EP2427384B1 - Container with seamed closure and method and apparatus for its manufacture - Google Patents
Container with seamed closure and method and apparatus for its manufacture Download PDFInfo
- Publication number
- EP2427384B1 EP2427384B1 EP10717175.3A EP10717175A EP2427384B1 EP 2427384 B1 EP2427384 B1 EP 2427384B1 EP 10717175 A EP10717175 A EP 10717175A EP 2427384 B1 EP2427384 B1 EP 2427384B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bead
- diaphragm
- outwardly
- collapsed
- sidewall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D7/00—Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal
- B65D7/12—Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by wall construction or by connections between walls
- B65D7/34—Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by wall construction or by connections between walls with permanent connections between walls
- B65D7/36—Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by wall construction or by connections between walls with permanent connections between walls formed by rolling, or by rolling and pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D41/00—Application of procedures in order to alter the diameter of tube ends
- B21D41/02—Enlarging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D51/00—Making hollow objects
- B21D51/16—Making hollow objects characterised by the use of the objects
- B21D51/26—Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
- B21D51/30—Folding the circumferential seam
- B21D51/34—Folding the circumferential seam by pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D17/00—Rigid or semi-rigid containers specially constructed to be opened by cutting or piercing, or by tearing of frangible members or portions
- B65D17/06—Integral, or permanently secured, end or side closures
- B65D17/08—Closures secured by folding or rolling and pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D17/00—Rigid or semi-rigid containers specially constructed to be opened by cutting or piercing, or by tearing of frangible members or portions
- B65D17/28—Rigid or semi-rigid containers specially constructed to be opened by cutting or piercing, or by tearing of frangible members or portions at lines or points of weakness
- B65D17/401—Rigid or semi-rigid containers specially constructed to be opened by cutting or piercing, or by tearing of frangible members or portions at lines or points of weakness characterised by having the line of weakness provided in an end wall
- B65D17/4011—Rigid or semi-rigid containers specially constructed to be opened by cutting or piercing, or by tearing of frangible members or portions at lines or points of weakness characterised by having the line of weakness provided in an end wall for opening completely by means of a tearing tab
Definitions
- This invention relates to a container in the form of a metal can body having an access opening closed with a flexible diaphragm, the container provided with an improved means of securing the diaphragm to the can body.
- the invention relates to a method and apparatus suitable for manufacturing such a container.
- GB 2237259 A CMB FOODCAN PLC 01.05.1991 .
- GB 2237259 discloses a diaphragm in the form of peelable foil lidding, the diaphragm peelably bonded to a surface of an intermediate ring component, which is then seamed to the sidewall of a can body.
- any positive pressure within the container acts to cause the diaphragm to progressively peel itself away from the surface to which it is bonded.
- This progressive peeling initiates and propagates from inside the container and is therefore invisible to the can manufacturer, the filler and end-consumer. In the case of containers for food products requiring sterilisation, this positive pressure can arise during processing in a retort.
- GB 350359 (HUGH WAGSTAFF; READS LIMITED) 11.06.1931 discloses a container body formed with an inwardly extending bead, a diaphragm of thin sheet metal positioned on the upper exterior surface of the bead and the upstanding free edge of the container body being folded over to clamp a peripheral annular portion of the diaphragm against the upper exterior surface of the inwardly extending bead.
- GB 1361415 TEE METAL BOX COMPANY LIMITED
- 24.07.1974 discloses a container along similar lines to that of GB 350359 .
- a method, in accordance with claim 1, of forming a can comprising the following steps:
- axial load is meant a load applied generally parallel to the longitudinal axis of the can body.
- the invention takes advantage of the fact that on application of a sufficient (first) axial load to the can body, the sidewall of the can body will buckle (or collapse). Formation of the circumferential radially-expanded region in the sidewall provides a region that is highly susceptible to buckling or collapse on application of sufficient axial load. Therefore, the radially-expanded region serves the function of preferentially controlling where buckling or collapse of the sidewall will occur.
- US 2003/0113416A1 which uses a complex sequence of forming operations to clamp its diaphragm in place (see figures 8a-c of US 2003/0113416A1 )
- the present invention provides a manufacturing route having fewer process steps and therefore enables higher manufacturing speeds to be achieved.
- the use of the metal of the can body - via the opposing surfaces of the collapsed annular bead - to secure the diaphragm overcomes the tendency of peelable lidding (for example, that of GB 2237259 A ) to progressively peel away from its sealing surface when subjected to positive pressures.
- the clamping mechanism used by the invention to secure the diaphragm to the can body ensures that the diaphragm can sustain both negative and positive pressures in a better manner than conventional peelable lidding. Therefore, considering the case of containers for food products requiring sterilisation, the container resulting from the method of the invention may be processed within a larger range of retorts with a reduced need for pressure balancing.
- clamping to secure the diaphragm also avoids the use of adhesive, heat sealing or other sealing compounds, and therefore simplifies the manufacturing route for the container of the invention compared to containers provided with conventional peelable lidding.
- the invention can deliver good seal integrity without the use of sealing compound, improved sealability is provided when using a sealing compound at the interface between the diaphragm and the opposing surfaces of the collapsed bead.
- the invention does not require the use of the intermediate ring component commonly used in the manufacture of containers closed with peelable lidding (see GB 2237259 A ), and therefore results in material cost savings and a simplified manufacturing route.
- the can body is conveniently made of aluminium or steel; however, other metals may also be used.
- Steel tinplate has been found to be a particularly suitable material, with trials performed using tinplate of 0.13 mm, 0.15 mm and 0.17 mm wall thickness.
- the diaphragm is conveniently made from foil sheet metal, thereby providing flexibility and reduced weight relative to conventional generally rigid sheet metal can ends that are seamed onto can bodies.
- the diaphragm may also include one or more polymer coatings/films on either or both faces of a metal substrate. The use of such polymer coatings/films may provide a suitable surface for printing of text/graphics and protect the metal substrate from corrosion.
- the polymer coating/film material would act like a gasket when clamped between the opposing surfaces of the collapsed bead, with its resilience enabling it to deform and adapt to the profile of the opposing bead surfaces, thereby helping to develop and maintain a hermetic seal between the diaphragm and the can body.
- the diaphragm may also be made from:
- Trials have been performed using diaphragms of 40-90 microns total thickness.
- a diaphragm has been used of 20 microns polypropylene coated onto a 20 micron aluminium substrate.
- paragraph 5 outlines the method of the invention in its broadest form, the method may be refined in various ways as detailed in the following paragraph...
- steps i & ii are performed substantially simultaneously.
- the invention may be enabled by steps i and ii comprising inserting a flared die within the end of the can body to apply both radial and axial loads to the can body.
- the flared die preferably terminates in a generally radially-extending end face, a limit ring situated adjacent the end face, the limit ring having a generally axially-extending wall to thereby limit radial growth of the end of the can body.
- the limit ring is formed integral with the flared die to thereby minimise the number of moving parts.
- radially-extending is meant having a component which extends radially - it is not limited to being purely perpendicular to the longitudinal axis of the can body.
- the radially-extending end face may be curved in profile, progressively deviating radially-outwardly from the longitudinal axis of the can body.
- axially-extending is meant having a component which extends axially.
- the end of the can body is preferably formed with a curl.
- the curl may be formed either before the radial expansion step which forms the circumferential radially-expanded region or subsequently to this step.
- the curl is formed in consequence of steps i and ii comprising inserting a flared die within the end of the can body to apply both radial and axial loads to the can body, the flared die and/or the limit defining an outwardly-curled end face, such that insertion of the flared die into the can body causes the free edge at the end of the can body to propagate along the surface of the outwardly-curled end face to form the curl, formation of the curl limiting further propagation of the free edge such that further insertion of the flared die induces the partial axial collapse of all or part of the circumferential radially-expanded region to form the outwardly-directed open annular bead.
- the curl is flattened against the external surface of the collapsed bead to define a double thickness of metal above and adjacent the external surface of the collapsed bead.
- This flattening (or crushing) of the curl has the benefit of reducing the likelihood of corrosion of the raw edge of metal on the free edge of the can body.
- the method is conveniently adapted during step ii to leave a portion of the sidewall of the can body extending between the partly collapsed outwardly-directed open annular bead and the free edge at the end of the can body, wherein simultaneously with or subsequent to step iv the portion is deformed to lie adjacent the exterior surface of the collapsed bead such that the free edge is outwardly-directed.
- the deformed portion does not extend radially-outward of the collapsed bead.
- the flattening described above may be achieved by using a flat plate as referred to above (or other conventional mechanical means).
- the method may be adapted during step ii to leave a portion of the sidewall of the can body extending between the partly collapsed outwardly-directed open annular bead and the free edge at the end of the can body, wherein simultaneously with or subsequent to step iv the portion is wrapped around the periphery of the exterior surface of the collapsed bead so that the free edge is directed inwardly towards the can body sidewall.
- the method may be adapted during step ii to leave a portion of the sidewall of the can body extending between the partly collapsed outwardly-directed open annular bead and the free edge at the end of the can body, the portion comprising an inner region and an outer region, the inner region extending between the bead and the outer region, the outer region terminating at the free edge, wherein simultaneously with or subsequent to step iv the outer region is folded over the inner region, the combination of inner and outer regions then deformed such that the outer region is sandwiched between the inner region and the exterior surface of the collapsed bead to form a double thickness of metal above and adjacent the external surface of the collapsed bead.
- the portion may be folded back and forth in a succession of folds (for example, in a concertina-like manner), these folds then substantially flattened.
- the method of the invention further comprises applying an upwards load to the underside of the fully collapsed bead to compress and tighten the clamped seal.
- the sidewall of the can body is radially supported at the end of the can body during application of the upwards load to the underside of the fully collapsed bead.
- the diaphragm used in the method of the invention is typically planar
- improved sealability may be obtained by the peripheral annular portion of the diaphragm as located between the opposing surfaces of the open annular bead during step iii comprising an upturned peripheral annular region, with the application of the second axial load during step iv acting to fold over the upturned peripheral annular region to thereby clamp a double thickness of diaphragm material between the opposing surfaces of the collapsed bead.
- the diaphragm includes such an upturned peripheral annular region, it is possible to form the diaphragm profile by starting from a planar metal blank and inclining the periphery of the diaphragm to form the upturned peripheral annular region.
- an apparatus for forming a can in accordance with claim 12, the apparatus having:
- the function of the radial load member and the first axial load member is performed by a flared die terminating in a generally radially-extending end face.
- a flared die has the advantage of enabling the radial expansion of the sidewall and application of the first axial load to be performed virtually simultaneously.
- the limit ring is situated adjacent the radially-extending end face, the limit ring having a generally axially-extending wall to thereby limit radial growth of the end of the can body.
- the flared die and limit ring may be separate components; however, it has been found preferable to combine the flared die and the limit ring into an integrally formed single component.
- the apparatus comprises a flared die, the flared die acting as both the radial load member and first axial load member (in common with the paragraph above).
- the flared die and/or the limit ring define an outwardly-curled end face, such that insertion of the flared die into the can body causes the free edge at the end of the can body to propagate along the surface of the outwardly-curled end face of the die to form a curl.
- a tubular metal can body 1 of uniform diameter is initially located with one end co-axial with a flared die 2 and limit ring 3.
- the flared die 2 terminates in a generally radially-extending end face 21 (see figure 2 ) which is curved in profile and progressively deviates radially-outwardly from the longitudinal axis 11 of the can body 1.
- the flared die 2 locates within a recess provided in the limit ring 3, the recess defined by a generally axially-extending wall 31 extending upwardly from the base 32 of the limit ring (see figures 1 & 2 ).
- the periphery of the radially-extending end face 21 has a diameter corresponding in size to that of the axially-extending wall 31, so that the limit ring 3 is situated adjacent the end face (see figure 2 ). Therefore, there is little or no gap between the periphery of the radially-extending end face 21 and the axially-extending wall 31.
- the flared die and the limit ring would be integrally formed.
- the flared die 2 and can body 1 are driven towards each other along the longitudinal axis 11 of the can body (indicated by arrows A), so that the die enters one end of the can body.
- the die 2 and the can body 1 it is within the scope of the invention, as defined by the claims, for either or both of the die 2 and the can body 1 to be driven towards each other; for example, in an alternative embodiment to that shown in the drawings, only one of the die 2 and the can body 1 are moved, the other entity remaining stationary.
- a forming operation is performed on the opposite end of the can body 1 (by means not shown), to provide a flare 12 (as indicated in figure 3 ).
- the flare 12 enables a conventional sheet metal can end to be seamed to that opposite end of the can body 1.
- the flared walls 22 (see figure 2 ) of the die act against the sidewall 13 of the can body, thereby progressively radially-expanding the sidewall adjacent the end of the can body to define a circumferential radially-expanded region 14 in the sidewall.
- the die 2 is able to simultaneously apply both axial and radial loads to the can body 1.
- the free edge 15 of the can body contacts the radially-extending end face 21 of the die (see figures 2 & 4 ), with further insertion of the die leading to radial growth of the free edge until constrained by the axially-extending wall 31 of the limit ring 3.
- the constraint provided by the axially-extending wall 31 of the limit ring 3 means that further insertion of the die 2 causes the circumferential radially-expanded region 14 of the sidewall 13 to partially axially collapse (or buckle), resulting in formation of an outwardly-directed open annular bead 16a.
- a portion 17 of the sidewall 13 extends generally axially between the partly collapsed outwardly-directed open annular bead 16a and the free edge 15.
- the can body after formation of the outwardly-directed open annular bead 16a is shown in figures 3 & 4 .
- the diaphragm 40 is formed from a 20 micron thick aluminium sheet metal substrate coated with a 20 micron thick layer of polypropylene. However, as indicated in the general description of the invention, other materials and thicknesses may be used for the diaphragm 40.
- a second axial load is applied to the end of the can body 1 by an axial load member in the form of a flat plate 50 (indicated in figure 5 ).
- the plate 50 and the can body 1 are moved towards each other (indicated by arrows B in figure 5 ).
- Sufficient axial load is applied via the plate 50 to fully axially collapse (or buckle) the outwardly-directed open annular bead 16a.
- the bead in its fully collapsed state 16b is shown in figure 6 .
- an annular peripheral portion of the diaphragm 40 is clamped between the opposing surfaces of the fully collapsed bead 16b to seal the end of the can body 1.
- the force exerted by the plate 50 also results in the portion 17 of the sidewall being flattened 18 to lie adjacent the exterior surface of the collapsed bead 16b (see figure 6 ).
- the flattened portion 17, 18 does not extend radially-outward of the collapsed bead 16b, thereby reducing the risk of individuals cutting their fingers on the free edge 15.
- the flattening of the portion 17 against the exterior surface of the collapsed bead 16b also results in the clamped diaphragm 40 being recessed a distance 'h' beneath the uppermost plane of the can body (see figure 6 ).
- This recessing of the diaphragm provides some protection against impact damage to the diaphragm of the resulting container. Furthermore, the flattening also results in a triple thickness of can body sidewall material at that end of the can body 1, with consequent benefits to container rigidity.
- the container that results from the above process steps is shown in figure 7 , showing the can body 1 with the diaphragm 40 clamped in position to close one end of the can body.
- the diaphragm is formed with a score line 41 to define a prearranged opening area for dispensing of the container's contents, with a tab 42 for opening of the prearranged opening area by severing of the score line.
- the tab shown in figure 7 is adhered to the diaphragm by an adhesive.
- the tab may be riveted to the diaphragm.
- the portion 17 is greater in length than that of the embodiment of figures 1 to 7 . This additional length is necessary to enable the portion 17 to be wrapped around and under 19 the periphery of the exterior surface of the collapsed bead 16b (as shown in figure 8 ), so that the free edge 15 is directed inwardly towards the can body sidewall, thereby providing enhanced rigidity and protection to an individual against cuts from the free edge.
- the design of the flared die 2 and limit ring 3 is adapted to together define an outwardly curled end face 23 (see figure 9 ).
- the flared die 2 is driven into the end of the can body 1 to apply both radial and axial loads to the can body to first define the circumferential radially-expanded region 14. Further insertion of the die 2 into the can body 1 causes the free edge 15 at the end of the can body to propagate along the surface of the outwardly-curled end face 23 to form curl 50 (see figure 10 ).
- the curl 50 forms to such an extent that the free edge 15 opposes and contacts the outside of the sidewall 13, which thereby inhibits further movement of the free edge.
- FIG. 10 shows the curt 50 and outwardly-directed open annular bead 16a that results from use of the flared die 2 and limit ring 3 of figure 9 .
- Figure 11 shows the diaphragm 40 located between the opposing surfaces of the outwardly-directed open annular bead 16a before full collapse of the bead.
- the can body 1 is then rotatably mounted on a seaming chuck 60 (see figures 12 & 13 ).
- the seaming chuck 60 includes a circumferential axial wall section 61 and a circumferential tapered wall section 62.
- the axial wall section 61 of the chuck is inserted into the end of the can body 1 to radially support the sidewall 13, with the tapered wall section 62 nestling against the top of the curl 50.
- the opposite end of the can body 1 is supported on a table 63 (see figure 12 ).
- the table 63 is driven upwards (indicated by arrows C on figures 12 & 13 ) to urge the end of the can body 1 against the tapered wall section 62 of the chuck 60.
- the curl 50 may be flattened against the external surface of the collapsed bead 16b to define a double thickness of metal above and adjacent the external surface of the collapsed bead.
- this flattening (or crushing) of the curl would be achieved through the table 63 being urged further upwards to deform the curl 50 between the opposing surfaces of the tapered wall section 62 of the chuck 60 and the tapered surface 65 of the seaming roll 64.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rigid Containers With Two Or More Constituent Elements (AREA)
- Making Paper Articles (AREA)
Description
- This invention relates to a container in the form of a metal can body having an access opening closed with a flexible diaphragm, the container provided with an improved means of securing the diaphragm to the can body. In particular, the invention relates to a method and apparatus suitable for manufacturing such a container.
- In the field of packaging, metal containers are known having a container body with an access opening sealed by a flexible diaphragm clamped between opposing surfaces of a bead provided in the sidewall of the container body. The use of clamping to secure the diaphragm in place offers an alternative to the use of a peelable diaphragm (such as that disclosed in
GB 2237259 A (CMB FOODCAN PLC) 01.05.1991 GB 2237259 - Closing and sealing a container by clamp-securing the diaphragm overcomes the above described problems resulting from the use of peelable lidding. Various examples of such containers are known. For example,
US 2003/0113416 A (WYCLIFFE ET AL) 19.06.2003 discloses a metal container body for use as a can for carbonated beverages (which generate a positive internal pressure), where a peripheral annular portion of a diaphragm formed from a disk of aluminium alloy sheet is clamped between the opposing surfaces of an outwardly directed bead. Similarly,GB 350359 (HUGH WAGSTAFF; READS LIMITED) 11.06.1931 GB 1361415 (THE METAL BOX COMPANY LIMITED) 24.07.1974 GB 350359 - However, the manufacturing process for such known containers having "clamp-secured" lidding is complex. There is therefore a need for a more efficient means of producing such a container.
- According to a first aspect of the invention, there is provided a method, in accordance with
claim 1, of forming a can, the method comprising the following steps: - i. radially expanding the sidewall of a tubular metal can body, by inserting a flared die, at an end of the can body to define a circumferential radially-expanded region in the sidewall adjacent the end of the can body;
- ii. applying a first axial load to the can body whilst using a limit ring to limit radial growth of the end of the can body so that all or part of the circumferential radially-expanded region partially axially collapses to form an outwardly-directed open annular bead;
- iii. removing the flared die and inserting a diaphragm relative to the can body so that a peripheral annular portion of the diaphragm locates between opposing surfaces of the open annular bead; and
- iv. applying a second axial load to the can body to fully axially collapse the bead to thereby clamp the peripheral annular portion of the diaphragm between the opposing surfaces of the bead and close the end of the can body.
- By "axial load" is meant a load applied generally parallel to the longitudinal axis of the can body.
- The invention takes advantage of the fact that on application of a sufficient (first) axial load to the can body, the sidewall of the can body will buckle (or collapse). Formation of the circumferential radially-expanded region in the sidewall provides a region that is highly susceptible to buckling or collapse on application of sufficient axial load. Therefore, the radially-expanded region serves the function of preferentially controlling where buckling or collapse of the sidewall will occur. In contrast to
US 2003/0113416A1 , which uses a complex sequence of forming operations to clamp its diaphragm in place (seefigures 8a-c ofUS 2003/0113416A1 ), the present invention provides a manufacturing route having fewer process steps and therefore enables higher manufacturing speeds to be achieved. - The use of the metal of the can body - via the opposing surfaces of the collapsed annular bead - to secure the diaphragm overcomes the tendency of peelable lidding (for example, that of
GB 2237259 A - The use of clamping to secure the diaphragm also avoids the use of adhesive, heat sealing or other sealing compounds, and therefore simplifies the manufacturing route for the container of the invention compared to containers provided with conventional peelable lidding. However, whilst the invention can deliver good seal integrity without the use of sealing compound, improved sealability is provided when using a sealing compound at the interface between the diaphragm and the opposing surfaces of the collapsed bead.
- Additionally, the invention does not require the use of the intermediate ring component commonly used in the manufacture of containers closed with peelable lidding (see
GB 2237259 A - The can body is conveniently made of aluminium or steel; however, other metals may also be used. Steel tinplate has been found to be a particularly suitable material, with trials performed using tinplate of 0.13 mm, 0.15 mm and 0.17 mm wall thickness. However, there is no reason to suggest that the invention would not work with other thicknesses or metals. The diaphragm is conveniently made from foil sheet metal, thereby providing flexibility and reduced weight relative to conventional generally rigid sheet metal can ends that are seamed onto can bodies. The diaphragm may also include one or more polymer coatings/films on either or both faces of a metal substrate. The use of such polymer coatings/films may provide a suitable surface for printing of text/graphics and protect the metal substrate from corrosion. Further, the polymer coating/film material would act like a gasket when clamped between the opposing surfaces of the collapsed bead, with its resilience enabling it to deform and adapt to the profile of the opposing bead surfaces, thereby helping to develop and maintain a hermetic seal between the diaphragm and the can body. The diaphragm may also be made from:
- A barrier plastic material. This is where the diaphragm is made wholly from plastics. It includes either a single homogeneous layer or a laminate composed of different plastics layers; or
- A composite. For example, good seal integrity has been achieved using a composite of cardboard, metal foil, and polymer coatings (such as the material used on Tetra Pak® cartons).
- Trials have been performed using diaphragms of 40-90 microns total thickness. By way of example, a diaphragm has been used of 20 microns polypropylene coated onto a 20 micron aluminium substrate.
- Although paragraph 5 outlines the method of the invention in its broadest form, the method may be refined in various ways as detailed in the following paragraph...
- Preferably, steps i & ii are performed substantially simultaneously. For example, the invention may be enabled by steps i and ii comprising inserting a flared die within the end of the can body to apply both radial and axial loads to the can body. In a further example, the flared die preferably terminates in a generally radially-extending end face, a limit ring situated adjacent the end face, the limit ring having a generally axially-extending wall to thereby limit radial growth of the end of the can body. Most preferably, the limit ring is formed integral with the flared die to thereby minimise the number of moving parts. By "radially-extending" is meant having a component which extends radially - it is not limited to being purely perpendicular to the longitudinal axis of the can body. For example, the radially-extending end face may be curved in profile, progressively deviating radially-outwardly from the longitudinal axis of the can body. Similarly, by "axially-extending" is meant having a component which extends axially.
- Without intending to limit the scope of the invention as defined by the claims, it is anticipated that one such preferred example of the invention would work as follows:
- A tubular straight walled metal can body is used as a starting point.
- Either or both of the flared die and the can body would be driven towards each other so that the flared die enters an end of the can body.
- As the flared die enters the end of the can body, the flared walls of the die would act against the sidewall of the can body to thereby simultaneously apply both radial and axial loads to the can body sidewall, and progressively radially expand the sidewall.
- When the die has sufficiently entered the can body, the free edge of the end of the can body would contact the radially-extending end face of the die, with further insertion of the die then leading to radial growth of the free edge of the can body along the die's radially-extending end face until contacting the axially-extending wall of the limit ring.
- The limit ring acts as a constraint to additional radial growth of the free edge of the can body. Consequently, additional axial movement of the flared die within the end of the can body would result in the partial axial collapse (or buckling) of the sidewall in the radially-expanded region, resulting in formation of the outwardly-directed open annular bead.
- The die would then be removed and the diaphragm inserted.
- Once the diaphragm has been inserted, a flat plate (or equivalent conventional mechanical means) may be used to apply the second axial load to the can body to thereby fully collapse the bead and securely clamp the diaphragm in position between the opposing surfaces of the collapsed bead.
- To provide increased rigidity and cut-edge protection, the end of the can body is preferably formed with a curl. The curl may be formed either before the radial expansion step which forms the circumferential radially-expanded region or subsequently to this step. Preferably however, the curl is formed in consequence of steps i and ii comprising inserting a flared die within the end of the can body to apply both radial and axial loads to the can body, the flared die and/or the limit defining an outwardly-curled end face, such that insertion of the flared die into the can body causes the free edge at the end of the can body to propagate along the surface of the outwardly-curled end face to form the curl, formation of the curl limiting further propagation of the free edge such that further insertion of the flared die induces the partial axial collapse of all or part of the circumferential radially-expanded region to form the outwardly-directed open annular bead.
- Regardless of how and when the curl is formed on the end of the can body, conveniently during or subsequent to step iv the curl is flattened against the external surface of the collapsed bead to define a double thickness of metal above and adjacent the external surface of the collapsed bead. This flattening (or crushing) of the curl has the benefit of reducing the likelihood of corrosion of the raw edge of metal on the free edge of the can body.
- As an alternative to the formation of a curl at the end of the can body, the method is conveniently adapted during step ii to leave a portion of the sidewall of the can body extending between the partly collapsed outwardly-directed open annular bead and the free edge at the end of the can body, wherein simultaneously with or subsequent to step iv the portion is deformed to lie adjacent the exterior surface of the collapsed bead such that the free edge is outwardly-directed. To minimise the risk of cuts to a consumer, it is preferred that the deformed portion does not extend radially-outward of the collapsed bead.
- The flattening described above may be achieved by using a flat plate as referred to above (or other conventional mechanical means).
- In a further variation to the method of the invention which would enhance protection against cuts to an individual, the method may be adapted during step ii to leave a portion of the sidewall of the can body extending between the partly collapsed outwardly-directed open annular bead and the free edge at the end of the can body, wherein simultaneously with or subsequent to step iv the portion is wrapped around the periphery of the exterior surface of the collapsed bead so that the free edge is directed inwardly towards the can body sidewall.
- In a still further variation to the method of the invention which would again enhance protection against cuts to an individual, the method may be adapted during step ii to leave a portion of the sidewall of the can body extending between the partly collapsed outwardly-directed open annular bead and the free edge at the end of the can body, the portion comprising an inner region and an outer region, the inner region extending between the bead and the outer region, the outer region terminating at the free edge, wherein simultaneously with or subsequent to step iv the outer region is folded over the inner region, the combination of inner and outer regions then deformed such that the outer region is sandwiched between the inner region and the exterior surface of the collapsed bead to form a double thickness of metal above and adjacent the external surface of the collapsed bead.
- To further increase container rigidity, the portion may be folded back and forth in a succession of folds (for example, in a concertina-like manner), these folds then substantially flattened.
- To provide an improved clamped seal between the diaphragm and the opposing surfaces of the fully collapsed bead, preferably the method of the invention further comprises applying an upwards load to the underside of the fully collapsed bead to compress and tighten the clamped seal. Preferably, to avoid the end of the can body simply deforming radially inwardly in response to this upwards load, the sidewall of the can body is radially supported at the end of the can body during application of the upwards load to the underside of the fully collapsed bead.
- Whilst the diaphragm used in the method of the invention is typically planar, improved sealability may be obtained by the peripheral annular portion of the diaphragm as located between the opposing surfaces of the open annular bead during step iii comprising an upturned peripheral annular region, with the application of the second axial load during step iv acting to fold over the upturned peripheral annular region to thereby clamp a double thickness of diaphragm material between the opposing surfaces of the collapsed bead. Where the diaphragm includes such an upturned peripheral annular region, it is possible to form the diaphragm profile by starting from a planar metal blank and inclining the periphery of the diaphragm to form the upturned peripheral annular region. However, this can lead to wrinkling of the upturned peripheral annular region and, ultimately, poor seal quality. To overcome this wrinkling, it is preferable to use a diaphragm formed of plastics material because plastics can be moulded into the desired profile and thereby avoid the problem of wrinkling of the periphery of the diaphragm to provide good sealability.
- According to a second aspect of the invention, there is provided an apparatus for forming a can, in accordance with
claim 12, the apparatus having: - i. a radial load member, comprising a flared die, for radially expanding the sidewall at an end of a tubular metal can body to define a circumferential radially-expanded region in the sidewall adjacent the end of the can body;
- ii. a first axial load member for applying a first axial load to the can body, plus a limit ring adapted to limit radial growth of the end of the can body such that during application of the first axial load the circumferential radially-expanded region partially axially collapses to form an outwardly-directed open annular bead;
- iii. means for inserting a peripheral annular portion of a diaphragm between opposing surfaces of the open annular bead;
- iv. a second axial load member for applying a second axial load to the can body to fully axially collapse the bead to thereby clamp the peripheral annular portion of the diaphragm between the opposing surfaces of the bead and close the end of the can body.
- The function of the radial load member and the first axial load member is performed by a flared die terminating in a generally radially-extending end face. Use of a flared die has the advantage of enabling the radial expansion of the sidewall and application of the first axial load to be performed virtually simultaneously. Preferably, the limit ring is situated adjacent the radially-extending end face, the limit ring having a generally axially-extending wall to thereby limit radial growth of the end of the can body. The flared die and limit ring may be separate components; however, it has been found preferable to combine the flared die and the limit ring into an integrally formed single component.
- An alternative form of the invention to that described in the paragraph above is for the apparatus to comprise a flared die, the flared die acting as both the radial load member and first axial load member (in common with the paragraph above). However, in this alternative form of the invention the flared die and/or the limit ring define an outwardly-curled end face, such that insertion of the flared die into the can body causes the free edge at the end of the can body to propagate along the surface of the outwardly-curled end face of the die to form a curl.
- The method and apparatus of the invention are described below and illustrated in the following drawings:
-
FIGURE 1 relates to a first embodiment of the invention and shows a cross-section through a tubular can body of uniform diameter and a flared die before any deformation of the can body. -
FIGURE 2 is a detail view of part offigure 1 , more clearly showing the profile of the flared die. -
FIGURE 3 shows a cross-section through the can body and the flared die after the die has been driven within an end of the can body to define an outwardly-directed open annular bead. -
FIGURE 4 is a detail view of part offigure 3 , more clearly showing the profile of the outwardly-directed open annular bead. -
FIGURE 5 is a detail view of the can body prior to full collapse of the annular bead by an axial load member, with a diaphragm located in position between the opposing surfaces of the open annular bead. -
FIGURE 6 shows a cross-section through the can body in its final form, with the bead in its fully collapsed state to clamp the diaphragm in position between opposing surfaces of the bead. -
FIGURE 7 shows a perspective view of the can body after the process steps shown in the earlier figures. -
FIGURE 8 relates to a second embodiment of the invention and corresponds tofigure 6 , but adapted to provide enhanced rigidity and protection against cuts from the free edge at the end of the can body. -
FIGURE 9 relates to a further embodiment of the invention, showing an alternative design of flared die/limit ring capable of forming a curl on the end of the can body during the method of the invention. -
FIGURE 10 shows the curled can body that results use of the alternative design of flared die/limit ring offigure 9 . -
FIGURE 11 shows the diaphragm located between the opposing surfaces of the open annular bead of the can body offigure 10 , but before inducing full collapse of the bead. -
FIGURES 12 to 15 show the use of a seaming chuck, seaming roll and table to assist in inducing full collapse of the open annular bead and subsequent tightening of the clamped seal that holds the diaphragm in place. - As shown in
figures 1 &2 , a tubular metal canbody 1 of uniform diameter is initially located with one end co-axial with a flareddie 2 and limitring 3. The flared die 2 terminates in a generally radially-extending end face 21 (seefigure 2 ) which is curved in profile and progressively deviates radially-outwardly from thelongitudinal axis 11 of thecan body 1. In the embodiment shown in the figures, the flareddie 2 locates within a recess provided in thelimit ring 3, the recess defined by a generally axially-extendingwall 31 extending upwardly from thebase 32 of the limit ring (seefigures 1 &2 ). The periphery of the radially-extendingend face 21 has a diameter corresponding in size to that of the axially-extendingwall 31, so that thelimit ring 3 is situated adjacent the end face (seefigure 2 ). Therefore, there is little or no gap between the periphery of the radially-extendingend face 21 and the axially-extendingwall 31. In an alternative embodiment not shown in the figures, the flared die and the limit ring would be integrally formed. - In the embodiment shown in
figure 1 , the flareddie 2 and canbody 1 are driven towards each other along thelongitudinal axis 11 of the can body (indicated by arrows A), so that the die enters one end of the can body. However, it is within the scope of the invention, as defined by the claims, for either or both of thedie 2 and thecan body 1 to be driven towards each other; for example, in an alternative embodiment to that shown in the drawings, only one of thedie 2 and thecan body 1 are moved, the other entity remaining stationary. In the embodiment shown in the figures, a forming operation is performed on the opposite end of the can body 1 (by means not shown), to provide a flare 12 (as indicated infigure 3 ). Theflare 12 enables a conventional sheet metal can end to be seamed to that opposite end of thecan body 1. - As will be understood from
figures 1 ,2 ,3 &4 , as the flareddie 2 gradually enters the end of thecan body 1, the flared walls 22 (seefigure 2 ) of the die act against thesidewall 13 of the can body, thereby progressively radially-expanding the sidewall adjacent the end of the can body to define a circumferential radially-expandedregion 14 in the sidewall. By the nature of its flaredprofile 22, thedie 2 is able to simultaneously apply both axial and radial loads to thecan body 1. When thedie 2 has sufficiently entered the end of thecan body 1, thefree edge 15 of the can body contacts the radially-extendingend face 21 of the die (seefigures 2 &4 ), with further insertion of the die leading to radial growth of the free edge until constrained by the axially-extendingwall 31 of thelimit ring 3. The constraint provided by the axially-extendingwall 31 of thelimit ring 3 means that further insertion of thedie 2 causes the circumferential radially-expandedregion 14 of thesidewall 13 to partially axially collapse (or buckle), resulting in formation of an outwardly-directed openannular bead 16a. Aportion 17 of thesidewall 13 extends generally axially between the partly collapsed outwardly-directed openannular bead 16a and thefree edge 15. The can body after formation of the outwardly-directed openannular bead 16a is shown infigures 3 &4 . - At this point, the flared
die 2 is removed to allow insertion of adiaphragm 40 between the opposing surfaces of the outwardly-directed openannular bead 16a (seefigure 5 ). Thediaphragm 40 is formed from a 20 micron thick aluminium sheet metal substrate coated with a 20 micron thick layer of polypropylene. However, as indicated in the general description of the invention, other materials and thicknesses may be used for thediaphragm 40. - Once the
diaphragm 40 is located in position, a second axial load is applied to the end of thecan body 1 by an axial load member in the form of a flat plate 50 (indicated infigure 5 ). In the embodiment shown, theplate 50 and thecan body 1 are moved towards each other (indicated by arrows B infigure 5 ). However, in alternative embodiments just one of theplate 50 and canbody 1 is moved. Sufficient axial load is applied via theplate 50 to fully axially collapse (or buckle) the outwardly-directed openannular bead 16a. The bead in its fully collapsedstate 16b is shown infigure 6 . In this state, an annular peripheral portion of thediaphragm 40 is clamped between the opposing surfaces of the fully collapsedbead 16b to seal the end of thecan body 1. The force exerted by theplate 50 also results in theportion 17 of the sidewall being flattened 18 to lie adjacent the exterior surface of thecollapsed bead 16b (seefigure 6 ). The flattenedportion collapsed bead 16b, thereby reducing the risk of individuals cutting their fingers on thefree edge 15. The flattening of theportion 17 against the exterior surface of thecollapsed bead 16b also results in the clampeddiaphragm 40 being recessed a distance 'h' beneath the uppermost plane of the can body (seefigure 6 ). This recessing of the diaphragm provides some protection against impact damage to the diaphragm of the resulting container. Furthermore, the flattening also results in a triple thickness of can body sidewall material at that end of thecan body 1, with consequent benefits to container rigidity. - The container that results from the above process steps is shown in
figure 7 , showing thecan body 1 with thediaphragm 40 clamped in position to close one end of the can body. As can be seen fromfigure 7 , the diaphragm is formed with ascore line 41 to define a prearranged opening area for dispensing of the container's contents, with atab 42 for opening of the prearranged opening area by severing of the score line. The tab shown infigure 7 is adhered to the diaphragm by an adhesive. However, in an alternative embodiment, the tab may be riveted to the diaphragm. - In an alternative embodiment shown in
figure 8 , theportion 17 is greater in length than that of the embodiment offigures 1 to 7 . This additional length is necessary to enable theportion 17 to be wrapped around and under 19 the periphery of the exterior surface of thecollapsed bead 16b (as shown infigure 8 ), so that thefree edge 15 is directed inwardly towards the can body sidewall, thereby providing enhanced rigidity and protection to an individual against cuts from the free edge. - In an alternative embodiment, the design of the flared
die 2 and limitring 3 is adapted to together define an outwardly curled end face 23 (seefigure 9 ). In common with the embodiment shown infigures 1 to 7 , the flareddie 2 is driven into the end of thecan body 1 to apply both radial and axial loads to the can body to first define the circumferential radially-expandedregion 14. Further insertion of thedie 2 into thecan body 1 causes thefree edge 15 at the end of the can body to propagate along the surface of the outwardly-curledend face 23 to form curl 50 (seefigure 10 ). Ultimately, thecurl 50 forms to such an extent that thefree edge 15 opposes and contacts the outside of thesidewall 13, which thereby inhibits further movement of the free edge. As a result, further insertion of the flareddie 2 induces the partial axial collapse of all or part of the circumferential radially-expandedregion 14 to form the outwardly-directed openannular bead 16a.Figure 10 shows thecurt 50 and outwardly-directed openannular bead 16a that results from use of the flareddie 2 and limitring 3 offigure 9 . -
Figure 11 shows thediaphragm 40 located between the opposing surfaces of the outwardly-directed openannular bead 16a before full collapse of the bead. - In a subsequent operation, the
can body 1 is then rotatably mounted on a seaming chuck 60 (seefigures 12 &13 ). The seamingchuck 60 includes a circumferential axial wall section 61 and a circumferential taperedwall section 62. In use, the axial wall section 61 of the chuck is inserted into the end of thecan body 1 to radially support thesidewall 13, with the taperedwall section 62 nestling against the top of thecurl 50. The opposite end of thecan body 1 is supported on a table 63 (seefigure 12 ). In use, the table 63 is driven upwards (indicated by arrows C onfigures 12 &13 ) to urge the end of thecan body 1 against the taperedwall section 62 of thechuck 60. This induces full collapse of the openannular bead 16a. The resultingcan body 1 with the fully collapsedbead 16b is shown infigures 12 &13 . After formation of the fully collapsedbead 16b, seamingroll 64 having a taperedsurface 65 is then brought into contact with the underside of thecollapsed bead 16b whilst thecan body 1 is rotated about longitudinal axis 11 (seefigures 14 &15 ). The direction of rotation of thecan body 1 and seamingroll 64 is indicated by arrows infigures 14 &15 . Urging of the taperedsurface 65 of the seamingroll 64 against the underside of thecollapsed bead 16b inclines the bead upwardly until the bead is sandwiched between thecurl 50 and the tapered surface of the seaming roll (seefigure 15 ). This has the effect of further tightening the clamped seal that holds thediaphragm 40 in place. - Regardless of how and when the curl is formed on the end of the can body, the
curl 50 may be flattened against the external surface of thecollapsed bead 16b to define a double thickness of metal above and adjacent the external surface of the collapsed bead. In the embodiment of the invention shown infigures 14 &15 , this flattening (or crushing) of the curl would be achieved through the table 63 being urged further upwards to deform thecurl 50 between the opposing surfaces of the taperedwall section 62 of thechuck 60 and the taperedsurface 65 of the seamingroll 64.
Claims (16)
- A method of forming a can, the method comprising the following steps:i. radially expanding the sidewall of a tubular metal can body (1), by inserting a flared die (2), at an end of the can body to define a circumferential radially-expanded region in the sidewall adjacent the end of the can body;ii. applying a first axial load to the can body whilst using a limit ring (3) to limit radial growth of the end of the can body so that all or part of the circumferential radially-expanded region partially axially collapses to form an outwardly-directed open annular bead (16a);iii. removing the flared die (2) and inserting a diaphragm (40) relative to the can body so that a peripheral annular portion of the diaphragm (40) locates between opposing surfaces of the open annular bead (16a); andiv. applying a second axial load to the can body to fully axially collapse the bead (16b) to thereby clamp the peripheral annular portion of the diaphragm (40) between the opposing surfaces of the bead and close the end of the can body.
- A method as claimed in claim 1, wherein steps i & ii are performed substantially simultaneously.
- A method as claimed in claim 2, wherein steps i and ii comprise inserting the flared die (2) within the end of the can body (1) to apply both radial and axial loads to the can body (1), the flared die (2) terminating in a generally radially-extending end face (21), the limit ring (3) situated adjacent the end face (21), the limit ring having a generally axially-extending wall (31) to thereby limit radial growth of the end of the can body.
- A method as claimed in either of claim 1 or 2, wherein steps i and ii comprise inserting the flared die (2) within the end of the can body to apply both radial and axial loads to the can body, the flared die and/or the limit ring (3) defining an outwardly-curled end face(23), such that insertion of the flared die into the can body causes the free edge (15) at the end of the can body to propagate along the surface of the outwardly-curled end face to form a curl (50), formation of the curl limiting further propagation of the free edge such that further insertion of the flared die induces the partial axial collapse of all or part of the circumferential radially-expanded region to form the outwardly-directed open annular bead (16a).
- A method as claimed in claim 4, wherein during or subsequent to step iv, the curl (50) is substantially flattened against the external surface of the collapsed bead to define a double thickness of metal above and adjacent the external surface of the collapsed bead.
- A method as claimed in any one of claims 1 to 3, the method adapted during step ii to leave a portion of the sidewall of the can body extending between the partly collapsed outwardly-directed open annular bead and the free edge at the end of the can body, wherein simultaneously with or subsequent to step iv the portion is deformed to lie adjacent the exterior surface of the collapsed beard such that the free edge is outwardly-directed.
- A method as claimed in any one of claims 1 to 3, the method adapted during step ii to leave a portion of the sidewall of the can body extending between the partly collapsed outwardly-directed open annular bead (16a) and the free edge at the end of the can body, wherein simultaneously with or subsequent to step iv the portion is wrapped around the periphery of the exterior surface of the collapsed bead so that the free edge (15) is directed inwardly towards the can body sidewall.
- A method as claimed in any one of claims 1 to 3, the method adapted during step ii to leave a portion of the sidewall of the can body extending between the partly collapsed outwardly-directed open annular bead (16a) and the free edge at the end of the can body, the portion comprising an inner region and an outer region, the inner region extending between the bead and the outer region, the outer region terminating at the free edge, wherein simultaneously with or subsequent to step iv the outer region is folded over the inner region, the combination of inner and outer regions then deformed such that the outer region is sandwiched between the inner region and the exterior surface of the collapsed bead to form a double thickness of metal above and adjacent the external surface of the collapsed bead.
- A method as claimed in any preceding claim, further comprising applying an upwards load to the underside of the fully collapsed bead (16b) to compress and tighten the clamped seal.
- A method as claimed in claim 9, wherein the sidewall (13) of the can body is radially supported at the end of the can body during application of the upwards load to the underside of the fully collapsed bead (16b).
- A method as claimed in any preceding claim, wherein the peripheral annular portion of the diaphragm (40) as located between the opposing surfaces of the open annular bead (16a) during step iii comprises an upturned peripheral annular region, with the application of the second axial load during step iv acting to fold over the upturned peripheral annular region to thereby clamp a double thickness of diaphragm material between the opposing surfaces of the collapsed bead.
- An apparatus for forming a can by the method according to claim 1, the apparatus having:i. a radial load member, comprising a flared die (2), for radially expanding the sidewall at an end of a tubular metal can body to define a circumferential radially-expanded region in the sidewall adjacent the end of the can body;ii. a first axial load member for applying a first axial load to the can body, plus a limit ring (3) adapted to limit radial growth of the end of the can body such that during application of the first axial load the circumferential radially-expanded region partially axially collapses to form an outwardly-directed open annular bead (16a);iii. means for inserting a peripheral annular portion of a diaphragm (40) between opposing surfaces of the open annular bead;iv. a second axial load member for applying a second axial load to the can body to fully axially collapse the bead to thereby clamp the peripheral annular portion of the diaphragm between the opposing surfaces of the bead (16b) and close the end of the can body.
- An apparatus as claimed in claim 12, wherein the flared die acts as both the radial load member and first axial load member, the flared die terminating in a generally radially-extending end face (21), wherein the limit ring is situated adjacent the end face, the limit ring (3) having a generally axially-extending wall (31) to thereby limit radial growth of the end of the can body.
- An apparatus as claimed in claim 12, wherein the flared die acts as both the radial load member and first axial load member, the flared die (2) and/or the limit ring (3) defining an outwardly-curled end face, such that insertion of the flared die into the can body causes the free edge at the end of the can body to propagate along the surface of the outwardly-curled end face to form a curl.
- An apparatus as claimed in either of claim 13 or 14, wherein the flared die and the limit ring are integrally formed.
- A can resulting from the method of any one of claims 1 to 11 or from the use of the apparatus of any one of claims 12 to 15 in the method of any one of claims 1-11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10717175.3A EP2427384B1 (en) | 2009-05-07 | 2010-05-07 | Container with seamed closure and method and apparatus for its manufacture |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09159611A EP2248731A1 (en) | 2009-05-07 | 2009-05-07 | Container with clamped seal |
PCT/EP2010/056301 WO2010128161A1 (en) | 2009-05-07 | 2010-05-07 | Container with seamed closure and method and apparatus for its manufacture |
EP10717175.3A EP2427384B1 (en) | 2009-05-07 | 2010-05-07 | Container with seamed closure and method and apparatus for its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2427384A1 EP2427384A1 (en) | 2012-03-14 |
EP2427384B1 true EP2427384B1 (en) | 2016-02-17 |
Family
ID=40848259
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09159611A Withdrawn EP2248731A1 (en) | 2009-05-07 | 2009-05-07 | Container with clamped seal |
EP10717175.3A Not-in-force EP2427384B1 (en) | 2009-05-07 | 2010-05-07 | Container with seamed closure and method and apparatus for its manufacture |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09159611A Withdrawn EP2248731A1 (en) | 2009-05-07 | 2009-05-07 | Container with clamped seal |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120043340A1 (en) |
EP (2) | EP2248731A1 (en) |
ES (1) | ES2567262T3 (en) |
WO (1) | WO2010128161A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD678050S1 (en) | 2011-10-05 | 2013-03-19 | Kraft Foods Group Brands Llc | Bowl |
CN104936718B (en) * | 2012-05-02 | 2019-11-19 | 恩特格里斯公司 | Manufacturing method for the three-dimensional conformal liner of common cylinder |
USD693242S1 (en) | 2013-01-14 | 2013-11-12 | Kraft Foods Group Brands Llc | Sleeve |
US10010926B2 (en) | 2013-10-28 | 2018-07-03 | Ball Corporation | Method for filling, seaming, distributing and selling a beverage in a metallic container at a single location |
DE102014104775A1 (en) * | 2014-04-03 | 2015-10-08 | Efs Euro Forming Service Gmbh | A method of forming an end of a pipe, apparatus for carrying out the method, rolling elements and a flange formed therewith at one end of a pipe |
US10875076B2 (en) | 2017-02-07 | 2020-12-29 | Ball Corporation | Tapered metal cup and method of forming the same |
US11370579B2 (en) | 2017-02-07 | 2022-06-28 | Ball Corporation | Tapered metal cup and method of forming the same |
USD950318S1 (en) | 2018-05-24 | 2022-05-03 | Ball Corporation | Tapered cup |
USD906056S1 (en) | 2018-12-05 | 2020-12-29 | Ball Corporation | Tapered cup |
USD968893S1 (en) | 2019-06-24 | 2022-11-08 | Ball Corporation | Tapered cup |
USD953811S1 (en) | 2020-02-14 | 2022-06-07 | Ball Corporation | Tapered cup |
USD974845S1 (en) | 2020-07-15 | 2023-01-10 | Ball Corporation | Tapered cup |
USD1012617S1 (en) | 2021-02-22 | 2024-01-30 | Ball Corporation | Tapered cup |
USD1035386S1 (en) | 2021-12-08 | 2024-07-16 | Ball Corporation | Tapered cup |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1559096A (en) * | 1924-01-10 | 1925-10-27 | Francis M Hall | Sanitary can and seal |
GB350359A (en) * | 1930-10-04 | 1931-06-11 | Hugh Wagstaff | Improvements in and relating to tin canisters |
US2004535A (en) * | 1933-01-09 | 1935-06-11 | Noblitt Sparks Ind Inc | Process of making lock-seams |
US2182813A (en) * | 1934-05-12 | 1939-12-12 | American Can Co | Container |
US3079031A (en) * | 1960-02-23 | 1963-02-26 | Continental Can Co | Metal band double seamed to metal can for attaching elastic transparent end thereto |
US3315839A (en) * | 1962-06-06 | 1967-04-25 | Continental Can Co | Can closure and method of forming same |
NL6406427A (en) * | 1964-04-23 | 1965-10-25 | ||
US3358876A (en) * | 1964-09-14 | 1967-12-19 | American Can Co | Reverse seam can with hermetic drumhead |
US3385249A (en) * | 1965-10-13 | 1968-05-28 | Sherwin Williams Co | Method of making containers |
US3782314A (en) * | 1971-04-21 | 1974-01-01 | Metal Box Co Ltd | Making can bodies |
BE789355A (en) * | 1971-09-27 | 1973-03-27 | Metal Box Co Ltd | |
US4361246A (en) * | 1980-12-17 | 1982-11-30 | Alexander Nelson | Container construction |
US4483456A (en) * | 1982-01-18 | 1984-11-20 | Rheem Manufacturing Company | Salvageable industrial container |
DE3802000A1 (en) * | 1987-03-04 | 1988-10-13 | Bueco Buedenbender Gmbh & Co | CONTAINER MADE OF METAL SHEET |
US4927043A (en) * | 1987-11-13 | 1990-05-22 | Ihly Industries, Inc. | Necked-down can having a false seam and an apparatus to form same |
US4870847A (en) * | 1988-05-20 | 1989-10-03 | Ihly Industries, Inc. | Method and apparatus for forming outwardly projecting beads on cylindrical objects |
GB2237259B (en) | 1989-07-10 | 1993-12-08 | Metal Box Plc | Container closure |
IT229364Y1 (en) * | 1992-09-14 | 1998-07-02 | Ocm Srl | METAL CONTAINER WITH LACERABLE LID |
GB2289663A (en) | 1994-05-21 | 1995-11-29 | Metal Box Plc | Containers and lids bonded thereto |
US5775531A (en) * | 1997-01-09 | 1998-07-07 | Sonoco Products Company | Container for powdered product having a measuring cup device therein |
US20030113416A1 (en) * | 2001-12-14 | 2003-06-19 | Wycliffe Paul Anthony | Metal container with seam connecting body and top portion |
-
2009
- 2009-05-07 EP EP09159611A patent/EP2248731A1/en not_active Withdrawn
-
2010
- 2010-05-07 US US13/266,257 patent/US20120043340A1/en not_active Abandoned
- 2010-05-07 EP EP10717175.3A patent/EP2427384B1/en not_active Not-in-force
- 2010-05-07 WO PCT/EP2010/056301 patent/WO2010128161A1/en active Application Filing
- 2010-05-07 ES ES10717175.3T patent/ES2567262T3/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP2248731A1 (en) | 2010-11-10 |
WO2010128161A1 (en) | 2010-11-11 |
EP2427384A1 (en) | 2012-03-14 |
ES2567262T3 (en) | 2016-04-21 |
US20120043340A1 (en) | 2012-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2427384B1 (en) | Container with seamed closure and method and apparatus for its manufacture | |
EP1855822B1 (en) | Packaging can | |
US20090032535A1 (en) | Container | |
RU2270794C2 (en) | Can end | |
AP168A (en) | Supporting ring for container closure. | |
US6036043A (en) | Easily-opened can lid | |
US20070272693A1 (en) | Membrane Lid with Recessed Tab, and Container Incorporating Same | |
AU6040894A (en) | Container end closure | |
EP0599583B1 (en) | Method of making a container body and a closure for the body | |
EP1800770A1 (en) | Can body with a sealing compound placed on a step or flange and method of forming such a can body | |
US20130105499A1 (en) | Three-Piece Can and Method of Making Same | |
WO2010034822A1 (en) | Closure | |
JP2001170730A (en) | Mouth cap for metal container, metal container and manufacturing method for metal container | |
US20240124189A1 (en) | Can end | |
JP2001233332A (en) | Can with screw | |
JPWO2018062432A1 (en) | Can body, method for manufacturing can body and manufacturing apparatus for can body | |
WO2012152608A1 (en) | Peelback |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111024 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602010030676 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B65D0008200000 Ipc: B65D0017000000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B65D 17/00 20060101AFI20150618BHEP Ipc: B65D 6/30 20060101ALI20150618BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150810 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 775523 Country of ref document: AT Kind code of ref document: T Effective date: 20160315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010030676 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2567262 Country of ref document: ES Kind code of ref document: T3 Effective date: 20160421 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160217 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 775523 Country of ref document: AT Kind code of ref document: T Effective date: 20160217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160517 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160518 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160617 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010030676 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160507 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20161118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160517 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160507 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170523 Year of fee payment: 8 Ref country code: GB Payment date: 20170519 Year of fee payment: 8 Ref country code: FR Payment date: 20170523 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20170525 Year of fee payment: 8 Ref country code: ES Payment date: 20170628 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100507 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602010030676 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180507 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181201 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180507 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20190913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180508 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230517 |