EP2428942B1 - Gefahrenmeldeanlage mit zwei Datenübertragungsgeschwindigkeiten - Google Patents

Gefahrenmeldeanlage mit zwei Datenübertragungsgeschwindigkeiten Download PDF

Info

Publication number
EP2428942B1
EP2428942B1 EP11170397.1A EP11170397A EP2428942B1 EP 2428942 B1 EP2428942 B1 EP 2428942B1 EP 11170397 A EP11170397 A EP 11170397A EP 2428942 B1 EP2428942 B1 EP 2428942B1
Authority
EP
European Patent Office
Prior art keywords
alarm system
subscriber
field bus
subscribers
central station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11170397.1A
Other languages
English (en)
French (fr)
Other versions
EP2428942A1 (de
Inventor
Robin Janßen
Bernd Luebben
Heiner Politze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novar GmbH
Original Assignee
Novar GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novar GmbH filed Critical Novar GmbH
Publication of EP2428942A1 publication Critical patent/EP2428942A1/de
Application granted granted Critical
Publication of EP2428942B1 publication Critical patent/EP2428942B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/02Monitoring continuously signalling or alarm systems
    • G08B29/06Monitoring of the line circuits, e.g. signalling of line faults
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop
    • G08B25/045Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop with sensing devices and central station in a closed loop, e.g. McCullough loop

Definitions

  • the invention relates to a hazard detection system with a center to which the beginning and the end of a two-wire fieldbus for power supply to and for bidirectional communication with participants is connected, which are spatially spaced and electrically parallel between the wires of the fieldbus.
  • the invention further relates to a method for operating such a hazard alarm system after the occurrence of a fault in the course of the field bus or in one of the connected participants.
  • the control center can also be a sub-center or a coupler.
  • the fieldbus which can have a length of considerably more than 1 km, is returned in a ring shape to the control center.
  • the subscribers connected to the fieldbus can be sensors, eg fire or intrusion detectors as well as actuators, eg warning lights.
  • Both states can occur abruptly or insidiously and are referred to below as errors for short.
  • Methods are known which locate and isolate the fault location in such an error case.
  • the fieldbus is performed in each participant via two switchable, in series line disconnector, which opens the center in case of an error in the field bus or a subscriber first and then, starting from both the beginning and the end of the field bus, one after the other to the each last participant on both sides of the fault closes again. If the fault is a short circuit, however, at least the line disconnectors located on the side of the fault location of the respectively last station remain open. Subsequently, the fieldbus is no longer operated in the ring but in the form of two stubs from the physical beginning and from the physical end to the fault location and the danger monitoring continues.
  • the center communicates with these subscribers at a second data rate higher than a first data rate for the optionally prioritized communication between the center and e.g. to the detectors.
  • the data may be sent from the central office to the subscribers e.g. be transmitted by AMI or NRZ voltage modulation and in the reverse direction by corresponding current modulation.
  • the following is the first data transfer rate as low speed mode (LS operation) and the corresponding Subscriber as LS subscriber, the second, higher data transfer rate than High Speed Mode (HS mode) and the corresponding subscribers as HS subscribers.
  • LS operation low speed mode
  • HS mode High Speed Mode
  • the control unit switches off the terminator in order to be able to operate the field bus also from its end. Without a terminator, reliable communication with the subscribers via the spurs is no longer guaranteed, at least in HS operation, because the reflections of the signals can affect the signals and data packets received and transmitted by the subscribers to such an extent that correct decoding is no longer possible ,
  • EP 0 581 248 A1 and US 5 097 259 A show danger warning systems according to the preamble of claim 1.
  • the invention is therefore an object of the invention to provide a hazard alarm system, in which a secure communication between the center and at least some of the remaining functional participants is guaranteed even in case of failure.
  • This object is inventively achieved in that at least some of the participants between the two wires of the fieldbus have at least one switchable RC-terminator, which is turned off in normal operation and can be switched on in the event of a fault.
  • the fieldbus is only charged with AC voltage, i. in the terminator, a current flow occurs only during the signal edges
  • the terminator of the last subscriber equipped with it is switched on at the end of the two stubs resulting from the isolation of the fault location. Since the respective last physical subscriber can be both an HS and an LS subscriber, all subscribers with such a terminator are preferably those fitted. As a result, if appropriate, the communication in LS mode can also be improved.
  • the terminator is switched on and off by means of a semiconductor switch.
  • the switching on and off is also possible by means of a switching contact of a miniature relay integrated in the respective subscriber.
  • this variant is usually costly and unfavorable in terms of space requirements.
  • the semiconductor switch may be a bipolar transistor having a diode in antiparallel to its emitter / collector path.
  • the diode is necessary so that the capacitor of the RC element can not only charge in time with the communication pulses but can also discharge again.
  • a FET can be used as the semiconductor switch. Whose parasitic or substrate diode takes over the function of the separate diode in the case of a bipolar transistor.
  • a double FET two in-line FETs may be used.
  • the microprocessor in the event of a fault can switch off the shut-off element connected in HS operation in each case during LS operation in order to save the energy or feed power of the power supply from the control center required for the transfer of the capacitor of the terminator.
  • each of the subscribers may comprise an error detection circuit which switches the terminator of the subscriber - possibly only in HS mode - as soon as it has determined that this subscriber is the last subscriber at the end of the relevant branch line of the fieldbus.
  • the termination member may be between the common connection point of the two line disconnectors and the other field bus wire.
  • the two line disconnectors must be independently switchable so that after the opening of both line disconnectors triggered by a fault in the form of a short circuit, only the line disconnector facing away from the fault location, that is, closer to the control center, closes again.
  • the opening and closing of the respective Kausstrenner can be done from the control center via a command.
  • FIG. 1a schematically shows a center 10, to which a two-wire fieldbus line with participants 1 to 8 is connected. Participants 1 through 8 can use sensors such as Fire detectors or video cameras and actuators such as warning lights or speakers.
  • a field bus may, for example, comprise over 100 such subscribers and have a length of, for example, 2 km.
  • the center 10 supplies the participants with their operating voltage and communicates with them via the two wires of the fieldbus.
  • the field bus is connected with its beginning to the terminals A + and A- of the center 10, looped through by all participants and ring with its end to further terminals B + and B- returned to the center 10.
  • Each participant has in one of the wires of the field bus two serial line isolators as well as among other things a modem and a microprocessor.
  • the central office communicates in a low speed mode (LS mode), with high data rate subscribers, e.g. a video camera or a loudspeaker in a high-speed mode (HS operation).
  • LS mode low speed mode
  • high data rate subscribers e.g. a video camera or a loudspeaker in a high-speed mode (HS operation).
  • HS operation high-speed mode
  • the terminator can consist of a terminating resistor that allows a simple fieldbus test for short circuit or open circuit.
  • the termination member may be an active end module, e.g. Also allows a test of the field bus to impermissibly high line resistance under load conditions.
  • the control panel 10 switches as the final member in Fig. 1a represented RC element R1, C on or from the terminating resistor to this RC element. This improves data quality and transmission security.
  • FIG. 1b differs from Fig. 1a by an assumed error in the form of an interruption between the subscriber 4 and the subscriber 5.
  • the central unit 10 shuts off all the subscribers upon occurrence of such an error, that is both in the event of an interruption and in the event of a short circuit then builds both via the terminal A +, A- as well as the terminal B +, B- the operating voltage supply and the communication with the participants or remaining participants on the two resulting from the error stubs again serially.
  • the LS operation with the LS subscribers is in principle also possible without a terminator.
  • at least the last HS subscribers must have a terminator before the end of each of the two stubs, which replaces the disconnected terminator in the center 10.
  • a switchable termination member expediently.
  • the terminator of the last subscriber before the fault location switched on in the event of a fault in HS operation can be switched off during LS operation if this causes communication improved over the fieldbus in LS operation.
  • the switch provided in each subscriber for the terminator controls the central unit 10, which recognizes during the serial construction of each of the two stubs, which subscriber is the last subscriber before the fault location, alternatively the subscriber himself, if it comprises an error detection circuit which recognizes that this participant is the last participant in the stub line.
  • FIGS. 2 to 7 show the example of a participant variants of the wiring of the participants with final members.
  • the two line disconnectors LT1 and LT2 are the fieldbus line looped through the subscriber and the microprocessor MCU controlling the operating state of the subscriber and handling the communication with the control center also carries the LS or HS operation and if necessary detects the error case and error location shown.
  • the line disconnectors are normally two FETs, symbolically represented as (open) switching contacts, each with a parallel diode, which represents the parasitic or substrate diode of the FET in question.
  • FIG. 2 shows the basic circuit, namely the line separator LT1 and LT2, at their common connection point via a switch S a termination member in the form of a capacitor C is connected in series with a resistor R1 to the wires of the fieldbus.
  • the capacitor C may have a value of eg 100 nF to 330 nF and the resistor R1 a value 100 to 180 ohms.
  • the capacitor C is charged and discharged in the rhythm of the data pulses when the switch S is closed and consequently this subscriber is the last subscriber on a spur line.
  • R2 is high-impedance in relation to R1, because R2 loads the fieldbus with a DC-current when the switch S is closed.
  • the switch S is a semiconductor switch, eg correspondingly Fig. 3 a bipolar transistor T1 whose pass or blocking state is controlled by the microprocessor MCU.
  • the resistor R2 here also ensures that the transistor T1 has a defined operating point. Since the NPN transistor T1, when it is turned on, is conductive only in one direction, is located in opposite directions parallel to its emitter / collector path, a diode D1. As a result of the different forward voltages of the NPN transistor T1 and the diode D1, an asymmetry arises during charging and discharging of the capacitor C, which can discharge via the diode D1 only to about 0.6 to 0.7 V.
  • an N-channel MOSFET or a P-channel MOSFET can be used instead of the bipolar transistor T1.
  • the respective parasitic or substrate diode takes over the function of the diode D1.
  • the substrate diode may have a lower threshold voltage in the forward direction than the diode D1, but the threshold voltage of the substrate diode is, depending on the type of MOSFET, higher than the forward voltage of the source-drain path.
  • FIGS. 3a and 3b Such an asymmetry avoids the execution of the semiconductor switch according to the FIGS. 3a and 3b .
  • FIG. 3a two P-channel MOSFETs T2, T3 are connected in series, in FIG Fig. 3b two N-channel MOSFETs T4, T5. If the respective two MOSFETs are permeable, they conduct the current in both directions.
  • This disadvantage avoids the subscriber circuit according to Fig. 4 , It comprises two closing elements, namely a terminating element AG1 connected upstream of the line isolator LT1 from the center and a terminating element AG2 connected downstream of the line isolator LT2.
  • the two final members AG1 and AG2 are each dimensioned the same as the only final member in the FIGS. 2 and 3 , Analogous Fig. 3 the termination elements AG1 and AG2 are respectively turned on or off via an NPN transistor T6 or T7 with antiparallel diode D2 or D3.
  • the microprocessor MCU controls via separate outputs the switching state of the transistors T6 and T7 via diodes D4, D5 as overvoltage protection and the usual wiring the respective base with a resistance voltage divider.
  • Line disconnectors LT1 and LT2 can be switched together and remain open in the event of a fault.
  • the voltage supply of the subscriber and the communication with the control center are also ensured with open line disconnectors via the respective substrate diodes of the FETs, in this case that of the line disconnector LT1.
  • the transistors T6 and T7 can be individually controlled by the microprocessor.
  • the subscribers are designed for a relatively high operating voltage, eg in the range of 40 V, then in the circuit according to Fig. 4 in the event of a short-circuit fault and open line disconnectors LT1, LT2, the breakdown voltage of the emitter-base path of the transistor on the side of the short circuit is exceeded.
  • the subscriber circuits are in the Figures 5 . 6 and 7 more suitable.
  • the termination members AG 1 and AG 2 serve as switches for the termination members AG 1 and AG 2 here PNP transistors T8 and T9.
  • the NPN transistors T10 and T11 are controlled via separate outputs of the microprocessor MCU.
  • the circuit in FIG. 6 is different from the one in FIG. 5 only in that the NPN transistors T10, T11 are controlled via a common output of the microprocessor MCU. Because thus the termination elements AG1 and AG2 are turned on together, the line disconnectors LT1 and LT2 must be opened in case of an error by interruption, so that only one termination element, here the termination element AG1, becomes effective. As in the previous circuits, the command to open the line disconnectors LT1, LT2 may be generated by the central office or by the subscriber himself (if his microprocessor MCU is set up for this). In the event of an error due to a short circuit, however, a parallel connection of the closing elements AG1 and AG2 can not occur because the line isolators LT1 and LT2 remain open in any case.
  • the circuit according to FIG. 6 can in the in FIG. 7 illustrated manner be simplified.
  • the PNP transistors T8 and T9 are controlled in this embodiment by the microprocessor MCU via a common NPN transistor T12.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Alarm Systems (AREA)

Description

  • Die Erfindung betrifft eine Gefahrenmeldeanlage mit einer Zentrale, an die der Anfang und das Ende eines zweiadrigen Feldbusses zur Stromversorgung von und zur bidirektionalen Kommunikation mit Teilnehmern angeschlossen ist, die örtlich beabstandet und elektrisch parallel zwischen den Adern des Feldbusses liegen. Die Erfindung betrifft des Weiteren ein Verfahren zum Betreiben einer derartigen Gefahrenmeldeanlage nach dem Auftreten eines Fehlers im Zuge des Feldbusses oder in einem der angeschlossenen Teilnehmer.
  • Bei der Zentrale kann es sich im Fall größerer, hierarchisch gegliederter Gefahrenmeldeanlagen auch um eine Unterzentrale oder einen Koppler handeln. Zur Erhöhung der Ausfallsicherheit ist der Feldbus, der eine Länge von erheblich über 1 km haben kann, ringförmig zu der Zentrale zurückgeführt. Die an den Feldbus angeschlossenen Teilnehmer können sowohl Sensoren, z.B. Brand- oder Einbruchmelder als auch Aktoren, z.B. Warnleuchten, sein. Im Normalbetrieb erfolgen die Speisung und Kommunikation des Feldbusses bzw. der an diesen angeschlossene Teilnehmer über den Anfang des Feldbusses, der an seinem zur Zentrale zurückgeführten Ende ein Abschlussglied z.B. in Form eines Widerstandes oder eines aktiven Moduls hat, das eine Prüfung der Zweidrahtleitung insbesondere auf Kurzschluss oder Unterbrechung ermöglicht.
  • Beide Zustände können abrupt oder schleichend eintreten und werden im Folgenden kurz als Fehler bezeichnet. Es sind Verfahren bekannt, die in einem solchen Fehlerfall den Fehlerort lokalisieren und isolieren. Hierzu ist der Feldbus in jedem Teilnehmer über zwei schaltbare, in Serie liegende Leitungstrenner geführt, die die Zentrale bei einem Fehler im Bereich des Feldbusses oder eines Teilnehmers zunächst öffnet und anschließend, sowohl vom Anfang als auch vom Ende des Feldbusses beginnend, nacheinander bis zu den jeweils letzten Teilnehmern beidseits des Fehlerortes wieder schließt. Wenn der Fehler ein Kurzschluss ist, bleiben jedoch mindestens die auf der Seite des Fehlerortes liegenden Leitungstrenner der jeweils letzten Teilnehmer geöffnet. Anschließend wird der Feldbus nicht mehr im Ring sondern in Form von zwei Stichleitungen vom physikalischen Anfang und vom physikalischen Ende aus bis zum Fehlerort betrieben und die Gefahrenüberwachung fortgesetzt.
  • Diesseits wurde eine Gefahrenmeldeanlage entwickelt, bei der an den Feldbus auch Teilnehmer wie Videokameras, Mikrophone und Lautsprecher angeschlossen sein können, die eine hohe Datenübertragungsrate erfordern. Deshalb kommuniziert die Zentrale mit diesen Teilnehmern mit einer zweiten Datenübertragungsgeschwindigkeit, die höher als eine erste Datenübertragungsgeschwindigkeit für die gegebenenfalls priorisierte Kommunikation zwischen der Zentrale und z.B. den Meldern ist. Die Daten können von der Zentrale zu den Teilnehmern z.B. durch AMI- oder NRZ-Spannungsmodulation und in der umgekehrten Richtung durch entsprechende Strommodulation übertragen werden.
  • Im Folgenden werden die erste Datenübertragungsgeschwindigkeit als Low Speed Mode (LS-Betrieb) und die entsprechenden Teilnehmer als LS-Teilnehmer, die zweite, höhere Datenübertragungsgeschwindigkeit als High Speed Mode (HS-Betrieb) und die entsprechenden Teilnehmer als HS-Teilnehmer bezeichnet.
  • In dem oben genannten Fehlerfall schaltet die Zentrale das Abschlussglied ab um den Feldbus auch von dessen Ende her betreiben zu können. Ohne Abschlussglied ist zumindest im HS-Betrieb eine zuverlässige Kommunikation mit den Teilnehmern über die Stichleitungen nicht mehr gewährleistet, weil die Reflexionen der Signale die von den Teilnehmern empfangenen und gesendeten Signale bzw. Datenpakete so stark beeinträchtigen können, dass eine korrekte Dekodierung nicht mehr möglich ist.
  • EP 0 581 248 A1 und US 5 097 259 A zeigen Gefahrenmeldeanlagen gemäß dem Oberbegriff des Anspruchs 1.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Gefahrenmeldeanlage zu schaffen, bei der auch im Fehlerfall eine sichere Kommunikation zwischen der Zentrale und mindestens einigen der verbleibenden funktionsfähigen Teilnehmern gewährleistet ist.
  • Erfindungsgemäß wird diese Aufgabe durch die Gefahrenmeldeanlage nach Anspruch 1 und durch das Verfahren nach Anspruch 11 gelöst. Die Unteransprüche betreffen weitere vorteilhafte Ausgestaltungen der Erfindung.
  • Diese Aufgabe ist erfindungsgemäß dadurch gelöst, dass zumindest einige der Teilnehmer zwischen den beiden Adern des Feldbusses zumindest ein schaltbares RC-Abschlussglied haben, das im normalen Betrieb abgeschaltet und im Fehlerfall einschaltbar ist. Dadurch wird der Feldbus nur wechselspannungsmäßig belastet, d.h. in dem Abschlussglied entsteht ein Stromfluss nur während der Signalflanken
  • Im Fehlerfall wird das Abschlussglied des jeweils letzten damit ausgestatteten Teilnehmers am Ende der durch Isolation des Fehlerortes entstandenen beiden Stichleitungen angeschaltet. Weil der jeweils letzte physikalische Teilnehmer sowohl ein HS- als auch ein LS-Teilnehmer sein kann, sind vorzugsweise alle Teilnehmer mit einem derartigen Abschlussglied ausgestattet. Dadurch kann gegebenenfalls auch die Kommunikation im LS-Betrieb verbessert werden.
  • Zweckmäßig ist das Abschlussglied mittels eines Halbleiterschalters an- und abschaltbar. Grundsätzlich ist zwar das An- und Abschalten auch mittels eines Schaltkontaktes eines in den jeweiligen Teilnehmer integrierten Kleinstrelais möglich. Diese Variante ist jedoch in der Regel kostenmäßig und bezüglich des Platzbedarfes ungünstiger.
  • Der Halbleiterschalter kann ein Bipolartransistor mit einer antiparallel zu dessen Emitter/Kollektor-Strecke liegenden Diode sein. Die Diode ist notwendig, damit sich der Kondensator des RC-Gliedes im Takt der Kommunikationspulse nicht nur laden sondern auch wieder entladen kann.
  • Stattdessen kann als Halbleiterschalter ein FET eingesetzt werden. Dessen parasitäre oder Substratdiode übernimmt die Funktion der gesonderten Diode im Fall eines Bipolartransistors. Alternativ kann auch ein Doppel-FET (zwei in Serie liegende FETs) verwendet werden.
  • Den Schaltzustand der Abschlussglieder in den Teilnehmern kann die Zentrale nach Erkennung und Lokalisierung eines Fehlers durch Senden eines Befehls an den in jedem Teilnehmer ohnehin vorhandenen Mikroprozessor steuern, der seinerseits das An- und Abschalten des mindestens einen Abschlussgliedes und den Schaltzustand der Leitungstrenner steuert. Unabhängig davon kann der Mikroprozessor im Fehlerfall das im HS-Betrieb angeschaltete Abschlussglied jeweils bei LS-Betrieb abschalten um die für das Umladen des Kondensators des Abschlussgliedes benötigte Energie bzw. Speiseleistung der Stromversorgung aus der Zentrale einzusparen.
  • Stattdessen kann jeder der Teilnehmer eine Fehlererkennungsschaltung umfassen, die das Abschlussglied des Teilnehmers - gegebenenfalls nur im HS-Betrieb - anschaltet, sobald sie festgestellt hat, dass dieser Teilnehmer der letzte Teilnehmer am Ende der betreffenden Stichleitung des Feldbusses ist.
    Das Abschlussglied kann zwischen dem gemeinsamen Verbindungspunkt der beiden Leitungstrenner und der anderen Feldbusader liegen. In diesem Fall müssen die beiden Leitungstrenner unabhängig voneinander schaltbar sein, damit nach dem durch einen Fehler in Form eines Kurzschlusses ausgelösten Öffnen beider Leitungstrenner nur der von dem Fehlerort abgewandte, das heißt der Zentrale näher liegende Leitungstrenner wieder schließt. Das Öffnen und Schließen der jeweiligen Leitungstrenner kann von der Zentrale aus über einen Befehl erfolgen.
  • Jeder der Teilnehmer kann stattdessen ein den beiden Leitungstrennern vorgeschaltetes Abschlussglied und ein den Leitungstrennern nachgeschaltetes Abschlussglied zwischen den Adern des Feldbusses haben. Jedes dieser beiden Abschlussglieder je Teilnehmer kann wie vorstehend für ein einziges Abschlussglied angegeben ausgestaltet sein. Die beiden Leitungstrenner können gemeinsam und folglich mit dem gleichen Befehl geschaltet werden. Im Kurzschlussfall bleiben sie offen, damit der Kurzschluss abgetrennt bleibt. Im Fall einer Unterbrechung bleiben sie ebenfalls offen, damit das auf der Fehlerseite liegende Abschlussglied nicht parallel zu dem zentralenseitigen Abschlussglied liegt. Alternativ könnten die beiden Abschlussglieder im Fehlerfall durch Befehl von der Zentrale einzeln eingeschaltet werden, damit bei einem Fehler durch Unterbrechung und gemeinsamem Schließen der Leitungstrenner zum Aufbau der Stichleitungen nur das zentralenseitige Abschlussglied wirksam wird.
    Zweckmäßig umfasst das RC-Glied des Abschlussgliedes einen Parallelwiderstand zur Entladung dessen Kondensators. Dadurch wird verhindert, dass sich bei einer Unterbrechung einer der Adern der Zweidrahtleitung und dem darauf folgenden Anschalten des Abschlussgliedes dessen Kondensator, falls er geladen ist, über die Busleitung in Richtung der Zentrale entlädt und dadurch die Spannungspegel der Kommunikationspulse verfälscht. Unabhängig davon sorgt der Parallelwiderstand für einen definierten Arbeitspunkt des Halbleiterschalters zum An- und Abschalten des Abschlussgliedes.
    Die Erfindung wird nachfolgend anhand mehrerer Ausführungsbeispiele in Form von vereinfachten Schaltungen erläutert. Es zeigt:
  • Fig. 1a:
    ein Blockschaltbild einer Zentrale mit ringförmig angeschlossenem Feldbus im normalen Betrieb,
    Fig. 1b:
    das gleiche Blockschaltbild im Fall eines Fehlers auf dem Feldbus,
    Fig. 2 bis 7:
    mehrere Varianten von Teilnehmern mit Abschlussgliedern.
  • Figur 1a zeigt schematisch eine Zentrale 10, an die eine zweiadrige Feldbusleitung mit Teilnehmern 1 bis 8 angeschlossen ist. Die Teilnehmer 1 bis 8 können Sensoren wie Brandmelder oder Videokameras und Aktoren wie Warnleuchten oder Lautsprecher sein. Ein derartiger Feldbus kann z.B. über 100 derartige Teilnehmer umfassen und eine Länge von beispielsweise 2 km haben. Die Zentrale 10 versorgt die Teilnehmer mit ihrer Betriebsspannung und kommuniziert mit ihnen über die beiden Adern des Feldbusses. Hierzu ist der Feldbus mit seinem Anfang an die Anschlüsse A+ und A- der Zentrale 10 angeschlossen, durch alle Teilnehmer durchgeschleift und mit seinem Ende ringförmig zu weiteren Anschlüssen B+ und B- der Zentrale 10 zurückgeführt.
  • Jeder Teilnehmer hat in einer der Adern des Feldbusses zwei in Serie liegende Leitungstrenner sowie unter anderem ein Modem und einen Mikroprozessor. Mit Teilnehmern mit einem niedrigen Datenaufkommen kommuniziert die Zentrale in einem Low Speed Mode (LS-Betrieb), mit Teilnehmern mit hohem Datenaufkommen, z.B. einer Videokamera oder einem Lautsprecher in einem High Speed Mode (HS-Betrieb). Im normalen Betriebszustand ist das Ende des Feldbusses an den Anschlüssen B+ und B- der Zentrale 10 mit einem Abschlussglied abgeschlossen. Im LS-Betrieb kann das Abschlussglied aus einem Abschlusswiderstand bestehen, der eine einfache Prüfung des Feldbusses auf Kurzschluss oder Unterbrechung ermöglicht. Stattdessen kann das Abschlussglied ein aktives Endmodul sein, das z.B. auch eine Prüfung des Feldbusses auf unzulässig hohen Leitungswiderstand unter Lastbedingungen ermöglicht.
  • Zur Verringerung der Reflexion der steilflankigen Kommunikationssignale am Ende des Feldbusses im HS-Betrieb schaltet die Zentrale 10 als Abschlussglied das in Fig. 1a dargestellte RC-Glied R1, C ein oder von dem Abschlusswiderstand auf dieses RC-Glied um. Dadurch wird die Datenqualität und Übertragungssicherheit verbessert.
  • Figur 1b unterscheidet sich von Fig. 1a durch einen angenommenen Fehler in Form einer Unterbrechung zwischen dem Teilnehmer 4 und dem Teilnehmer 5. Wie an sich bekannt, schaltet die Zentrale 10 beim Eintreten eines derartigen Fehlers, das heißt sowohl im Fall einer Unterbrechung als auch im Fall eines Kurzschlusses, alle Teilnehmer ab und baut dann sowohl über den Anschluss A+, A- als auch über den Anschluss B+, B- die Betriebsspannungsversorgung und die Kommunikation mit den Teilnehmern bzw. verbliebenen Teilnehmern auf den beiden durch den Fehler entstandenen Stichleitungen wieder seriell auf. Der LS-Betrieb mit den LS-Teilnehmern ist im Prinzip auch ohne Abschlussglied möglich. Für einen HS-Betrieb müssen zumindest die jeweils letzten HS-Teilnehmer vor dem Ende jeder der beiden Stichleitungen ein Abschlussglied haben, welches das abgeschaltete Abschlussglied in der Zentrale 10 ersetzt. Weil der Fehlerort im Vorhinein nicht bekannt ist, muss folglich zumindest jeder HS-Teilnehmer mit einem Abschlussglied ausgestattet sein, das im normalen Betriebszustand entsprechend Fig. 1a unwirksam ist, jedoch eingeschaltet wird, wenn dieser Teilnehmer der "letzte" Teilnehmer wie in Fig. 1b der Teilnehmer 4 und der Teilnehmer 5 ist.
  • Für die Teilnehmer 4 und 5 ist dies in Fig. 1b symbolisch dargestellt. Weil zwischen dem Fehlerort und dem in Richtung der Zentrale 10 nächstgelegenen HS-Teilnehmer auch LS-Teilnehmer liegen können, die Stichleitungen jedoch möglichst nahe am Fehlerort abgeschlossen werden müssen, haben zweckmäßig alle Teilnehmer, das heißt auch die LS-Teilnehmer, ein schaltbares Abschlussglied. Das im Fehlerfall im HS-Betrieb eingeschaltete Abschlussglied des jeweils letzten Teilnehmers vor dem Fehlerort kann während des LS-Betriebes abgeschaltet werden, wenn sich dadurch die Kommunikation über den Feldbus im LS-Betrieb verbessert. Den in jedem Teilnehmer vorgesehenen Schalter für das Abschlussglied steuert die Zentrale 10, die während des seriellen Aufbaus jeder der beiden Stichleitungen erkennt, welcher Teilnehmer der letzte Teilnehmer vor dem Fehlerort ist, alternativ der Teilnehmer selbst, wenn er eine Fehlererkennungsschaltung umfasst, die erkennt, dass dieser Teilnehmer der letzte Teilnehmer der Stichleitung ist.
  • Die Figuren 2 bis 7 zeigen am Beispiel eines Teilnehmers Varianten der Beschaltung der Teilnehmer mit Abschlussgliedern. Von den übrigen, an sich bekannten Komponenten des Teilnehmers sind nur die beiden Leitungstrenner LT1 und LT2 der durch den Teilnehmer hindurchgeschleiften Feldbusleitung und der den Betriebszustand des Teilnehmers steuernde und die Kommunikation mit der Zentrale abwickelnde Mikroprozessor MCU, der auch den LS- oder HS-Betrieb und gegebenenfalls den Fehlerfall und Fehlerort erkennt, dargestellt. Die Leitungstrenner sind normalerweise zwei FETs, die symbolisch als (offene) Schaltkontakte mit jeweils einer parallelen Diode dargestellt sind, die die parasitäre oder Substratdiode des betreffenden FET verkörpert. Im folgenden wird angenommen, dass die Zentrale mit ihren Anschlüssen A+, A- links, der Fehlerort rechts von der jeweiligen Teilnehmerschaltung liegt. Funktionell besteht jedoch kein Unterschied, wenn der Fehlerort links und die Anschlüsse B+, B- rechts von dem Teilnehmer liegen; lediglich die Leitungstrenner LT1 und LT2, die im nicht angesteuerten Zustand dargestellt sind, vertauschen im Betrieb ihre Schaltzustände.
  • Figur 2 zeigt die Grundschaltung, nämlich die Leitungstrenner LT1 und LT2, an deren gemeinsamen Verbindungspunkt über einen Schalter S ein Abschlussglied in Form eines Kondensators C in Serie mit einem Widerstand R1 an die Adern des Feldbusses angeschlossen ist. Abhängig von der Datenübertragungsrate im HS-Betrieb von z.B. 50 bis 150 kbit/s kann der Kondensator C einen Wert von z.B. 100 nF bis 330 nF und der Widerstand R1 ein Wert 100 bis 180 Ohm haben. Der Kondensator C wird im Rhythmus der Datenpulse ge- und entladen, wenn der Schalter S geschlossen und folglich dieser Teilnehmer der letzte Teilnehmer auf einer Stichleitung ist. Parallel zu C, R1 liegt ein Widerstand R2 zur Entladung des Kondensators C bei geöffnetem Schalter S. R2 ist im Verhältnis zu R1 hochohmig, weil R2 bei geschlossenem Schalter S den Feldbus gleichstrommäßig belastet.
  • Der Schalter S ist ein Halbleiterschalter, z.B. entsprechend Fig. 3 ein Bipolartransistor T1, dessen Durchlaß- oder Sperrzustand der Mikroprozessor MCU steuert. Der Widerstand R2 sorgt hier auch dafür, dass der Transistor T1 einen definierten Arbeitspunkt hat. Weil der NPN-Transistor T1, wenn er durchgeschaltet ist, nur in einer Richtung leitend ist, liegt gegensinnig parallel zu seiner Emitter/Kollektor-Strecke eine Diode D1. Infolge der unterschiedlichen Durchlaßspannungen des NPN-Transistors T1 und der Diode D1 entsteht eine Unsymmetrie beim Laden und Entladen des Kondensators C, der sich über die Diode D1 nur bis auf ca. 0,6 bis 0,7 V entladen kann. Statt des Bipolartransistors T1 kann auch ein N-Kanal MOSFET oder ein P-Kanal MOSFET verwendet werden. Die jeweilige parasitäre oder Substratdiode übernimmt die Funktion der Diode D1. Die Substratdiode kann zwar in Durchlaßrichtung eine niedrigere Schwellenspannung als die Diode D1 haben, aber die Schwellenspannung der Substratdiode ist, abhängig von der Bauart des MOSFET, höher als die Durchlaßspannung der Source-Drain-Strecke.
  • Eine solche Unsymmetrie vermeidet die Ausführung des Halbleiterschalters entsprechend den Figuren 3a und 3b. In Figur 3a sind zwei P-Kanal MOSFETs T2, T3 in Serie geschaltet, in Fig. 3b zwei N-Kanal MOSFETs T4, T5. Wenn die jeweiligen beiden MOSFETS durchlässig geschaltet sind, leiten sie den Strom in beiden Richtungen.
  • Zum Aktivieren eines einzigen Abschlussgliedes gemäß den Figuren 2, 3, 3a und 3b muss nach dem auf das Auftreten des Fehlers folgenden Öffnen der beiden Leitungstrenner LT1 und LT2 der zentralenseitige Trenner LT1 zusammen mit dem Schließen des Halbleiterschalters S wieder schließen. Im Fall eines Fehlers durch Kurzschluss muss hingegen der zweite Leitungstrenner LT2 geöffnet bleiben, damit der Kurzschlussort aus dem Feldbus herausgetrennt ist. Deshalb müssen die beiden Leitungstrenner LT1 und LT2 einzeln schaltbar sein, entweder von der Zentrale 10 (s. Fig. 1a, 1b) durch Befehl oder von dem Teilnehmer selbst über dessen Mikroprozessor MCU.
  • Diesen Nachteil vermeidet die Teilnehmerschaltung gemäß Fig. 4. Sie umfasst zwei Abschlussglieder, nämlich ein dem Leitungstrenner LT1 von der Zentrale aus gesehen vorgeschaltetes Abschlussglied AG1 und ein dem Leitungstrenner LT2 nachgeschaltetes Abschlussglied AG2. Die beiden Abschlussglieder AG1 und AG2 sind jeweils genauso dimensioniert wie das einzige Abschlussglied in den Figuren 2 und 3. Analog Fig. 3 werden die Abschlussglieder AG1 und AG2 jeweils über einen NPN-Transistor T6 bzw. T7 mit antiparalleler Diode D2 bzw. D3 eingeschaltet oder ausgeschaltet. Der Mikroprozessor MCU steuert über getrennte Ausgänge den Schaltzustand der Transistoren T6 und T7 über Dioden D4, D5 als Überspannungsschutz und die übliche Beschaltung der jeweiligen Basis mit einem Widerstandsspannungsteiler. Die Leitungstrenner LT1 und LT2 können gemeinsam geschaltet werden und bleiben im Fehlerfall offen. Die Spannungsversorgung des Teilnehmers und die Kommunikation mit der Zentrale sind auch bei geöffneten Leitungstrennern über die jeweiligen Substratdioden der FETs, hier diejenige des Leitungstrenners LT1, gewährleistet. Die Transistoren T6 und T7 können von dem Mikroprozessor einzeln angesteuert werden.
  • Wenn die Teilnehmer für eine relativ hohe Betriebsspannung, z.B. im Bereich von 40 V, ausgelegt sind, kann bei der Schaltung gemäß Fig. 4 bei einem Fehler durch Kurzschluss und offenen Leitungstrennern LT1, LT2 die Durchbruchspannung der Emitter-Basis-Strecke des Transistors auf der Seite des Kurzschlusses überschritten werden.
  • Für den genannten Betriebsspannungsbereich sind die Teilnehmerschaltungen in den Figuren 5, 6 und 7 besser geeignet. Im Unterschied zu Figur 4 dienen als Schalter für die Abschlussglieder AG 1 bzw. AG 2 hier PNP-Transistoren T8 bzw. T9.
  • In den Ausführungsformen gemäß den Figuren 5 und 6 werden diese Schalttransistoren über NPN-Transistoren T10 bzw. T11 geschaltet, die im Durchlaßzustand einen konstanten Basis-strom für T8 bzw. T9 liefern. Im Sperrzustand halten die jeweiligen Basis-Emitter-Widerstände von T8 und T9 deren Basen auch im Kurzschlussfall auf Emitterpotential.
  • Bei der Schaltung in Figur 5 werden die NPN-Transistoren T10 bzw. T11 über getrennte Ausgänge des Mikroprozessors MCU gesteuert.
  • Die Schaltung in Figur 6 unterscheidet sich von derjenigen in Figur 5 nur dadurch, dass die NPN-Transistoren T10, T11 über einen gemeinsamen Ausgang des Mikroprozessors MCU gesteuert werden. Weil somit die Abschlussglieder AG1 und AG2 gemeinsam eingeschaltet werden, müssen bei einem Fehler durch Unterbrechung die Leitungstrenner LT1 und LT2 geöffnet werden, damit nur ein Abschlussglied, hier das Abschlussglied AG1, wirksam wird. Wie bei den vorhergehenden Schaltungen kann der Befehl zum Öffnen der Leitungstrenner LT1, LT2 von der Zentrale oder von dem Teilnehmer selbst (sofern sein Mikroprozessor MCU dafür eingerichtet ist) erzeugt werden. Bei einem Fehler durch Kurzschluss kann es hingegen zu einer Parallelschaltung der Abschlussglieder AG1 und AG2 nicht kommen, weil die Leitungstrenner LT1 und LT2 auf jeden Fall geöffnet bleiben.
  • Die Schaltung gemäß Figur 6 kann in der in Figur 7 dargestellten Weise vereinfacht werden. Die PNP-Transistoren T8 bzw. T9 werden in dieser Ausführungsform von dem Mikroprozessor MCU über einen gemeinsamen NPN-Transistor T12 gesteuert.

Claims (10)

  1. Gefahrenmeldeanlage mit
    einer Zentrale (10),
    einem zweiadrigen Feldbus, dessen Anfang und Ende an der Zentrale (10) angeschlossen sind,
    einer Mehrzahl von Teilnehmern (1 bis 8), die über den Feldbus mit der Zentrale (10) zur Stromversorgung und bidirektionalen Kommunikation verbunden sind,
    wobei die Teilnehmer (1 bis 8) zwei schaltbare, in einer Ader des Feldbusses in Serie liegende Leitungstrenner (LT1, LT2) aufweisen, durch welche der Feldbus jeweils durchgeschleift ist;
    wobei die Mehrzahl von Teilnehmern mindestens einen ersten Teilnehmer und mindestens einen zweiten Teilnehmer aufweisen, wobei der mindestens eine erste Teilnehmer ausgestaltet ist, um in einem Low Speed Mode, LS-Betrieb, mit einer niedrigen Datenübertragungsgeschwindigkeit mit der Zentrale zu kommunizieren, und wobei der mindestens eine zweite Teilnehmer ausgestaltet ist, um in einem High Speed Mode, HS-Betrieb, mit einer hohen Datenübertragungsgeschwindigkeit mit der Zentrale zu kommunizieren, wobei die Datenübertragungsgeschwindigkeit im High Speed Mode 50 kbit/s oder mehr ist;
    wobei die Gefahrenmeldenalage derart konfiguriert ist, dass die Zentrale im Fall eines Fehlers, sowie Kurzschluss oder Unterbrechung, im Bereich des Feldbusses oder eines Teilnehmers zunächst die Leitungstrenner (LT1, LT2) öffnet und anschließend, sowohl vom Anfang als auch vom Ende des Feldbusses beginnend, nacheinander bis zu den jeweils letzten Teilnehmern (4, 5) beidseits des Fehlerortes wieder schließt,
    wobei
    zumindest einige der Teilnehmer weiter ein schaltbares RC-Abschlussglied (R1, C; AG1, AG2), das zwischen den beiden Adern des Feldbusses vorgesehen ist, aufweisen;
    wobei die Gefahrenmeldeanlage konfiguriert ist, um das RC-Abschlussglied (R1, C; AG1, AG2) im normalen Betrieb abzuschalten und im Fehlerfall einzuschalten;
    und wobei das RC-Abschlussglied (R1, C; AG1, AG2) in Form eines Kondensators (C) in Serie mit einem Widerstand (R1) an die Adern des Feldbusses angeschlossen ist.
  2. Gefahrenmeldeanlage nach Anspruch 1, wobei die Gefahrenmeldeanlage konfiguriert ist, um im Fehlerfall das RC-Abschlussglied (R1, C; AG1, AG2) des jeweils letzten Teilnehmers (4, 5) beidseits des Fehlerortes einzuschalten.
  3. Gefahrenmeldeanlage nach Anspruch 1 oder 2, mit einem Halbleiterschalters (S), der angeordnet ist, um das Abschlussglied (AG1, AG2) an- und abzuschalten.
  4. Gefahrenmeldeanlage nach Anspruch 3, wobei der Halbleiterschalter ein Bipolartransistor (T1) mit einer antiparallel zu dessen Emitter/Kollektor-Strecke liegende Diode (D1) ist.
  5. Gefahrenmeldeanlage nach Anspruch 3, dadurch gekennzeichnet, dass der Halbleiterschalter (S) ein FET ist.
  6. Gefahrenmeldeanlage nach einem der Ansprüche 1 bis 5, wobei die Zentrale (10) ausgestaltet ist, um den Schaltzustand der Abschlussglieder (AG1, AG2) in den einzelnen Teilnehmern zu steuern.
  7. Gefahrenmeldeanlage nach einem der Ansprüche 1 bis 6, wobei das Abschlussglied (R1, C) zwischen dem gemeinsamen Verbindungspunkt der beiden Leitungstrenner (LT1, LT2) und der anderen Feldbusader liegt.
  8. Gefahrenmeldeanlage nach einem der Ansprüche 1 bis 6, wobei jeder der Teilnehmer ein den beiden Leitungstrennern (LT1, LT2) vorgeschaltetes Abschlussglied (AG1) und ein den beiden Leitungstrennern (LT1, LT2) nachgeschaltetes Abschlussglied (AG2) zwischen den Adern des Feldbusses hat.
  9. Gefahrenmeldeanlage nach einem der Ansprüche 1 bis 8, wobei das RC-Glied (R1,C) einen Parallelwiderstand (R2) zur Entladung des Kondensators (C) umfasst.
  10. Verfahren zum Betreiben einer Gefahrenmeldeanlage nach einem der Ansprüche 1 bis 9 mit einer ersten Datenübertragungsgeschwindigkeit und einer zweiten, höheren Datenübertragungsgeschwindigkeit der Kommunikation zwischen der Zentrale (10) und den Teilnehmern (1 bis 8), wobei im Fehlerfall nur bei einer Kommunikation mit der höheren Datenübertragungsgeschwindigkeit die RC-Abschlussglieder (R1, C; AG1, AG2) des jeweils letzten Teilnehmers (4, 5) beidseits des Fehlerortes eingeschaltet werden.
EP11170397.1A 2010-09-09 2011-06-17 Gefahrenmeldeanlage mit zwei Datenübertragungsgeschwindigkeiten Active EP2428942B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010044892A DE102010044892A1 (de) 2010-09-09 2010-09-09 Gefahrenmeldeanlage mit zwei Datenübertragungsgeschwindigkeiten

Publications (2)

Publication Number Publication Date
EP2428942A1 EP2428942A1 (de) 2012-03-14
EP2428942B1 true EP2428942B1 (de) 2019-01-16

Family

ID=44674131

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11170397.1A Active EP2428942B1 (de) 2010-09-09 2011-06-17 Gefahrenmeldeanlage mit zwei Datenübertragungsgeschwindigkeiten

Country Status (2)

Country Link
EP (1) EP2428942B1 (de)
DE (1) DE102010044892A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2833333B1 (de) * 2013-07-31 2018-12-19 Honeywell Life Safety Austria GmbH Bus-System und Verfahren zum Betreiben eines Bus-Systems
ES2632464T3 (es) * 2014-12-22 2017-09-13 Novar Gmbh Circuito de excitación, dispositivo maestro de bus, sistema de detecciones de incendios y sistema de alarma antirrobo que usan el circuito de excitación
DE102017116385B3 (de) 2017-07-20 2018-10-31 Beckhoff Automation Gmbh Feldbussystem
CN108932809A (zh) * 2018-08-01 2018-12-04 合肥阅辞科技有限公司 家居智能安防系统
EP3758179B1 (de) 2019-06-26 2023-11-29 Honeywell International Inc. Trennvorrichtung für ein bussystem, zentrale steuereinheit für das bussystem, bussystem und verfahren zum betreiben des bussystems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3012438A1 (de) * 1979-04-06 1980-10-16 Fuji Electric Co Ltd Daten-uebertragungs-system
EP2051220A1 (de) * 2007-10-17 2009-04-22 Siemens Building Technologies Fire & Security Products GmbH & Co. oHG Trennvorrichtung mit Energiespeicher für Energie führende elektrische Leitung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097259A (en) * 1990-06-18 1992-03-17 General Signal Corporation Line fault isolation system
US5400203A (en) * 1992-07-29 1995-03-21 Pittway Corporation, A Delaware Corporation Short circuit detector and isolator
DE19733760C2 (de) * 1997-08-05 1999-06-10 Mak System Gmbh Datenbusleitung mit Sende- und Empfangskomponenten
DE10310302B4 (de) * 2003-03-10 2007-05-16 Knorr Bremse Systeme Initialisierungsverfahren für eine Datenbusanordnung
DE102007047637B4 (de) * 2007-10-04 2014-04-30 R.Stahl Schaltgeräte GmbH Busabschlussbauteil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3012438A1 (de) * 1979-04-06 1980-10-16 Fuji Electric Co Ltd Daten-uebertragungs-system
EP2051220A1 (de) * 2007-10-17 2009-04-22 Siemens Building Technologies Fire & Security Products GmbH & Co. oHG Trennvorrichtung mit Energiespeicher für Energie führende elektrische Leitung

Also Published As

Publication number Publication date
DE102010044892A1 (de) 2012-03-15
EP2428942A1 (de) 2012-03-14

Similar Documents

Publication Publication Date Title
EP0412085B1 (de) Netzwerkschnittstelle
DE102010023549B4 (de) Photovoltaikgenerator mit Schaltungsanlage und Verfahren zum Schutz von Photovoltaikmodulen
WO2008025490A2 (de) Redundante stromversorgung mit diagnosefähigkeit und schutzbeschaltung
EP2428942B1 (de) Gefahrenmeldeanlage mit zwei Datenübertragungsgeschwindigkeiten
DE60005365T2 (de) Elektrische isolierungsvorrichtung mit optokoppler für bidirektionelle anschlussleitungen
EP2720051B1 (de) Sicherheitssystem
DE69412680T2 (de) Treiberschaltung für die Bus-Schaltung eines Kraftfahrzeug-Multiplex-Kommunikationssystems
DE10256631B4 (de) Verfarhen zur Adressierung der Teilnehmer eines Bussystems
DE69400046T2 (de) Verfahren und Anordnung zum Schutz eines seriellen Bus gegen Kurzschluss
WO2007017073A2 (de) Gebäudeleittechnik- oder gefahrenmeldeanlage
DE68919664T2 (de) Lastschalter für Elektrogeräte und Endgerät eines mit einem solchen Schalter versehenen Fernwirksystems.
EP2393073B1 (de) Verfahren zum Betreiben einer Gefahrenmeldeanlage
EP3028385B1 (de) Anordnung zum anschluss einer komponente an ein master- steuergerät eines kraftfahrzeugs
DE102015223626A1 (de) Steuerelektronik für ein land- oder forstwirtschaftliches Fahrzeug
DE3402633A1 (de) Schaltungsanordnung zum anschalten eines teilnehmers an eine busleitung
DE102018126787B4 (de) Ladestation für Elektrofahrzeuge mit mindestens zwei Ladeanschlüssen und einer wahlweise auf diese schaltbare Leistungselektronikeinheit
EP0643515A2 (de) Anordnung zur bidirektionalen Datenübertragung
EP0263246B1 (de) Explosionsgeschützter Multiplexer
EP0393224B1 (de) Schaltungsanordnung zur Temperaturüberwachung von in einem Halbleiterschaltkreis integrierten Leistungsschalttransistoren
DE102017219770B4 (de) Verfahren zum Betreiben einer Ethernet-Kommunikationseinrichtung und Ethernet-Kommunikationseinrichtung
DE102022126893A1 (de) Verfahren und Verschaltung zum Betrieb eines Netzwerks oder Netzwerkabschnitts
DE102019101331A1 (de) Busfähige Geräteanordnung mit einem schaltbaren Abschlusswiderstand
DE4322841C2 (de) Gefahrenmeldeanlage
EP0756773B1 (de) Verfahren und schaltungsanordnung zum energiearmen abfragen von binären zuständen über lange leitungen
AT500434B1 (de) Vorrichtung zur potentialgetrennten ankoppelung an ein zweidraht-feldbussystem

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120508

17Q First examination report despatched

Effective date: 20131021

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180720

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015290

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1090299

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015290

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

26N No opposition filed

Effective date: 20191017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190617

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1090299

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240618

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240627

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240625

Year of fee payment: 14