EP2427656A2 - Method and apparatus for storing mechanical energy by the quasi-isothermal expansion and compression of a gas - Google Patents

Method and apparatus for storing mechanical energy by the quasi-isothermal expansion and compression of a gas

Info

Publication number
EP2427656A2
EP2427656A2 EP10726147A EP10726147A EP2427656A2 EP 2427656 A2 EP2427656 A2 EP 2427656A2 EP 10726147 A EP10726147 A EP 10726147A EP 10726147 A EP10726147 A EP 10726147A EP 2427656 A2 EP2427656 A2 EP 2427656A2
Authority
EP
European Patent Office
Prior art keywords
gas
hydraulic fluid
compression
container
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10726147A
Other languages
German (de)
French (fr)
Inventor
Etienne Lebas
Alexandre Rojey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cogebio
Original Assignee
Cogebio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cogebio filed Critical Cogebio
Publication of EP2427656A2 publication Critical patent/EP2427656A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/003Systems for storing electric energy in the form of hydraulic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a system for storing energy, in particular mechanical energy, comprising a system for quasi-isothermal compression of a gas by means of a hydraulic fluid. The stored mechanical energy is then released by quasi-isothermal expansion of said gas.
  • the present invention also applies to the storage of electrical energy, especially from intermittent sources such as photovoltaic or wind energy. Surplus storage of electricity production can also be considered for use during peak consumption.
  • CAES Compressed Air Energy Storage
  • the present invention proposes to overcome the drawbacks mentioned above by means of a hydro-pneumatic storage system which makes it possible to obtain a high energy efficiency by using a system for storing the thermal energy produced during the compression phase of the gas. , this energy being restored during the expansion phase of the gas.
  • the invention relates to a system for storing energy, especially mechanical energy, comprising (a) at least one container containing a hydraulic fluid and a gas;
  • compression-triggering means capable of "pumping” hydraulic fluid pumping, and “triggering” mode of relieving hydraulic fluid; characterized in that (i) said hydraulic fluid and / or said gas contained in the at least one vessel is in thermal contact with a thermal energy storage medium contained in an enclosure;
  • said container is connected to said at least one storage enclosure by lines for conveying said hydraulic fluid from one to the other through said compression-expansion means;
  • said compression - expansion means is capable of pumping hydraulic fluid from the storage vessel to the vessel, and capable of expanding the contained hydraulic fluid. in said container to the storage chamber, generating mechanical energy.
  • Said compression - expansion means may be a reversible compression - expansion device, such as a hydraulic piston pump also functioning as a piston engine.
  • Said compression - expansion means may comprise means for transforming the generated mechanical energy into electrical energy.
  • the energy storage is obtained by compressing the gas contained in the at least one container by the hydraulic liquid which is pumped with said compression-expansion means.
  • Said at least one container may be constituted by any volume having a suitable exchange surface with the hydraulic fluid. It may be constituted for example by a tube or plate heat exchanger in which it occupies the compartments in heat exchange with those occupied by the hydraulic fluid. It may also be constituted by a tube or a plurality of tubes arranged in the storage volume of the hydraulic fluid. It may in particular be constituted by a spiral tube.
  • Said gas is a condensable gas, and preferably a gas selected from the group consisting of hydrocarbons, CO 2 , fluorinated hydrocarbons, fluorinated alkanes. It can also be a non-condensable gas such as nitrogen or ambient air.
  • Said thermal storage medium may comprise a phase change material.
  • Said at least one container may be located inside said enclosure, or it may be located outside said enclosure; in the latter case, it advantageously comprises a fluid loop which ensures a thermal contact between said medium of thermal storage of said enclosure and said hydraulic fluid contained in said container.
  • the system according to the invention comprises a first group of containers and a second group of containers, said gas is ambient air, and during the mechanical energy storage phase, said first and second Groups of containers operate alternately in air compression or air suction.
  • said container may comprise a contactor for improving the gas - liquid contact, and in this system:
  • the hydraulic fluid stored in the storage chamber is conveyed by a line to said compression-expansion means and then by a line to said container to compress the gas;
  • the gas is expanded by releasing the fluid by a line to the compression-expansion means and then by said line to the storage chamber.
  • said contactor makes it possible to maintain the quasi-isothermal gas and to transfer the calories to the hydraulic fluid, a fluid loop enabling the heat of the fluid to be conveyed to the thermal storage medium; in the energy recovery phase, the fluid loop makes it possible to restore the calories stored in the thermal storage medium to the hydraulic fluid.
  • system according to the invention further comprises a device for supplying the thermal storage medium with external thermal energy, such as a solar collector or a heat exchanger operating on combustion gases or other external sources of heat.
  • a device for supplying the thermal storage medium with external thermal energy such as a solar collector or a heat exchanger operating on combustion gases or other external sources of heat.
  • FIGS 1 to 10 refer to the invention and its various embodiments.
  • Figure 1 is a diagram illustrating the basic principle of the mechanical energy storage system.
  • FIG. 2 is a diagram of a first variant of the system of FIG. 1.
  • FIG. 3 is a diagram of a second variant of the system of FIG.
  • FIG. 4 is a diagram illustrating a variant of the system of FIG. 2.
  • Figure 5 is a diagram illustrating another embodiment of the storage enclosure.
  • Figure 6 is a diagram illustrating another variant of the system of Figure 1.
  • FIG. 7 is a detailed view illustrating an implementation possibility of the diagram of FIG. 1.
  • Figure 8 schematically illustrates a plate heat exchanger, which can be used in the context of the present invention.
  • Figure 9 is a diagram illustrating another variant of the system of Figure 1, wherein the storage chamber is at a lower level than the containers.
  • Fig. 10 is a diagram illustrating another embodiment of the invention, wherein the thermal storage medium is heated by a solar collector.
  • the mechanical energy is stored in a gas (1, 2, 3) which is compressed by means of a hydraulic fluid (4, 5, 6).
  • the compressed gas is contained in at least one container (14, 15, 16), and preferably in a plurality of containers (14, 15, 16) interconnected by a line (40).
  • the at least one container (14, 15, 16) is placed in the enclosure (11) which contains a thermal storage medium (10) capable of absorbing and returning the heat generated by the compression of the gas (1, 2, 3) keeping it sufficiently isothermal.
  • the hydraulic fluid (9) is stored in the storage chamber (13), it is conveyed by the line (8) to a compression - expansion means which is preferably a reversible device P-T (17).
  • Said compression device - reversible expansion (17) is capable of either pumping the hydraulic fluid (9) receiving a quantity of mechanical energy W, which leads to the compression of the gas (1, 2, 3), or to relax the fluid (4, 5, 6) conveyed by the line (7) producing a quantity of mechanical energy W; advantageously, it has means for converting this mechanical energy into electrical energy.
  • These devices have a very high efficiency, generally greater than 90%.
  • it may be a hydraulic piston pump also functioning as a piston engine, or a deformable diamond rotary machine, known for example from US Pat. No. 3,295,50 (Jordan).
  • said compression-expansion means is constituted by a circuit which comprises, in parallel, a device (P1) capable of pumping the hydraulic fluid (9) while receiving a quantity of mechanical energy W, and a device (T1) for producing a quantity of mechanical energy W by relaxing the fluid (4, 5, 6) conveyed by the line (7); two pairs of valves (V51, V52, V53, V54) make it possible to select either the "compression” mode or the "relaxation" mode.
  • these two compression-expansion means can be used interchangeably; for simplicity, we will describe the invention later referring to us as means of compression - relaxation to the compression device - reversible expansion (17).
  • the gas (1, 2, 3) is air and if the air pressure (1, 2, 3) in the containers (14, 15, 16) becomes during the expansion of the hydraulic fluid (9) lower than the atmospheric pressure, air can be introduced from the outside into the containers (14, 15, 16) by means of a valve.
  • the enclosure (11) is preferably surrounded by a thermal insulator (12).
  • the hydraulic fluid (4, 5, 6, 9) is generally a liquid, and preferably consists of an aqueous phase, water or glycol water to avoid the risk of freezing. It can also be an organic phase, such as glycol, a mineral oil, an ester, a vegetable oil or phosphate esters.
  • the gas (1, 2, 3) may be a permanent gas such as air or nitrogen. It can also be another gas such as CO 2 or an organic fluid.
  • the thermal storage medium (10) may consist of a liquid (aqueous or organic) and / or of a solid phase optionally phase-change.
  • the fluid (1, 2, 3) is a condensable fluid, and the compression and expansion is performed on a two-phase fluid; this will be explained below.
  • the advantage of this variant is that it makes it possible to maintain a stable pressure in the containers (14, 15, 16).
  • FIG. 3 shows a block diagram of a variant of the invention.
  • the thermal storage medium (10) is constituted at least in part by the hydraulic fluid (9) used for the compression of the gas (1, 2, 3).
  • the hydraulic fluid volume (9) is easily able to maintain the air volume under substantially isothermal conditions. Indeed, if the air is initially at atmospheric pressure (the storage being operated for example between the atmospheric pressure and 200 to 600 bar), the MCp coefficient of air for a given volume is 1, 2/4200 times lower than the coefficient MCp of the same volume of water needed to move it.
  • the gas (1, 2, 3) is condensable.
  • the fluid (1, 2, 3) may consist of a hydrocarbon or a fluid such as ammonia or CO 2 .
  • This condensable gas must not be miscible with the hydraulic fluid, so that the vapor pressure above the liquid phase resulting from the condensation of said gas (1, 2, 3) is always the saturation pressure.
  • the pressure in the containers (14, 15, 16) remains constant, which facilitates the operating conditions of the reversible compression-expansion device (17) and prevents a decrease in efficiency of said compression device - trigger (17).
  • Figure 4 shows a variant of the method according to the invention as illustrated in Figure 3, which is distinguished by the use of an open cycle instead of a closed cycle.
  • the gas used for storing energy is air taken from the environment by the line (18). This gas, once compressed, is stored in the storage chamber (35).
  • This storage enclosure (35) may be constituted by an underground cavity, natural or artificial.
  • the storage system according to the variant illustrated in FIG. 4 operates with at least two containers (B1, B2). During the mechanical energy storage phase, said containers (B1) and (B2) operate alternately in air compression or air suction. In a first step, while the first container (B1) draws air into the environment through the line (18), the second container (B2) compresses the air (20) via the fluid (21). ) pumped by the equipment (KT1). The compressed air (20) is then directed to the storage chamber (35) by the line (19).
  • the first container (B1) compresses the air (30) via the fluid (31). ) pumped by the equipment (KT1). The compressed air (30) is then directed to the storage enclosure (35) via the line (19).
  • the isolated enclosure (1 1) allows the storage of the thermal energy released during compression of the gas in the thermal storage medium (IO). This energy storage makes it possible to maintain the temperature of the first and second containers (B1, B2) almost constant during the mechanical energy storage phase.
  • the first and second containers (B1, B2) also function alternately.
  • the compressed air contained in the storage chamber (35) is directed towards the second container (B2) via the line (19).
  • the second container (B2) expands the air (20) through the fluid (21) expanded by the equipment (KT1).
  • the first container (B1) discharges air into the environment by the line (18).
  • the compressed air contained in the storage chamber (35) is directed towards the first container (B1) by the line (19).
  • the first container (B1) expels the air (30) through the hydraulic fluid (31) expanded by the equipment (KT1).
  • the second container (B2) expels air into the environment through the line (18).
  • the thermal energy stored during the compression phase in the thermal storage medium (10) makes it possible to maintain the temperature of said first and second containers (B1, B2) during the expansion phase.
  • the thermal equilibrium ensuring the isothermal nature of compression and expansion can be achieved by any type of device intended to promote the thermal exchange between the hydraulic fluids (21) and (31) and the thermal storage medium (10) such as a coil, not shown in FIG. 4.
  • the circulation carried out at the time of compression and expansion may contribute to homogenizing the temperatures. Additional means of circulation or mixing can be introduced for this purpose.
  • FIG. 6 differs from the diagram illustrated in FIG. 1 by the use of an indirect transfer of the thermal energy released during the compression of the gas towards the enclosure (11).
  • a recirculation loop (42) of the hydraulic fluid can also be activated by the use of a recirculation pump (49).
  • the hydraulic fluid (9) stored in the storage chamber (13) is conveyed via the line (8) to the pump (17) and then via the line (42). to the container (43) to compress the gas (48).
  • the switch (44) maintains the quasi-isothermal gas and transfers the calories to the hydraulic fluid (47).
  • a fluid loop (45) conveys the calories of the fluid (47) to the thermal storage medium (10).
  • the gas (48) is expanded by releasing the fluid (47) via the line (41) to the compression device - reversible expansion (17) and then by the line (8) to the storage enclosure (13).
  • the recirculation of the hydraulic fluid (47) activated by the pump (46) makes it possible to maintain the temperature of the gas (48) almost constant.
  • the fluid loop (45) makes it possible to restore the calories stored in the thermal storage medium (10) to the hydraulic fluid (47).
  • FIG. 7 shows an exemplary embodiment of the containers (14, 15, 16) of FIGS. 1 or 2 which can each be made in the form of a tube, preferably spirally wound.
  • a tube makes it easier to produce pressure vessels and facilitates heat exchange with the heat exchange medium (10).
  • the storage chamber (35) is made in the form of one or more straight tubes, stacked or not, connected to each other (see FIG. 5).
  • the use of tubes is advantageous because a tube is a hollow body capable of withstanding a high internal pressure which has a very simple shape and which can easily be made without welding by spinning processes.
  • a bundle of straight tubes is particularly suitable for large storage systems. For example, a bundle of nine straight steel tubes with a diameter of 122 cm and a length of 10 meters can store about 105 m 3 of air; there are steel grades for making such tubes that withstand an internal pressure of more than 250 bar.
  • the container (14, 15, 16) may also consist of a plate heat exchanger (60) as shown in FIG. 8.
  • a plate heat exchanger makes it possible to develop a large exchange surface between two thermal media in a small volume .
  • Such an exchanger can typically consist of a stack consisting of a plurality of flat plates (63) and a plurality of corrugated plates (64, 65), which thus form two channel networks (61, 62).
  • In each of said channel networks can flow a fluid.
  • One of the fluids is the hydraulic fluid (4, 5, 6) with the gas (1, 2, 3), and the other fluid is the fluid that constitutes the thermal storage medium (10).
  • a cross-flow or countercurrent configuration is used.
  • Cross flow embodiment is shown in Figure 8, in which the channels formed by two adjoining corrugated sheets are rotated 90 e.
  • FIG. 9 differs from the diagram illustrated in FIG. 1 by a particular location of the enclosure (11) with respect to the storage enclosure (13). It is indeed possible to combine the principle of a hydro-pneumatic storage with that of a gravity storage: in this variant, the hydraulic fluid (4, 5, 6) contained in the containers (14, 15, 16) drops by gravity through the line (7) and the compression device - reversible expansion (17) in the storage chamber (13) which is at a lower level with respect to the enclosure (11).
  • the pump (17) must supply more mechanical energy (W ") to raise the hydraulic fluid (9) and compress the gas (1, 2, 3). phases of restitution of energy, the relaxation of gas (1, 2, 3) is coupled to the hydraulic fluid level (4, 5, 6) to provide a mechanical energy W ".
  • FIG. 10 schematically shows another embodiment of the invention in which, before the expansion phase of the gas (1, 2, 3), a thermal energy external to said gas is supplied.
  • This external thermal energy can come from different external sources.
  • a solar collector (52) as external source of thermal energy, which is connected to a heat exchange coil (53) containing a heat transfer fluid and which is immersed in the storage medium (10) contained in a balloon (51).
  • the storage of the compressed air is also inside a coil (54), and the storage medium (10) is the hydraulic fluid itself.
  • the storage medium (10) is heated by a solar collector (52), or by a heat source with a small difference in temperature, knowing that it is one of the special features of the quasi-isothermal system and method according to the invention to be able to value the calories that are brought to it with a very small difference in temperature: if the storage medium (10) is heated by one degree, this already makes it possible to create a significant and usable pressure in the gas (1, 2, 3), which can be converted with high efficiency into mechanical energy via the compression-expansion means.
  • This embodiment makes it possible, after compression of the gas (1, 2, 3), to heat the thermal storage medium (10) via the solar collector (52). This thermal energy is transferred to the gas (1, 2, 3) by said thermal storage medium (10) and causes an increase in its pressure, which can be converted, with a high efficiency, into additional mechanical energy.
  • Example 1 illustrated with reference to FIG. 1, illustrates a first configuration of implementation of the invention.
  • the captive gas (1, 2, 3) is nitrogen contained in 3 cylinders of 1 m 3 .
  • the total mass of nitrogen is 344 kg.
  • Example 2 described with reference to FIGS. 1 and 7 illustrates a second embodiment of the invention.
  • the captive gas (1, 2, 3) is nitrogen contained in 3 coiled tubes as shown in Figure 7.
  • Each tube may contain a gas volume of 1 m 3 .
  • the total mass of nitrogen is 344 kg. It is initially at a pressure of 100 bar and at a temperature of 20 ° C.
  • water is pumped into the containers (14, 15, 16) with a flow rate of 1, 96 m 3 / h.
  • the containers (14, 15, 16) having a large contact surface with the medium (10), the gas (1, 2, 3) heats very little during this compression phase.
  • the gas pressure is 360 bar and its temperature is 40 ° C.
  • This step stores 9.4 kWh of mechanical energy.
  • the system goes into decompression phase by withdrawing an identical flow rate of 2 m 3 / h of water containers (14, 15, 16).
  • the gas found a pressure of 100 bar and a temperature of 17 ° C.
  • This second phase allows to recover 9.0 kWh of mechanical energy. The efficiency of the system is therefore 96%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

The invention relates to a system for storing energy, in particular mechanical energy, comprising a series of containers (14, 15, 16) inside an insulated chamber (11), a medium (10) for storing thermal energy, a tank (13) containing a hydraulic fluid (9) and a system for the pumping-expansion of said fluid (17). According to the invention, energy storage is achieved by compressing the gas (1, 2, 3) contained in the containers (14, 15, 16) by pumping the liquid (9) using the apparatus (17). The heat released by compressing the gas is stored in the medium (10).

Description

Procédé et équipement de stockage d'énergie mécanique par compression et détente quasi-isotherme d'un gaz Process and equipment for storing mechanical energy by compression and quasi-isothermal expansion of a gas
Domaine techniqueTechnical area
La présente invention se rapporte à un système de stockage d'énergie, notamment d'énergie mécanique, comprenant un système de compression quasi- isotherme d'un gaz par l'intermédiaire d'un fluide hydraulique. L'énergie mécanique stockée est ensuite libérée par détente quasi-isotherme dudit gaz.The present invention relates to a system for storing energy, in particular mechanical energy, comprising a system for quasi-isothermal compression of a gas by means of a hydraulic fluid. The stored mechanical energy is then released by quasi-isothermal expansion of said gas.
La présente invention s'applique également au stockage d'énergie électrique, notamment en provenance de sources intermittentes comme l'énergie photovoltaïque ou éolienne. Le stockage de surplus de production électrique peut aussi être considéré pour une utilisation lors des pics de consommation.The present invention also applies to the storage of electrical energy, especially from intermittent sources such as photovoltaic or wind energy. Surplus storage of electricity production can also be considered for use during peak consumption.
Etat de la techniqueState of the art
II existe plusieurs systèmes de stockage d'énergie utilisables pour ces applications à différentes échelles de puissance. A petite échelle, les systèmes électrochimiques de type batteries et supercondensateurs peuvent être utilisés. Ces systèmes présentent néanmoins un certain nombre d'inconvénients. Les batteries représentent un danger pour l'environnement et ont une durée de vie limitée. Les supercondensateurs ont une densité d'énergie insuffisante pour la plupart des applications. A plus grande échelle, le stockage d'eau dans un réservoir en élévation présente une bonne option. L'eau peut être libérée au moment choisi et générer de l'électricité par l'intermédiaire de turbines. La principale limitation de cette technique est le faible nombre de sites adaptables sans travaux lourds et coûteux.There are several energy storage systems that can be used for these applications at different power scales. On a small scale, electrochemical systems such as batteries and supercapacitors can be used. These systems nevertheless have a number of disadvantages. Batteries are a danger to the environment and have a limited life. Supercapacitors have insufficient energy density for most applications. On a larger scale, the storage of water in a tank in elevation presents a good option. Water can be released at the chosen time and generate electricity through turbines. The main limitation of this technique is the low number of adaptable sites without heavy and expensive work.
Le stockage d'air comprimé dans une cavité souterraine (connu parfois sous le sigle CAES = Compressed Air Energy Storage), est également une alternative intéressante ; cela a été envisagé dans les brevets US 4,885,912 (Gibbs & HiII, Inc.), US 3,996,741 (George M. Herberg) et dans les demandes de brevet WO 93/06367 (Arnold Grupping) et EP 106 690 (Shell International Research). Par contre, le nombre de sites disponibles est très limité et une mise en oeuvre économiquement rentable requiert le couplage à un cycle combiné. Cela conduit à des installations de très grandes tailles, aux investissements très lourds. De plus cette solution implique la consommation d'énergies fossiles, et son rendement est faible. Enfin, une autre alternative est le stockage hydro-pneumatique où la compression d'un gaz est réalisée au travers du pompage d'un liquide. Mais ce type de technologie doit être améliorée pour en augmenter le rendement et en diminuer le coût.The storage of compressed air in an underground cavity (sometimes known as CAES = Compressed Air Energy Storage), is also an interesting alternative; this has been envisaged in US Patents 4,885,912 (Gibbs & HiII, Inc.), US 3,996,741 (George M. Herberg) and in Patent Applications WO 93/06367 (Arnold Grupping) and EP 106 690 (Shell International Research). On the other hand, the number of sites available is very limited and an economically profitable implementation requires the coupling to a combined cycle. This leads to very large installations, with very heavy investments. Moreover this solution involves the consumption of fossil fuels, and its yield is low. Finally, another alternative is the hydro-pneumatic storage where the compression of a gas is achieved through the pumping of a liquid. But this type of technology needs to be improved in order to increase the yield and reduce the cost.
Il est déjà connu, notamment par le document WO 2008/139267 (Ecole Polytechnique Fédérale de Lausanne), un tel système qui utilise, en tant que dispositif de compression du gaz, un système de piston liquide. Un pulvérisateur ou une grille intégrée dans la partie haute de la chambre assure le contact gaz - liquide pendant les phases de compression et de détente du gaz de façon à maintenir des conditions quasi-isothermes. Dans ce système l'énergie thermique dégagée pendant la phase de compression est évacuée à l'atmosphère par l'intermédiaire d'un échangeur. Ce même échangeur sert à apporter des calories pendant la phase de détente du gaz.It is already known, in particular from the document WO 2008/139267 (Ecole Polytechnique Fédérale de Lausanne), such a system which uses, as a device for compressing the gas, a liquid piston system. A sprayer or grid integrated in the upper part of the chamber ensures the gas-liquid contact during the compression and expansion phases of the gas so as to maintain quasi-isothermal conditions. In this system the thermal energy released during the compression phase is discharged to the atmosphere via an exchanger. This same exchanger is used to provide calories during the expansion phase of the gas.
Ce type de système bien que donnant satisfaction présente néanmoins des inconvénients non négligeables. En effet, l'efficacité de ce type de stockage reste limitée notamment en raison de la perte énergétique que constitue l'évacuation des calories durant la phase de compression du gaz. En outre, la phase de restitution de l'énergie stockée s'accompagne d'un refroidissement du liquide liée à la détente du gaz. Il est donc nécessaire de dépenser une quantité d'énergie non négligeable pour assurer une détente isotherme du gaz.This type of system, although satisfactory, nevertheless has significant disadvantages. Indeed, the effectiveness of this type of storage is limited especially because of the energy loss that is the evacuation of calories during the compression phase of the gas. In addition, the restitution phase of the stored energy is accompanied by a cooling of the liquid associated with the expansion of the gas. It is therefore necessary to spend a significant amount of energy to ensure isothermal expansion of the gas.
La présente invention se propose de remédier aux inconvénients mentionnés ci- dessus grâce à un système de stockage hydro-pneumatique qui permette d'obtenir un haut rendement énergétique en utilisant un système de stockage de l'énergie thermique produite pendant la phase de compression du gaz, cette énergie étant restituée lors de la phase de détente du gaz.The present invention proposes to overcome the drawbacks mentioned above by means of a hydro-pneumatic storage system which makes it possible to obtain a high energy efficiency by using a system for storing the thermal energy produced during the compression phase of the gas. , this energy being restored during the expansion phase of the gas.
Objet de l'inventionObject of the invention
L'invention a pour objet un système de stockage d'énergie, notamment d'énergie mécanique, comportant (a) au moins un récipient contenant un fluide hydraulique et un gaz ;The invention relates to a system for storing energy, especially mechanical energy, comprising (a) at least one container containing a hydraulic fluid and a gas;
(b) au moins une enceinte de stockage contenant du fluide hydraulique ;(b) at least one storage chamber containing hydraulic fluid;
(c) un moyen de compression - détente capable en mode « compression » de pomper du fluide hydraulique, et en mode « détente » de détendre du liquide hydraulique ; caractérisé en ce que (i) ledit fluide hydraulique et/ou ledit gaz contenu dans le au moins un récipient est en contact thermique avec un milieu de stockage d'énergie thermique contenu dans une enceinte ;(c) compression-triggering means capable of "pumping" hydraulic fluid pumping, and "triggering" mode of relieving hydraulic fluid; characterized in that (i) said hydraulic fluid and / or said gas contained in the at least one vessel is in thermal contact with a thermal energy storage medium contained in an enclosure;
(ii) ledit récipient est relié à ladite au moins une enceinte de stockage par des lignes permettant de transporter ledit fluide hydraulique de l'un à l'autre, à travers ledit moyen de compression - détente ;(ii) said container is connected to said at least one storage enclosure by lines for conveying said hydraulic fluid from one to the other through said compression-expansion means;
(iii) ledit moyen de compression - détente est capable de pomper du fluide hydraulique de l'enceinte de stockage vers le récipient, et capable de détendre le liquide hydraulique contenu. dans ledit récipient vers l'enceinte de stockage, en générant de l'énergie mécanique.(iii) said compression - expansion means is capable of pumping hydraulic fluid from the storage vessel to the vessel, and capable of expanding the contained hydraulic fluid. in said container to the storage chamber, generating mechanical energy.
Ledit moyen de compression - détente peut être un dispositif de compression - détente réversible, tel qu'une pompe hydraulique à pistons fonctionnant également comme moteur à pistons. Ledit moyen de compression - détente peut comporter des moyens pour transformer l'énergie mécanique générée en énergie électrique.Said compression - expansion means may be a reversible compression - expansion device, such as a hydraulic piston pump also functioning as a piston engine. Said compression - expansion means may comprise means for transforming the generated mechanical energy into electrical energy.
Dans ce système de stockage d'énergie mécanique, le stockage d'énergie est obtenu par compression du gaz contenu dans le au moins un récipient par le liquide hydraulique qui est pompé avec ledit moyen de compression - détente.In this mechanical energy storage system, the energy storage is obtained by compressing the gas contained in the at least one container by the hydraulic liquid which is pumped with said compression-expansion means.
Ledit au moins un récipient peut être constitué par tout volume comportant une surface d'échange adéquate avec le fluide hydraulique. Il peut être constitué par exemple par un échangeur de chaleur à tubes ou à plaques dans lequel il occupe les compartiments en échange thermique avec ceux qui sont occupés par le fluide hydraulique. Il peut être aussi constitué par un tube ou une pluralité de tubes disposé(s) dans le volume de stockage du fluide hydraulique. Il peut notamment être constitué par un tube en spirale.Said at least one container may be constituted by any volume having a suitable exchange surface with the hydraulic fluid. It may be constituted for example by a tube or plate heat exchanger in which it occupies the compartments in heat exchange with those occupied by the hydraulic fluid. It may also be constituted by a tube or a plurality of tubes arranged in the storage volume of the hydraulic fluid. It may in particular be constituted by a spiral tube.
Ledit gaz est un gaz condensable, et de préférence un gaz sélectionné dans le groupe constitué par les hydrocarbures, le CO2, les hydrocarbures fluorés, les alcanes fluorés. II peut aussi être un gaz non condensable tel que de l'azote ou de l'air ambiant.Said gas is a condensable gas, and preferably a gas selected from the group consisting of hydrocarbons, CO 2 , fluorinated hydrocarbons, fluorinated alkanes. It can also be a non-condensable gas such as nitrogen or ambient air.
Ledit milieu de stockage thermique peut comporter un matériau à changement de phase.Said thermal storage medium may comprise a phase change material.
Ledit au moins un récipient peut être situé à l'intérieur de ladite enceinte, ou il peut être situé à l'extérieur de ladite enceinte ; dans ce dernier cas, il comporte avantageusement une boucle de fluide qui assure un contact thermique entre ledit milieu de stockage thermique de ladite enceinte et ledit fluide hydraulique contenu dans ledit récipient.Said at least one container may be located inside said enclosure, or it may be located outside said enclosure; in the latter case, it advantageously comprises a fluid loop which ensures a thermal contact between said medium of thermal storage of said enclosure and said hydraulic fluid contained in said container.
Dans un mode de réalisation particulier, le système selon l'invention comporte un premier groupe de récipients et un second groupe de récipients, ledit gaz est de l'air ambiant, et pendant la phase de stockage d'énergie mécanique, lesdits premier et second groupes de récipients fonctionnent alternativement en compression d'air ou en aspiration d'air.In a particular embodiment, the system according to the invention comprises a first group of containers and a second group of containers, said gas is ambient air, and during the mechanical energy storage phase, said first and second Groups of containers operate alternately in air compression or air suction.
Dans ce mode de réalisation, ledit récipient peut comporter un contacteur pour améliorer le contact gaz - liquide, et dans ce système :In this embodiment, said container may comprise a contactor for improving the gas - liquid contact, and in this system:
- en phase de stockage d'énergie mécanique, le fluide hydraulique stocké dans l'enceinte de stockage est acheminé par une ligne vers ledit moyen de compression - détente puis par une ligne vers ledit récipient afin de comprimer le gaz ; - en phase de restitution d'énergie mécanique, le gaz est détendu en libérant le fluide par une ligne vers le moyen de compression - détente puis par ladite ligne vers l'enceinte de stockage.- In the mechanical energy storage phase, the hydraulic fluid stored in the storage chamber is conveyed by a line to said compression-expansion means and then by a line to said container to compress the gas; - In the mechanical energy recovery phase, the gas is expanded by releasing the fluid by a line to the compression-expansion means and then by said line to the storage chamber.
En phase de stockage d'énergie, ledit contacteur permet de maintenir le gaz quasi- isotherme et de transférer les calories vers le fluide hydraulique, une boucle de fluide permettant de véhiculer les calories du fluide vers le milieu de stockage thermique ; en phase de restitution d'énergie, la boucle de fluide permet de restituer les calories stockées dans le milieu de stockage thermique au fluide hydraulique.During the energy storage phase, said contactor makes it possible to maintain the quasi-isothermal gas and to transfer the calories to the hydraulic fluid, a fluid loop enabling the heat of the fluid to be conveyed to the thermal storage medium; in the energy recovery phase, the fluid loop makes it possible to restore the calories stored in the thermal storage medium to the hydraulic fluid.
Dans un autre mode de réalisation particulier, le système selon l'invention comprend en plus un dispositif permettant d'apporter au milieu de stockage thermique une énergie thermique externe, tel qu'un collecteur solaire ou un échangeur thermique fonctionnant sur des gaz de combustion ou d'autres sources de chaleur externes.In another particular embodiment, the system according to the invention further comprises a device for supplying the thermal storage medium with external thermal energy, such as a solar collector or a heat exchanger operating on combustion gases or other external sources of heat.
Figuresfigures
Les figures 1 à 10 se réfèrent à l'invention et ses différents modes de réalisation.Figures 1 to 10 refer to the invention and its various embodiments.
La figure 1 est un schéma illustrant le principe de base du système de stockage d'énergie mécanique.Figure 1 is a diagram illustrating the basic principle of the mechanical energy storage system.
La figure 2 est un schéma d'une première variante du système de la figure 1. La figure 3 est un schéma d'une seconde variante du système de la figure 1.FIG. 2 is a diagram of a first variant of the system of FIG. 1. FIG. 3 is a diagram of a second variant of the system of FIG.
La figure 4 est un schéma illustrant une variante du système de la figure 2. La figure 5 est un schéma illustrant un autre mode de réalisation de l'enceinte de stockage.FIG. 4 is a diagram illustrating a variant of the system of FIG. 2. Figure 5 is a diagram illustrating another embodiment of the storage enclosure.
La figure 6 est un schéma illustrant une autre variante du système de la figure 1.Figure 6 is a diagram illustrating another variant of the system of Figure 1.
La figure 7 est une vue de détail illustrant une possibilité de mise en oeuvre du schéma de la figure 1.FIG. 7 is a detailed view illustrating an implementation possibility of the diagram of FIG. 1.
La figure 8 illustre de manière schématique un échangeur à plaques, pouvant être utilisé dans le cadre de la présente invention.Figure 8 schematically illustrates a plate heat exchanger, which can be used in the context of the present invention.
La figure 9 est un schéma illustrant une autre variante du système de la figure 1 , dans laquelle l'enceinte de stockage se situe à un niveau plus bas que les récipients.Figure 9 is a diagram illustrating another variant of the system of Figure 1, wherein the storage chamber is at a lower level than the containers.
La figure 10 est un schéma illustrant un autre mode de réalisation de l'invention, dans lequel le milieu de stockage thermique est chauffé par un collecteur solaire.Fig. 10 is a diagram illustrating another embodiment of the invention, wherein the thermal storage medium is heated by a solar collector.
Liste des repères utilisés sur les figuresList of landmarks used in the figures
Description détaillée Selon l'invention illustrée sur la figure 1 , l'énergie mécanique est stockée dans un gaz (1 , 2, 3) qui est comprimé au moyen d'un fluide hydraulique (4, 5, 6). Le gaz comprimé est contenu dans au moins un récipient (14, 15, 16), et de préférence dans une pluralité de récipients (14, 15, 16) reliés entre eux par une ligne (40). Le au moins un récipient (14, 15, 16) est placé dans l'enceinte (11 ) qui contient un milieu de stockage thermique (10), capable d'absorber et de restituer la chaleur dégagée par la compression du gaz (1 , 2, 3) en le maintenant suffisamment isotherme.detailed description According to the invention illustrated in Figure 1, the mechanical energy is stored in a gas (1, 2, 3) which is compressed by means of a hydraulic fluid (4, 5, 6). The compressed gas is contained in at least one container (14, 15, 16), and preferably in a plurality of containers (14, 15, 16) interconnected by a line (40). The at least one container (14, 15, 16) is placed in the enclosure (11) which contains a thermal storage medium (10) capable of absorbing and returning the heat generated by the compression of the gas (1, 2, 3) keeping it sufficiently isothermal.
Le fluide hydraulique (9) est stocké dans l'enceinte de stockage (13), il est acheminé par la ligne (8) vers un moyen de compression - détente qui est de préférence un dispositif réversible P-T (17).The hydraulic fluid (9) is stored in the storage chamber (13), it is conveyed by the line (8) to a compression - expansion means which is preferably a reversible device P-T (17).
Ledit dispositif de compression - détente réversible (17) est susceptible soit de pomper le fluide hydraulique (9) en recevant une quantité d'énergie mécanique W, ce qui conduit à la compression du gaz (1 , 2, 3), soit de détendre le fluide (4, 5, 6) acheminé par la ligne (7) en produisant une quantité d'énergie mécanique W ; avantageusement, il possède des moyens pour transformer cette énergie mécanique en énergie électrique. Ces dispositifs ont un très haut rendement, généralement supérieur à 90%. A titre d'exemple, il peut s'agir d'une pompe hydraulique à pistons fonctionnant également comme moteur à pistons, ou d'une machine rotative à losange déformable, connue par exemple du brevet US 3,295,50 (Jordan). Dans une variante illustrée sur la figure 2, ledit moyen de compression - détente est constitué par un circuit qui comprend, en parallèle, un dispositif (P1 ) capable de pomper le fluide hydraulique (9) en recevant une quantité d'énergie mécanique W, et un dispositif (T1 ) permettant de produire une quantité d'énergie mécanique W en détendant le fluide (4, 5, 6) acheminé par la ligne (7) ; deux paires de vannes (V51, V52, V53, V54) permettent de sélectionner soit le mode « compression », soit le mode « détente ». Dans tous les modes de réalisation et variantes de l'invention décrits dans le présent document, ces deux moyens de compression - détente peuvent être utilisées indifféremment ; pour simplifier, nous décrirons par la suite l'invention en nous référant comme moyen de compression - détente au dispositif de compression - détente réversible (17).Said compression device - reversible expansion (17) is capable of either pumping the hydraulic fluid (9) receiving a quantity of mechanical energy W, which leads to the compression of the gas (1, 2, 3), or to relax the fluid (4, 5, 6) conveyed by the line (7) producing a quantity of mechanical energy W; advantageously, it has means for converting this mechanical energy into electrical energy. These devices have a very high efficiency, generally greater than 90%. By way of example, it may be a hydraulic piston pump also functioning as a piston engine, or a deformable diamond rotary machine, known for example from US Pat. No. 3,295,50 (Jordan). In a variant illustrated in FIG. 2, said compression-expansion means is constituted by a circuit which comprises, in parallel, a device (P1) capable of pumping the hydraulic fluid (9) while receiving a quantity of mechanical energy W, and a device (T1) for producing a quantity of mechanical energy W by relaxing the fluid (4, 5, 6) conveyed by the line (7); two pairs of valves (V51, V52, V53, V54) make it possible to select either the "compression" mode or the "relaxation" mode. In all the embodiments and variants of the invention described herein, these two compression-expansion means can be used interchangeably; for simplicity, we will describe the invention later referring to us as means of compression - relaxation to the compression device - reversible expansion (17).
On décrit ici de manière simple un mode d'utilisation typique du système selon l'invention: Pour stocker de l'énergie, le dispositif de compression - détente (17), ou comme indiqué ci-dessus, un autre moyen de compression - détente, pompe du fluide hydraulique (9) à travers la ligne (7) dans le au moins un récipient (14, 15, 16). Le niveau de fluide hydraulique (4, 5, 6) dans lesdits récipients (14, 15, 16) monte, la surface dudit fluide agissant comme un piston et comprime le gaz (1 , 2, 3) enfermé dans lesdits récipients (14, 15, 16). Cette compression génère de la chaleur, qui est transférée au milieu de stockage thermique (10). Cette chaleur peut être restituée au moment de la détente du gaz ; l'élévation de température du liquide hydraulique (4, 5, 6) en mode « compression » est normalement faible, de l'ordre de quelques degrés au plus, mais si l'on la restitue en mode « détente » au gaz (1 , 2, 3), cela permet d'augmenter la pression du gaz (1 , 2, 3) de manière significative. Si on laisse le gaz comprimé (1 , 2, 3) se détendre à travers la ligne 7 et le dispositif de compression - détente (17) agissant en mode « détendeur », le niveau de fluide hydraulique (9) dans les récipients (14, 15, 16) baisse, et le fluide hydraulique (9) met en mouvement les moyens de conversion d'énergie dudit détendeur (17) pour générer de l'énergie mécanique ; cette énergie mécanique peut être transformée en énergie électrique. Le fluide hydraulique (9) est transféré à travers la ligne (8) dans l'enceinte de stockage (13) dont le niveau de liquide monte.Here is described in a simple manner a typical mode of use of the system according to the invention: To store energy, the compression-expansion device (17), or as indicated above, another compression means - relaxation , hydraulic fluid pump (9) through the line (7) in the at least one container (14, 15, 16). The level of hydraulic fluid (4, 5, 6) in said containers (14, 15, 16) rises, the surface of said fluid acting as a piston and compresses the enclosed gas (1, 2, 3) in said containers (14, 15, 16). This compression generates heat, which is transferred to the thermal storage medium (10). This heat can be restored when the gas is released; the temperature rise of the hydraulic fluid (4, 5, 6) in "compression" mode is normally low, of the order of a few degrees at the most, but if it is restored to the "expansion" mode with gas (1 , 2, 3), this makes it possible to increase the pressure of the gas (1, 2, 3) significantly. If the compressed gas (1, 2, 3) is allowed to relax through the line 7 and the compression / expansion device (17) operating in "expansion" mode, the level of hydraulic fluid (9) in the containers (14) , 15, 16), and the hydraulic fluid (9) sets in motion the energy conversion means of said expander (17) to generate mechanical energy; this mechanical energy can be transformed into electrical energy. The hydraulic fluid (9) is transferred through the line (8) into the storage chamber (13) whose liquid level rises.
Si le gaz (1 , 2, 3) est de l'air et si la pression d'air (1 , 2, 3) dans les récipients (14, 15, 16) devient lors de la détente du fluide hydraulique (9) plus faible que la pression atmosphérique, on peut faire entrer de l'air de l'extérieur dans les récipients (14, 15, 16), à l'aide d'une vanne.If the gas (1, 2, 3) is air and if the air pressure (1, 2, 3) in the containers (14, 15, 16) becomes during the expansion of the hydraulic fluid (9) lower than the atmospheric pressure, air can be introduced from the outside into the containers (14, 15, 16) by means of a valve.
L'enceinte (11 ) est de préférence entourée d'un isolant thermique (12).The enclosure (11) is preferably surrounded by a thermal insulator (12).
Le fluide hydraulique (4, 5, 6, 9) est d'une manière générale un liquide, et de préférence constitué par une phase aqueuse, de l'eau ou de l'eau glycolée pour éviter les risques de gel. Il peut également s'agir d'une phase organique, tel que du glycol, une huile minérale, un ester, une huile végétale ou des esters phosphates.The hydraulic fluid (4, 5, 6, 9) is generally a liquid, and preferably consists of an aqueous phase, water or glycol water to avoid the risk of freezing. It can also be an organic phase, such as glycol, a mineral oil, an ester, a vegetable oil or phosphate esters.
Le gaz (1 , 2, 3) peut être un gaz permanent tel que l'air ou l'azote. Il peut aussi être un autre gaz tel que le CO2 ou un fluide organique. Le milieu de stockage thermique (10) peut être constitué par un liquide (aqueux ou organique) et/ou par une phase solide éventuellement à changement de phase.The gas (1, 2, 3) may be a permanent gas such as air or nitrogen. It can also be another gas such as CO 2 or an organic fluid. The thermal storage medium (10) may consist of a liquid (aqueous or organic) and / or of a solid phase optionally phase-change.
Dans une variante du procédé selon l'invention, le fluide (1 , 2, 3) est un fluide condensable, et on opère la compression et la détente sur un fluide diphasique ; cela sera expliqué ci-dessous. L'avantage de cette variante est qu'elle permet de maintenir une pression stable dans les récipients (14, 15, 16).In a variant of the process according to the invention, the fluid (1, 2, 3) is a condensable fluid, and the compression and expansion is performed on a two-phase fluid; this will be explained below. The advantage of this variant is that it makes it possible to maintain a stable pressure in the containers (14, 15, 16).
La figure 3 présente un schéma de principe d'une variante de l'invention. Le milieu de stockage thermique (10) est constitué au moins en partie par le fluide hydraulique (9) utilisé pour la compression du gaz (1, 2, 3). Le volume de fluide hydraulique (9) est facilement capable de maintenir le volume d'air dans des conditions sensiblement isothermes. En effet, si l'air est au départ à la pression atmosphérique (le stockage étant opéré par exemple entre la pression atmosphérique et 200 à 600 bars), le coefficient MCp de l'air pour un volume donné est 1 ,2 / 4200 fois plus faible que le coefficient MCp du même volume d'eau nécessaire pour le déplacer. Un échauffement de 1000C du volume d'air initial correspond à une quantité de chaleur qui n'élève la température de l'eau que de 1 ,2 / 42 = 0,030CFigure 3 shows a block diagram of a variant of the invention. The thermal storage medium (10) is constituted at least in part by the hydraulic fluid (9) used for the compression of the gas (1, 2, 3). The hydraulic fluid volume (9) is easily able to maintain the air volume under substantially isothermal conditions. Indeed, if the air is initially at atmospheric pressure (the storage being operated for example between the atmospheric pressure and 200 to 600 bar), the MCp coefficient of air for a given volume is 1, 2/4200 times lower than the coefficient MCp of the same volume of water needed to move it. A heating of 100 0 C of the initial air volume corresponds to a quantity of heat which raises the temperature of the water only by 1, 2/42 = 0.03 0 C
Si les récipients (14, 15, 16) occupent par exemple la moitié du volume d'enceinte dans lequel ils sont placés, le niveau de liquide dans l'enceinte (11 ) varie entre I1 et lh=1 ,5 I1.If the containers (14, 15, 16) occupy for example half of the volume of enclosure in which they are placed, the level of liquid in the chamber (11) varies between I 1 and 1 h = 1, 5 I 1 .
Il est également possible de disposer simultanément une phase solide de stockage (10) (par exemple un matériau à changement de phase), qui reste stationnaire, tandis que le fluide hydraulique (9) circule. La circulation du fluide hydraulique (9) permet alors d'assurer les échanges thermiques dans de bonnes conditions.It is also possible to have simultaneously a solid storage phase (10) (for example a phase change material), which remains stationary while the hydraulic fluid (9) circulates. The circulation of the hydraulic fluid (9) then ensures the heat exchange in good conditions.
La disposition précédente s'applique également si le gaz (1 , 2, 3) est condensable. Dans ce cas, si le fluide hydraulique (9) est constitué par une phase aqueuse, le fluide (1, 2, 3) peut être constitué par un hydrocarbure ou un fluide tel que l'ammoniac ou le CO2. Ce gaz condensable ne doit pas être miscible avec le fluide hydraulique, afin que la pression vapeur au-dessus de la phase liquide issue de la condensation dudit gaz (1 , 2, 3) soit toujours la pression de saturation. On a alors un système triphasique : deux phases liquides (liquide hydraulique (9) + phase liquide issue de la condensation du gaz (1 , 2, 3)) et une phase gazeuse constituée par le gaz (1 , 2, 3).The preceding provision also applies if the gas (1, 2, 3) is condensable. In this case, if the hydraulic fluid (9) is constituted by an aqueous phase, the fluid (1, 2, 3) may consist of a hydrocarbon or a fluid such as ammonia or CO 2 . This condensable gas must not be miscible with the hydraulic fluid, so that the vapor pressure above the liquid phase resulting from the condensation of said gas (1, 2, 3) is always the saturation pressure. We then have a three-phase system: two liquid phases (hydraulic liquid (9) + liquid phase resulting from the condensation of the gas (1, 2, 3)) and a gaseous phase constituted by the gas (1, 2, 3).
Dans un tel mode de réalisation, au cours de la compression et de la détente, la pression dans les récipients (14, 15, 16) reste constante, ce qui facilite les conditions de fonctionnement du dispositif de compression - détente réversible (17) et permet d'éviter une baisse d'efficacité dudit dispositif de compression - détente (17). En outre, il est possible dans ce cas d'opérer avec une pression modérée, ce qui réduit les coûts d'investissement.In such an embodiment, during compression and expansion, the pressure in the containers (14, 15, 16) remains constant, which facilitates the operating conditions of the reversible compression-expansion device (17) and prevents a decrease in efficiency of said compression device - trigger (17). In addition, it is possible in this case to operate with moderate pressure, which reduces the investment costs.
La figure 4 montre une variante du procédé selon l'invention telle qu'illustrée sur la figure 3, qui se distingue par l'utilisation d'un cycle ouvert au lieu d'un cycle fermé.Figure 4 shows a variant of the method according to the invention as illustrated in Figure 3, which is distinguished by the use of an open cycle instead of a closed cycle.
Le gaz utilisé pour le stockage de l'énergie est de l'air prélevé dans le milieu ambiant par la ligne (18). Ce gaz, une fois comprimé, est stocké dans l'enceinte de stockage (35). Cette enceinte de stockage (35) peut être constituée par une cavité souterraine, naturelle ou artificielle. Le système de stockage selon la variante illustrée sur la figure 4 fonctionne avec au moins deux récipients (B1 , B2). Pendant la phase de stockage d'énergie mécanique, lesdits récipients (B1 ) et (B2) fonctionnent alternativement en compression d'air ou en aspiration d'air. Dans un premier temps, pendant que le premier récipient (B1 ) aspire de l'air dans le milieu ambiant par la ligne (18), le second récipient (B2) comprime l'air (20) par l'intermédiaire du fluide (21 ) pompé par l'équipement (KT1 ). L'air comprimé (20) est ensuite dirigé vers l'enceinte de stockage (35) par la ligne (19).The gas used for storing energy is air taken from the environment by the line (18). This gas, once compressed, is stored in the storage chamber (35). This storage enclosure (35) may be constituted by an underground cavity, natural or artificial. The storage system according to the variant illustrated in FIG. 4 operates with at least two containers (B1, B2). During the mechanical energy storage phase, said containers (B1) and (B2) operate alternately in air compression or air suction. In a first step, while the first container (B1) draws air into the environment through the line (18), the second container (B2) compresses the air (20) via the fluid (21). ) pumped by the equipment (KT1). The compressed air (20) is then directed to the storage chamber (35) by the line (19).
Dans un second temps, pendant que le second récipient (B2) aspire de l'air dans le milieu ambiant par la ligne (26), le premier récipient (B1 ) comprime l'air (30) par l'intermédiaire du fluide (31 ) pompé par l'équipement (KT1 ). L'air comprimé (30) est ensuite dirigé vers l'enceinte de stockage (35) par la ligne (19).In a second step, while the second container (B2) draws air into the environment through the line (26), the first container (B1) compresses the air (30) via the fluid (31). ) pumped by the equipment (KT1). The compressed air (30) is then directed to the storage enclosure (35) via the line (19).
L'enceinte isolée (1 1 ) permet le stockage de l'énergie thermique dégagée lors de la compression du gaz dans le milieu de stockage thermique(IO). Ce stockage d'énergie permet de maintenir la température des premiers et seconds récipients (B1 , B2) quasi-constante pendant la phase de stockage d'énergie mécanique.The isolated enclosure (1 1) allows the storage of the thermal energy released during compression of the gas in the thermal storage medium (IO). This energy storage makes it possible to maintain the temperature of the first and second containers (B1, B2) almost constant during the mechanical energy storage phase.
Pendant la phase de restitution de ' l'énergie mécanique stockée par l'intermédiaire de l'air comprimé dans l'enceinte de stockage (35), les premiers et seconds récipients (B1 , B2) fonctionnent également de façon alternative. Dans un premier temps, l'air comprimé contenu dans l'enceinte de stockage (35) est dirigé vers le second récipient (B2) par la ligne (19). Le second récipient (B2) détend l'air (20) par l'intermédiaire du fluide (21 ) détendu par l'équipement (KT1 ). Dans le même temps le premier récipient (B1 ) évacue de l'air dans le milieu ambiant par la ligne (18). Dans un second temps, l'air comprimé contenu dans l'enceinte de stockage (35) est dirigé vers le premier récipient (B1 ) par la ligne (19). Le premier récipient (B1 ) détend l'air (30) par l'intermédiaire du fluide hydraulique (31 ) détendu par l'équipement (KT1 ). Dans le même temps, le second récipient (B2) évacue de l'air dans le milieu ambiant par la ligne (18). L'énergie thermique stockée lors de la phase de compression dans le milieu de stockage thermique (10) permet le maintient en température desdits premiers et seconds récipients (B1 , B2) pendant la phase de détente.During the restitution phase of the mechanical energy stored via the compressed air in the storage enclosure (35), the first and second containers (B1, B2) also function alternately. At first, the compressed air contained in the storage chamber (35) is directed towards the second container (B2) via the line (19). The second container (B2) expands the air (20) through the fluid (21) expanded by the equipment (KT1). At the same time the first container (B1) discharges air into the environment by the line (18). In a second step, the compressed air contained in the storage chamber (35) is directed towards the first container (B1) by the line (19). The first container (B1) expels the air (30) through the hydraulic fluid (31) expanded by the equipment (KT1). At the same time, the second container (B2) expels air into the environment through the line (18). The thermal energy stored during the compression phase in the thermal storage medium (10) makes it possible to maintain the temperature of said first and second containers (B1, B2) during the expansion phase.
L'équilibre thermique assurant le caractère isotherme de la compression et de la détente peut être réalisé par tout type de dispositif destiné à favoriser l'échange thermique entre les fluides hydrauliques (21 ) et (31 ) et le milieu de stockage thermique (10) tel qu'un serpentin, non représenté sur la figure 4. La circulation réalisée au moment de la compression et de la détente peut contribuer à homogénéiser les températures. Des moyens complémentaires de circulation ou de mélange peuvent être introduits dans ce but.The thermal equilibrium ensuring the isothermal nature of compression and expansion can be achieved by any type of device intended to promote the thermal exchange between the hydraulic fluids (21) and (31) and the thermal storage medium (10) such as a coil, not shown in FIG. 4. The circulation carried out at the time of compression and expansion may contribute to homogenizing the temperatures. Additional means of circulation or mixing can be introduced for this purpose.
Il est possible d'assurer une pression constante dans l'enceinte de stockage (35), en introduisant dans l'enceinte contenant le gaz comprimé un volume variable de fluide hydraulique, ce volume étant régulé de manière à maintenir la pression constante. Le fluide hydraulique peut être introduit à partir d'une enceinte de stockage (36) à la pression atmosphérique. Au cours de l'étape de production d'énergie à partir du stockage, une fraction de l'énergie restituée est utilisée pour pomper le fluide hydraulique. Au moment de l'étape de stockage d'énergie, cette énergie est restituée. Le système fonctionne du fait que l'énergie nécessaire pour comprimer un liquide de la pression atmosphérique à une pression P relativement élevée est beaucoup plus faible que l'énergie nécessaire pour comprimer un gaz de la pression atmosphérique à la pression P.It is possible to ensure a constant pressure in the storage chamber (35) by introducing into the chamber containing the compressed gas a variable volume of hydraulic fluid, this volume being regulated so as to maintain the pressure constant. The hydraulic fluid can be introduced from a storage chamber (36) at atmospheric pressure. During the step of generating energy from the storage, a fraction of the restituted energy is used to pump the hydraulic fluid. At the time of the energy storage step, this energy is restored. The system operates because the energy required to compress a liquid from atmospheric pressure to a relatively high pressure P is much lower than the energy required to compress a gas from atmospheric pressure to pressure P.
La variante de la figure 6 se distingue du schéma illustré sur la figure 1 par l'utilisation d'un transfert indirect de l'énergie thermique dégagée lors de la compression du gaz vers l'enceinte (11).The variant of FIG. 6 differs from the diagram illustrated in FIG. 1 by the use of an indirect transfer of the thermal energy released during the compression of the gas towards the enclosure (11).
Dans cette variante, il est également présenté la possibilité d'utiliser un élément de garnissage interne (44) dans le récipient (43) pour améliorer le contact gaz-liquide. A cet effet, une boucle de recirculation (42) du fluide hydraulique peut également être activée par l'utilisation d'une pompe de recirculation (49).In this variant, it is also presented the possibility of using an internal packing element (44) in the container (43) to improve the gas-liquid contact. For this purpose, a recirculation loop (42) of the hydraulic fluid can also be activated by the use of a recirculation pump (49).
Dans cette configuration, en phase de stockage d'énergie mécanique, le fluide hydraulique (9) stocké dans l'enceinte de stockage (13) est acheminé par la ligne (8) vers la pompe (17) puis par la ligne (42) vers le récipient (43) afin de comprimer le gaz (48). Le contacteur (44) permet de maintenir le gaz quasi-isotherme et de transférer les calories vers le fluide hydraulique (47). Une boucle de fluide (45) permet de véhiculer les calories du fluide (47) vers le milieu de stockage thermique (10).In this configuration, in the mechanical energy storage phase, the hydraulic fluid (9) stored in the storage chamber (13) is conveyed via the line (8) to the pump (17) and then via the line (42). to the container (43) to compress the gas (48). The switch (44) maintains the quasi-isothermal gas and transfers the calories to the hydraulic fluid (47). A fluid loop (45) conveys the calories of the fluid (47) to the thermal storage medium (10).
En phase de restitution d'énergie mécanique, le gaz (48) est détendu en libérant le fluide (47) par la ligne (41 ) vers le dispositif de compression - détente réversible (17) puis par la ligne (8) vers l'enceinte de stockage (13). Pendant cette phase, la recirculation du fluide hydraulique (47) activée par la pompe (46) permet de maintenir la température du gaz (48) quasi-constante. La boucle de fluide (45) permet de restituer les calories stockées dans le milieu de stockage thermique (10) au fluide hydraulique (47).In the mechanical energy recovery phase, the gas (48) is expanded by releasing the fluid (47) via the line (41) to the compression device - reversible expansion (17) and then by the line (8) to the storage enclosure (13). During this phase, the recirculation of the hydraulic fluid (47) activated by the pump (46) makes it possible to maintain the temperature of the gas (48) almost constant. The fluid loop (45) makes it possible to restore the calories stored in the thermal storage medium (10) to the hydraulic fluid (47).
La figure 7 montre un exemple de réalisation des récipients (14, 15, 16) des figures 1 ou 2 qui peuvent chacun être réalisés sous forme d'un tube, de préférence bobiné en spirale. L'utilisation d'un tube rend plus facile la réalisation des récipients sous pression et facilite les échanges thermiques avec le milieu d'échange thermique (10). Dans une autre variante, l'enceinte de stockage (35) est réalisée sous forme d'un ou plusieurs tubes droits, empilés ou non, reliés entre eux (voir la figure 5). D'une manière générale, l'utilisation de tubes est avantageuse parce qu'un tube est un corps creux apte à résister à une pression interne élevée qui possède une forme très simple et qui peut être facilement réalisé sans soudure par des procédés de filage. Un faisceau de tubes droits convient particulièrement pour des grands systèmes de stockage. A titre d'exemple, un faisceau de neuf tubes droits en acier de diamètre de 122 cm et d'une longueur de 10 mètres permet de stocker environ 105 m3 d'air ; il existe des nuances d'acier permettant de fabriquer de tels tubes qui résistent à une pression interne supérieure à 250 bar.FIG. 7 shows an exemplary embodiment of the containers (14, 15, 16) of FIGS. 1 or 2 which can each be made in the form of a tube, preferably spirally wound. The use of a tube makes it easier to produce pressure vessels and facilitates heat exchange with the heat exchange medium (10). In another variant, the storage chamber (35) is made in the form of one or more straight tubes, stacked or not, connected to each other (see FIG. 5). In general, the use of tubes is advantageous because a tube is a hollow body capable of withstanding a high internal pressure which has a very simple shape and which can easily be made without welding by spinning processes. A bundle of straight tubes is particularly suitable for large storage systems. For example, a bundle of nine straight steel tubes with a diameter of 122 cm and a length of 10 meters can store about 105 m 3 of air; there are steel grades for making such tubes that withstand an internal pressure of more than 250 bar.
Le récipient (14, 15, 16) peut aussi être constitué d'un échangeur à plaques (60) comme illustré sur la figure 8. Un échangeur à plaques permet de développer une surface d'échange importante entre deux milieux thermiques dans un volume restreint. Un tel échangeur peut être typiquement constitué d'un empilement constitué d'une pluralité de plaques planes (63) et d'une pluralité de plaques ondulées (64, 65), qui forment ainsi deux réseaux de canaux (61 , 62). Dans chacun desdits réseaux de canaux peut circuler un fluide. L'un des fluides est le fluide hydraulique (4, 5, 6) avec le gaz (1 , 2, 3), et l'autre fluide est le fluide qui constitue le milieu de stockage thermique (10). De manière avantageuse, on utilise une configuration à flux croisée ou à contre- courant. La variante à flux croisée est montrée sur la figure 8, sur laquelle les canaux formés par deux plaques ondulées voisines sont tournés de 90e.The container (14, 15, 16) may also consist of a plate heat exchanger (60) as shown in FIG. 8. A plate heat exchanger makes it possible to develop a large exchange surface between two thermal media in a small volume . Such an exchanger can typically consist of a stack consisting of a plurality of flat plates (63) and a plurality of corrugated plates (64, 65), which thus form two channel networks (61, 62). In each of said channel networks can flow a fluid. One of the fluids is the hydraulic fluid (4, 5, 6) with the gas (1, 2, 3), and the other fluid is the fluid that constitutes the thermal storage medium (10). Advantageously, a cross-flow or countercurrent configuration is used. Cross flow embodiment is shown in Figure 8, in which the channels formed by two adjoining corrugated sheets are rotated 90 e.
La variante de la figure 9 se distingue du schéma illustré sur la figure 1 par une localisation particulière de l'enceinte (11 ) par rapport à l'enceinte de stockage (13). Il est en effet possible de combiner le principe d'un stockage hydro-pneumatique avec celui d'un stockage gravitaire : dans cette variante, le fluide hydraulique (4, 5, 6) contenu dans les récipients (14, 15, 16) descend par gravité à travers la ligne (7) et le dispositif de compression - détente réversible (17) dans l'enceinte de stockage (13) qui se situe à un niveau inférieur par rapport à l'enceinte (11).The variant of FIG. 9 differs from the diagram illustrated in FIG. 1 by a particular location of the enclosure (11) with respect to the storage enclosure (13). It is indeed possible to combine the principle of a hydro-pneumatic storage with that of a gravity storage: in this variant, the hydraulic fluid (4, 5, 6) contained in the containers (14, 15, 16) drops by gravity through the line (7) and the compression device - reversible expansion (17) in the storage chamber (13) which is at a lower level with respect to the enclosure (11).
Dans cette variante, lors des phases de stockage d'énergie, la pompe (17) doit fournir plus d'énergie mécanique (W") pour élever le fluide hydraulique (9) et comprimer le gaz (1 , 2, 3). Lors des phases de restitution de l'énergie, la détente du gaz (1 , 2, 3) est couplée à la dénivellation du fluide hydraulique (4, 5, 6) pour fournir une énergie mécanique W".In this variant, during the energy storage phases, the pump (17) must supply more mechanical energy (W ") to raise the hydraulic fluid (9) and compress the gas (1, 2, 3). phases of restitution of energy, the relaxation of gas (1, 2, 3) is coupled to the hydraulic fluid level (4, 5, 6) to provide a mechanical energy W ".
La figure 10 montre de manière schématique un autre mode de réalisation de l'invention dans lequel on apporte, avant la phase de détente du gaz (1 , 2, 3), une énergie thermique externe audit gaz. Cette énergie thermique externe peut provenir de différentes sources externes. De manière avantageuse, un tel dispositif comprend un collecteur solaire (52) comme source externe d'énergie thermique, qui est relié à un serpentin d'échange thermique (53) contenant un fluide caloporteur et qui plonge dans le milieu de stockage (10) contenu dans un ballon (51 ). Sur cette figure, le stockage de l'air comprimé se fait également à l'intérieur d'un serpentin (54), et le milieu de stockage (10) est le fluide hydraulique lui-même. On peut évidemment réaliser d'autres modes de réalisation, dans lesquels le milieu de stockage (10) est chauffé par un collecteur solaire (52), ou par une source de chaleur à faible différence de température, sachant qu'il est une des particularités du système et procédé quasi-isothermes selon l'invention de pouvoir valoriser des calories qui lui sont apportées avec une différence de température très faible : si l'on échauffe le milieu de stockage (10) d'un degré, cela permet déjà de créer une pression significative et utilisable dans le gaz (1 , 2, 3), qui peut être transformée avec un haut rendement en énergie mécanique par l'intermédiaire du moyen de compression - détente.FIG. 10 schematically shows another embodiment of the invention in which, before the expansion phase of the gas (1, 2, 3), a thermal energy external to said gas is supplied. This external thermal energy can come from different external sources. Advantageously, such a device comprises a solar collector (52) as external source of thermal energy, which is connected to a heat exchange coil (53) containing a heat transfer fluid and which is immersed in the storage medium (10) contained in a balloon (51). In this figure, the storage of the compressed air is also inside a coil (54), and the storage medium (10) is the hydraulic fluid itself. Of course, other embodiments can be realized, in which the storage medium (10) is heated by a solar collector (52), or by a heat source with a small difference in temperature, knowing that it is one of the special features of the quasi-isothermal system and method according to the invention to be able to value the calories that are brought to it with a very small difference in temperature: if the storage medium (10) is heated by one degree, this already makes it possible to create a significant and usable pressure in the gas (1, 2, 3), which can be converted with high efficiency into mechanical energy via the compression-expansion means.
Ce mode de réalisation permet, après la compression du gaz (1 , 2, 3), de chauffer le milieu de stockage thermique (10) par l'intermédiaire du collecteur solaire (52). Cette énergie thermique est transféré au gaz (1 , 2, 3) par ledit milieu de stockage thermique (10) et provoque une augmentation de sa pression, qui peut être transformée, avec un haut rendement, en énergie mécanique supplémentaire.This embodiment makes it possible, after compression of the gas (1, 2, 3), to heat the thermal storage medium (10) via the solar collector (52). This thermal energy is transferred to the gas (1, 2, 3) by said thermal storage medium (10) and causes an increase in its pressure, which can be converted, with a high efficiency, into additional mechanical energy.
ExemplesExamples
La présente invention sera mieux comprise à l'aide de deux exemples non limitatifs de stockage d'énergie mécanique décrits ci-après.The present invention will be better understood with the aid of two non-limiting examples of mechanical energy storage described below.
Exemple 1Example 1
L'exemple 1 , décrit en relation avec la figure 1, permet d'illustrer une première configuration de mise en oeuvre de l'invention. Dans cet exemple, le gaz captif (1, 2, 3) est de l'azote contenu dans 3 cylindres de 1 m3. La masse totale d'azote est de 344 kg.Example 1, described with reference to FIG. 1, illustrates a first configuration of implementation of the invention. In this example, the captive gas (1, 2, 3) is nitrogen contained in 3 cylinders of 1 m 3 . The total mass of nitrogen is 344 kg.
Elle est initialement à une pression de 100 bar et à une température de 200C. A l'instant t=0, on commence à pomper de l'eau dans les récipients (14, 15, 16) avec un débit de 1,83 m3/h. Les récipients (14, 15, 16) ayant une surface de contact limitée avec le milieu (10), le gaz (1 , 2, 3) s'échauffe sensiblement pendant cette phase de compression. Au temps t = 60 min, la pression du gaz est de 360 bar et sa température est de 750C. Cette étape permet de stocker 9 kWh d'énergie mécanique. A cet instant, le système passe en phase de décompression en soutirant un débit identique de 1,83 m3/h d'eau des récipients (14, 15, 16). Au temps t = 112 min, le gaz retrouve une pression de 100 bar et une température de 10C. Cette deuxième phase permet restituer 7,5 kWh d'énergie mécanique. L'efficacité du système est donc de 83 %.It is initially at a pressure of 100 bar and at a temperature of 20 ° C. At the instant t = 0, water is pumped into the containers (14, 15, 16) with a flow rate of 1.83 m 3 / h. The containers (14, 15, 16) having a limited contact surface with the medium (10), the gas (1, 2, 3) heats up substantially during this compression phase. At time t = 60 min, the gas pressure is 360 bar and its temperature is 75 ° C. This step stores 9 kWh of mechanical energy. At this time, the system goes into decompression phase by withdrawing an identical flow of 1.83 m 3 / h of water containers (14, 15, 16). At time t = 112 min, the gas found a pressure of 100 bar and a temperature of 1 0 C. This second phase allows to restore 7.5 kWh of mechanical energy. The efficiency of the system is therefore 83%.
Exemple 2Example 2
L'exemple 2 décrit en relation avec les figures 1 et 7, permet d'illustrer une deuxième configuration de mise en oeuvre de l'invention. Dans cet exemple, le gaz captif (1 , 2, 3) est de l'azote contenu dans 3 tubes enroulés comme cela est représenté sur la figure 7. Chaque tube peut contenir un volume de gaz de 1 m3. La masse totale d'azote est de 344 kg. Elle est initialement à une pression de 100 bar et à une température de 200C. A l'instant t = 0, on commence à pomper de l'eau dans les récipients (14, 15, 16) avec un débit de 1 ,96 m3/h. Les récipients (14, 15, 16) ayant une surface de contact importante avec le milieu (10), le gaz (1 , 2, 3) s'échauffe très peu pendant cette phase de compression. Au temps t = 60 min, la pression du gaz est de 360 bar et sa température est de 400C. Cette étape permet de stocker 9,4 kWh d'énergie mécanique. A cet instant, le système passe en phase de décompression en soutirant un débit identique de 2 m3/h d'eau des récipients (14, 15, 16). Au temps t = 120 min, le gaz retrouve une pression de 100 bar et une température de 17°C. Cette deuxième phase permet restituer 9,0 kWh d'énergie mécanique. L'efficacité du système est donc de 96 %.Example 2 described with reference to FIGS. 1 and 7 illustrates a second embodiment of the invention. In this example, the captive gas (1, 2, 3) is nitrogen contained in 3 coiled tubes as shown in Figure 7. Each tube may contain a gas volume of 1 m 3 . The total mass of nitrogen is 344 kg. It is initially at a pressure of 100 bar and at a temperature of 20 ° C. At the instant t = 0, water is pumped into the containers (14, 15, 16) with a flow rate of 1, 96 m 3 / h. The containers (14, 15, 16) having a large contact surface with the medium (10), the gas (1, 2, 3) heats very little during this compression phase. At time t = 60 min, the gas pressure is 360 bar and its temperature is 40 ° C. This step stores 9.4 kWh of mechanical energy. At this time, the system goes into decompression phase by withdrawing an identical flow rate of 2 m 3 / h of water containers (14, 15, 16). At time t = 120 min, the gas found a pressure of 100 bar and a temperature of 17 ° C. This second phase allows to recover 9.0 kWh of mechanical energy. The efficiency of the system is therefore 96%.
La présente invention n'est pas limitée aux exemples décrits ci-dessus mais englobe toutes variantes et tous équivalents. The present invention is not limited to the examples described above but encompasses all variants and all equivalents.

Claims

REVENDICATIONS
1. Système de stockage d'énergie, notamment d'énergie mécanique, comportant1. A system for storing energy, in particular mechanical energy, comprising
(a) au moins un récipient (14, 15, 16) contenant un fluide hydraulique (9) et un gaz (1 , 2, 3) ;(a) at least one container (14, 15, 16) containing a hydraulic fluid (9) and a gas (1, 2, 3);
(b) au moins une enceinte de stockage (13) contenant du fluide hydraulique(b) at least one storage chamber (13) containing hydraulic fluid
(9) ;(9);
(c) un moyen de compression - détente capable en mode « compression » de pomper du fluide hydraulique (9), et en mode « détente » de détendre du liquide hydraulique (9) ; caractérisé en ce que(c) compression - triggering means capable of "compressing" pump hydraulic fluid (9), and "trigger" mode of expanding hydraulic fluid (9); characterized in that
(i) ledit fluide hydraulique (9) et/ou ledit gaz (1 , 2, 3) contenu dans le au moins un récipient (14, 15, 16) est en contact thermique avec un milieu de stockage d'énergie thermique (10) contenu dans une enceinte (11 ) ; (ii) ledit récipient (14, 15, 16) est relié à ladite au moins une enceinte de stockage (13) par des lignes (7,8) permettant de transporter ledit fluide hydraulique (9) de l'un à l'autre, à travers ledit moyen de compression - détente ;(i) said hydraulic fluid (9) and / or said gas (1, 2, 3) contained in the at least one vessel (14, 15, 16) is in thermal contact with a thermal energy storage medium (10); ) contained in an enclosure (11); (ii) said container (14, 15, 16) is connected to said at least one storage enclosure (13) by lines (7, 8) for conveying said hydraulic fluid (9) from one to the other through said compression - expansion means;
(iii) ledit moyen de compression - détente est capable de pomper du fluide hydraulique (9) de l'enceinte de stockage (13) vers le récipient (14, 15, 16), et capable de détendre le liquide hydraulique (9) contenu dans ledit récipient (14, 15, 16) vers l'enceinte de stockage (13), en générant de l'énergie mécanique.(iii) said compression-expansion means is capable of pumping hydraulic fluid (9) from the storage chamber (13) to the container (14, 15, 16), and capable of relaxing the hydraulic fluid (9) contained therein in said container (14, 15, 16) to the storage enclosure (13), generating mechanical energy.
2. Système de stockage d'énergie selon la revendication 1 , caractérisé en ce que ledit moyen de compression - détente comporte des moyens pour transformer l'énergie mécanique générée en énergie électrique.2. Energy storage system according to claim 1, characterized in that said compression-expansion means comprises means for converting the generated mechanical energy into electrical energy.
3. Système de stockage d'énergie mécanique selon la revendication 1 , caractérisé en ce que le stockage d'énergie est obtenu par compression du gaz (1 , 2, 3) contenu dans le au moins un récipient (14, 15, 16) par le liquide hydraulique (9) qui est pompé avec ledit moyen de compression - détente.Mechanical energy storage system according to claim 1, characterized in that the energy storage is obtained by compressing the gas (1, 2, 3) contained in the at least one container (14, 15, 16). by the hydraulic fluid (9) which is pumped with said compression - expansion means.
4. Système selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit récipient (14, 15, 16) est constitué par un tube en spirale ou par un échangeur à plaques (60). 4. System according to any one of claims 1 to 3, characterized in that said container (14, 15, 16) is constituted by a spiral tube or by a plate heat exchanger (60).
5. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit gaz (1, 2, 3) est un gaz condensable, et de préférence un gaz sélectionné dans le groupe constitué par les hydrocarbures, le CO2, les hydrocarbures fluorés, les alcanes fluorés.5. System according to any one of claims 1 to 4, characterized in that said gas (1, 2, 3) is a condensable gas, and preferably a gas selected from the group consisting of hydrocarbons, CO 2 , fluorinated hydrocarbons, fluorinated alkanes.
6. Système selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ledit milieu de stockage thermique (10) comporte un matériau à changement de phase.6. System according to any one of claims 1 to 5, characterized in that said thermal storage medium (10) comprises a phase change material.
7. Système selon l'une quelconque des revendications 2 à 6, caractérisé en ce qu'il comporte un premier groupe de récipients (B1 ) et un second groupe de récipients (B2), et en ce que ledit gaz (1 , 2, 3) est de l'air ambiant, et en ce que pendant la phase de stockage d'énergie mécanique, lesdits premier et second groupes de récipients (B1 , B2) fonctionnent alternativement en compression d'air ou en aspiration d'air.7. System according to any one of claims 2 to 6, characterized in that it comprises a first group of containers (B1) and a second group of containers (B2), and in that said gas (1, 2, 3) is ambient air, and in that during the mechanical energy storage phase, said first and second groups of containers (B1, B2) operate alternately in air compression or air suction.
8. Système selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit au moins un récipient (14,15,16) est situé à l'intérieur de ladite enceinte (11 ).8. System according to any one of claims 1 to 7, characterized in that said at least one container (14,15,16) is located inside said enclosure (11).
9. Système selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit récipient (43) est situé à l'extérieur de ladite enceinte (1 1), et en ce qu'une boucle de fluide (45) assure un contact thermique entre ledit milieu de stockage thermique (10) de ladite enceinte (11 ) et ledit fluide hydraulique (47) contenu dans ledit récipient (43).9. System according to any one of claims 1 to 7, characterized in that said container (43) is located outside said enclosure (1 1), and in that a fluid loop (45) ensures a thermal contact between said thermal storage medium (10) of said enclosure (11) and said hydraulic fluid (47) contained in said container (43).
10. Système selon la revendication 9, caractérisé en ce que ledit récipient (43) comporte un contacteur (44) pour améliorer le contact gaz - liquide, et dans lequel système :10. System according to claim 9, characterized in that said container (43) comprises a contactor (44) for improving the gas-liquid contact, and wherein system:
- en phase de stockage d'énergie mécanique, le fluide hydraulique (9) stocké dans l'enceinte de stockage (13) est acheminé par une ligne (8) vers ledit moyen de compression - détente puis par une ligne (42) vers ledit récipient (43) afin de comprimer le gaz {48) ;in the mechanical energy storage phase, the hydraulic fluid (9) stored in the storage enclosure (13) is conveyed by a line (8) to said compression-expansion means and then by a line (42) to said container (43) for compressing the gas (48);
- en phase de restitution d'énergie mécanique, le gaz (48) est détendu en libérant le fluide (47) par une ligne (41 ) vers le moyen de compression - détente puis par ladite ligne (8) vers l'enceinte de stockage (13).- In the mechanical energy recovery phase, the gas (48) is expanded by releasing the fluid (47) by a line (41) to the compression-expansion means and then by said line (8) to the storage enclosure (13).
11. Système selon la revendication 10, dans lequel : - en phase de stockage d'énergie, ledit contacteur (44) permet de maintenir le gaz quasi-isotherme et de transférer les calories vers le fluide hydraulique (47), une boucle de fluide (45) permettant de véhiculer les calories du fluide (47) vers le milieu de stockage thermique (10) ;The system of claim 10, wherein: in the energy storage phase, said contactor (44) makes it possible to maintain the quasi-isothermal gas and to transfer the calories towards the hydraulic fluid (47), a fluid loop (45) making it possible to convey the calories of the fluid ( 47) to the thermal storage medium (10);
- en phase de restitution d'énergie, la boucle de fluide (45) permet de restituer les calories stockées dans le milieu de stockage thermique (10) au fluide hydraulique (47). in the energy recovery phase, the fluid loop (45) makes it possible to restore the calories stored in the thermal storage medium (10) to the hydraulic fluid (47).
EP10726147A 2009-05-07 2010-05-06 Method and apparatus for storing mechanical energy by the quasi-isothermal expansion and compression of a gas Withdrawn EP2427656A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0902207A FR2945326B1 (en) 2009-05-07 2009-05-07 METHOD AND EQUIPMENT FOR MECHANICAL ENERGY STORAGE BY COMPRESSION AND QUASI-ISOTHERMAL RELAXATION OF A GAS
PCT/FR2010/000348 WO2010128222A2 (en) 2009-05-07 2010-05-06 Method and apparatus for storing mechanical energy by the quasi-isothermal expansion and compression of a gas

Publications (1)

Publication Number Publication Date
EP2427656A2 true EP2427656A2 (en) 2012-03-14

Family

ID=41511062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10726147A Withdrawn EP2427656A2 (en) 2009-05-07 2010-05-06 Method and apparatus for storing mechanical energy by the quasi-isothermal expansion and compression of a gas

Country Status (4)

Country Link
US (1) US9080574B2 (en)
EP (1) EP2427656A2 (en)
FR (1) FR2945326B1 (en)
WO (1) WO2010128222A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243558B2 (en) * 2012-03-13 2016-01-26 Storwatts, Inc. Compressed air energy storage
FR2991439A1 (en) 2012-05-29 2013-12-06 Datanewtech INSTALLATION OF THERMAL ENERGY TRANSFORMATION
AU2013359948B2 (en) * 2012-12-16 2017-03-16 Isocurrent Energy Incorporated Compressed air energy storage system
CN105464708A (en) * 2014-08-08 2016-04-06 江洪泽 Cold-storage oxyhydrogen and natural gas long-term submarine navigation power system
FR3032231B1 (en) * 2015-02-02 2018-09-14 Ifp Energies Now SYSTEM AND METHOD FOR ENERGY STORAGE IN THE FORM OF COMPRESSED AIR IN INTEGRATED TUBES IN A TANK CONTAINING WATER AND WATER VAPOR
CN105927390B (en) * 2016-06-27 2017-11-28 南京涵曦月自动化科技有限公司 A kind of compressed air energy-storing electricity electricity generation system
SE542570C2 (en) * 2017-02-14 2020-06-09 Azelio Ab Methods of pumping heat transfer fluid in thermal energy storage systems
JP6752762B2 (en) * 2017-07-20 2020-09-09 株式会社神戸製鋼所 Compressed air storage power generation device and compressed air storage power generation method
FR3082559B1 (en) * 2019-02-16 2022-10-21 Pascal Lalanne Hybrid energy storage and heat transfer device with liquid, gaseous and supercritical fluids
FR3097593A1 (en) * 2019-06-19 2020-12-25 Pascal Lalanne Hybrid energy storage or conversion device with liquid, gaseous or supercritical propellant
WO2020255086A1 (en) 2019-06-19 2020-12-24 Pascal Lalanne Thermoelectric device for storage or conversion of energy

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295505A (en) 1963-05-31 1967-01-03 Jordan Alfred Rotary piston apparatus
US3996741A (en) 1975-06-05 1976-12-14 Herberg George M Energy storage system
CH598535A5 (en) * 1976-12-23 1978-04-28 Bbc Brown Boveri & Cie
US4370559A (en) 1980-12-01 1983-01-25 Langley Jr David T Solar energy system
DE3111469A1 (en) * 1981-03-24 1982-10-14 Hermann Prof. Dr.-Ing. 4600 Dortmund Schwind Multi-stage compression cold-vapour machine with heat accumulator
US4526853A (en) 1982-10-15 1985-07-02 Konishiroku Photo Industry Co., Ltd. Method of providing an increased brightening effect and silver halide photographic material having increased brightening effect
US4885912A (en) 1987-05-13 1989-12-12 Gibbs & Hill, Inc. Compressed air turbomachinery cycle with reheat and high pressure air preheating in recuperator
NL9101618A (en) 1991-09-25 1993-04-16 Ir Arnold Willem Josephus Grup UNDERGROUND STORAGE OF ENERGY.
US5220954A (en) * 1992-10-07 1993-06-22 Shape, Inc. Phase change heat exchanger
US5507144A (en) * 1995-04-27 1996-04-16 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Lightweight, safe hydraulic power system and a method of operation thereof
TW200419606A (en) 2003-03-24 2004-10-01 Luxon Energy Devices Corp Supercapacitor and a module of the same
US20040211182A1 (en) * 2003-04-24 2004-10-28 Gould Len Charles Low cost heat engine which may be powered by heat from a phase change thermal storage material
EP2158389A4 (en) 2007-05-09 2016-03-23 Ecole Polytechnique Fédérale De Lausanne Epfl Energy storage systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010128222A3 *

Also Published As

Publication number Publication date
WO2010128222A3 (en) 2011-01-13
FR2945326A1 (en) 2010-11-12
US20120042643A1 (en) 2012-02-23
FR2945326B1 (en) 2011-04-29
WO2010128222A2 (en) 2010-11-11
US9080574B2 (en) 2015-07-14

Similar Documents

Publication Publication Date Title
WO2010128222A2 (en) Method and apparatus for storing mechanical energy by the quasi-isothermal expansion and compression of a gas
EP3052773B1 (en) Thermodynamic system for storing/producing electrical energy
EP3283734B1 (en) System and method for compressed air energy storage and recovery with constant volume heating
US8683803B2 (en) Method and apparatus for energy harvesting through phase-change induced pressure rise under cooling conditions
EP2935807B1 (en) Concentrating thermodynamic solar or conventional thermal power plant
US20080050234A1 (en) Wind turbine system
US20080047271A1 (en) Wind turbine system
FR2945327A1 (en) METHOD AND EQUIPMENT FOR MECHANICAL ENERGY TRANSMISSION BY COMPRESSION AND / OR QUASI-ISOTHERMAL DETENTION OF A GAS
EP2703610B1 (en) Method and system for energy storing and short-term power generation
FR3016025A1 (en) COMBINATION OF A COMPRESSED AIR ENERGY STORAGE UNIT AND A THERMAL POWER PLANT
CN104854344A (en) Pressure power unit
FR3074846A1 (en) METHOD FOR STORING AND GENERATING COMPRESSED AIR ENERGY WITH ADDITIONAL ENERGY RECOVERY
WO2007136765A2 (en) Wind turbine system
WO2023025678A1 (en) Device for storing energy and producing freshwater
WO2007136731A2 (en) Wind turbine system
EP4168665B1 (en) Thermoelectrical energy storage converting heat and power
EP3724471A1 (en) Improved system for storing and harvesting energy
EP3943864A1 (en) Process and system for thermomechanical energy storage
TW202012768A (en) Production of mechanical/electrical energy from heat energy with and by the use of buoyancy factor on evaporation or sublimation and condensation
EP3356755B1 (en) System for producing and storing electrical energy by means of a thermal doublet
FR3016919A1 (en) METHOD FOR STORING AND RESETTING ENERGY BY THERMOCOMPRESSION AND THERMO-RELIEF
JP2024109811A (en) Generation of mechanical/electrical energy from thermal energy using buoyancy factors for evaporation or sublimation and condensation
FR2852676A1 (en) Ice cube producing process, involves changing liquid phase of fluid, absorbing fluid by liquid absorbent and transferring condensed fluid into seat reactor of endothermic phase
WO2014154715A1 (en) Mechanical system for the production and storage of liquid nitrogen and for the production of mechanical energy from said liquid nitrogen
FR3016195A1 (en) DEVICE FOR GENERATING SELF-REGENERATIVE AND ECOLOGICAL ELECTRICITY GENERATOR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111019

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171201