SE0901000A2 (en) * 2008-10-10 2010-07-20 Milux Holding Sa A voice control system for an implant
EP2520333B1 (en) * 2011-05-04 2014-09-03 Sorin CRM SAS Energy recovery device for autonomous intracorporeal capsule
WO2013149317A1 (en) * 2012-04-05 2013-10-10 Myndtec Inc. Wireless implantable data communication system, method and sensing device
US9370663B2 (en) 2013-02-07 2016-06-21 Biotronik SE & Co., KG Implantable medical device, medical system and method for data communication
DE102013011141A1 (en) * 2013-07-03 2015-01-08 Dräger Medical GmbH Measuring device for measuring a body function and method for operating such a measuring device
US10071243B2 (en) 2013-07-31 2018-09-11 Medtronic, Inc. Fixation for implantable medical devices
US9492674B2 (en) 2013-08-16 2016-11-15 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
US9393427B2 (en) 2013-08-16 2016-07-19 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
AU2014306940B2 (en) 2013-08-16 2017-09-07 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices
US10722723B2 (en) 2013-08-16 2020-07-28 Cardiac Pacemakers, Inc. Delivery devices and methods for leadless cardiac devices
US10842993B2 (en) 2013-08-16 2020-11-24 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices
CN105744987B (en) 2013-08-16 2019-01-15 心脏起搏器股份公司 Leadless cardiac pacemaker and fetch equipment
EP3033146B1 (en) 2013-08-16 2018-03-07 Cardiac Pacemakers, Inc. Delivery devices for leadless cardiac devices
US9480850B2 (en) 2013-08-16 2016-11-01 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker and retrieval device
US9433368B2 (en) * 2013-08-23 2016-09-06 Cardiac Pacemakers, Inc. Leadless pacemaker with tripolar electrode
US9795781B2 (en) 2014-04-29 2017-10-24 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with retrieval features
WO2015168153A1 (en) 2014-04-29 2015-11-05 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices including tissue engagement verification
CN108136187B (en) * 2015-08-20 2021-06-29 心脏起搏器股份公司 System and method for communication between medical devices
US10463853B2 (en) 2016-01-21 2019-11-05 Medtronic, Inc. Interventional medical systems
US10099050B2 (en) 2016-01-21 2018-10-16 Medtronic, Inc. Interventional medical devices, device systems, and fixation components thereof
EP3411113B1 (en) 2016-02-04 2019-11-27 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
EP3500342B1 (en) 2016-08-19 2020-05-13 Cardiac Pacemakers, Inc. Trans-septal implantable medical device
WO2018081237A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
US10463305B2 (en) 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
EP3532158B1 (en) 2016-10-31 2022-12-14 Cardiac Pacemakers, Inc. Systems for activity level pacing
US11077313B2 (en) * 2017-07-07 2021-08-03 Weinberg Medical Physics Inc Electricity energy harvesting with liquid crystal-magnetic particle composite particles
JP2021518208A (en) 2018-03-23 2021-08-02 メドトロニック,インコーポレイテッド AV Synchronized VfA Cardiac Treatment
EP3768377B1 (en) 2018-03-23 2023-11-22 Medtronic, Inc. Vfa cardiac resynchronization therapy
CN111936046A (en) 2018-03-23 2020-11-13 美敦力公司 VFA cardiac therapy for tachycardia
CN112770807A (en) 2018-09-26 2021-05-07 美敦力公司 Capture in atrial-to-ventricular cardiac therapy
EP3669935B1 (en) 2018-12-18 2023-04-26 BIOTRONIK SE & Co. KG Capacitor-discharge communication scheme for an implantable medical system
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11759632B2 (en) 2019-03-28 2023-09-19 Medtronic, Inc. Fixation components for implantable medical devices
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987897A (en) 1989-09-18 1991-01-29 Medtronic, Inc. Body bus medical device communication system
JPH05245215A (en) 1992-03-03 1993-09-24 Terumo Corp Heart pace maker
US6704602B2 (en) 1998-07-02 2004-03-09 Medtronic, Inc. Implanted medical device/external medical instrument communication utilizing surface electrodes
US7177690B2 (en) * 1999-07-27 2007-02-13 Advanced Bionics Corporation Implantable system having rechargeable battery indicator
US7610092B2 (en) 2004-12-21 2009-10-27 Ebr Systems, Inc. Leadless tissue stimulation systems and methods
EP2471450A1 (en) 2005-10-14 2012-07-04 Nanostim, Inc. Leadless cardiac pacemaker and system
US7742816B2 (en) * 2006-03-31 2010-06-22 Medtronic, Inc. Multichannel communication for implantable medical device applications
EP3228355B1 (en) * 2008-10-10 2021-04-21 Implantica Patent Ltd. Energy feedback capacitive coupling data system

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10722720B2 (en) 2014-01-10 2020-07-28 Cardiac Pacemakers, Inc. Methods and systems for improved communication between medical devices
US9592391B2 (en) 2014-01-10 2017-03-14 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
US9694189B2 (en) 2014-08-06 2017-07-04 Cardiac Pacemakers, Inc. Method and apparatus for communicating between medical devices
US9757570B2 (en) 2014-08-06 2017-09-12 Cardiac Pacemakers, Inc. Communications in a medical device system
US9808631B2 (en) 2014-08-06 2017-11-07 Cardiac Pacemakers, Inc. Communication between a plurality of medical devices using time delays between communication pulses to distinguish between symbols
US10912943B2 (en) 2014-08-06 2021-02-09 Cardiac Pacemakers, Inc. Communications between a plurality of medical devices using time delays between communication pulses between symbols
US9526909B2 (en) 2014-08-28 2016-12-27 Cardiac Pacemakers, Inc. Medical device with triggered blanking period
US9669230B2 (en) 2015-02-06 2017-06-06 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US10220213B2 (en) 2015-02-06 2019-03-05 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
US11224751B2 (en) 2015-02-06 2022-01-18 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
US11020595B2 (en) 2015-02-06 2021-06-01 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US10238882B2 (en) 2015-02-06 2019-03-26 Cardiac Pacemakers Systems and methods for treating cardiac arrhythmias
US11020600B2 (en) 2015-02-09 2021-06-01 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
US11285326B2 (en) 2015-03-04 2022-03-29 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US10213610B2 (en) 2015-03-18 2019-02-26 Cardiac Pacemakers, Inc. Communications in a medical device system with link quality assessment
US11476927B2 (en) 2015-03-18 2022-10-18 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
US10946202B2 (en) 2015-03-18 2021-03-16 Cardiac Pacemakers, Inc. Communications in a medical device system with link quality assessment
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
US9853743B2 (en) 2015-08-20 2017-12-26 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US10709892B2 (en) 2015-08-27 2020-07-14 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US10159842B2 (en) 2015-08-28 2018-12-25 Cardiac Pacemakers, Inc. System and method for detecting tamponade
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
US10589101B2 (en) 2015-08-28 2020-03-17 Cardiac Pacemakers, Inc. System and method for detecting tamponade
US10137305B2 (en) 2015-08-28 2018-11-27 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
US10092760B2 (en) 2015-09-11 2018-10-09 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
US10065041B2 (en) 2015-10-08 2018-09-04 Cardiac Pacemakers, Inc. Devices and methods for adjusting pacing rates in an implantable medical device
US10183170B2 (en) 2015-12-17 2019-01-22 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10933245B2 (en) 2015-12-17 2021-03-02 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
US10583303B2 (en) 2016-01-19 2020-03-10 Cardiac Pacemakers, Inc. Devices and methods for wirelessly recharging a rechargeable battery of an implantable medical device
US11116988B2 (en) 2016-03-31 2021-09-14 Cardiac Pacemakers, Inc. Implantable medical device with rechargeable battery
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US11497921B2 (en) 2016-06-27 2022-11-15 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed p-waves for resynchronization pacing management
US10512784B2 (en) 2016-06-27 2019-12-24 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management
US11207527B2 (en) 2016-07-06 2021-12-28 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10688304B2 (en) 2016-07-20 2020-06-23 Cardiac Pacemakers, Inc. Method and system for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US11464982B2 (en) 2016-08-24 2022-10-11 Cardiac Pacemakers, Inc. Integrated multi-device cardiac resynchronization therapy using p-wave to pace timing
US10870008B2 (en) 2016-08-24 2020-12-22 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
US10780278B2 (en) 2016-08-24 2020-09-22 Cardiac Pacemakers, Inc. Integrated multi-device cardiac resynchronization therapy using P-wave to pace timing
US10905889B2 (en) 2016-09-21 2021-02-02 Cardiac Pacemakers, Inc. Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
US10994145B2 (en) 2016-09-21 2021-05-04 Cardiac Pacemakers, Inc. Implantable cardiac monitor
US10765871B2 (en) 2016-10-27 2020-09-08 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10758724B2 (en) 2016-10-27 2020-09-01 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
US11305125B2 (en) 2016-10-27 2022-04-19 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
US10617874B2 (en) 2016-10-31 2020-04-14 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10583301B2 (en) 2016-11-08 2020-03-10 Cardiac Pacemakers, Inc. Implantable medical device for atrial deployment
US10632313B2 (en) 2016-11-09 2020-04-28 Cardiac Pacemakers, Inc. Systems, devices, and methods for setting cardiac pacing pulse parameters for a cardiac pacing device
US10881863B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
US11147979B2 (en) 2016-11-21 2021-10-19 Cardiac Pacemakers, Inc. Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
US11590353B2 (en) 2017-01-26 2023-02-28 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
US10737102B2 (en) 2017-01-26 2020-08-11 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
US10835753B2 (en) 2017-01-26 2020-11-17 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
US10029107B1 (en) 2017-01-26 2018-07-24 Cardiac Pacemakers, Inc. Leadless device with overmolded components
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
US10821288B2 (en) 2017-04-03 2020-11-03 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US11065459B2 (en) 2017-08-18 2021-07-20 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
US11235163B2 (en) 2017-09-20 2022-02-01 Cardiac Pacemakers, Inc. Implantable medical device with multiple modes of operation
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
US11260216B2 (en) 2017-12-01 2022-03-01 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
US11071870B2 (en) 2017-12-01 2021-07-27 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
US11052258B2 (en) 2017-12-01 2021-07-06 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
US11813463B2 (en) 2017-12-01 2023-11-14 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone

Also Published As

Publication number Publication date
US8447412B2 (en) 2013-05-21
US20120078322A1 (en) 2012-03-29
EP2433675A1 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
EP2433675B1 (en) Active implantable medical device including a means for wireless communication via electric pulses conducted by the interstitial tissue of the body
EP2441491B1 (en) Standalone active medical implant, with a circuit for awakening the input on receiving pulses transmitted via the interstitial tissue of the body
EP2486953B1 (en) Method for quantifying the desynchronisation between the clocks of two active HBC implants
EP2764891B1 (en) Implantable stimulation device, stimulation system and method for data communication
FR2602146A1 (en) STIMULATING PULSE GENERATING CIRCUIT FOR CARDIAC STIMULATOR
JP5224579B2 (en) Controllable switching circuit of multiplexed electrodes for active implantable medical devices
ES2219367T3 (en) MULTICHANNEL COCLEAR IMPLANT WITH NEURONAL RESPONSE TELEMETRY.
EP2813260B1 (en) Active implantable medical device for treating heart failure with stochastic stimulation of the vagus nerve
EP2818200A1 (en) Conductive intra-body communication for implantable medical devices
WO1999012607A1 (en) Daisy-chainable sensors and stimulators for implantation in living tissue
EP1438985A1 (en) Implantable medical device e.g. a pacemaker with means for determining the presence and the type of the associated probe
EP2456515A1 (en) Neuro-stimulation
EP2082684B1 (en) Active implantable medical device comprising bi-directional communication means between a generator and sensors or actuators located on the end of the probe
FR2808211A1 (en) Heart implant stores cardiac activity intervals checks regular and sounds alarm
EP2206532A1 (en) Implantable medical heart device comprising means for detecting intense static magnetic fields and commuting to safety mode during MRI tests
WO2016135600A1 (en) Device for functional electrical stimulation and measurement of electromyogram, comprising means for short-circuiting and earthing a pair of electrodes, and associated transcutaneous electrode
FR2808212A1 (en) Heart pacemaker has measurement and setting of noise threshold avoids false events
EP1618923B1 (en) Implantierbarer Herzschrittmacher mit automatischer Detektion des Installieren einer Sonde und der Implantation des Gehäuses
EP2926863B1 (en) Use of an implantable cardiac generator for myocardial stimulation, defibrillation and/or resynchronisation as a vagus nerve stimulation (VNS) generator
US6577898B2 (en) Bi-directional telemetry system and method for transmitting data at high transmission rate
EP2581108B1 (en) Module for controlled switching of a multielectrode probe for an active implantable medical device
EP1543864A1 (en) Multisite implantable active medical device comprising a resynchronisation mode of the ventricles
US9421375B2 (en) Sensing unit for a tissue stimulator
EP3042693B1 (en) Active implantable medical device, such as an autonomous capsule, with dynamic optimisation of the energy of stimulation pulses
WO2021239741A1 (en) Method and system for communication between a plurality of implantable medical devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120529

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 13/00 20060101ALI20120621BHEP

Ipc: A61B 5/00 20060101ALI20120621BHEP

Ipc: A61N 1/372 20060101AFI20120621BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 592382

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011000712

Country of ref document: DE

Effective date: 20130307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130109

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 592382

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130420

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130409

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130409

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130509

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130509

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130808

Year of fee payment: 3

26N No opposition filed

Effective date: 20131010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011000712

Country of ref document: DE

Effective date: 20131010

BERE Be: lapsed

Owner name: SORIN CRM SAS

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130822

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110822

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130822

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130109

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230809

Year of fee payment: 13

Ref country code: GB

Payment date: 20230824

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230808

Year of fee payment: 13