EP2429036B1 - Mehrstrang-Telekommunikationsantenne, die auf einem Hochleistungssatelliten montiert ist, und zugehöriges Telekommunikationssystem - Google Patents

Mehrstrang-Telekommunikationsantenne, die auf einem Hochleistungssatelliten montiert ist, und zugehöriges Telekommunikationssystem Download PDF

Info

Publication number
EP2429036B1
EP2429036B1 EP11306118.8A EP11306118A EP2429036B1 EP 2429036 B1 EP2429036 B1 EP 2429036B1 EP 11306118 A EP11306118 A EP 11306118A EP 2429036 B1 EP2429036 B1 EP 2429036B1
Authority
EP
European Patent Office
Prior art keywords
reflector
source
paraboloid
beams
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11306118.8A
Other languages
English (en)
French (fr)
Other versions
EP2429036A1 (de
Inventor
Baptiste Palacin
Xavier Deplancq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Original Assignee
Centre National dEtudes Spatiales CNES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES filed Critical Centre National dEtudes Spatiales CNES
Publication of EP2429036A1 publication Critical patent/EP2429036A1/de
Application granted granted Critical
Publication of EP2429036B1 publication Critical patent/EP2429036B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns

Definitions

  • the present invention relates to a telecommunication antenna intended to be on board a telecommunication satellite, a payload of a telecommunication satellite comprising the antenna, and a telecommunication system using the payload and therefore the antenna of telecommunication.
  • Ka-band multimedia missions use multi-reflector antenna solutions. Indeed the use of multiple reflectors allows to use sources large enough to illuminate the reflectors optimally and thus form fine beams with a high maximum directivity (high antenna output).
  • Ka-sat of the operator Eutelsat. It provides European coverage using about 80 beams of 0.45 ° angular aperture generated by four reflectors 2.6 meters in diameter. Each of these reflectors operates on a go-down transmission path and an uplink receive path.
  • This communication system is intended to provide a total capacity of approximately 70 Gbps, the report in C / I minimum on the cover being of the order of 14 dB.
  • the satellite Ka-sat could have used a single reflector of 2.6 meters in diameter. In this case it would have been necessary to make sources smaller illumination, which would have degraded the performance of the antenna including the increase in energy losses overflow (called spill-over), typically 4 to 6 dB. The remaining C / I performance of about 12 dB loss of antenna efficiency would have resulted in a degradation of Isotropic Emitted Radiated Power (EIRP), which would have resulted in a loss of capacity of the transmission system. noticeable and unwanted telecommunications.
  • EIRP Isotropic Emitted Radiated Power
  • the sources are optimized for the four reflectors and the overflow losses are around 2 dB for a minimum C / I of the order of 9 dB.
  • the technical problem is to increase the transmission capacity of the satellite under satellite operating conditions identical to those presented for the limit configuration in terms of the power consumed by the multimedia payload of the satellite.
  • the subject of the invention is also a telecommunication payload intended to transmit and / or receive data at a high bit rate, comprising a transmitting and / or receiving antenna as defined above and a repeater, characterized in that the repeater comprises a set of transmission channels in transmission and / or in reception, each transmission channel comprising an output and / or radio input terminal connected to a single radio source and different from the source block, and configured to provide radio signals in a sub-band of frequency B (i) out of a predetermined number Nb of frequency sub-bands forming an allocated frequency band, and in that each sub-band B (i) being associated with a color, the transmission channels are capable of distributing the frequency sub-bands in transmission and / or reception to all the elementary radioelectric sources so that the ground diagram formed by the colors associated with the different secondary beams generated by the antenna is a diagram with Nb optimized frequency reuse colors, that is to say a diagram for which the angular distance between two beams using the same color is the most large on all possible diagrams.
  • the multimedia system 2 is supposed to serve a geographical coverage area 26 of small extent, between 500 000 km 2 and 1 500 000 km 2 .
  • the coverage area 26 of the telecommunications service is France, and it lies between the meridians located at 5 ° west and 6 ° east, between latitudes 43 ° north and 51 ° north.
  • the geostationary satellite 12 in geostationary orbit around the Earth 14 is placed on a first arc of the geostationary orbit near or contained in a second geostationary arc flying over the meridians of the extremity surrounding France.
  • the geostationary satellite 12 is located on a median meridian crossing the center of France.
  • the satellite 12 is located in a southern geographical direction 30 represented by the end arrow towards the rear of the plane of the Figure 1 .
  • a north direction 32, opposite the south direction 30, is represented by a circumferential arrow on the surface of the Earth 14.
  • the satellite 12 is viewed at an elevation angle designated El and shown in FIG. figure 2 as being a mean angle between the tangent in a longitudinal direction 34 at any point 36 of the cover 26 and the vector ray 38 connecting the point 36 of the cover 26 and the satellite 12.
  • the satellite 12 comprises a stabilized geostationary platform 40, two solar panels 42, 44 and a multimedia telecommunication payload 46.
  • the payload 46 is able to ensure the retransmission of multimedia services from the access stations 18, 19, 20, 21 to the multimedia terminals 6, 8, 10.
  • the payload 46 is able to receive multimedia signals transmitted on an upstream channel 48 in a first band Ka by the access stations 18, 19, 20, 21.
  • the payload 46 is capable of transmitting the multimedia signals received to the terminals 6, 8, 10 in a downlink channel 50 operating in a second band Ka, distinct from the first band Ka.
  • the payload 46 is here transparent by limiting itself to the amplification and frequency translation of the multimedia signals.
  • the payload 46 comprises a multimedia reception satellite antenna 52, a multimedia broadcast satellite antenna 54, and a multimedia mission repeater 56 connected between the multimedia reception satellite antenna 52 and the multimedia broadcast satellite antenna 54 by electrical connections 58 and 60.
  • the multimedia repeater 56 comprises a power supply 61 of the payload 46 capable of conditioning the electrical energy supplied by the solar panels 42, 44 for the electrical elements constituting the payload 46.
  • the multimedia broadcast satellite antenna 54 is a multibeam reflector antenna.
  • It comprises a single reflector 62 having a focal plane 63 remote by a focal length F and a source block 64 comprising a plurality of elementary sources 66 of predetermined number Ns.
  • the single reflector 62 is able to intercept part of the electromagnetic energy emitted by the source block 64 and to reflect the electromagnetic energy towards the coverage area 26 in descending multibeams.
  • the reflector 62 is unique and has an apparent diameter D of 5 meters so as to form beams of angular size between 0.10 ° and 0.22 °.
  • the opening angle of a beam generated by a radiating aperture having an apparent diameter is proportional to the wavelength of the radiation and inversely proportional to the apparent diameter.
  • the radiating opening is the reflector 62.
  • the elementary radioelectric sources 66 are arranged in the focal plane 63 and are able to illuminate the single reflector 62 by electromagnetic radiation in a Ka or Ku frequency band.
  • the source block 64 is of the single-source per beam (SFB) type, each source being able to generate a different single beam and the diameter of each elementary source being equal to the image diameter in the focal plane of the beam. associated beam.
  • SFB single-source per beam
  • a beam of electromagnetic energy is called “primary” when it is established between an elementary source 66 of the source block 64 and the reflector 62, and the beam is called “secondary” when it is established between the reflector 62 and an elementary zone of the cover 26, regardless of the direction of propagation of the energy in the beam, that is to say of the transmission or reception mode of the antenna 46.
  • the arrangement of the reflector 62 with respect to the platform 40, the orbital position and the stabilized attitude of the platform 40, the configuration of the antenna are chosen so that the antenna 54 generates secondary secondary beams covering by their footprint the Geographic coverage area 26 corresponding to France.
  • the plurality 64 of the elementary radioelectric sources 66 forming the source block is configured to illuminate the reflector 62 by electromagnetic radiation according to a primary multibeam ensemble of primary adjacent beams, not shown in FIG. Figure 1 , divided into at least one connected set of adjacent primary beams, any two adjacent primary beams being separated by a first angular separation.
  • the reflector 62 is configured to intercept a portion of the electromagnetic energy emitted by the source block 64 and to reflect it according to a secondary multibeam set of secondary secondary reflected beams 68 distributed in at least one connected set of adjacent secondary beams, two secondary beams. any adjacent ones being separated by a second angular separation.
  • the source block 64 is sized and arranged so that the first angular separation is substantially equal to the second angular separation.
  • the relative variation between the first angular separation and the second angular separation is less than 25%.
  • BDF in which ⁇ s 2 denotes the second angular separation, ⁇ s 1 denotes the first angular separation, and BDF is a coefficient referred to as the deflection factor of beam (in English Beam Deviation Factor) less than 1 and depends on the F / D ratio and the apodization of the elementary source.
  • the coefficient BDF is between 0.7 and 1.
  • the overflow energy losses associated with each source 66 are between 3 and 10 dB, preferably between 3 and 7.5 dB.
  • Each source 66 is distinguished using an integer index k, with k varying between 1 and Ns, and denoted S (k).
  • Each source S (k) is capable of receiving a distinct set of multimedia signals in a transmission sub-band B (i) taken from a set of distinct Nb subbands and without a cover band, the set of sub-bands. bands (B (i)) constituting a partition of the transmission band of the going way down, that is to say a partition of the second band.
  • Each source S (k) is able to illuminate the reflector so as to reroute the signals in the downlink way 50 over a different associated elementary area S (k) of the coverage area 26.
  • the optimal use of the frequency spectrum allocated on the downlink channel 68 in terms of capacity is obtained by the reuse of frequencies through the multibeam antenna 54.
  • the multibeam antenna 54 with a single reflector 62 and with a source block of the "mono-source beam” type or SFB, as described above, allows the reuse of frequencies.
  • the frequency band allocated for the multimedia service or second band is partitioned and a reuse of 1 / Nb is defined, in which Nb denotes a number of different colors, by associating a color with a subset of elementary zones (also called English "spot"), disjointed and distant from each other so as to have sufficient insulation.
  • Nb denotes a number of different colors
  • To each different color is assigned an integer index i, with i varying from 1 to Nb, and a subset of elementary zones A (i) or beams F (i). Reuse allows to spatially separate two beams using the same carrier frequency or subband.
  • a distribution or distribution of the Nb colors on the elementary zones or the descending beams is chosen among the possible distributions of Nb colors on all the beams and consequently on all of their footprints, ie the basic zones of coverage.
  • the "optimal" distribution of the Nb colors is optimal in terms of the frequency of reuse when the frequency of reuse of each color is substantially the same, that is to say equal to 1 / Nb, the edge effects being negligible when the number elementary areas is high.
  • An "optimal" distribution of Nb colors is optimal in terms of C / I when the C / I on the cover 26 is maximal over all the possible distributions of Nb colors on all the beams.
  • the use of the multibeam antenna 54 with a single large reflector 62 having a diameter greater than 4 meters using the single-beam source concept (English SFB for Single Feed per Beam) is advantageous.
  • the multibeam antenna 54 allows for a fixed frequency reuse factor and an optimal scheme of reuse to increase the capacity of the system.
  • the proposed telecommunication antenna is certainly suboptimal from an antenna subsystem point of view if it is considered in isolation. Indeed the spacing between the spots of the cover requires the use of sources of small diameters. They are thus not very directive and induce large losses in terms of spill-over, between 5 and 6 dB.
  • B (total) is the total available band expressed in Hz
  • B (allocated) is the frequency band allocated according to the regulatory provisions for the second band
  • is the frequency reuse factor
  • is the expressed spectral efficiency in bits / s / Hz.
  • the spectral efficiency ⁇ is a function of the frequency density of EIRP (transmitted Isotropic Radiated Power) expressed in W / MHz, of the C / I, of the merit factor of the terminal and therefore of the C / N ratio, where N denotes the noise of observed thermal origin, and the waveform envisaged.
  • the total available band increases with the number of beams on the cover.
  • the spectral efficiency decreases with the number of beams because of a lower C / I on all the beams and thus with the degradation of C / N + I.
  • the multibeam antenna 54 allows a gain in capacity in terms of increasing the number of beams despite spill over losses.
  • the two multimedia terminals 6, 8 are located in the elementary zone 210.
  • the third terminal 10 is located in the elementary zone 234, here assumed by way of example assigned the same color, that is to say operating in the same frequency sub-band of the second band.
  • the C / I observed by the third terminal 10 comprises a component generated by the signals of the terminals 6 and 8, and received due to the lack of insulation of the beam 68 covering the elementary zone 210 with the beam covering the elementary zone 234 .
  • Each terminal has a G / T factor equal to 16.4 dB / ° K, an antenna gain equal to 40 dB, which corresponds to an antenna diameter of about 65 cm.
  • Each terminal 6, 8, 10 respectively comprises a flow matching device 250, 252, 254 as a function of the C / I conditions observed.
  • Each rate adaptation device is capable of implementing a rate adaptation mode typically the "ACM" mode of the DVB-S2 described in the corresponding standard of the ETSI (European Telecommunications Standard Institute).
  • a modulation can be chosen according to the C / I + N observed among the Quadrature Phase Shift Keing (QPSK) modulation, the 8-Phase Shift Keing (8-PSK) modulation, the 16-APSK modulation. 16-Amplitude & Phase Shift Keing) and 32-APSK (32-Amplitude & Phase Shift Keing) modulation.
  • the coding may vary between the 1/4 and 9/10 rates offered by the LDPC code used in the DVB-S2 standard.
  • the adaptive coding rate associated with the QPSK modulation can vary between 3/4 and 8/9.
  • the adaptive coding rate associated with the 8-PSK modulation can vary between 3/5 and 3/4.
  • the rate matching devices 250, 252, 254 allow to use modulation / coding combinations with a spectral efficiency to maximize the capacity of the system.
  • the multimedia telecommunication system of the invention operates with low spectral efficiency values.
  • the capacity of the system then obtained is 42% better than the capacity of the typical case in which the minimum C / I on the overall coverage 26 is equal to 15 dB.
  • the Adaptive Coding and Modulation (ACM) mode defined in the DVB-S2 standard requires increases in useful signal power C and / or decreases in the received noise component N + I to go from one configuration to another. modulation and coding to another when the operating point of the system corresponds to a zone of low C / N + I values. In other words, small variations in C / N + I can bring a greater gain in spectral efficiency when the system operates in a zone of low C / N + I values. Thus, it is possible to generate particularly fine beams as proposed with the antenna of the invention.
  • ACM Adaptive Coding and Modulation
  • the number Nb of sub-bands is equal to 4 and the distribution of the four colors associated with the four frequency sub-bands B (i) is an "optimal" distribution or distribution of four colors in terms of frequency of reuse and C / I minimal.
  • the distribution of the "four colors” as represented is the “optimal” distribution among the possible distributions of four colors on all beams and therefore all of their footprints on the ground, ie the elementary areas of coverage.
  • the "optimal" distribution of four colors is optimal in terms of frequency of reuse when the frequency of reuse of each color is substantially the same, that is to say equal to a quarter, edge effects being negligible when the number elementary areas is large enough.
  • a four-color distribution is said to be "optimal" in terms of C / I when the minimum C / I value over the entire coverage observed for this distribution is a maximum value over all possible four-color distributions. This corresponds to a maximum angular distance between any two beams having the same color, that is to say using the same sub-band.
  • the spots or footprints of the beams are grouped into elementary clusters of four adjacent spots of different colors following the same geometric pattern or spatial arrangement of the four colors.
  • the first cluster 302 comprises the four elementary coverage areas 210, 212, 214, 216 operating respectively on the forward downlink 50 in the B (4), B (3), B (3), B (1) sub-bands. to which are assigned the colors designated respectively by the letters D, C, B, A.
  • the second cluster 304 comprises the four elementary coverage areas 218, 220, 222, 224 operating respectively on the forward downlink 50 in the sub-bands B (4), B (3), B (2), B (1) to which are assigned the colors designated respectively by the letters D, C, B, A.
  • the third cluster 306 comprises the four elementary coverage areas 226, 228, 230, 232 operating respectively on the forward downlink 50 in the sub-bands B (4), B (3), B (2) B (1) to which are assigned the colors designated respectively by the letters D, C, B, A.
  • the fourth cluster 308 comprises the four elementary coverage areas 234, 236, 238, 240 operating respectively on the forward downlink 50 in the sub-bands B (4), B (3), B (2) B (1) to which are assigned the colors designated respectively by the letters D, C, B, A.
  • Each elementary coverage area is the footprint of a different image beam, generated only by a single elemental source different from the source-set.
  • the size of the sources is such that all the beams are generated by all the sources located in the same focal plane and that the overflow energy losses are minimal for the set of sources. This corresponds to placing the source centers so as to generate the central rays of each beam of the cover and to choose the rays of the largest possible sources until they come in contact.
  • the source sizes corresponding to the single reflector have been reduced compared to the source sizes corresponding to several reflectors, and the corresponding overflow energy losses have increased.
  • the multibeam antenna 54 is shown in greater detail so as to highlight the correspondence between the network 64 of sources 66 and the distribution of the beams on the service coverage 26 according to the elementary zones and the four-color coloring described in FIG. the Figure 3 .
  • the source block 64 or focal network comprises at least one connected set of elementary sources.
  • the elementary sources 66 are here horn type antennas.
  • the arrangement of the radio sources in the focal plane is that of a configuration corresponding to the optimized distribution of the subbands for the four colors designated by the letters A, B, C and D.
  • the sources 502, 504, 506, 508 are arranged side by side in a first row 542.
  • the sources 510, 512, 514, 516 are arranged side by side along a second row 544.
  • the sources 518, 520 522, 524 are arranged next to a third row 544.
  • the sources 526, 528, 530, 532 are arranged side by side in a fourth row.
  • the four rows 542, 544, 546, 548 are arranged side by side so that the sources 502, 510, 518, 526 form a first column 552 of direction perpendicular to the common direction of the four rows 542, 544, 546, 548.
  • the sources 504, 512, 520, 528 form a second column 554
  • the sources 506, 514, 522, 530 form a third column 556
  • the sources 508, 516, 524, 532 form a fourth column 558.
  • Color A is assigned to sources 502, 506, 518, 522.
  • Color B is assigned to sources 504, 508, 520, 524.
  • Color C is assigned to sources 510, 514, 526, 530.
  • Color D is assigned at sources 512, 516, 528, 532.
  • the sources 502, 504, 510, 512 correspond respectively to the elementary zones 240, 238, 236, 234 of the fourth cluster 308.
  • the sources 506, 508, 514, 516 correspond to the elementary zones of the third cluster 306.
  • the sources 518, 520, 526, 528 correspond to the elementary zones of the second cluster 306.
  • the sources 506, 508, 514, 516 correspond to the elementary zones of the first cluster 306.
  • the reflector 62 is a reflector with rigid hull foldable or deployable mesh technology (referred to in English "Mesh technology"), adapted to be accommodated on a platform in a transport position in which the assembly formed by the platform and the reflector is contained in the cap of a launcher.
  • the single reflector 62 is able to be deployed from the carrying position on a platform to a deployment position represented on the Figures 4 and 6 .
  • the reflector 62 is a portion of a paraboloid P offset from the source block 64 so as to avoid the masking by the source block 64 of the secondary beams, here the beams going down to the coverage area 26.
  • the paraboloid portion is for example an elliptically shaped cut of the paraboloid.
  • the center of the paraboloid and the focal point of the paraboloid are designated respectively by C P , and F1, while the cutting center is designated by C D.
  • the clearance height of the source block 64 with respect to the reflector 62 is designated H.
  • the apparent diameter of the reflector 62 denoted by D, is equal to the size of the projected surface obtained by orthogonal projection of the surface of the reflector in the plane containing C P and having as normal the axis passing through C P and the focal point F1.
  • the cutting point C D is located at a height equal to H + D / 2 with respect to the axis passing through the center C P and the focal point F1.
  • the focal length designated by the letter F is equal to the distance between the center of symmetry C P of the paraboloid portion and the focal point F1 of the paraboloid.
  • the equivalent focal length, denoted by Feq, is equal to the distance between the cutting center C D of the paraboloid portion P and the focal point F1 of the paraboloid P.
  • the angle of angular separation between two adjacent primary beams is substantially equal to the angular separation angle between two adjacent secondary beams, shown in FIG. Figure 6 by ⁇ s2 for the first pair of corresponding elementary areas 240 and 236 and the second pair of corresponding elementary areas 236 and 224.
  • ⁇ s1 and ⁇ s2 will be designated identically by ⁇ s.
  • the reflector can be considered as governed by the laws of geometrical optics and then the size or size of the sources is governed by the following relation: D source ⁇ Feq * tan ⁇ s 2 / BDF wherein D source means the opening diameter of the circular horn forming an elementary source of the related set of elementary sources.
  • the reflector is a paraboloid portion centered on its paraboloidal center of symmetry C P.
  • the focal plane of the reflector in which the radioelectric sources 66 are arranged is orthogonal to the axis passing through the center of symmetry C P of the paraboloid and the F1 focal point of the paraboloid.
  • Any elementary source 66 of the source block 64 has an opening size denoted T source , which verifies the relation T source ⁇ F * tan ⁇ s 2 / BDF .
  • the elementary sources are openings having a closed contour of any shape having a size denoted T source , and corresponding to an equivalent diameter.
  • the focal length F separating the focal plane 63 and the cutting center 402 (C D ) of the reflector 62, here is between 4 meters and 7 meters.
  • coefficient of "spill-over” reflects the degree of adequacy of the diagram of the source at the angle under which it sees the reflector and this term is equal to the ratio of the energy effectively intercepted to the total energy radiated by this source.
  • the reflector 62 captures only about a quarter of the energy from the sources 66 and the coefficient of spill over is equal to about 0.25, which gives spill losses of between 5 and 6 dB.
  • such an antenna configuration makes it possible to increase the capacity of a multimedia system covering a geographical area the size of France.
  • Beam Forming Network Beam Forming Network
  • This BFN beamforming network allows to interleave the sources and to illuminate the reflector optimally.
  • a "low level" BFN is arranged before the power amplification section of the payload.
  • the number of amplification devices is equal to or even a multiple of the number of sources of the focal network which is itself greater than the number of beams of the cover.
  • the sources have a diameter identical to the image diameter of the beams in the focal plane.
  • a "high level" BFN is arranged after the amplification section of the repeater channels each corresponding to a beam.
  • the number of amplification devices is equal to the number of beams of the cover.
  • elementary sources are twice as small as the image diameter of the beam in the focal plane.
  • a disadvantage of this solution is the existence of a minimum diameter of the sources due to the limitation of the focal length of the reflector. With such a solution, the spill over coefficient is of value less than the spill over coefficient of the configuration of the invention namely a single elementary source per beam (SFB solution for Single Feeder per Beam), and this leads to revise the number of beams.
  • the spill-over coefficient being between 5 and 6 dB and the C / I being between +9 dB and +23 dB
  • the solution of the invention namely a single reflector antenna and an SFB-type source assembly to increase the number of beams and the capacity while respecting the carriage constraints of the antenna on conventional launchers and consumption limitations on existing platforms.
  • a source block comprises a single connected set of adjacent radioelectric sources formed by horns.
  • the arrangement of the radio sources in the focal plane is that of a configuration corresponding to the optimized distribution of the subbands for three colors designated by the letters A, B and C.
  • the sources 602, 604, 606, respectively the sources 608, 610, 612 and the sources 614, 616, 618 are arranged in a first row, respectively a second row and a third row.
  • the sources of two consecutive rows are generally shifted by a length equal to a radius of a source, so that for example the sources 602, 604, 610 form an equilateral triangle.
  • This configuration using a mesh or ternary pattern of color distribution in the shape of an equilateral triangle corresponds to an optimal frequency reuse scheme for which the frequency of use of the three colors and the minimal C / I are the largest. the angular coverage generated by all the beams from the sources.
  • the payload repeater 56 includes an input 602 of the uplink upstream receive antenna 52 through its source 603, a first frequency demultiplexer 604 of signals from two different satellite access stations connected. at the input 602 of the receiving antenna.
  • the repeater 56 also comprises, for each set of signals received and transmitted by the same access station, a second device for frequency demultiplexing 606 of the signals intended for different downstream beams, here four in number and corresponding to one and the same cluster of elementary zones on four different elementary power output channels.
  • the signals intended for the same downstream beam are emitted in the same uplink rising-frequency sub-band, and that the rising-frequency sub-bands associated with the descending beams of the same clusters of elementary zones are juxtaposed to form a frequency band associated with a cluster.
  • Each elementary output power transmission channel 608, 610, 612, 614 includes an own transposition device 616, 618, 620, 622 followed by an associated output power amplification means 624, 626, 628, 630, capable of delivering the output power to the source of the corresponding beam.
  • the sources connected to the output terminals of the basic transmission power output channels are the sources of the figure 5 designated 502, 504, 510, 512.
  • the other elementary sources of the source assembly like sources 502, 504, 510, 512, are connected to a single and different path of elementary power transmission output.
  • the repeater is configured to supply each source of the antenna 54 on a single path of clean routing of the downstream traffic and intended for the corresponding elementary zone.
  • Each output power amplification means 624, 626, 628, 630 is here a Progressive Wave Tube Amplifier (ATOP) operating in Ka-band.
  • ATOP Progressive Wave Tube Amplifier
  • Each ATOP 624, 626, 628, 630 is able to amplify a sub-band or color among the four colors of the second band allocated, each sub-band having a bandwidth of 1450 MHz and able to deliver an output power of 170 W.
  • Each ATOP is used here on an operating point taken at 3 dB of recoil, the output losses between the output of the ATOP and the input of the source being equal to 2.6 dB.
  • the transposition devices are configured to provide each elementary output power transmission channel with radio signals in a frequency sub-band B (i) from a predetermined number N of frequency sub-bands forming a band. allocated frequency.
  • the frequency transposition means are able to distribute the frequency sub-bands to the output transmission paths and to all the elementary radioelectric sources so that the diagram the ground formed by the colors associated with the different beams generated by the antenna is an optimized frequency reuse N-color diagram, that is to say a diagram for which the angular distance between two beams using the same color is the larger on all possible diagrams.
  • the global coverage is divided into 62 elementary zones for which is obtained the largest total capacity on the downward one way.
  • This maximum total capacity equal to approximately 100 Gbits / s, is obtained for a tiling of the coverage area into 62 elementary zones, subject to using a frequency reuse factor equal to 4, an electric power available on board the satellite for the payload equal to 12 kW, a minimum permissible C / I equal to 9 dB.
  • the telecommunication antenna and the payload are configured to operate in the C band.
  • the antenna functions in reception mode.
  • the plurality of elementary radioelectric sources 66 is configured to be illuminated by the reflector 62 by electromagnetic radiation in a frequency band according to a primary multibeam ensemble of primary adjacent beams distributed in at least one connected set of adjacent primary beams. any two adjacent primary beams being separated by a first angular separation.
  • the reflector 62 is configured to intercept a portion of the electromagnetic energy transmitted from the geographical zone 26, according to a secondary multibeam set of secondary adjacent reflected beams distributed in at least one connected set of adjacent secondary beams, two adjacent adjacent sub-beams being separated by a second angular separation.
  • the first angular separation and the second angular separation are substantially equal.
  • the telecommunication antenna is configured to operate in transmission and reception with the same reflector.
  • the reflector is a shaped reflector and the elementary sources forming the source block are arranged in a medium plane with deviations in distances around this average plane, which is a function of the conformation of the reflector.
  • the telecommunication system comprises two satellites configured in a "flying formation".
  • the reflector is mounted on a first satellite while the source block and the payload are mounted on a second satellite.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Aerials With Secondary Devices (AREA)
  • Radio Relay Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (7)

  1. Mehrstrang-Telekommunikationsantenne, die dazu bestimmt ist, eine Telekommunikationsnutzlast (46) mit erhöhtem Durchsatz auszustatten, um eine geografische Zone (26) aus einer geostationären Umlaufbahn durch Senden und/oder Empfangen abzudecken, die imstande ist, mechanisch auf einer oder zwei Plattformen (40) eines Satelliten (12) montiert zu werden, und elektromagnetisch an einen Verstärker (56) gekoppelt zu werden, umfassend:
    mindestens einen Funkreflektor (62) und
    einen zugeordneten Quellblock (64), der aus einer Vielzahl von elementaren Funkquellen (66) gebildet wird, die auf einer Ebene (63) angeordnet sind,
    wobei die Vielzahl (64) der elementaren Funkquellen (66) konfiguriert ist, um den Reflektor (62) durch eine elektromagnetische Strahlung in einem Frequenzband anzustrahlen, und/oder durch eine elektromagnetische Strahlung in einem Frequenzband, die durch den Reflektor (62) reflektiert wird, gemäß einer primären Mehrstrangeinheit an benachbarten primären Strängen angestrahlt zu werden, die in mindestens einer verbundenen Einheit benachbarter primärer Stränge verteilt sind, wobei zwei beliebige benachbarte primäre Stränge durch eine erste Winkeltrennung θ S1 getrennt sind,
    wobei der Reflektor (62) konfiguriert ist, um einen Teil der durch den Quellblock (64) ausgegebenen elektromagnetischen Energie zu reflektieren, und/oder um einen Teil der von der geografischen Zone (26) ausgegebenen elektromagnetischen Energie gemäß einer sekundären Mehrstrangeinheit benachbarter reflektierter sekundärer Stränge abzufangen, die in mindestens einer verbundenen Einheit benachbarter sekundärer Stränge (68) verteilt sind, wobei zwei beliebige benachbarte sekundäre Stränge durch eine zweite Winkeltrennung θ S2 getrennt sind,
    dadurch gekennzeichnet, dass
    der Reflektor (62) einmalig ist, wobei der Reflektor (62) ein nicht angepasster Reflektor ist,
    der Reflektor (62) in einem Durchmesser größer als 4 Meter, und vorzugsweise gleich 5 Meter ist, und
    die Ebene (63), auf der die Funkquellen (66) angeordnet sind, eine Brennebene des Reflektors ist,
    wobei die Brennebene (63) um eine Brennweite, die zwischen 4 Metern und 7 Metern enthalten ist, von einem Schnittzentrum des Reflektors (62) entfernt ist, und
    der Quellblock (64) derart bemessen und angeordnet ist, dass jede Quelle imstande ist, einen unterschiedlichen einmaligen Strang zu generieren und/oder zu empfangen, und die erste Winkeltrennung θS1 im Wesentlichen gleich der zweiten Winkeltrennung θ S2 ist,
    eine beliebige Quelle (66) des Quellblocks (64) eine notierte Öffnungsgröße Tsource aufweist, die folgende Beziehung erfüllt
    - Tsource F tan(θ S2 (1+ ε)), wenn der Reflektor ein Parabelabschnitt ist, der auf seinem Parabelsymmetriezentrum C p zentriert ist, und die Brennebene (63) des Reflektors (62), auf der die Funkquellen (66) angeordnet sind, orthogonal zu der Achse ist, die durch das Symmetriezentrum C p der Parabel und den Brennpunkt F1 der Parabel verläuft,
    und
    - Tsource Feq tan(θ S2 (1+ε)), wenn der Reflektor (62) ein im Verhältnis zu dem Quellblock (64) versetzter Abschnitt einer Parabel ist, um die Verdeckung der sekundären Stränge durch den Quellblock (64) zu vermeiden,
    wobei
    F den Brennabstand gleich dem Abstand zwischen dem Symmetriezentrum Cp des Parabelabschnitts und dem Brennpunkt F1 der Parabel bezeichnet,
    Feq einen gleichwertigen Brennabstand gleich dem Abstand zwischen einem Schnittzentrum C D des Parabelabschnitts und dem Brennpunkt F1 der Parabel bezeichnet,
    θ S2 die Winkeltrennung zweier benachbarter sekundärer Stränge bezeichnet, und
    ε ein numerischer Faktor ist, der zwischen 0 und +0,35 enthalten ist,
    und
    die jeder Quelle (66) zugeordneten Energieverluste durch Überlauf zwischen 3 und 10 dB enthalten sind, vorzugsweise zwischen 3 und 7,5 dB enthalten sind.
  2. Mehrstrang-Antenne nach dem vorstehenden Anspruch, wobei
    der Reflektor ein Abschnitt einer Parabel ist, und
    der Quellblock (64) mindestens eine Einheit an benachbarten Funkquellen umfasst, die aus Hörnern mit kreisförmiger Öffnung gebildet werden, wobei jedes Horn der Einheit einen Durchmesser Dsource aufweist, der die Metalldicke der Wand des Horns beinhaltet, und
    der Durchmesser Dsource der Öffnung die folgende Beziehung erfüllt:
    Dsource = Feq tan(θS2 (1+ε)), wenn der Reflektor (62) ein im Verhältnis zu dem Quellblock (64) versetzter Abschnitt einer Parabel ist, und das Verhältnis
    Dsource = F tan(θS2 (1+ε)), wenn der Reflektor ein Parabelabschnitt ist, der auf seinem Parabelsymmetriezentrum Cp zentriert ist, wobei
    F den Brennabstand gleich dem Abstand zwischen dem Symmetriezentrum Cp des Parabelabschnitts und dem Brennpunkt F1 der Parabel bezeichnet,
    Feq einen gleichwertigen Brennabstand gleich dem Abstand zwischen einem Schnittzentrum C D des Parabelabschnitts und dem Brennpunkt F1 der Parabel bezeichnet,
    θ S2 die Winkeltrennung zweier benachbarter sekundärer Stränge bezeichnet, und
    ε ein numerischer Faktor ist, der zwischen 0 und +0,35 enthalten ist.
  3. Antenne nach einem der Ansprüche 1 bis 2, wobei der Quellblock (64) und der Reflektor (62) konfiguriert sind, um in einem Frequenzband zu arbeiten, das in der Einheit der Bänder C, K u K A enthalten ist.
  4. Mehrstrang-Telekommunikationsantenne nach einem der Ansprüche 1 bis 3, wobei die Anordnung der Funkquellen (66) auf der Ebene (63) jene einer Konfiguration ist, die einer optimierten Verteilung für eine Anzahl an Farben gleich 3, 4 oder 7 ist.
  5. Mehrstrang-Telekommunikationsantenne nach Anspruch 3, wobei der Mindestwert über die geografische Abdeckung (26) des Verhältnisses C/I zwischen einerseits der durch den Reflektor (62) in einem beliebigen sekundären Strang ausgegebenen und/oder empfangenen Energie, und andererseits der Summe der in demselben Strang ausgegebenen und/oder empfangenen Energie und durch den Reflektor ausgegebenen und/oder empfangenen Energie aus den anderen Strängen derselben Farbe wie der sekundäre Strang kleiner als 15 dB, vorzugsweise als 12 dB ist.
  6. Telekommunikationsnutzlast, die dazu bestimmt ist, Daten mit erhöhtem Durchsatz zu übertragen und/oder zu empfangen, umfassend eine Ausgabe- und/oder Empfangsantenne (54) nach einem der Ansprüche 1 bis 4 und einen Verstärker (56), dadurch gekennzeichnet, dass
    der Verstärker (56) eine Einheit an Übertragungsstrecken zum Ausgeben und/oder Empfangen (608, 610, 612, 614) umfasst,
    wobei jede Übertragungsstrecke (608, 610, 612, 614) umfasst
    eine Funkeingangs- und/oder -ausgangsklemme (632, 634, 636, 638), die an eine einmalige, und vom Quellblock (64) unterschiedliche Funkquelle (502, 504, 510, 512) angeschlossen ist, und
    konfiguriert ist, um Funksignale in einem Frequenzteilband B(i) aus einer vorbestimmten Anzahl Nb an Frequenzteilbändern bereitzustellen, die ein zugeteiltes Frequenzband bilden, und dadurch, dass
    jedes Teilband B(i) einer Farbe zugeordnet ist, die Übertragungsstrecken imstande sind, die Frequenzteilbänder zum Ausgeben und/oder Empfangen an alle elementaren Funkquellen zu verteilen, sodass das Diagramm am Boden, das durch die den verschiedenen sekundären Strängen, die durch die Antenne (54) generiert werden, zugeordneten Farben gebildet wird, ein optimiertes Diagramm mit Nb Farben zur Wiederverwendung von Frequenzen ist, das heißt, ein Diagramm, bei dem der Winkelabstand zwischen zwei Strängen, die eine selbe Farbe verwenden, in allen möglichen Diagrammen der größte ist.
  7. Telekommunikationssystem, umfassend
    einen Telekommunikationssatelliten (12), der mit einer Nutzlast nach dem vorstehenden Anspruch ausgestattet ist,
    eine Einheit (4) an Telekommunikationsendgeräten (6, 8, 10), die Funksignale an den/von dem Satelliten (12) übertragen und/oder empfangen können,
    eine oder mehrere Satellitenzugriffsstationen (18, 19, 20, 21), die imstande sind, Funksignale anhand des Satelliten (12) entsprechend einer Aufwärtsverbindung für hin (48) und/oder her an die/von den Endgeräte(n) auszugeben und/oder zu empfangen, dadurch gekennzeichnet, dass
    jedes Endgerät (6, 8, 10) imstande ist, das durch dessen jeweilige Antenne und/oder durch die Satellitenantenne beobachtete Verhältnis C/I+N zu bestimmen, zwischen einerseits der empfangenen Energie C, die dem Nutzfunksignal des Endgerätes zugeordnet, und in dem sekundären Abdeckungsstrang des Endgerätes enthalten ist, und andererseits der Summe I der empfangenen Energien in demselben sekundären Strang, jedoch von den anderen sekundären Strängen einer selben Farbe wie die zugeordnete Quelle an den sekundären Abdeckungsstrang des Endgerätes ausgegeben, und der Energie N des empfangenen thermischen Rauschens,
    und eine Vorrichtung zur Anpassung eines empfangenen oder übertragenen Durchsatzes (250, 252, 254) in Abhängigkeit von den beobachteten Bedingungen von C/I+N umfasst, wobei der Durchsatz durch die Änderung der Anzahl von Zuständen einer Modulation und/oder die Codier-Rate und/oder den Symboldurchsatz variabel ist.
EP11306118.8A 2010-09-10 2011-09-08 Mehrstrang-Telekommunikationsantenne, die auf einem Hochleistungssatelliten montiert ist, und zugehöriges Telekommunikationssystem Active EP2429036B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1057193A FR2964800B1 (fr) 2010-09-10 2010-09-10 Antenne de telecommunication multifaisceaux embarquee sur un satellite a grande capacite et systeme de telecommunication associe

Publications (2)

Publication Number Publication Date
EP2429036A1 EP2429036A1 (de) 2012-03-14
EP2429036B1 true EP2429036B1 (de) 2019-11-06

Family

ID=43980747

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11306118.8A Active EP2429036B1 (de) 2010-09-10 2011-09-08 Mehrstrang-Telekommunikationsantenne, die auf einem Hochleistungssatelliten montiert ist, und zugehöriges Telekommunikationssystem

Country Status (4)

Country Link
US (1) US8780000B2 (de)
EP (1) EP2429036B1 (de)
ES (1) ES2770781T3 (de)
FR (1) FR2964800B1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993715B1 (fr) * 2012-07-20 2017-03-10 Thales Sa Source radiofrequence compacte, antenne et systeme d'antennes multifaisceaux comportant de telles sources compactes et systeme de telecommunication par satellite comportant au moins une telle antenne
US9093754B2 (en) * 2013-05-10 2015-07-28 Google Inc. Dynamically adjusting width of beam based on altitude
EP2911241A1 (de) 2014-02-20 2015-08-26 Agence Spatiale Europeenne Dualband-Strahlenreflektorantenne für breitbandige Satelliten
FR3024128B1 (fr) * 2014-07-25 2016-07-22 Thales Sa Procede de mise a poste d'un satellite et de test en orbite de sa charge utile
FR3064856B1 (fr) * 2017-04-04 2020-03-20 Thales Procede de communication spatiale pour des services iot et systemes spatial de telecommunications correspondant
FR3067535B1 (fr) * 2017-06-09 2023-03-03 Airbus Defence & Space Sas Satellite de telecommunications, procede de formation de faisceaux et procede de fabrication d’une charge utile de satellite
FR3069990B1 (fr) * 2017-08-03 2021-09-17 Thales Sa Architecture de charge utile flexible pour applications vhts et hts
FR3073347B1 (fr) * 2017-11-08 2021-03-19 Airbus Defence & Space Sas Charge utile de satellite comportant un reflecteur a double surface reflechissante
FR3076137B1 (fr) * 2017-12-21 2019-11-15 Thales Procede de couverture multifaisceaux par regroupement de faisceaux elementaires de couleurs differentes, et charge utile de telecommunications pour mettre en oeuvre un tel procede
FR3076138B1 (fr) * 2017-12-21 2019-11-15 Thales Procede de couverture multifaisceaux par regroupement de faisceaux elementaires de meme couleur, et charge utile de telecommunications pour mettre en oeuvre un tel procede
FR3119027B1 (fr) * 2021-01-19 2022-12-30 Thales Sa Radar à antenne active à couverture angulaire élargie

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161549B1 (en) * 2003-09-30 2007-01-09 Lockheed Martin Corporation Single-aperture antenna system for producing multiple beams

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236161A (en) * 1978-09-18 1980-11-25 Bell Telephone Laboratories, Incorporated Array feed for offset satellite antenna
US6157811A (en) * 1994-01-11 2000-12-05 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
US6678520B1 (en) * 1999-01-07 2004-01-13 Hughes Electronics Corporation Method and apparatus for providing wideband services using medium and low earth orbit satellites
FR2811480B1 (fr) * 2000-07-06 2006-09-08 Cit Alcatel Antenne de telecommunication destinee a couvrir une large zone terrestre
US6762716B2 (en) * 2002-12-13 2004-07-13 The Boeing Company Digital beacon asymmetry and quantization compensation
US7177592B2 (en) * 2003-05-30 2007-02-13 The Boeing Company Wireless communication system with split spot beam payload
FR2931302B1 (fr) * 2008-05-16 2010-07-30 Centre Nat Etd Spatiales Systeme antennaire multi-faisceaux pour couverture multispots et satellite comprenant un tel systeme

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161549B1 (en) * 2003-09-30 2007-01-09 Lockheed Martin Corporation Single-aperture antenna system for producing multiple beams

Also Published As

Publication number Publication date
FR2964800A1 (fr) 2012-03-16
US8780000B2 (en) 2014-07-15
ES2770781T3 (es) 2020-07-03
FR2964800B1 (fr) 2012-08-31
EP2429036A1 (de) 2012-03-14
US20120075149A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
EP2429036B1 (de) Mehrstrang-Telekommunikationsantenne, die auf einem Hochleistungssatelliten montiert ist, und zugehöriges Telekommunikationssystem
JP6929364B2 (ja) Leoおよび他の軌道上の衛星を含む衛星システム
EP2532046B1 (de) Flachplatten-abtastantenne für landfahrzeuganwendung, fahrzeug mit einer solchen antenne und satellitentelekommunikationssystem mit solch einem fahrzeug
EP3503431B1 (de) Verfahren zur mehrfachstrahlabdeckung durch gruppieren von elementarstrahlen derselben farbe, und nutzlast von telekommunikationsvorgängen zur umsetzung dieses verfahrens
FR2652452A1 (fr) Dispositif d'alimentation d'une antenne a faisceaux multiples.
EP2688142B1 (de) Mehrfachstrahl-Sende- und Empfangsantenne mit mehreren Quellen pro Strahl, Antennensystem und Satellitentelekommunikationssystem, die eine solche Antenne umfassen
EP2434578B1 (de) Antennensystem mit zwei Spot-Gittern mit komplementären überlappten Netzen
EP1955405A1 (de) Array-antenne mit irregulärem netz und potentieller kälteredundanz
EP3503430A1 (de) Verfahren zur mehrfachstrahlabdeckung durch zusammenlegung von elementarstrahlen verschiedener farben, und nutzlast von telekommunikation zur umsetzung dieses verfahrens
EP0992128B1 (de) Telekommunikationsanordnung
Evans Proposed US global satellite systems operating at Ka-band
FR2783378A1 (fr) Systeme de communications par satellite ameliore utilisant un partage de la puissance hf pour des sources primaires ou des faisceaux multiples dans des liaisons
FR2751494A1 (fr) Systeme de satellite de telecommunications geosynchrone dont l'aire de desserte peut etre reconfiguree
EP3639409B1 (de) Satellitennutzlast mit einem reflektor mit zwei reflektierenden oberflächen
Evans et al. The prospects for commercial satellite services at Q‐and V‐band
CA2327371C (fr) Source rayonnante pour antenne d'emission et de reception destinee a etre installee a bord d'un satellite
EP2104242B1 (de) Fernübertragungsnetz
EP3635881B1 (de) Telekommunikationssatellit, strahlformungsverfahren und verfahren zur herstellung einer satellitennutzlast
Kirtay Broadband satellite system technologies for effective use of the 12-30 GHz radio spectrum
FR3110292A1 (fr) Antenne parabolique multilobes pour communications par faisceaux Hertziens troposphériques
EP4304106A1 (de) Passives satellitenfunkübertragungssystem mit mehreren strahlen ohne redundanz
FR2783377A1 (fr) Systeme de communications par satellite ameliore utilisant des multiplexeurs d'entree hf depuis une pluralite de faisceaux ponctuels vers un recepteur
FR2741493A1 (fr) Procede et systeme de transmission de signaux radioelectriques via un reseau de satellites entre une station terrestre fixe et des terminaux mobiles d'usagers

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120814

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602011063176

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0025000000

Ipc: H01Q0001280000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 13/02 20060101ALI20190716BHEP

Ipc: H01Q 1/28 20060101AFI20190716BHEP

Ipc: H01Q 25/00 20060101ALI20190716BHEP

INTG Intention to grant announced

Effective date: 20190809

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1200059

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011063176

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191106

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200207

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2770781

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011063176

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1200059

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200908

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230911

Year of fee payment: 13

Ref country code: GB

Payment date: 20230816

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230816

Year of fee payment: 13

Ref country code: DE

Payment date: 20230818

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231006

Year of fee payment: 13