EP2427191B1 - Pesticidal compositions - Google Patents

Pesticidal compositions Download PDF

Info

Publication number
EP2427191B1
EP2427191B1 EP10772663.0A EP10772663A EP2427191B1 EP 2427191 B1 EP2427191 B1 EP 2427191B1 EP 10772663 A EP10772663 A EP 10772663A EP 2427191 B1 EP2427191 B1 EP 2427191B1
Authority
EP
European Patent Office
Prior art keywords
substituted
unsubstituted
alkyl
aryl
alkenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10772663.0A
Other languages
German (de)
French (fr)
Other versions
EP2427191A4 (en
EP2427191A1 (en
Inventor
Tony Trullinger
Ricky Hunter
Negar Garizi
Maurice Yap
Ann Buysse
Dan Pernich
Timothy Johnson
Kristy Bryan
Carl Deamicis
Yu Zhang
Noormohamed Niyaz
Casandra Mcleod
Ronald Ross
Yuanming Zhu
Peter Johnson
Joseph Eckelbarger
Marshall Parker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corteva Agriscience LLC
Original Assignee
Dow AgroSciences LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK13158984.8T priority Critical patent/DK2604267T3/en
Priority to DK13159003.6T priority patent/DK2604268T3/en
Priority to PL13159003T priority patent/PL2604268T3/en
Priority to EP13158995.4A priority patent/EP2614826B1/en
Priority to EP13159003.6A priority patent/EP2604268B1/en
Priority to DK13158986.3T priority patent/DK2614825T3/en
Priority to EP13158984.8A priority patent/EP2604267B1/en
Priority to EP13158986.3A priority patent/EP2614825B1/en
Application filed by Dow AgroSciences LLC filed Critical Dow AgroSciences LLC
Publication of EP2427191A1 publication Critical patent/EP2427191A1/en
Publication of EP2427191A4 publication Critical patent/EP2427191A4/en
Application granted granted Critical
Publication of EP2427191B1 publication Critical patent/EP2427191B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/16Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof the nitrogen atom being part of a heterocyclic ring
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/18Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof containing a —O—CO—N< group, or a thio analogue thereof, directly attached to a heterocyclic or cycloaliphatic ring
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/36Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the group >N—CO—N< directly attached to at least one heterocyclic ring; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/38Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the group >N—CO—N< where at least one nitrogen atom is part of a heterocyclic ring; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/38Nitrogen atoms
    • C07D277/44Acylated amino or imino radicals
    • C07D277/48Acylated amino or imino radicals by radicals derived from carbonic acid, or sulfur or nitrogen analogues thereof, e.g. carbonylguanidines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the invention disclosed in this document is related to the field of processes to produce molecules that are useful as pesticides (e.g ., acaricides, insecticides, molluscicides, and nematicides), such molecules, and processes of using such molecules to control pests.
  • pesticides e.g ., acaricides, insecticides, molluscicides, and nematicides
  • JP 2003-212864 discloses 5-(m-cyanobenzylamino)thiazole derivatives and their use as fungicides.
  • Acaricide Group is defined under the heading "ACARICIDES”.
  • alkenyl means an acyclic, unsaturated (at least one carbon-carbon double bond), branched or unbranched, substituent consisting of carbon and hydrogen, for example, vinyl, allyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, and decenyl.
  • alkenyloxy means an alkenyl further consisting of a carbon-oxygen single bond, for example, allyloxy, butenyloxy, pentenyloxy, hexenyloxy, heptenyloxy, octenyloxy, nonenyloxy, and decenyloxy.
  • alkoxy means an alkyl further consisting of a carbon-oxygen single bond, for example, methoxy, ethoxy, propoxy, isopropoxy, 1-butoxy, 2-butoxy, isobutoxy, tert-butoxy, pentoxy, 2-methylbutoxy, 1,1-dimethylpropoxy, hexoxy, heptoxy, octoxy, nonoxy, and decoxy.
  • alkyl means an acyclic, saturated, branched or unbranched, substituent consisting of carbon and hydrogen, for example, methyl, ethyl, propyl, isopropyl, 1-butyl, 2-butyl, isobutyl, tert-butyl, pentyl, 2-methylbutyl, 1,1-dimethylpropyl, hexyl, heptyl, octyl, nonyl, and decyl.
  • alkyuyl means an acyclic, unsaturated (at least one carbon-carbon triple bond, and any double bonds), branched or unbranched, substituent consisting of carbon and hydrogen, for example, ethynyl, propargyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, and decynyl.
  • alkynyloxy means an alkynyl further consisting of a carbon-oxygen single bond, for example, pentynyloxy, hexynyloxy, heptynyloxy, octynyloxy, nonynyloxy, and decynyloxy.
  • aryl means a cyclic, aromatic substituent consisting of hydrogen and carbon, for example, phenyl, naphthyl, and biphenyl.
  • cycloalkenyl means a monocyclic or polycyclic, unsaturated (at least one carbon-carbon double bond) substituent consisting of carbon and hydrogen, for example, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclodecenyl, norbornenyl, bicyclo[2.2.2]octenyl, tetrahydronaphthyl, hexahydronaphthyl, and octahydronaphthyl.
  • cycloalkenyloxy means a cycloalkenyl further consisting of a carbon-oxygen single bond, for example, cyclobutenyloxy, cyclopentenyloxy, cyclohexenyloxy, cycloheptenyloxy, cyclooctenyloxy, cyclodecenyloxy, norbornenyloxy, and bicyclo[2.2.2]octenyloxy.
  • cycloalkyl means a monocyclic or polycyclic, saturated substituent consisting of carbon and hydrogen, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, norbornyl, bicyclo[2.2.2]octyl, and decahydronaphthyl.
  • cycloalkoxy means a cycloalkyl further consisting of a carbon-oxygen single bond, for example, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cycloheptyloxy, cyclooctyloxy, cyclodecyloxy, norbornyloxy, and bicyclo[2.2.2]octyloxy.
  • cyclohaloalkyl means a monocyclic or polycyclic, saturated substituent consisting of carbon halo, and hydrogen, for example, 1-chlorocyclopropyl, 1-chlorocyclobutyl, and 1-dichlorocyclopentyl.
  • halo means fluoro, chloro, bromo, and iodo.
  • haloalkyl means an alkyl further consisting of, from one to the maximum possible number of, identical or different, halos, for example, fluoromethyl, difluoromethyl, trifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2,2-trifluoroethyl, chloromethyl, trichloromethyl, and 1,1,2,2-tetrafluoroethyl.
  • heterocyclyl means a cyclic substituent that may be fully saturated, partially unsaturated, or fully unsaturated, where the cyclic structure contains at least one carbon and at least one heteroatom, where said heteroatom is nitrogen, sulfur, or oxygen, for example, benzofuranyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, benzothienyl, benzothiazolyl cinnolinyl, furanyl, indazolyl, indolyl, imidazolyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, 1,3,4-oxadiazolyl, oxazolinyl, oxazolyl, phthalazinyl, pyrazinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, qui
  • X is preferably CR8.
  • R1 is preferably H, F, Cl, or C 1 -C 6 alkoxy.
  • R1 is more preferably H, F, Cl, or OCH 3 .
  • R1 is even more preferably H
  • R2, and R3 are preferably H.
  • R4 is H, F, Cl, Br, I, CN, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, or S(C 1 -C 6 alkyl).
  • R4 is preferably H, Cl, CF 3 , CH 3 , CH 2 CH 3 , CH(CH 3 ) 2 , or SCH 3 .
  • R4 is more preferably H, Cl, or CH 3 .
  • R4 is even more preferably Cl.
  • R5 is preferably H or C 1 -C 6 alkyl.
  • R5 is more preferably H, CH 3 , CH 2 CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 or CH 2 CH 2 CH 3 .
  • R5 is even more preferably H, CH 3 , CH 2 CH 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 ; or CH 2 CH 2 CH 3 .
  • R6 is preferably 0, S, or N(C 1 -C 6 alkyl).
  • R6 is more preferably O, S, or NCH 2 CH 3 .
  • R6 is even more preferably O.
  • R7 is furyl.
  • R7 is oxazolyl. In another embodiment of this invention R7 is substituted oxazolyl wherein the substituted oxazolyl has one or more C 1 -C 6 alkyls.
  • R7 is piperidinyl.
  • R7 is pyrazolyl.
  • R7 is substituted pyrazolyl wherein said substituted pyrazolyl has one or more substituents selected from C 1 -C 6 alkyl, C 6 -C 20 aryl, C 1 -C 6 haloalkyl, and S(O) n N(C 1 -C 6 alkyl) 2 .
  • R7 is pyridazinyl.
  • R7 is pyridyl. In another embodiment of this invention R7 is substituted pyridyl wherein said substituted pyridyl has one or more C 1 -C 6 alkyls.
  • R7 is thiazolyl.
  • R7 is substituted thiazolyl wherein said substituted thiazolyl has one or more substituents selected from C 1 -C 6 alkyl and C 1 -C 6 haloalkyl.
  • R8 is even more preferably H or F.
  • step a of Scheme I treatment of a carboxylic acid of Formula IIa, such as nicotinic acid wherein R1, R2, R3 and X are as previously defined, with oxalyl chloride in the presence of a catalytic amount of N , N -dimethylformamide (DMF) in a polar aprotic solvent such as 1,2-dichloroethane (DCE) provides the corresponding acid chloride of Formula IIb.
  • a carboxylic acid of Formula IIa such as nicotinic acid wherein R1, R2, R3 and X are as previously defined
  • a commercially available carboxylic acid of Formula IIa such as nicotinic acid
  • glycine methyl ester hydrochloride glycine methyl ester hydrochloride
  • an inorganic base such as potassium carbonate
  • a tertiary amine base such as triethylamine
  • a polar aprotic solvent such as DCE or acetonitrile.
  • the halogen can be removed reductively using hydrogen in the presence of a catalyst, such as palladium hydroxide on carbon, in a polar protic solvent such as methanol to give compounds of Formula IVb, where R3 is H.
  • a catalyst such as palladium hydroxide on carbon
  • a polar protic solvent such as methanol
  • step e of Scheme I reaction of the amide esters of Formula IVa and IVb, wherein R1, R2, R3, R4 and X are as previously defined, with an amine such as methylamine in a polar protic solvent like ethyl alcohol affords the diamides of Formula V, which upon treatment with phosphorus pentasulfide (step g ) or Lawesson's reagent (step h ) may yield aminothiazoles of Formula VIIa.
  • step X is CR8 and R4 is H
  • the diamide of Formula V which upon treatment with Lawesson's reagent, may provide the bis-thioamide of Formula VI as in step i of Scheme I.
  • Cyclization to yield the aminothiazole of Formula VIIb is accomplished in two steps, by reaction of the bis-thioamide of Formula VI with trifluoroacetic anhydride as in step j , followed by hydrolysis with sodium hydroxide in a polar protic solvent such as methyl alcohol, as in step k of Scheme I.
  • a chlorinating agent such as N -chlorosuccinimide
  • a polar aprotic solvent such as acetonitrile
  • step a the thiazole ester of Formula Xa is formed in one step by reaction of a commercially available thioamide of Formula VIIIa, wherein R1, R2, R3 and X are as previously defined, with a ⁇ -ketoester of Formula IXa such as 2-chloro-4,4,4-trifluoro-3-oxobutyric acid ethyl ester, wherein R4 is as previously defined, under microwave irradiation conditions in the presence of a base, such as triethylamine, and in a solvent such as ethyl alcohol.
  • a base such as triethylamine
  • Saponification of the ester can be accomplished as in step b of Scheme II using a base such as sodium hydroxide in a solvent such as aqueous methyl alcohol to give the acid of Formula XIa.
  • a base such as sodium hydroxide in a solvent such as aqueous methyl alcohol
  • step c of Scheme II the tert -butyl carbamate (shown) or other carbamate of Formula XIIa is formed by reaction of the acid of Formula XIa with diphenyl phosphoryl azide (DPPA) and the appropriate alcohol with heating.
  • DPPA diphenyl phosphoryl azide
  • step a a 2-halo-4-substituted thiazole-5-carboxylic acid ethyl ester of Formula XIVa, wherein R4 is as previously defined, is hydrolyzed under basic conditions, such as with lithium hydroxide hydrate, in a solvent system such as aqueous tetrahydrofuran (THF) to afford the corresponding acid of Formula XVa.
  • a solvent system such as aqueous tetrahydrofuran (THF)
  • step c of Scheme III a Curtius rearrangement, followed by the trapping of the resulting isocyanate with tert -butyl alcohol, affords the tert -butyloxycarbonyl (Boc) protected 5-amino thiazole of Formula XVIIa, wherein R4 is as previously defined.
  • Alkylation of the carbamate functionality with an alkyl halide such as iodomethane in the presence of a base such as sodium hydride and in a polar aprotic solvent such as DMF yields the alkyl carbamate of Formula XVIIIa, as shown as step d in Scheme III.
  • step e of Scheme III compounds of Formula XVIIa or XVIIIa, wherein R4 and R5 are as previously defined, can be allowed to react under Suzuki coupling conditions with a boronic acid of Formula XIXa, wherein X, R1, R2 and R3 are as previously defined, to provide the heterocycle-coupled thiazole of Formula XIIIb.
  • R5 is not H
  • the Boc-group can be removed under acidic conditions such as trifluoroacetic acid (TFA) in a polar aprotic solvent like dichloromethane to give compounds of Formula VIIe as in step f of Scheme III.
  • TFA trifluoroacetic acid
  • step h when R4 is H, compounds of Formula XVIIIb can be converted to compounds of Formula XVIIIa, wherein R4 is specifically a halogen. This can be accomplished by treatment of XVIIIb with a halogenating reagent such as N- chlorosuccinimide or N -bromosuccinimide, in a polar aprotic solvent such as acetonitrile to afford 4-halo-thiazole of Formula XVIIIa.
  • a halogenating reagent such as N- chlorosuccinimide or N -bromosuccinimide
  • step a of Scheme IV the compounds of Formula XVIIIc, wherein R4 is as previously defined and R5 is H, can be treated with an acid chloride of Formula XXa, wherein R6 is O and R7 is as previously defined, in the presence of a base such as triethylamine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula XXI.
  • a base such as triethylamine in a polar aprotic solvent such as dichloroethane (DCE)
  • DCE dichloroethane
  • step b of Scheme IV the Boc group can be removed under acidic conditions, such as trifluoroacetic acid in a polar aprotic solvent such a dichloromethane (DCM) to provide compounds of Formula XXII.
  • DCM dichloromethane
  • step c of Scheme IV the compounds of Formula XXII can undergo alkylation with an alkyl halide such as iodomethane, in the presence of a base such as sodium hydride or potassium carbonate and in a polar aprotic solvent such as N , N -dimethylformamide (DMF) to yield the alkylated compounds of Formula XXIII.
  • an alkyl halide such as iodomethane
  • a base such as sodium hydride or potassium carbonate
  • a polar aprotic solvent such as N , N -dimethylformamide (DMF)
  • step d of Scheme IV compounds of Formula XXII or XXIII, wherein R4, R5, R6 and R7 are as previously defined, can be allowed to react under Suzuki coupling conditions with a boronic acid of Formula XIXb, wherein X, R1, R2 and R3 are as previously defined, to provide the heterocycle-coupled thiazole of Formula Ia.
  • step a of Scheme V compounds of Formula VIIa-k, wherein X, R1, R2, R3, R4 and R5 are as previously defined, can be treated with an acid chloride of Formula XXb, wherein R6 is O and R7 is as previously defined, in the presence of a base such as triethylamine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula Ib.
  • a base such as triethylamine
  • a polar aprotic solvent such as dichloroethane (DCE)
  • step a of Scheme VI ureas and carbamates are made from the aminothiazoles of Formula VIIa-k.
  • Compounds of Formula VIIa-k, wherein X, R1, R2, R3, R4 and R5 are as previously defined, are allowed to react with phosgene to provide the intermediate carbamoyl chloride.
  • steps b and c of Scheme VI the carbamoyl chloride is treated with an amine or alcohol, respectively, to generate an urea of Formula Ic or a carbamate of Formula Id, respectively.
  • the sulfoxide of Formula Ig can be further oxidized to the sulfone of Formula Ih by sodium perborate tetrahydrate in a polar protic solvent such as glacial acetic acid as in step b of Scheme VII.
  • the sulfone of Formula Ih can be generated in a one-step procedure from the sulfide of Formula If by using the aforementioned conditions with ⁇ 2 equivalents of sodium perborate tetrahydrate, as in step c of Scheme VII.
  • step a of Scheme VIII compounds of Formula XIIb, wherein X, R1, R2, R3 and R4 are as previously defined, can be treated with an acid chloride of Formula XXc, wherein R6 is O and R7 are as previously defined, in the presence of a base such as triethylamine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula XXIV.
  • a base such as triethylamine
  • a polar aprotic solvent such as dichloroethane (DCE)
  • step b of Scheme VIII the Boc group of XXIV can be removed under acidic conditions, such as trifluoroacetic acid (TFA) in a polar aprotic solvent such a dichloromethane to provide compounds of Formula Ii.
  • TFA trifluoroacetic acid
  • step a of Scheme IX compounds of Formula XIIIc, wherein X, R1, R2, R3 and R5 are as previously defined, can be treated with an electrophilic source of halogen, such as N- bromosuccinimide or N -iodosuccinimide in a polar aprotic solvent such as acetonitrile to yield compounds of Formula XIIId, wherein R4 is limited to halogens.
  • an electrophilic source of halogen such as N- bromosuccinimide or N -iodosuccinimide in a polar aprotic solvent such as acetonitrile
  • Palladium-catalyzed cross coupling reactions such as the Stille coupling on compounds of Formula XIIId can be performed as in step b using a palladium ; catalyst such as bis(triphenylphosphine)palladium(II)chloride in a polar aprotic solvent such as dioxane to yield carbamates of Formula XXV.
  • compounds of the formula XIIIe, where R4 is a cyano group can be prepared by treating the compound of the formula XIIId with CuCN in a solvent such as N,N -dimethylformamide (DMF) at a suitable temperature as in step c .
  • a solvent such as N,N -dimethylformamide (DMF)
  • step a of Scheme X the compound of Formula XVIIb where R4 is H can be treated with BOC-anhydride in the presence of a base such as triethylamine in a polar aprotic solvent such as tetrahydrofuran (THF) to yield compounds of Formula XXV.
  • a base such as triethylamine
  • a polar aprotic solvent such as tetrahydrofuran (THF)
  • step b compounds of Formula XXV can be allowed to react under Suzuki coupling conditions with a boronic acid of Formula XIXc, wherein X, R1, R2, R3 and R4 are as previously defined, to provide the heterocycle-coupled thiazole of Formula XXVI.
  • step c compounds of Formula XXVI can be treated with an electrophilic source of halogen, such as SelectfluorTM, in a mixture of polar aprotic solvents such as acetonitrile and N , N -dimethylformamide (DMF) to yield compounds of Formula XXVII, wherein R4 is limited to halogens.
  • an electrophilic source of halogen such as SelectfluorTM
  • a mixture of polar aprotic solvents such as acetonitrile and N , N -dimethylformamide (DMF)
  • one of the BOC-groups can be removed under acidic conditions such as trifluoroacetic acid (TFA) in a polar aprotic solvent such as dichloromethane (DCM) to yield compounds of Formula XIIc as in step d of Scheme X, where R1, R2, R3 and R4 are as previously defined.
  • TFA trifluoroacetic acid
  • DCM dichloromethane
  • Oxidation of the sulfide to the sulfoximine is accomplished as in Scheme XI.
  • the sulfide of Formula Ik wherein X, R1, R2, R3, R4 and R5 are as previously defined, is oxidized as in step a with iodobenzene diacetate in the presence of cyanamide in a polar aprotic solvent such as methylene chloride (DCM) to give sulfilimine of the Formula Im.
  • a polar aprotic solvent such as methylene chloride (DCM)
  • the sulfilimine of Formula Im may be further oxidized to the sulfoximine of Formula In with m CPBA in the presence of a base such as potassium carbonate in a protic polar solvent system such as ethanol and water as in step b of Scheme XI.
  • a base such as potassium carbonate
  • a protic polar solvent system such as ethanol and water
  • step a of Scheme XII the compound of Formula VIIIb, wherein X, R1, R2 and R3 are as previously defined, can be treated with ethyl bromopyruvate in a polar protic solvent such as ethanol to yield compounds of Formula XXVIII.
  • step b of Scheme XII the 5-bromothiazole of Formula XXIX is formed by reaction of the thiazole ester of Formula XXVIII with a base such as postassium bis(trimethylsilyl)amide and N -bromosuccinimide in a polar aprotic solvent such as THF.
  • step c the bromine is displaced with sodium azide in a solvent system such as N,N -dimethylformamide (DMF)/H 2 O.
  • a solvent system such as N,N -dimethylformamide (DMF)/H 2 O.
  • the resultant azide was thermally reduced (75 °C) to give the 5-aminothiazole of Formula XXX in Scheme XII.
  • step a of Scheme XIII the thioamide Iq is prepared from the amide of Formula Ip.
  • the compound of Formula Ip wherein X, R1, R2, R3, R4, R5 and R7 are as previously defined, is allowed to react under microwave irradiation conditions with Lawesson's reagent in a solvent such as dioxane to give the thioamide of Formula Iq in Scheme XIII.
  • step a of Scheme XIV compounds of Formula VIIg, wherein X, R1, R2, R3, R4, and R5 are as previously defined, can be treated with substituted isothiocyanates of Formula XXXI where R9 is as previously defined, in refluxing dioxane to yield compounds of Formula Ir.
  • step b of Scheme XIV the S-alkylated pseudothioureas of Formula Is can be formed by treating thioureas of Formula Ir with alkylating agents in refluxing ethanol under basic conditions, wherein each R9 can be the same or different.
  • step a of Scheme XV the compound of Formula XXXV wherein R4 is as defined previously, can be allowed to react under Suzuki coupling conditions with a boronic acid of Formula XIXd, wherein R1, R2, R3 and X are as defined previously to provide the heterocycle-coupled thiazole of Formula XXII.
  • step b of Scheme XV compounds of the Formula XXXII, wherein R1, R2, R3, R4 and X are as defined previously, can be converted to compounds of the Formula XXXIIIa, wherein R1, R2, R3, R4 and X are as defined previously by treatment with a nitrating reagent such as a mixture of fuming nitric acid and concentrated sulfuric acid at a suitable temperature.
  • a nitrating reagent such as a mixture of fuming nitric acid and concentrated sulfuric acid
  • step c compounds of Formula XXXIIIa, wherein R1, R2, R3, and X are as defined previously and R4 is a leaving group such as chloro, can be treated with a nucleophile such as sodium thiomethoxide to produce the compounds of Formula XXXIIIb, wherein R1, R2, R3, and X are as defined previously and R4 is thioalkyl.
  • step d compounds of Formula XXXIIIb can be converted to compounds of Formula VIIh, wherein R1, R2, R3, R4 and X are as defined previously and R5 is H, by treatment with molecular hydrogen in the presence of a catalyst such as Pd on C and an acid such as acetic acid in a solvent such as ethyl acetate.
  • a catalyst such as Pd on C
  • an acid such as acetic acid in a solvent such as ethyl acetate.
  • step a of Scheme XVI compounds of Formula VIIi, wherein X, R1, R2, R3, R4 and R5 are as previously defined, can be treated with an acid of Formula XXXIV, wherein R6 is O and R7 is as previously defined, in the presence of a coupling reagent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC HCl) and a base such as N , N -dimethylaminopyridine (DMAP) in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula It.
  • a coupling reagent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC HCl) and a base such as N , N -dimethylaminopyridine (DMAP) in a polar aprotic solvent such as dichloroethane
  • step a the thiazole ester of Formula Xb is formed in one step by reaction of a commercially available thioamide of Formula VIIIb, wherein R1, R2, R3 and X are as previously defined, with a ⁇ -ketoester of Formula IXb such as ethyl 2-chloro-3-oxobutanoate, wherein R4 is as previously defined, and heating to 70-80 °C in a solvent such as ethyl alcohol.
  • a solvent such as ethyl alcohol
  • step b of Scheme XVII using a base such as lithium hydroxide in a solvent such as tetrahydrofuran (THF) to give the acid of Formula XIb.
  • step c of Scheme XVII the tert -butyl carbamate of Formula XIIc is formed by reaction of the acid of Formula XIb with a chlorinating agent such as thionyl chloride to give the acid chloride, treatment of the acid chloride with sodium azide in a biphasic solution such as dichloroethane (DCE) and ater to give the acyl azide, and then heating the acyl azide in tert -butanol as solvent.
  • a chlorinating agent such as thionyl chloride
  • DCE dichloroethane
  • step a a 2-halo-4-substituted thiazole-5-carboxylic acid ethyl ester of Formula XIVb, wherein R4 is as previously defined, is hydrolyzed under basic conditions, such as lithium hydroxide hydrate, in a solvent system such as aqueous tetrahydrofuran (THF) to afford the corresponding acid of Formula XVb.
  • basic conditions such as lithium hydroxide hydrate
  • solvent system such as aqueous tetrahydrofuran (THF)
  • step d of Scheme XVIII compounds of Formula XVIIc or XVIIId, wherein R4 and R5 are as previously defined, can be allowed to react under Suzuki coupling conditions with a boronic acid of Formula XIXe, wherein X, R1, R2 and R3 are as previously defined, to provide the heterocycle-coupled thiazole of Formula XIIIg.
  • the Boc-group can be removed under acidic conditions such as 4M HCl in dioxane to give compounds of Formula VIIk as in step e of Scheme XVIII.
  • step a of Scheme XIX compounds of Formula VIIa-k, wherein X, R1, R2, R3, R4 and R5 are as previously defined, can be treated with an acid chloride of Formula XXd, wherein R6 is O and R7 is as previously defined, in the presence of a catalyst such as N,N- dimethylaminopyridine (DMAP) and a base such as pyridine in a polar aprotic solvent such as dichloromethane (DCM) to yield compounds of Formula Iv.
  • a catalyst such as N,N- dimethylaminopyridine (DMAP) and a base such as pyridine in a polar aprotic solvent such as dichloromethane (DCM)
  • step a of Scheme XX compounds of Formula XXXVI can be treated with an electrophilic source of halogen such as N -chlorosuccinimide in a polar aprotic solvent such as acetonitrile to yield compounds of Formula XXXVII.
  • the Boc-group in compounds of Formula XXXVII can be removed under acidic conditions such as trifluoroacetic acid (TFA) in a polar aprotic solvent such as dichloromethane as in step b to give compounds of Formula XXXVIII.
  • TFA trifluoroacetic acid
  • step c compounds of Formula XXXVIII can be treated with 3-methylsulfanyl-propionyl chloride in the presence of a base such as N,N -dimethyl amino-pyridine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula XXXIX.
  • step d compounds of Formula XXXVIII can be treated with 2-methyl-3-methylsulfanyl-propionyl chloride in the presence of a base such as N , N -dimethylamino-pyridine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula XXXX.
  • step a of Scheme XXI compounds of Formula XXXI can be treated with an electrophilic source of halogen such as N -chlorosuccinimide in a polar aprotic solvent such as acetonitrile to yield compounds of Formula XXXXII.
  • an electrophilic source of halogen such as N -chlorosuccinimide in a polar aprotic solvent such as acetonitrile
  • Boc-group in compounds of Formula XXXXII can be removed under acidic conditions such as trifluoroacetic acid (TFA) in a polar aprotic solvent such as dichloromethane (DCM) as in step b to give compounds of Formula XXXXIII
  • a polar aprotic solvent such as dichloromethane (DCM)
  • step c compounds of Formula XXXXIII can be treated with 3-methylsulfanyl-propionyl chloride in the presence of a base such as N , N- dimethyl amino-pyridine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula XXXXIV.
  • step d compounds of Formula XXXXIII can be treated with 2-methyl-3-methylsulfanylpropionyl chloride in the presence of a base such as N , N -dimethylamino-pyridine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula XXXXV.
  • a base such as N , N -dimethylamino-pyridine
  • a polar aprotic solvent such as dichloroethane (DCE)
  • reaction mixture was allowed to come to room temperature under nitrogen over 14 hours (h), washed with water (2 x 100 mL), brine (100 mL), dried over magnesium sulfate (MgSO 4 ) and purified by silica gel chromatography (ethyl acetate/hexanes gradient) to yield an orange solid (1.8 g, 33%).
  • N -(1-methylcarbamoyl-ethyl)nicotinamide 207 mg, 1.0 mmol
  • Lawesson's reagent (2,4-bis-(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane 2,4-disulfide, 404 mg, 1.0 mmol) in one portion.
  • the heterogeneous mixture was heated in a microwave for 5 min at 130 °C.
  • the reaction mixture was partitioned between CH 2 Cl 2 and saturated aqueous sodium bicarbonate (NaHCO 3 ). The layers were separated and the organic layer was washed once with brine.
  • the compound was isolated after purification via silica gel chromatography eluting with an ethyl acetate/hexanes gradient to yield an amber gum (0.98 g, 63%): IR (thin film) 1717 cm -1 ; ESIMS m / z 318.21 (M+3).
  • thionicotinamide 0.552 g, 4.0 mmol
  • ethanol 15 mL
  • 2-chloro-4,4,4-trifluoro-3-oxo-butyric acid ethyl ester 1.75 g, 8 mmol
  • the tube was capped and heated in a microwave at 150 °C for 10 min.
  • the reaction mixture was cooled to ambient temperature and Et 3 N (1.7 mL, 12 mmol) was added.
  • the tube was capped and heated in a microwave at 130 °C for 1 min.
  • the crude product was dissolved in CH 2 Cl 2 (2 mL), and trifluoroacetic acid (1 mL) was added. The reaction mixture was stirred at ambient temperature for 30 min. The reaction was quenched with saturated aqueous NaHCO 3 and extracted with CH 2 Cl 2 . The organic layer was dried over Na 2 SO 4 , filtered and concentrated.
  • the reaction was cooled to ambient temperature and half of the solution was transferred to a vial and to this was added 2-(methylthio)ethanamine (0.183 g, 2.0 mmol) and DMAP (0.244 g, 2.0 mmol).
  • the reaction was capped and heated at 80 °C overnight.
  • the reaction was quenched upon addition of ethyl acetate and 0.1 N HCl.
  • the layers were separated, and the organic layer was washed separately with saturated aqueous NaHCO 3 and brine.
  • the ethyl acetate layer was dried over MgSO 4 , filtered and concentrated under reduced pressure.
  • the carbamoyl chloride was formed as in Example 29. A 0.72 mmol solution of carbamoyl chloride in DCE was added to 2-(methylthio)ethanol (0.092 g, 1.0 mmol) and DMAP (0.122 g, 1.0 mmol) and heated at reflux overnight. The reaction was quenched upon addition of ethyl acetate and 0.1 N HCl. The layers were separated, and the organic layer was washed with saturated aqueous NaHCO 3 and brine. The ethyl acetate layer was dried over MgSO 4 , filtered and concentrated to dryness under reduced pressure.
  • Example 36 Benzoic acid [(2-methyl-3-methylsulfanyl-propionyl)-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-amino]-methyl ester (Compound 203) (comparative)
  • reaction was quenched by pouring into a mixture of ether and water. The layers were separated and the aqueous layer was extracted twice with ethyl acetate. The combined organics were dried over MgSO 4 , filtered, and the solvent was removed in vacuo.
  • Example 52-A Preparation of 3-[cyano(methyl)sulfonimidoyl]- N -[2-(5-fluoropyridin-3-yl)-4-methyl-1,3-thiazol-5-yl]-2-methylpropanamide (Compound 164)
  • Example 75 can be prepared as demonstrated in the literature (reference Musker, W. K.; et al. J. Org. Chem. 1996, 51, 1026-1029 ).
  • Sodium methanethiolate 1.0 g, 14 mmol, 2.0 equiv
  • 3-chloro-2,2-dimethylpropanoic acid 1.0 g, 7.2 mmol, 1.0 equiv
  • N,N -dimethylformamide 3.0 °C.
  • the resulting brown suspension was allowed to warm to 23 °C and stirred for 24 h.
  • Example 76 was made using the procedures disclosed in J.Chem Soc Perkin 1, 1992, 10, 1215-21 ).
  • Example 77 was made using the procedures disclosed in Synthetic Comm., 1985, 15 (7), 623-32 .
  • Example 78 was made using the procedures disclosed in Heterocycles, 2007, 74, 397-409 .
  • Example 79 was made using the procedures disclosed in J. Chem Soc Perkin 1, 1992, 10, 1215-21 .
  • Example 80 was made using the procedures disclosed in Synthetic Comm., 2003, 33 (5); 801-807 .
  • Compound 502 was prepared from Compound 481 according to the Scheme IX (step c ) and the Scheme V (Step a ), respectively.
  • Compound 494 was prepared from Compound 481 according to Scheme IX (step c ) and Scheme VIII (step a ), respectively.
  • Compound 503 was prepared from Compound 277 according to the Scheme VIII (steps b and c ), Scheme IX (step a , c ) and Scheme III (steps f ) and Scheme V (step a ), respectively.
  • the rating scale is as follows at 200 ppm. % Control (or Mortality) Rating 80-100 A Less than 80 B Not tested C
  • Example 81 Insecticidal test for green peach aphid ( Myzus persicae ) in foliar spray assay.
  • the seedlings were infested with 20-50 green peach aphids (wingless adult and nymph) one day prior to chemical application.
  • Four pots with individual seedlings were used for each treatment.
  • Compounds (2 mg) were dissolved in 2 mL of acetone/methanol (1:1) solvent, forming stock solutions of 1000 ppm.
  • the stock solutions were diluted 5X with 0.025% Tween 20 in H 2 O to obtain a test solution at 200 ppm.
  • a hand-held Devilbiss sprayer was used for spraying a solution to both sides of cabbage leaves until runoff.
  • Example 82 Insecticidal test for cotton aphid ( Aphis gossypii ) in foliar spray assay
  • Example 83 Insecticidal test for sweetpotato whitefly-crawler ( Bemisia. tabaci ) in foliar spray assay
  • Molecules of Formula I may be formulated into pesticidally acceptable acid addition salts.
  • an amine function can form salts with hydrochloric, hydrobromic, sulfuric, phosphoric, acetic, benzoic, citric, malonic, salicylic, malic, fumaric, oxalic, succinic, tartaric, lactic, gluconic, ascorbic, maleic, aspartic, benzenesulfonic, methanesulfonic, ethanesulfonic, hydroxymethanesulfonic, and hydroxyethanesulfonic acids.
  • an acid function can form salts including those derived from alkali or alkaline earth metals and those derived from ammonia and amines.
  • preferred cations include sodium, potassium, magnesium, and ammonium cations.
  • Molecules of Formula I may be formulated into salt derivatives.
  • a salt derivative can be prepared by contacting a free base with a sufficient amount of the desired acid to produce a salt.
  • a free base may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous sodium hydroxide (NaOH), potassium carbonate, ammonia, and sodium bicarbonate.
  • a pesticide such as 2,4-D, is made more water-soluble by converting it to its dimethylamine salt.
  • Molecules of Formula I may be formulated into stable complexes with a solvent, such that the complex remains intact after the non-complexed solvent is removed. These complexes are often referred to as "solvates.” However, it is particularly desirable to form stable hydrates with water as the solvent.
  • - Molecules of Formula I may be made as various crystal polymorphs. Polymorphism is important in the development of agrochemicals since different crystal polymorphs or structures of the same molecule can have vastly different physical properties and biological performances.
  • Molecules of Formula I may be made with different isotopes. Of particular importance are molecules having 2 H (also known as deuterium) in place of 1 H.
  • Molecules of Formula I may be made with different radionuclides. Of particular importance are molecules having 14 C.
  • Molecules of Formula I may exist as one or more stereoisomers. Thus, certain molecules can be produced as racemic mixtures. It will be appreciated by those skilled in the art that one stereoisomer may be more active than the other stereoisomers. Individual stereoisomers may be obtained by known selective synthetic procedures, by conventional synthetic procedures using resolved starting materials, or by conventional resolution procedures.
  • Molecules of Formula I may also be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more of the following insecticides - 1,2-dichloropropane, abamectin, acephate, acetamiprid, acethion, acetoprole, acrinathrin, acrylonitrile, alanycarb, aldicarb, aldoxycarb, aldrin, allethrin, allosamidin, allyxycarb, alpha -cypermethrin, alpha -ecdysone, alpha -endosulfan, amidithion, aminocarb, amiton, amiton oxalate, amitraz, anabasine, athidathion, azadirachtin, azamethiphos, azinphos-ethyl, azinphos-methyl, azothoate, barium hexafluo
  • Molecules of Formula I may also be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more of the following acaricides - acequinocyl, amidoflumet, arsenous oxide, azobenzene, azocyclotin, benomyl, benoxafos, benzoximate, benzyl benzoate, bifenazate, binapacryl, bromopropylate, chinomethionat, chlorbenside, chlorfenethol, chlorfenson, chlorfensulphide, chlorobenzilate, chloromebuform, chloromethiuron, chloropropylate, clofentezine, cyenopyrafen, cyflumetofen, cyhexatin, dichlofluanid, dicofol, dienochlor, diflovidazin, dinobuton, dinocap, dinocap-4, dinocap-6, din
  • Molecules of Formula I may also be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more of the following nematicides - 1,3-dichloropropene, benclothiaz, dazomet, dazomet-sodium, DBCP, DCIP, diamidafos, fluensulfone, fosthiazate, furfural, imicyafos, isamidofos, isazofos, metam, metam-ammonium, metam-potassium, metam-sodium, phosphocarb, and thionazin (collectively these commonly named nematicides are defined as the " Nematicide Group ”)
  • Molecules of Formula I may also be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more of the following fungicides - (3-ethoxypropyl)mercury bromide, 2-methoxyethylmercury chloride, 2-phenylphenol, 8-hydroxyquinoline sulfate, 8-phenylmercurioxyquinoline, acibenzolar, acibenzolar-S-methyl, acypetacs, acypetacs-copper, acypetacs-zinc, aldimorph, allyl alcohol, ametoctradin, amisulbrom, ampropylfos, anilazine, aureofungin, azaconazole, azithiram, azoxystrobin, barium polysulfide, benalaxyl, benalaxyl-M, benodanil, benomyl, benquinox, bentaluron, benthi
  • Molecules of Formula I may also be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more of the following herbicides - 2,3,6-TBA, 2,3,6-TBA-dimethylammonium, 2,3,6-TBA-sodium, 2,4,5-T, 2,4,5-T-2-butoxypropyl, 2,4,5-T-2-ethylhexyl, 2,4,5-T-3-butoxypropyl, 2,4,5-TB, 2,4,5-T-butometyl, 2,4,5-T-butotyl, 2,4,5-T-butyl, 2,4,5-T-isobutyl, 2,4,5-T-isoctyl, 2,4,5-T-isopropyl, 2,4,5-T-methyl, 2,4,5-T-pentyl, 2,4,5-T-sodium, 2,4,5-T-triethylammonium, 2,4,5-T-trolamine, 2,4-D, 2,4-D-2-butoxyprop
  • Molecules of Formula I may also be used in combination (such as in a compositional mixture, or a simultaneous or sequential application) with one or more biopesticides.
  • biopesticide is used for microbial biological pest control agents that are applied in a similar manner to chemical pesticides. Commonly these are bacterial, but there are also examples of fungal control agents, including Trichoderma spp. and Ampelomyces quisqualis (a control agent for grape powdery mildew). Bacillus subtilis are used to control plant pathogens. Weeds and rodents have also been controlled with microbial agents.
  • One well-known insecticide example is Bacillus thuringiensis, a bacterial disease of Lepidoptera, Coleoptera, and Diptera. Because it has little effect on other organisms, it is considered more environmentally friendly than synthetic pesticides.
  • Biological insecticides include products based on:
  • entomopathogenic organisms include, but are not limited to, baculoviruses, bacteria and other prokaryotic organisms, fungi, protozoa and Microsproridia.
  • Biologically derived insecticides include, but not limited to, rotenone, veratridine, as well as microbial toxins; insect tolerant or resistant plant varieties; and organisms modified by recombinant DNA technology to either produce insecticides or to convey an insect resistant property to the genetically modified organism.
  • the molecules of Formula I may be used with one or more biopesticides in the area of seed treatments and soil amendments.
  • the Manual of Biocontrol Agents gives a review of the available biological insecticide (and other biology-based control) products. Copping L.G. (ed.) (2004). The Manual of Biocontrol Agents (formerly the Biopesticide Manual) 3rd Edition. British Crop Production Council (BCPC), Farnham, Surrey UK .
  • Molecules of Formula I may also be used in combination (such as in a compositional mixture, or a simultaneous or sequential application) with one or more of the following:
  • Molecules of Formula I may also be used in combination (such as in a compositional mixture, or a simultaneous or sequential application) with one or more compounds in the following groups: algicides, antifeedants, avicides, bactericides, bird repellents, chemosterilants, herbicide safeners, insect attractants, insect repellents, mammal repellents, mating disrupters, molluscicides, plant activators, plant growth regulators, rodenticides, and/or virucides (collectively these commonly named groups are defined as the "AI Group ").
  • Molecules of Formula I may be used with the compounds in the Insecticide Group to form synergistic mixtures where the mode of action of such compounds compared to the mode of action of the molecules of Formula I are the same, similar, or different.
  • modes of action include, but are not limited to: acetylcholinesterase inhibitor; sodium channel modulator; chitin biosynthesis inhibitor; GABA-gated chloride channel antagonist; GABA and glutamate-gated chloride channel agonist; acetylcholine receptor agonist; MET I inhibitor; Mg-stimulated ATPase inhibitor; nicotinic acetylcholine receptor; Midgut membrane disrupter; oxidative phosphorylation disrupter, and ryanodine receptor (RyRs).
  • molecules of Formula I may be used with compounds in the Fungicide Group, Acaricide Group, Herbicide Group, or Nematicide Group to form synergistic mixtures.
  • molecules of Formula I may be used with other active compounds, such as the compounds under the heading "OTHER ACTIVE COMPOUNDS", algicides, avicides, bactericides, molluscicides, rodenticides, virucides, herbicide safeners, adjuvants, and/or surfactants to form synergistic mixtures.
  • weight ratios of the molecules of Formula I in a synergistic mixture with another compound are from about 10:1 to about 1:10, preferably from about 5:1 to about 1:5, and more preferably from about 3:1, and even more preferably about 1:1.
  • the following compounds are known as synergists and may be used with the molecules disclosed in Formula I: piperonyl butoxide, piprotal, propyl isome, sesamex, sesamolin, sulfoxide, and tribufos (collectively these synergists are defined as the " Synergists Group ").
  • pesticides are formulated into, for example, baits, concentrated emulsions, dusts, emulsifiable concentrates, fumigants, gels, granules, microencapsulations, seed treatments, suspension concentrates, suspoemulsions, tablets, water soluble liquids, water dispersible granules or dry flowables, wettable powders, and ultra low volume solutions.
  • formulation types see " Catalogue of Pesticide Formulation Types and International Coding System" Technical Monograph n°2, 5th Edition by CropLife International (2002 ).
  • Pesticides are applied most often as aqueous suspensions or emulsions prepared from concentrated formulations of such pesticides.
  • Such water-soluble, water-suspendable, or emulsifiable formulations are either solids, usually known as wettable powders, or water dispersible granules, or liquids usually known as emulsifiable concentrates, or aqueous suspensions.
  • Wettable powders which may be compacted to form water dispersible granules, comprise an intimate mixture of the pesticide, a carrier, and surfactants.
  • the concentration of the pesticide is usually from about 10% to about 90% by weight.
  • the carrier is usually chosen from among the attapulgite clays, the montmorillonite clays, the diatomaceous earths, or the purified silicates.
  • Effective surfactants comprising from about 0.5% to about 10% of the wettable powder, are found among sulfonated lignins, condensed naphthalenesulfonates, naphthalenesulfonates, alkylbenzenesulfonates, alkyl sulfates, and non-ionic surfactants such as ethylene oxide adducts of alkyl phenols.
  • Emulsifiable concentrates of pesticides comprise a convenient concentration of a pesticide, such as from about 50 to about 500 grams per liter of liquid dissolved in a carrier that is either a water miscible solvent or a mixture of water-immiscible organic solvent and emulsifiers.
  • Useful organic solvents include aromatics, especially xylenes and petroleum fractions, especially the high-boiling naphthalenic and olefinic portions of petroleum such as heavy aromatic naphtha.
  • Other organic solvents may also be used, such as the terpenic solvents including rosin derivatives, aliphatic ketones such as cyclohexanone, and complex alcohols such as 2-ethoxyethanol.
  • Suitable emulsifiers for emulsifiable concentrates are chosen from conventional anionic and non-ionic surfactants.
  • Aqueous suspensions comprise suspensions of water-insoluble pesticides dispersed in an aqueous carrier at a concentration in the range from about 5% to about 50% by weight.
  • Suspensions are prepared by finely grinding the pesticide and vigorously mixing it into a carrier comprised of water and surfactants. Ingredients, such as inorganic salts and synthetic or natural gums may also be added, to increase the density and viscosity of the aqueous carrier. It is often most effective to grind and mix the pesticide at the same time by preparing the aqueous mixture and homogenizing it in an implement such as a sand mill, ball mill, or piston-type homogenizer.
  • Pesticides may also be applied as granular compositions that are particularly useful for applications to the soil.
  • Granular compositions usually contain from about 0.5% to about 10% by weight of the pesticide, dispersed in a carrier that comprises clay or a similar substance.
  • Such compositions are usually prepared by dissolving the pesticide in a suitable solvent and applying it to a granular carrier which has been pre-formed to the appropriate particle size, in the range of from about 0.5 to about 3 mm.
  • Such compositions may also be formulated by making a dough or paste of the carrier and compound and crushing and drying to obtain the desired granular particle size.
  • Dusts containing a pesticide are prepared by intimately mixing the pesticide in powdered form with a suitable dusty agricultural carrier, such as kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1% to about 10% of the pesticide. They can be applied as a seed dressing or as a foliage application with a dust blower machine.
  • a suitable dusty agricultural carrier such as kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1% to about 10% of the pesticide. They can be applied as a seed dressing or as a foliage application with a dust blower machine.
  • a pesticide in the form of a solution in an appropriate organic solvent, usually petroleum oil, such as the spray oils, which are widely used in agricultural chemistry.
  • Pesticides can also be applied in the form of an aerosol composition.
  • the pesticide is dissolved or dispersed in a carrier, which is a pressure-generating propellant mixture.
  • the aerosol composition is packaged in a container from which the mixture is dispensed through an atomizing valve.
  • Pesticide baits are formed when the pesticide is mixed with food or an attractant or both. When the pests eat the bait they also consume the pesticide. Baits may take the form of granules, gels, flowable powders, liquids, or solids. They can be used in pest harborages.
  • Fumigants are pesticides that have a relatively high vapor pressure and hence can exist as a gas in sufficient concentrations to kill pests in soil or enclosed spaces.
  • the toxicity of the fumigant is proportional to its concentration and the exposure time. They are characterized by a good capacity for diffusion and act by penetrating the pest's respiratory system or being absorbed through the pest's cuticle. Fumigants are applied to control stored product pests under gas proof sheets, in gas sealed rooms or buildings or in special chambers.
  • Pesticides can be microencapsulated by suspending the pesticide particles or droplets in plastic polymers of various types. By altering the chemistry of the polymer or by changing factors in the processing, microcapsules can be formed of various sizes, solubility, wall thicknesses, and degrees of penetrability. These factors govern the speed with which the active ingredient within is released, which in turn, affects the residual performance, speed of action, and odor of the product.
  • Oil solution concentrates are made by dissolving pesticide in a solvent that will hold the pesticide in solution.
  • Oil solutions of a pesticide usually provide faster knockdown and kill of pests than other formulations due to the solvents themselves having pesticidal action and the dissolution of the waxy covering of the integument increasing the speed of uptake of the pesticide.
  • Other advantages of oil solutions include better storage stability, better penetration of crevices, and better adhesion to greasy surfaces.
  • Another embodiment is an oil-in-water emulsion, wherein the emulsion comprises oily globules which are each provided with a lamellar liquid crystal coating and are dispersed in an aqueous phase, wherein each oily globule comprises at least one compound which is agriculturally active, and is individually coated with a monolamellar or oligolamellar layer comprising: (1) at least one non-ionic lipophilic surface-active agent, (2) at least one non-ionic hydrophilic surface-active agent and (3) at least one ionic surface-active agent, wherein the globules having a mean particle diameter of less than 800 nanometers.
  • such formulation can also contain other components.
  • these components include, but are not limited to, (this is a non-exhaustive and non-mutually exclusive list) wetters, spreaders, stickers, penetrants, buffers, sequestering agents, drift reduction agents, compatibility agents, anti-foam agents, cleaning agents, and emulsifiers. A few components are described forthwith.
  • a wetting agent is a substance that when added to a liquid increases the spreading or penetration power of the liquid by reducing the interfacial tension between the liquid and the surface on which it is spreading.
  • Wetting agents are used for two main functions in agrochemical formulations: during processing and manufacture to increase the rate of wetting of powders in water to make concentrates for soluble liquids or suspension concentrates; and during mixing of a product with water in a spray tank to reduce the wetting time of wettable powders and to improve the penetration of water into water-dispersible granules.
  • wetting agents used in wettable powder, suspension concentrate, and water-dispersible granule formulations are: sodium lauryl sulfate; sodium dioctyl sulfosuccinate; alkyl phenol ethoxylates; and aliphatic alcohol ethoxylates.
  • a dispersing agent is a substance which adsorbs onto the surface of particles and helps to preserve the state of dispersion of the particles and prevents them from reaggregating.
  • Dispersing agents are added to agrochemical formulations to facilitate dispersion and suspension during manufacture, and to ensure the particles redisperse into water in a spray tank. They are widely used in wettable powders, suspension concentrates and water-dispersible granules.
  • Surfactants that are used as dispersing agents have the ability to adsorb strongly onto a particle surface and provide a charged or steric barrier to reaggregation of particles. The most commonly used surfactants are anionic, non-ionic, or mixtures of the two types.
  • dispersing agents For wettable powder formulations, the most common dispersing agents are sodium lignosulfonates. For suspension concentrates, very good adsorption and stabilization are obtained using polyelectrolytes, such as sodium naphthalene sulfonate formaldehyde condensates. Tristyrylphenol ethoxylate phosphate esters are also used. Non-ionics such as alkylarylethylene oxide condensates and EO-PO block copolymers are,sometimes combined with anionics as dispersing agents for suspension concentrates. In recent years, new types of very high molecular weight polymeric surfactants have been developed as dispersing agents.
  • hydrophobic 'backbones' and a large number of ethylene oxide chains forming the 'teeth' of a 'comb' surfactant.
  • These high molecular weight polymers can give very good long-term stability to suspension concentrates because the hydrophobic backbones have many anchoring points onto the particle surfaces.
  • dispersing agents used in agrochemical formulations are: sodium lignosulfonates; sodium naphthalene sulfonate formaldehyde condensates; tristyrylphenol ethoxylate phosphate esters; aliphatic alcohol ethoxylates; alkyl ethoxylates; EO-PO block copolymers; and graft copolymers.
  • An emulsifying agent is a substance which stabilizes a suspension of droplets of one liquid phase in another liquid phase. Without the emulsifying agent the two liquids would separate into two immiscible liquid phases.
  • the most commonly used emulsifier blends contain alkylphenol or aliphatic alcohol with twelve or more ethylene oxide units and the oil-soluble calcium salt of dodecylbenzenesulfonic acid.
  • a range of hydrophile-lipophile balance (“HLB”) values from 8 to 18 will normally provide good stable emulsions. Emulsion stability can sometimes be improved by the addition of a small amount of an EO-PO block copolymer surfactant.
  • a solubilizing agent is a surfactant which will form micelles in water at concentrations above the critical micelle concentration. The micelles are then able to dissolve or solubilize water-insoluble materials inside the hydrophobic part of the micelle.
  • the types of surfactants usually used for solubilization are non-ionics, sorbitan monooleates, sorbitan monooleate ethoxylates, and methyl oleate esters.
  • Surfactants are sometimes used, either alone or with other additives such as mineral or vegetable oils as adjuvants to spray-tank mixes to improve the biological performance of the pesticide on the target.
  • the types of surfactants used for bioenhancement depend generally on the nature and mode of action of the pesticide. However, they are often non-ionics such as: alkyl ethoxylates; linear aliphatic alcohol ethoxylates; aliphatic amine ethoxylates.
  • a carrier or diluent in an agricultural formulation is a material added to the pesticide to give a product of the required strength.
  • Carriers are usually materials with high absorptive capacities, while diluents are usually materials with low absorptive capacities. Carriers and diluents are used in the formulation of dusts, wettable powders, granules and water-dispersible granules.
  • Organic solvents are used mainly in the formulation of emulsifiable concentrates, oil-in-water emulsions, suspoemulsions, and ultra low volume formulations, and to a lesser extent, granular formulations. Sometimes mixtures of solvents are used.
  • the first main groups of solvents are aliphatic paraffinic oils such as kerosene or refined paraffins.
  • the second main group (and the most common) comprises the aromatic solvents such as xylene and higher molecular weight fractions of C9 and C10 aromatic solvents.
  • Chlorinated hydrocarbons are useful as cosolvents to prevent crystallization of pesticides when the formulation is emulsified into water. Alcohols are sometimes used as cosolvents to increase solvent power.
  • Other solvents may include vegetable oils, seed oils, and esters of vegetable and seed oils.
  • Thickeners or gelling agents are used mainly in the formulation of suspension concentrates, emulsions and suspoemulsions to modify the rheology or flow properties of the liquid and to prevent separation and settling of the dispersed particles or droplets.
  • Thickening, gelling, and anti-settling agents generally fall into two categories, namely water-insoluble particulates and water-soluble polymers. It is possible to produce suspension concentrate formulations using clays and silicas. Examples of these types of materials, include, but are not limited to, montmorillonite, bentonite, magnesium aluminum silicate, and attapulgite. Water-soluble polysaccharides have been used as thickening-gelling agents for many years.
  • polysaccharides most commonly used are natural extracts of seeds and seaweeds or are synthetic derivatives of cellulose. Examples of these types of materials include, but are not limited to, guar gum; locust bean gum; carrageenam; alginates; methyl cellulose; sodium carboxymethyl cellulose (SCMC); hydroxyethyl cellulose (HEC).
  • SCMC carboxymethyl cellulose
  • HEC hydroxyethyl cellulose
  • Other types of anti-settling agents are based on modified starches, polyacrylates, polyvinyl alcohol and polyethylene oxide. Another good anti-settling agent is xanthan gum.
  • Microorganisms can cause spoilage of formulated products. Therefore preservation agents are used to eliminate or reduce their effect. Examples of such agents include, but are not limited to: propionic acid and its sodium salt; sorbic acid and its sodium or potassium salts; benzoic acid and its sodium salt; p -hydroxybenzoic acid sodium salt; methyl p- hydroxybenzoate; and 1,2-benzisothiazolin-3-one (BIT).
  • anti-foam agents are often added either during the production stage or before filling into bottles.
  • anti-foam agents there are two types of anti-foam agents, namely silicones and non-silicones. Silicones are usually aqueous emulsions of dimethyl polysiloxane, while the non-silicone anti-foam agents are water-insoluble oils, such as octanol and nonanol, or silica: In both cases, the function of the anti-foam agent is to displace the surfactant from the air-water interface.
  • Green agents can reduce the overall environmental footprint of crop protection formulations.
  • Green agents are biodegradable and generally derived from natural and/or sustainable sources, e.g . plant and animal sources. Specific examples are: vegetable oils, seed oils, and esters thereof, also alkoxylated alkyl polyglucosides.
  • the molecules of Formula I may be used to control pests e.g . beetles, earwigs, cockroaches, flies. aphids, scales, whiteflies, leafhoppers, ants, wasps, termites, moths, butterflies, lice, grasshoppers, locusts, crickets, fleas, thrips, bristletails, mites, ticks, nematodes, and symphylans.
  • pests e.g . beetles, earwigs, cockroaches, flies. aphids, scales, whiteflies, leafhoppers, ants, wasps, termites, moths, butterflies, lice, grasshoppers, locusts, crickets, fleas, thrips, bristletails, mites, ticks, nematodes, and symphylans.
  • the molecules of Formula I may be used to control pests in the Phyla Nematoda and/or Arthropoda.
  • the molecules of Formula I may be used to control pests in the Subphyla Chelicerata, Myriapoda, and/or Hexapoda.
  • the molecules of Formula I may be used to control pests in the Classes of Arachnida, Symphyla, and/or Insecta.
  • the molecules of Formula I may be used to control pests of the Order Anoplura.
  • a non-exhaustive list of particular genera includes, but is not limited to, Haematopinus spp., Hoplopleura spp., Linognathus spp., Pediculus spp., and Polyplax spp.
  • a non-exhaustive list of particular species includes, but is not limited to, Haematopinus asini , Haematopinus suis, Linognathus setosus, Linognathus ovillus, Pediculus humanus capitis, Pediculus humanus humanus , and Pthirus pubis.
  • the molecules of Formula I may be used to control pests in the Order Coleoptera.
  • a non-exhaustive list of particular genera includes, but is not limited to, Acanthoscelides spp., Agriotes spp., Anthonomus spp., Apion spp., Apogonia spp., Aulacophora spp., Bruchus spp., Cerosterna spp., Cerotoma spp., Ceutorhynchus spp., Chaetocnema spp., Colaspis spp., Ctenicera spp., Curculio spp., Cyclocephala spp., Diabrotica spp., Hypera spp., Ips spp., Lyctus spp., Megascelis spp., Meligethes spp., Otiorhynchus spp., Pantomorus spppp
  • a non-exhaustive list of particular species includes, but is not limited to, Acanthoscelides obtectus, Agrilus planipennis , Anoplophora glabripennis, Anthonomus grandis , Ataenius spretulus, Atomaria linearis, Bothynoderes punctiventris, Bruchus pisorum , Callosobruchus maculatus, Carpophilus hemipterus , Cassida vittata, Cerotoma trifurcata, Ceutorhynchus assimilis, Ceutorhynchus napi , Conoderus scalaris, Conoderus stigmosus, Conotrachelus nenuphar, Cotinis nitida, Crioceris asparagi, Cryptolestes ferrugineus , Cryptolestes pusillus, Cryptolestes turcicus, Cylindrocopturus adspersus, Deporaus marginatus , Dermes
  • the molecules of Formula I may be used to control pests of the Order Dermaptera.
  • the molecules of Formula I may be used to control pests of the Order Blattaria.
  • a non-exhaustive list of particular species includes, but is not limited to, Blattella germanica, Blatta orientalis, Parcoblatta pennsylvanica , Periplaneta americana, Periplaneta australasiae, Periplaneta brunnea , Periplaneta fuliginosa, Pycnoscelus surinamensis, and Supella longipalpa.
  • the molecules of Formula I may be used to control pests of the Order Diptera.
  • a non-exhaustive list of particular genera includes, but is not limited to, Aedes spp., Agromyza spp., Anastrepha spp., Anopheles spp., Bactrocera spp., Ceratitis spp., Chrysops spp., Cochliomyia spp., Contarinia spp., Culex spp., Dasineura spp., Delia spp., Drosophila spp., Fannia spp., Hylemyia spp., Liriomyza spp., Musca spp., Phorbia spp., Tabanus spp., and Tipula spp.
  • a non-exhaustive list of particular species includes, but is not limited to, Agromyza frontella, Anastrepha suspensa, Anastrepha ludens, Anastrepha obliqa, Bactrocera cucurbitae, Bactrocera dorsalis, Bactrocera invadens, Bactrocera zonata, Ceratitis capitata, Dasineura brassicae, Delia platura, Fannia canicularis, Fannia scalaris, Gasterophilus intestinalis, Gracillia perseae, Haematobia irritans, Hypoderma lineatum, Liriomyza brassicae, Melophagus ovinus, Musca autumnalis, Musca domestica, Oestrus ovis, Oscinella frit, Pegomya betae, Psila rosae, Rhagoletis cerasi, Rhagoletis pomonella, Rhagoletis mendax, Sitodiplosis mos
  • the molecules of Formula I may be used to control pests of the Order Hemiptera.
  • a non-exhaustive list of particular genera includes, but is not limited to, Adelges spp., Aulacaspis spp., Aphrophora spp., Aphis spp., Bemisia spp., Ceroplastes spp., Chionaspis spp., Chrysomphalus spp., Coccus spp., Empoasca spp., Lepidosaphes spp., Lagynotomus spp., Lygus spp., Macrosiphum spp., Nephotettix spp., Nezara spp., Philaenus spp., Phytocoris spp., Piezodorus spp., Planococcus spp., Pseudococcus spp., Rhopalosiphum spp., Sa
  • a non-exhaustive list of particular species includes, but is not limited to, Acrosternum hilare, Acyrthosiphon pisum, Aleyrodes proletella, Aleurodicus dispersus, Aleurothrixus floccosus, Amrasca biguttula biguttula, Aonidiella aurantii, Aphis gossypii, Aphis glycines, Aphis pomi, Aulacorthum solani, Bemisia argentifolii, Bemisia tabaci, Blissus leucopterus, Brachycorynella asparagi, Brevennia rehi, Brevicoryne brassicae, Calocoris norvegicus, Ceroplastes rubens, Cimex hemipterus, Cimex lectularius, Dagbertus fasciatus , Dichelops furcatus , Diuraphis no
  • the molecules of Formula I may be used to control pests of the Order Hymenoptera.
  • a non-exhaustive list of particular genera includes, but is not limited to, Acromyrmex spp., Atta spp., Camponotus spp., Diprion spp., Formica spp., Monomorium spp., Neodiprion spp., Pogonomyrmex spp., Polistes spp., Solenopsis spp., Vespula spp., and Xylocopa spp.
  • a non-exhaustive list of particular species includes, but is not limited to, Athalia rosae, Atta texana, Iridomyrmex humilis, Monomorium minimum, Monomorium pharaonis , Solenopsis invicta, Solenopsis geminata, Solenopsis molesta, Solenopsis richtery, Solenopsis xyloni, and Tapinoma sessile.
  • the molecules of Formula I may be used to control pests of the Order Isoptera.
  • a non-exhaustive list of particular genera includes, but is not limited to, Coptotermes spp., Cornitermes spp., Cryptotermes spp., Heterotermes spp., Kalotermes spp., Incisitermes spp., Macrotermes spp., Marginitermes spp., Microcerotermes spp., Procornitermes spp., Reticulitermes spp., Schedorhinotermes, spp., and Zootennopsis spp.
  • a non-exhaustive list of particular species includes, but is not limited to, Coptotermes curvignathus, Coptotermes frenchi, Coptotermes formosanus, Heterotennes aureus, Microtermes obesi, Reticulitermes banyulensis, Reticulitermes grassei, Reticulitermes flavipes, Reticulitermes hageni, Reticulitermes hesperus, Reticulitennes santonensis, Reticulitermes speratus, Reticulitermes tibialis, and Reticulitermes virginicus.
  • the molecules of Formula I may be used to control pests of the Order Lepidoptera.
  • a non-exhaustive list of particular genera includes, but is not limited to, Adoxophyes spp., Agrotis spp., Argyrotaenia spp., Cacoecia spp., Caloptilia spp., Chilo spp., Chrysodeixis spp., Colias spp., Crambus spp., Diaphania spp., Diatraea spp., Earias spp., Ephestia spp., Epimecis spp., Feltia spp., Gortyna spp., Helicoverpa spp., Heliothis spp., Indarbela spp., Lithocolletis spp., Loxagrotis spp., Malacosoma spp., Peridroma spp.,
  • a non-exhaustive list of particular species includes, but is not limited to, Achaea janata, Adoxophyes orana, Agrotis ipsilon, Alabama argillacea, Amorbia cuneana, Amyelois transitella, Anacamptodes defectaria, Anarsia lineatella , Anomis sabulifera, Anticarsia gemmatalis, Archips argyrospila, Archips rosana, Argyrotaenia citrana , Autographa gamma, Bonagota cranaodes, Borbo cinnara , Bucculatrix thurberiella, Capua reticulana, Carposina niponensis, Chlumetia transversa, Choristoneura rosaceana , Cnaphalocrocis medinalis, Conopomorpha cramerella, Cossus cossus, Cydia caryana, Cyd
  • the molecules of Formula I may be used to control pests of the Order Mallophaga.
  • a non-exhaustive list of particular genera includes, but is not limited to, Anaticola spp., Bovicola spp., Chelopistes spp., Goniodes spp., Menacanthus spp., and Trichodectes spp.
  • a non-exhaustive list of particular species includes, but is not limited to, Bovicola bovis, Bovicola caprae, Bovicola ovis, Chelopistes meleagridis, Goniodes dissimilis, Goniodes gigas, Menacanthus stramineus, Menopon gallinae, and Trichodectes canis .
  • the molecules of Formula I may be used to control pests of the Order Orthoptera.
  • a non-exhaustive list of particular genera includes, but is not limited to, Melanoplus spp., and Pterophylla spp.
  • a non-exhaustive list of particular species includes, but is not limited to, Anabrus simplex, Gryllotalpa africana, Gryllotalpa australis, Gryllotalpa brachyptera, Gryllotalpa hexadactyla, Locusta migratoria , Microcentrum retinerve , Schistocerca gregaria, and Scudderia furcata.
  • the molecules of Formula I may be used to control pests of the Order Siphonaptera.
  • a non-exhaustive list of particular species includes, but is not limited to, Ceratophyllus gallinae, Ceratophyllus nigger, Ctenocephalides canis, Ctenocephalides felis , and Pulex irritans.
  • the molecules of Formula I may be used to control pests of the Order Thysanoptera.
  • a non-exhaustive list of particular genera includes, but is not limited to, Caliothrips spp., Frankliniella spp., Scirtothrips spp., and Trips spp.
  • Thrips tabaci includes, but is not limited to, Frankliniella fusca, Frankliniella occidentalis , Frankliniella schultzei, Frankliniella williamsi, Heliothrips haemorrhoidalis , Rhipiphorothrips cruentatus, Scirtothrips citri, Scirtothrips dorsalis, and Taeniothrips rhopalantennalis, Trips hawaiiensis , Trips nigropilosus, Trips orientalis , Thrips tabaci.
  • the molecules of Formula I may be used to control pests of the Order Thysanura.
  • a non-exhaustive list of particular genera includes, but is not limited to, Lepisma spp. and Thermobia spp.
  • the molecules of Formula I may be used to control pests of the Order Acarina.
  • a non-exhaustive list of particular genera includes, but is not limited to, Acarus spp., Aculops spp., Boophilus spp., Demodex spp., Dennacentor spp., Epitrimerus spp., Eriophyes spp., Ixodes spp., Oligonychus spp., Panonychus spp., Rhizoglyphus spp., and Tetranychus spp.
  • a non-exhaustive list of particular species includes, but is not limited to, Acarapis woodi, Acarus siro, Aceria mangiferae , Aculops lycopersici, Aculus pelekassi, Aculus Desendali , Amblyomma americanum , Brevipalpus obovatus, Brevipalpus phoenicis , Dermacentor variabilis, Dermatophagoides pteronyssinus , Eotetranychus carpini, Notoedres cati, Oligonychus coffeae, Oligonychus ilicis, Panonychus citri, Panonychus ulmi , Phyllocoptruta oleivora , Polyphagotarsonemus latus, Rhipicephalus sanguineus, Sarcoptes scabiei, Tegolophus perseaflorae, Tetranychus urticae, and Varroa destructor.
  • the molecules of Formula I may be used to control pest of the Order Symphyla.
  • a non-exhaustive list of particular sp. includes, but is not limited to, Scutigerella immaculata .
  • the molecules of Formula I may be used to control pests of the Phylum Nematoda.
  • a non-exhaustive list of particular genera includes, but is not limited to, Aphelenchoides spp., Belonolaimus spp., Criconemella spp., Ditylenchus spp., Heterodera spp., Hirschmanniella spp., Hoplolaimus spp., Meloidogyne spp., Pratylenchus spp., and Radopholus spp.
  • Aphelenchoides spp. Belonolaimus spp., Criconemella spp., Ditylenchus spp., Heterodera spp., Hirschmanniella spp., Hoplolaimus spp., Meloidogyne spp., Pratylenchus spp., and Radopholus spp.
  • Molecules of Formula I are generally used in amounts from about 0.01 grams per hectare to about 5000 grams per hectare to provide control. Amounts from about 0.1 grams per hectare to about 500 grams per hectare are generally preferred, and amounts from about 1 gram per hectare to about 50 grams per hectare are generally more preferred.
  • the area to which a molecule of Formula I is applied can be any area inhabited (or maybe inhabited, or traversed by) a pest, for example: where crops, trees, fruits, cereals, fodder species, vines, turf and ornamental plants, are growing; where domesticated animals are residing; the interior or exterior surfaces of buildings (such as places where grains are stored), the materials of construction used in building (such as impregnated wood), and the soil around buildings.
  • Particular crop areas to use a molecule of Formula I include areas where apples, corn, sunflowers, cotton, soybeans, canola, wheat, rice, sorghum, barley, oats, potatoes, oranges, alfalfa, lettuce, strawberries, tomatoes, peppers, crucifers, pears, tobacco, almonds, sugar beets, beans and other valuable crops are growing or the seeds thereof are going to be planted. It is also advantageous to use aluminum sulfate with a molecule of Formula I when growing various plants.
  • Controlling pests generally means that pest populations, pest activity, or both, are reduced in an area. This can come about when: pest populations are repulsed from an area; when pests are incapacitated in or around an area; or pests are exterminated, in whole, or in part, in or around an area. Of course, a combination.of these results can occur.
  • pest populations, activity, or both are desirably reduced more than fifty percent, preferably more than 90 percent.
  • the area is not in or on a human; consequently, the locus is generally a non-human area.
  • the molecules of Formula I may be used in mixtures, applied simultaneously or sequentially, alone or with other compounds to enhance plant vigor (e.g. to grow a better root system, to better withstand stressful growing conditions).
  • Such other compounds are, for example, compounds that modulate plant ethylene receptors, most notably 1-methylcyclopropene (also know as 1-MCP).
  • the molecules of Formula I can be applied to the foliar and fruiting portions of plants to control pests.
  • the molecules will either come in direct contact with the pest, or the pest will consume the pesticide when eating leaf, fruit mass, or extracting sap, that contains the pesticide.
  • the molecules of Formula I can also be applied to the soil, and when applied in this manner, root and stem feeding pests can be controlled.
  • the roots can absorb a molecule taking it up into the foliar portions of the plant to control above ground chewing and sap feeding pests.
  • Baits are placed in the ground where, for example, termites can come into contact with, and/or be attracted to, the bait. Baits can also be applied to a surface of a building, (horizontal, vertical, or slant surface) where, for example, ants, termites, cockroaches, and flies, can come into contact with, and/or be attracted to, the bait. Baits can comprise a molecule of Formula I.
  • the molecules of Formula I can be encapsulated inside, or placed on the surface of a capsule.
  • the size of the capsules can range from nanometer size (about 100-900 nanometers in diameter) to micrometer size (about 10-900 microns in diameter).
  • Systemic movement of pesticides in plants may be utilized to control pests on one portion of the plant by applying (for example by spraying an area) the molecules of Formula I to a different portion of the plant.
  • control of foliar-feeding insects can be achieved by drip irrigation or furrow application, by treating the soil with for example pre- or post-planting soil drench, or by treating the seeds of a plant before planting.
  • Seed treatment can be applied to all types of seeds, including those from which plants genetically modified to express specialized traits will germinate.
  • Representative examples include those expressing proteins toxic to invertebrate pests, such as Bacillus thuringiensis or other insecticidal toxins, those expressing herbicide resistance, such as "Roundup Ready” seed, or those with "stacked” foreign genes expressing insecticidal toxins, herbicide resistance, nutrition-enhancement, drought resistance, or any other beneficial traits.
  • seed treatments with the molecules of Formula I may further enhance the ability of a plant to better withstand stressful growing conditions. This results in a healthier, more vigorous plant, which can lead to higher yields at harvest time.
  • the molecules of Formula I may be used on, in, or around plants genetically modified to express specialized traits, such as Bacillus thuringiensis or other insecticidal toxins, or those expressing herbicide resistance, or those with "stacked" foreign genes expressing insecticidal toxins, herbicide resistance, nutrition-enhancement, or any other beneficial traits.
  • specialized traits such as Bacillus thuringiensis or other insecticidal toxins, or those expressing herbicide resistance, or those with "stacked" foreign genes expressing insecticidal toxins, herbicide resistance, nutrition-enhancement, or any other beneficial traits.
  • the molecules of Formula I may be used for controlling endoparasites and ectoparasites in the veterinary medicine sector or in the field of non-human animal keeping.
  • the molecules of Formula I are applied, such as by oral administration in the form of, for example, tablets, capsules, drinks, granules, by dermal application in the form of, for example, dipping, spraying, pouring on, spotting on, and dusting, and by parenteral administration in the form of, for example, an injection.
  • the molecules of Formula I may also be employed advantageously in livestock keeping, for example, horses, cattle, sheep, pigs, chickens, and geese. They may also be employed advantageously in pets such as, horses, dogs, and cats. Particular pests to control would be fleas and ticks that are bothersome to such animals.
  • Suitable formulations are administered orally to the animals with the drinking water or feed. The dosages and formulations that are suitable depend on the species.
  • the molecules of Formula I may also be employed in therapeutic methods for human health care. Such methods include, but are limited to, oral administration in the form of, for example, tablets, capsules, drinks, granules, and by dermal application.

Description

    FIELD OF THE INVENTION
  • The invention disclosed in this document is related to the field of processes to produce molecules that are useful as pesticides (e.g., acaricides, insecticides, molluscicides, and nematicides), such molecules, and processes of using such molecules to control pests.
  • BACKGROUND OF THE INVENTION
  • Pests cause millions of human deaths around the world each year. Furthermore, there are more than ten thousand species of pests that cause losses in agriculture. The world-wide agricultural losses amount to billions of U.S. dollars each year.
  • Termites cause damage to all kinds of private and public structures. The world-wide termite damage losses amount to billions of U.S. dollars each year.
  • Stored food pests eat and adulterate stored food. The world-wide stored food losses amount to billions of U.S. dollars each year, but more importantly, deprive people of needed food.
  • There is an acute need for new pesticides. Certain pests are developing resistance to pesticides in current use. Hundreds of pest species are resistant to one or more pesticides. The development of resistance to some of the older pesticides, such as DDT, the carbamates, and the organophosphates, is well known. But resistance has even developed to some of the newer pesticides.
  • Therefore, for many reasons, including, the above reasons, a need exists for new pesticides.
  • JP 2003-212864 discloses 5-(m-cyanobenzylamino)thiazole derivatives and their use as fungicides. Table 13 shows 3-{[(2-pyridin-3-yl-1,3-thiazol-5-yl)amino]methyl}benzonitriles of the formula (Ik) in which R2 = Me, R3 = Me, Et, Ph, CH2OH, CH2OMe, CH2OPh, CH2OAc, CH2O-2-Pyr, OMe, OPh, O-2-Pyr or NH2, X = O, and Yn = H.
  • DEFINITIONS
  • The examples given in the definitions are generally non-exhaustive and must not be construed as limiting the invention disclosed in this document. It is understood that a substituent should comply with chemical bonding rules and steric compatibility constraints in relation to the particular molecule to which it is attached.
  • "Acaricide Group" is defined under the heading "ACARICIDES".
  • "AI Group" is defined after the place in this document where the "Herbicide Group" is defined.
  • "alkenyl" means an acyclic, unsaturated (at least one carbon-carbon double bond), branched or unbranched, substituent consisting of carbon and hydrogen, for example, vinyl, allyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, and decenyl.
  • "alkenyloxy" means an alkenyl further consisting of a carbon-oxygen single bond, for example, allyloxy, butenyloxy, pentenyloxy, hexenyloxy, heptenyloxy, octenyloxy, nonenyloxy, and decenyloxy.
  • "alkoxy" means an alkyl further consisting of a carbon-oxygen single bond, for example, methoxy, ethoxy, propoxy, isopropoxy, 1-butoxy, 2-butoxy, isobutoxy, tert-butoxy, pentoxy, 2-methylbutoxy, 1,1-dimethylpropoxy, hexoxy, heptoxy, octoxy, nonoxy, and decoxy.
  • "alkyl" means an acyclic, saturated, branched or unbranched, substituent consisting of carbon and hydrogen, for example, methyl, ethyl, propyl, isopropyl, 1-butyl, 2-butyl, isobutyl, tert-butyl, pentyl, 2-methylbutyl, 1,1-dimethylpropyl, hexyl, heptyl, octyl, nonyl, and decyl.
  • "alkyuyl" means an acyclic, unsaturated (at least one carbon-carbon triple bond, and any double bonds), branched or unbranched, substituent consisting of carbon and hydrogen, for example, ethynyl, propargyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, and decynyl.
  • "alkynyloxy" means an alkynyl further consisting of a carbon-oxygen single bond, for example, pentynyloxy, hexynyloxy, heptynyloxy, octynyloxy, nonynyloxy, and decynyloxy.
  • "aryl" means a cyclic, aromatic substituent consisting of hydrogen and carbon, for example, phenyl, naphthyl, and biphenyl.
  • "cycloalkenyl" means a monocyclic or polycyclic, unsaturated (at least one carbon-carbon double bond) substituent consisting of carbon and hydrogen, for example, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclodecenyl, norbornenyl, bicyclo[2.2.2]octenyl, tetrahydronaphthyl, hexahydronaphthyl, and octahydronaphthyl.
  • "cycloalkenyloxy" means a cycloalkenyl further consisting of a carbon-oxygen single bond, for example, cyclobutenyloxy, cyclopentenyloxy, cyclohexenyloxy, cycloheptenyloxy, cyclooctenyloxy, cyclodecenyloxy, norbornenyloxy, and bicyclo[2.2.2]octenyloxy.
  • "cycloalkyl" means a monocyclic or polycyclic, saturated substituent consisting of carbon and hydrogen, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, norbornyl, bicyclo[2.2.2]octyl, and decahydronaphthyl.
  • "cycloalkoxy" means a cycloalkyl further consisting of a carbon-oxygen single bond, for example, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cycloheptyloxy, cyclooctyloxy, cyclodecyloxy, norbornyloxy, and bicyclo[2.2.2]octyloxy.
  • "cyclohaloalkyl" means a monocyclic or polycyclic, saturated substituent consisting of carbon halo, and hydrogen, for example, 1-chlorocyclopropyl, 1-chlorocyclobutyl, and 1-dichlorocyclopentyl.
  • "Fungicide Group" is defined under the heading "FUNGICIDES".
  • "halo" means fluoro, chloro, bromo, and iodo.
  • "haloalkyl" means an alkyl further consisting of, from one to the maximum possible number of, identical or different, halos, for example, fluoromethyl, difluoromethyl, trifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2,2-trifluoroethyl, chloromethyl, trichloromethyl, and 1,1,2,2-tetrafluoroethyl.
  • "Herbicide Group" is defined under the heading "HERBICIDES."
  • "heterocyclyl" means a cyclic substituent that may be fully saturated, partially unsaturated, or fully unsaturated, where the cyclic structure contains at least one carbon and at least one heteroatom, where said heteroatom is nitrogen, sulfur, or oxygen, for example, benzofuranyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, benzothienyl, benzothiazolyl cinnolinyl, furanyl, indazolyl, indolyl, imidazolyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, 1,3,4-oxadiazolyl, oxazolinyl, oxazolyl, phthalazinyl, pyrazinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, quinoxalinyl, 1,2,3,4-tetrazolyl, thiazolinyl, thiazolyl, thienyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-triazinyl, 1,2,3-triazolyl, and 1,2,4-triazolyl.
  • "Insecticide Group" is defined under the heading "INSECTICIDES".
  • "Nematicide Group" is defined under the heading "NEMATICIDES".
  • "Synergist Group" is defined under the heading "SYNERGISTIC MIXTURES AND SYNERGISTS".
  • DETAILED DESCRIPTION OF THE INVENTION
  • This document discloses molecules having the following formula ("Formula I"):
    Figure imgb0001
    wherein:
    1. (a) X is N or CR8;
    2. (b) R1 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, substituted or unsubstituted C1-C20 heterocyclyl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
      wherein each said R1, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, C6-C20 aryl, or C1-C20. heterocyclyl, (each of which that can be substituted, may optionally be substituted with R9);
    3. (c) R2 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, substituted or unsubstituted C1-C20 heterocyclyl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
      wherein each said R2, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, C6-C20 aryl, or C1-C20 heterocyclyl, (each of which that can be substituted, may optionally be substituted with R9);
    4. (d) R3 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, substituted or unsubstituted C1-C20 heterocyclyl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
      wherein each said R3, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, C6-C20 aryl, or C1-C20 heterocyclyl, (each of which that can be substituted, may optionally be substituted with R9);
    5. (e) R4 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C1-C20 heterocyclyl, OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9.
      wherein each said R4, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, C6-C20 aryl or C1-C20 heterocyclyl, (each of which that can be substituted, may optionally be substituted with R9);
    6. (f) R5 is H, or unsubstituted C1-C6 alkyl;
    7. (g) R6 is O, S, NR9, or NOR9;
    8. (h) R7 is substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, substituted or unsubstituted C1-C20 heterocyclyl, OR9, OR9S(O)nR9, C(=X1)R9, C(=X1)OR9, R9C(=X1)OR9, R9X2C(=X1)R9X2R9, C(=X1)N(R9)2, N(R9)2, N(R9)(R9S(O)nR9), N(R9)C(=X1)R9, SR9, S(O)nOR9, R9S(O)nR9, C1-C6alkylOC(=O)C1-C6alkyl, OC1-C6 alkyl C1-C20 heterocyclyl, C1-C6alkylC1-C20 heterocyclyl, C1-C6, alkylS(=N-CN)(C1-C6alkyl), C1-C6alkylS(O)(=N-CN)(C1-C6alkyl), C1-C6alkylS(O)n(C1-C6alkylC1-C20heterocyclyl), C1-C6alkylS(O)(=N-CN)(C1-C6 alkyl-C1-C20heterocyclyl), C1-C6alkylNH(C(=O)OC1-C6 alkyl), C1-C6 alkylC(=O)OC1=C6 alkyl, C1-C6alkyl(C6-C20aryl)NH(C(=O)OC1-C6alkyl), C1-C6alkyl(S-C1-C6 alkyl)NH(C(=O)OC1-C6alkyl), C1-C6alkyl(S-C1-C6alkyl-C6-C20aryl)NH(C(=O)OC1-C6alkyl), C1-C6 alkyl(NHC(=O)OC1-C6alkylC6-C20 aryl)NH(C(=O)OC1-C6alkyl), C1-C6alkyl(OC1-C6alkylC6-C20aryl)NH(C(=O)OC1-C6alkyl), C1-C6alkylN(C1-C6alkyl)(C(=O)OC1-C6alkyl), C1-C6alkylNH(C1-C6alkyl), C6-C20arylSC1-C6haloalkyl, C1-C6alkyl-N(C1-C6 alkyl)(C(=O)C1-C6alklylC6-C20aryl), C1-C6alkylN(C1-C6alkyl)(C1-C6alkyl), C1-C6alkylN(C1-C6 alkyl)(S(O)nC1-C6 alkyl), C1-C6 alkylN(C1-C6 alkyl)(S(O)nC1-C6 alkenylC6-C20 aryl), C1-C6 alkylN(C1-C6 alkyl)(C(=O)C1-C20 heterocyclyl), C1-C6alkylN(C1-C6alkyl)(C(=O)OC1-C6 alkylC6-C20aryl), NH(C1-C6 alkylS(O)nC1-C6alkyl), NH(C1-C6 alkylS(O)nC6-C20 aryl), C1-C6alkyl(S(O)nC1-C6 alkyl)(C(=O)C1-C6alkylS(O)n(C1-C6 alkyl), or R9S(O)n(NZ)R9,
      wherein each said R7, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, C6-C20 aryl, or C1-C20 heterocyclyl, (each of which that can be substituted, may optionally be substituted with R9), C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, =X2, N(R9)2, S(=X2)nR9, R9S(O)nR9, S(O)nN(R9)2;
    9. (i) R8 is H, F, CI, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, substituted or unsubstituted C1-C20 heterocyclyl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nR9, S(O)nOR9, or R9S(O)nR9,
      wherein each said R8, which is substituted, has one or more substituents selected from F, CI, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, C6-C20 aryl, or C1-C20 heterocyclyl, (each of which that can be substituted, may optionally be substituted with R9);
    10. (j) R9 (each independently) is H, CN, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, substituted or unsubstituted C1-C20 heterocyclyl , S(O)nC1-C6 alkyl, , N(C1-C6alkyl)2,
      wherein each said R9, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OC1-C6 alkyl, OC1-C6 haloalkyl, S(O)nC1-C6alkyl, S(O)nOC1-C6 alkyl, C6-C20 aryl, or C1-C20 heterocyclyl;
    11. (k) n is 0, 1, or 2;
    12. (l) X1 is (each independently) O or S;
    13. (m) X2 is (each independently) O, S, =NR9, or =NOR9; and
    14. (n) Z is CN, NO2, C1-C6 alkyl(R9), C(=X1)N(R9)2,
  • In another embodiment of this invention:
    1. (a) X is N or CR8;
    2. (b) R1 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
      wherein each said R1, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, or C6-C20 aryl, (each of which that can be substituted, may optionally be substituted with R9);
    3. (c) R2 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
      wherein each said R2, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, or C6-C20 aryl, (each of which that can be substituted, may optionally be substituted with R9);
    4. (d) R3 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10, cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
      wherein each said R3, which is substituted, has one or more substituents selected from F, Cl, Dr, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, or C6-C20 aryl, (each of which that can be substituted, may optionally be substituted with R9);
    5. (e) R4 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, OR9, C(=X1)N(R9)2, N(R9)2. N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
      wherein each said R4, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, or C6-C20 aryl, (each of which that can be substituted, may optionally be substituted with R9);
    6. (f) R5 is H, or unsubstituted C1-C6 alkyl;
    7. (g) R6 is O, S, NR9, or NOR9;
    8. (h) R7 is substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, OR9, OR9S(O)nR9, C(=X1)R9, C(=X1)OR9, R9C(=X1)OR9, R9X2C(=X1)R9X2R9, C(=X1)N(R9)2, N(R9)2, N(R9)(R9S(O)nR9), N(R9)C(=X1)R9, SR9, S(O)nOR9, R9S(O)nR9, or R9S(O)n(NZ)R9,
      wherein each said R7, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, or C6-C20 aryl, (each of which that can be substituted, may optionally be substituted with R9)
    9. (i) R8 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
      wherein each said R8, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, or C6-C20 aryl (each of which that can be substituted, may optionally be substituted with R9);
    10. (j) R9 (each independently) is H, CN, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl,
      wherein each said R9, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OC1-C6 alkyl, OC1-C6 haloalkyl, S(O)nOC1-C6 alkyl, C6-C20 aryl;
    11. (k) n is 0, 1, or 2;
    12. (l) X1 is (each independently) O or S;
    13. (m) X2 is (each independently) 0, S, =NR9, or =NOR9; and
    14. (n) Z is CN, NO2, C1-C6 alkyl(R9), C(=X1)N(R9)2,
  • In another embodiment of the invention X is preferably CR8.
  • In another embodiment of this invention R1 is preferably H, F, Cl, or C1-C6 alkoxy.
  • In another embodiment of this invention R1 is more preferably H, F, Cl, or OCH3.
  • In another embodiment of this invention R1 is even more preferably H,
  • In another embodiment of this invention R2, and R3 are preferably H.
  • In another embodiment of this invention R4 is H, F, Cl, Br, I, CN, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, or S(C1-C6 alkyl).
  • In another embodiment of this invention R4 is preferably H, Cl, CF3, CH3, CH2CH3, CH(CH3)2, or SCH3.
  • In another embodiment of this invention R4 is more preferably H, Cl, or CH3.
  • In another embodiment of this invention R4 is even more preferably Cl.
  • In another embodiment of this invention R5 is preferably H or C1-C6 alkyl.
  • In another embodiment of this invention R5 is more preferably H, CH3, CH2CH3, CH(CH3)2, CH2CH(CH3)2 or CH2CH2CH3.
  • In another embodiment of this invention R5 is even more preferably H, CH3, CH2CH3, CH(CH3)2, CH2CH(CH3)2; or CH2CH2CH3.
  • In another embodiment of this invention R6 is preferably 0, S, or N(C1-C6 alkyl).
  • In another embodiment of this invention R6 is more preferably O, S, or NCH2CH3.
  • In another embodiment of this invention R6 is even more preferably O.
  • In another embodiment of this invention R7 is furyl. In another embodiment of this invention R7 is substituted furyl wherein the substituted furyl has one or more substituents selected from C(=O)C1-C6 alkyl, (C1-C6 alkyl)-S(O)n-(C1-C6 alkyl), and tetrahydrofuran.
  • In another embodiment of this invention R7 is oxazolyl. In another embodiment of this invention R7 is substituted oxazolyl wherein the substituted oxazolyl has one or more C1-C6 alkyls.
  • In another embodiment of this invention R7 is piperidinyl. In another embodiment of this invention R7 is substituted piperidinyl wherein said substituted piperidinyl has one or more substituents selected from C1-C6 alkyl, C(=O)OC1-C6 alkyl, C(=S)NH(C3-C10 cycloalkyl), C(=O)C1-C6 haloalkyl, C(O)OC1-C6 alkylOC1-C6 alkyl, S(O)n(C1-C6 alkyl) and C(=O)C1-C6 alkyl.
  • In another embodiment of this invention R7 is pyrazolyl. In another embodiment of this invention R7 is substituted pyrazolyl wherein said substituted pyrazolyl has one or more substituents selected from C1-C6 alkyl, C6-C20 aryl, C1-C6 haloalkyl, and S(O)nN(C1-C6 alkyl)2.
  • In another embodiment of this invention R7 is pyridazinyl. In another embodiment of this invention R7 is substituted pyridazinyl wherein said substituted pyridazinyl has one or more substituents selected from (=O) and C1-C6 alkyl.
  • In another embodiment of this invention R7 is pyridyl. In another embodiment of this invention R7 is substituted pyridyl wherein said substituted pyridyl has one or more C1-C6 alkyls.
  • In another embodiment of this invention R7 is pyrrolidinyl. In another embodiment of this invention R7 is substituted pyrrolidinyl wherein said substituted pyrrolidinyl has one or more C(=O)OC(CH3)3.
  • In another embodiment of this invention R7 is thiazolyl. In another embodiment of this invention R7 is substituted thiazolyl wherein said substituted thiazolyl has one or more substituents selected from C1-C6 alkyl and C1-C6 haloalkyl.
  • In another embodiment of this invention R7 is thienyl. In another embodiment of this invention R7 is preferably tetrahydrothienyl, thienylC(=O)(C1-C6 alkyl), or tetrahydrothienyl-1-oxide. In another embodiment of this invention R7 is more preferably thienylC(=O)CH3.
  • In another embodiment of this invention, R7 is C1-C6alkylOC(=O)C1-C6alkyl, OC1-C6alkylC1-C20heterocyclyl, C1-C6alkylC1-C20heterocyclyl, C1-C6alkylS(=N-CN)(C1-C6alkyl), C1-C6alkylS(O)(=N-CN)(C1-C6alkyl), C1-C6alkylS(O)n(C1-C6 alkyl-C1-C20heterocyclyl), C1-C6alkylS(O)(=N-CN)(C1-C6alkylC1-C20heterocyclyl), C1-C6alkylNH(C(=O)OC1-C6alkyl), C1-C6alkylC(=O)OC1-C6alkyl, C1-C6alkyl(C6-C20aryl)NH(C(=O)OC1-C6alkyl), C1-C6alkyl(SC1-C6alkyl)NH(C(=O)OC1-C6alkyl), C1-C6alkyl(SC1-C6alkylC6-C20 aryl)NH(C(=O)OC1-C6alkyl), C1-C6alkyl(NHC(=O)OC1-C6alkyl-C6-C20 aryl)NH(C(=O)OC1-C6alkyl), C1-C6alkyl(O-C1-C6alkylC6-C20 aryl)NH(C(=O)OC1-C6alkyl), C1-C6alkylN(C1-C6 alkyl)(C(=O)OC1-C6alkyl), C1-C6alkylNH(C1-C6 alkyl), C6-C20 arylSC1-C6haloalkyl, C1-C6alkylN(C1-C6alkyl)(C(=O)C1-C6alkylC6-C20aryl), C1-C6alkylN(C1-C6alkyl)(C1-C6alkyl), C1-C6alkylN(C1-C6alkyl)(S(O)nC1-C6alkyl), C1-C6alkylN(C1-C6 alkyl)(S(O)nC1-C6alkenylC6-C20aryl), C1-C6alkylN(C1-C6alkyl)(C(=O)C1-C20hetertoaryl), C1-C6alkylN(C1-C6 alkyl)(C(=O)OC1-C6alkylC6-C20aryl), NH(C1-C6alkylS(O)nC1-C6alkyl), NH(C1-C6alkylS(O)nC6-C20aryl), or C1-C6alkyl(S(O)nC1-C6alkyl)(C(=O)C1-C6 alkylS(O)n(C1-C6 alkyl).
  • In another embodiment of this invention, R7 is more preferably CH(CH3)CH2S(=N-CN)CH3, CH(CH3)CH2S(O)(=N-CN)CH3, CH(CH3)CH2SCH2(chloropyridyl), CH(CH3)CH2S(O)(=N-CN)CH2(chloropyridyl), CH(CH3)NHC(=O)OC(CH3)3, CH2CH2C(=O)OCH3, CH2NHC(=O)OC(CH3)3, CH(CH2-phenyl)NHC(=O)OC(CH3)3, CH(CH2CH2SCH3)NHC(=O)OC(CH3)3, CH(CH3)NHC(=O)OC(CH3)3, CH(CH2CH2CH3)NHC(=O)OC(CH3)3, CH(CH2SCH2-phenyl)NHC(=O)OC(CH3)3, CH(CH2CH2CH2CH2NHC(=O)OCH2-phenyl)NHC(=O)OC(CH3)3, CH(CH(CH3)OCH2-phenyl)NHC(=O)OC(CH3)3, CH2(CH3)N(CH3)C(=O)OC(CH3)3, CH2(CH3)NH(CH3), phenyl-S-CHF2, CH2N(CH3)C(=O)CH(CH3)pyrazolyl, CH2N(CH3)(S(O)2CH3), CH2N(CH3)(CH3), CH2N(CH3)(S(O)2CH=CH-phenyl), CH2N(CH3)(C(=O)thienyl), CH(CH3)N(CH3)(C(O)OCH2-phenyl), NHCH2CH2SCH3, NHCH2CH2S(chlorophenyl), CH2thienyl, or CH(CH3)CH2(3,5-dimethyltriazolyl).
  • In another embodiment of this invention R7 is preferably C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkenyl, O(C1-C6 alkyl), (C1-C6 alkyl)S(O)n(C1-C6 alkyl), (C1-C6 alkyl)S(O)n(C1-C6 alkyl(C6-C20 aryl)), (C1-C6 alkyl)C(=O)O(C1-C6 alkyl), O(C1-C6 alkyl)S(O)n(C1-C6 alkyl), NH(C1-C6 alkyl)S(O)n(C1-C6 alkyl), N(C1-C6 alkyl)(C1-C6 alkylS(O)nC1-C6 alkyl, (C1-C6 alkyl)S(O)n(C1-C6 alkenyl), O(C1-C6 haloalkyl), N(unsubstituted C1-C6 alkyl)(unsubstituted C1-C6 alkyl), C1-C6 alkylS(O)n(C1-C6 alkenyl), O(C3-C10 cycloalkyl), O(C1-C6 alkyl)O(C1-C6 alkyl), C1-C6 alkyl-(C6-C20 aryl), (unsubstituted C1-C6 alkyl)S(O)n(unsubstituted C6-C20 aryl), NH(aryl), C3-C10 cycloalkyl, NH(C1-C6 alkyl), or (C6-C20 aryl)S(O)n(C1-C6 alkyl).
  • In another embodiment of this invention R7 is more preferably CH3, CF3, OC(CH3)3, CH(CH3)CH2SCH3, C(CH3)2CH2SCH3, CH2CH2SCH3, CH(CH3)2, C(CH3)3, CH2CF3, CH2CH2C(=O)OCH3, OCH2CH2SCH3, OCH2CH3, CH2CH2S(O)CH3, CH(CH3)CH2S(O)CH3, C(CH3)2CH2S(O)CH3, NHCH2CH2S(O)CH3, N(CH3)(CH2CH2S(O)CH3), OCH2CH2S(O)CH3, C(CH3)2CH2S(O)CH3, CH(CH3)CH2S(O)CH3, CH2CH2S(O)CH3, CH2CH2S(O)2CH3, C(CH3)2CH2S(O)2CH3, CH(CH3)CH2S(O)2CH3, NHCH(CH3)CH2CH3, NHCH2CH2SCH3, N(CH3)CH2CH2SCH3, CH(CH3)CH2SCH2CH=CH2, CH(CH3)CH2SCH2-phenyl, OC(CH3)2CF3, OC(CH3)2CH2CH2CH3, O(methylcyclohexyl), OC(CH3)2CH2OCH3, OCH2-phenyl, OCH3, CH=CH2, CH2CH2CH2Cl, CH2C(CH3)2SCH3, CH(CH3)CH(CH3)SCH3, cyclopropyl-SCH3, CH2CH(CH3)SCH3, CH(CH3)CH2S(O)nCH2CH=CH2, CH(CH3)C(=O)OCH2CH3, CH2CH(CH3)S(O)CH3, OC(CH3)2CH2OCH3, CH2CH2SCH2-phenyl, CH2CH2SCH2-phenyl, CH2CH2SCH2CH3, CH2CH2SCH(CH3)2, CH(CH3)SCH3, O-cyclohexyl, OCH(CH3)CH2CH2CH3, OCH(CH3)CF3, OCH2CH2OCH3, NHCH(CH3)2, NHCH2CH2CH3, CH2CH2cyclopropyl, CH2cyclopropyl, CH2CH2CH=CHCH3, CH2CH2CH=CHCH3, C4F9, NHCH2CH3, SCH2CH2CH2CH3, OCH(CH3)CH2CH2CH3, OCH2CH2CH2CH3, CH2CF3, NHcyclopropyl, CH=CH2CH3, CH(CH3)(chlorophenyl), C(CH3)CH2S(O)CH3, C(CH3)CH2SCH3, CH(=CH2)CH2CH3, CH2CH2C(=O)OCH3, CH2SCH2CH3, CH2SCH3, CH2CH2CH2SCH3, OCH2CF3, NH-(chlorophenyl), phenyl-S(O)-CH3, CH2C(CH3)2(SCH3), CH(CH3)CHOCH3, CH2CH(CH3)SCH3, CH2CH(CH3)2SCH3, CH2CH2CH2CH3, CH(CH3)CH2CH3, 1-methyl-2,2-dichlorocyclopropyl, CH(CH2CH3)CH2SCH3, CH(CH2CH3)CH2S(O)CH3, or CH(CH3)CH(CH3)S(O)CH3.
  • In another embodiment of this invention R7 is even more preferably CH(CH3)CH2SCH3, C(CH3)2CH2SCH3, CH2CH2SCH3, CH(CH3)2, C(CH3)3, CH2CH2S(O)CH3, C(CH3)2CH2S(O)CH3, CH(CH3)CH2S(O)CH3, CH2CH2S(O)2CH3, C(CH3)2CH2S(O)2CH3, CH(CH3)CH2S(O)2CH3, CH(CH3)CH2SCH2CH=CH2, CH2C(CH3)2SCH3, CH(CH3)CH(CH3)SCH3, CH2CH(CH3)SCH3, CH(CH3)CH2S(O)nCH2CH=CH2, CH2CH(CH3)S(O)CH3, CH2CH2SCH2CH3, CH2CH2SCH(CH3)2, CH(CH3)SCH3, CH2SCH2CH3, CH2SCH3, CH2CH2CH2SCH3, CH2CH(CH3)SCH3, CH2CH(CH3)2SCH3, CH(CH2CH3)CH2SCH3, CH(CH2CH3)CH2S(O)CH3, or CH(CH3)CH(CH3)S(O)CH3.
  • In another embodiment of this invention R8 is H, F, Cl, Br, CN, C1-C6 alkyl, C1-C6 alkoxy, C(=O)O(C1-C6 alkyl), or S(O)n(C1-C6 alkyl). In another embodiment of this invention R8 is preferably H, F, CI, Br, CN, CH3, OCH3, S(O)2CH3, or C(=O)OCH2CH3.
  • In another embodiment of this invention R8 is even more preferably H or F.
  • In another embodiment of this invention:
    • (a) X is CR8;
    • (b) R1 is H;
    • (c) R2 is H;
    • (d) R3 is H;
    • (e) R4 is Cl or CH3;
    • (f) R5 is H or unsubstituted C1-C6 alkyl;
    • (g) R6 is O;
    • (h) R7 is (unsubstituted C1-C6 alkyl)S(O)n(unsubstituted C1-C6 alkyl), (unsubstituted C1-C6 alkyl)S(O)n(unsubstituted C1-C6 alkenyl), O(unsubstituted C1-C6 alkyl), (C1-C6 alkyl);
    • (i) R8 is H or F; and
    • (k) n is 0, 1, or 2.
  • In another embodiment of this invention:
    • (a) X is CR8;
    • (b) R1 is H;
    • (c) R2 is H;
    • (d) R3 is H;
    • (e) R4 is Cl;
    • (f) R5 is unsubstituted C1-C6 alkyl;
    • (g) R6 is O;
    • (h) R7 is (unsubstituted C1-C6 alkyl)S(O)n(unsubstituted C1-C6 alkyl);
    • (i) R8 is H or F; and
    • (k) n is 0,1, or 2.
  • While the embodiments have been expressed, other embodiments and combinations of these expressed embodiments and other embodiments are possible.
  • The following scheme illustrates approaches to generating aminothiazoles. In step a of Scheme I, treatment of a carboxylic acid of Formula IIa, such as nicotinic acid wherein R1, R2, R3 and X are as previously defined, with oxalyl chloride in the presence of a catalytic amount of N,N-dimethylformamide (DMF) in a polar aprotic solvent such as 1,2-dichloroethane (DCE) provides the corresponding acid chloride of Formula IIb. In step b of Scheme I, a commercially available carboxylic acid of Formula IIa, such as nicotinic acid, can be treated with an amino acid ester of Formula III (R4 = H) such as glycine methyl ester hydrochloride, in the presence of p-toluenesulfonyl chloride, a catalytic amount of benzyltriethylammonium chloride and an inorganic base, such as potassium carbonate, in a solvent such as chloroform to afford the amide ester of Formula IVa. Alternatively, the amide ester IVa can be accessed as in step c of Scheme I, where an acid chloride of Formula IIb is allowed to react with an amino acid ester of Formula III (R4 = H, CH3. phenyl, or isopropyl) such as glycine or (±)-alanine methyl ester hydrochloride, in the presence of a tertiary amine base such as triethylamine and in a polar aprotic solvent such as DCE or acetonitrile. In step d of Scheme I and in the event wherein R3 is a halogen and R1, R2, R4 and X are as previously defined, the halogen can be removed reductively using hydrogen in the presence of a catalyst, such as palladium hydroxide on carbon, in a polar protic solvent such as methanol to give compounds of Formula IVb, where R3 is H. In step e of Scheme I, reaction of the amide esters of Formula IVa and IVb, wherein R1, R2, R3, R4 and X are as previously defined, with an amine such as methylamine in a polar protic solvent like ethyl alcohol affords the diamides of Formula V, which upon treatment with phosphorus pentasulfide (step g ) or Lawesson's reagent (step h ) may yield aminothiazoles of Formula VIIa. In the event wherein X is CR8 and R4 is H, the diamide of Formula V, which upon treatment with Lawesson's reagent, may provide the bis-thioamide of Formula VI as in step i of Scheme I. Cyclization to yield the aminothiazole of Formula VIIb is accomplished in two steps, by reaction of the bis-thioamide of Formula VI with trifluoroacetic anhydride as in step j, followed by hydrolysis with sodium hydroxide in a polar protic solvent such as methyl alcohol, as in step k of Scheme I. Alternatively, cyclization to yield the aminothiazole of Formula VIIc, where R4 = Cl is accomplished in three steps, by reaction of the bis-thioamide of Formula VI with trifluoroacetic anhydride as in step j , followed by chlorination with a chlorinating agent such as N-chlorosuccinimide in a polar aprotic solvent such as acetonitrile as in step l , and hydrolysis with potassium carbonate in a polar protic solvent such as methyl alcohol, as in step m of Scheme I.
    Figure imgb0002
  • Another approach to substituted aminothiazoles is illustrated in Scheme II. In step a , the thiazole ester of Formula Xa is formed in one step by reaction of a commercially available thioamide of Formula VIIIa, wherein R1, R2, R3 and X are as previously defined, with a β-ketoester of Formula IXa such as 2-chloro-4,4,4-trifluoro-3-oxobutyric acid ethyl ester, wherein R4 is as previously defined, under microwave irradiation conditions in the presence of a base, such as triethylamine, and in a solvent such as ethyl alcohol. Saponification of the ester can be accomplished as in step b of Scheme II using a base such as sodium hydroxide in a solvent such as aqueous methyl alcohol to give the acid of Formula XIa. In step c of Scheme II, the tert-butyl carbamate (shown) or other carbamate of Formula XIIa is formed by reaction of the acid of Formula XIa with diphenyl phosphoryl azide (DPPA) and the appropriate alcohol with heating. Alkylation of the carbamate nitrogen with an alkyl halide such as iodomethane, in the presence of a base such as sodium hydride and in a polar aprotic solvent such as N,N-dimethylformamide (DMF) may yield the compounds of Formula XIIIa as shown in step d of Scheme II. Finally in step e of Scheme II, deprotection of the amine in the presence of an acid, such as trifluoroacetic acid (TFA), may afford the aminothiazole of Formula VIId.
    Figure imgb0003
  • Yet another approach to aminothiazoles is through coupling of the desired amine-protected thiazole and the heterocycle as in Scheme III. In step a, a 2-halo-4-substituted thiazole-5-carboxylic acid ethyl ester of Formula XIVa, wherein R4 is as previously defined, is hydrolyzed under basic conditions, such as with lithium hydroxide hydrate, in a solvent system such as aqueous tetrahydrofuran (THF) to afford the corresponding acid of Formula XVa. Compounds of Formula XVa are transformed to the acyl azide of Formula XVIa by reaction with diphenyl phosphoryl azide as in step b of Scheme III. In step c of Scheme III, a Curtius rearrangement, followed by the trapping of the resulting isocyanate with tert-butyl alcohol, affords the tert-butyloxycarbonyl (Boc) protected 5-amino thiazole of Formula XVIIa, wherein R4 is as previously defined. Alkylation of the carbamate functionality with an alkyl halide such as iodomethane, in the presence of a base such as sodium hydride and in a polar aprotic solvent such as DMF yields the alkyl carbamate of Formula XVIIIa, as shown as step d in Scheme III. In step e of Scheme III, compounds of Formula XVIIa or XVIIIa, wherein R4 and R5 are as previously defined, can be allowed to react under Suzuki coupling conditions with a boronic acid of Formula XIXa, wherein X, R1, R2 and R3 are as previously defined, to provide the heterocycle-coupled thiazole of Formula XIIIb. In the event that R5 is not H, the Boc-group can be removed under acidic conditions such as trifluoroacetic acid (TFA) in a polar aprotic solvent like dichloromethane to give compounds of Formula VIIe as in step f of Scheme III. When R5 is H, the Boc-group can be removed under acidic conditions such as methanolic hydrochloric acid to yield compounds of Formula VIIf as in step g of Scheme III. In step h , when R4 is H, compounds of Formula XVIIIb can be converted to compounds of Formula XVIIIa, wherein R4 is specifically a halogen. This can be accomplished by treatment of XVIIIb with a halogenating reagent such as N-chlorosuccinimide or N-bromosuccinimide, in a polar aprotic solvent such as acetonitrile to afford 4-halo-thiazole of Formula XVIIIa.
    Figure imgb0004
  • In step a of Scheme IV, the compounds of Formula XVIIIc, wherein R4 is as previously defined and R5 is H, can be treated with an acid chloride of Formula XXa, wherein R6 is O and R7 is as previously defined, in the presence of a base such as triethylamine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula XXI. In step b of Scheme IV the Boc group can be removed under acidic conditions, such as trifluoroacetic acid in a polar aprotic solvent such a dichloromethane (DCM) to provide compounds of Formula XXII. The acid chlorides used in the acylation reactions herein are either commercially available or can be synthesized by those skilled in the art. In step c of Scheme IV, the compounds of Formula XXII can undergo alkylation with an alkyl halide such as iodomethane, in the presence of a base such as sodium hydride or potassium carbonate and in a polar aprotic solvent such as N,N-dimethylformamide (DMF) to yield the alkylated compounds of Formula XXIII. In step d of Scheme IV, compounds of Formula XXII or XXIII, wherein R4, R5, R6 and R7 are as previously defined, can be allowed to react under Suzuki coupling conditions with a boronic acid of Formula XIXb, wherein X, R1, R2 and R3 are as previously defined, to provide the heterocycle-coupled thiazole of Formula Ia.
    Figure imgb0005
  • In step a of Scheme V, compounds of Formula VIIa-k, wherein X, R1, R2, R3, R4 and R5 are as previously defined, can be treated with an acid chloride of Formula XXb, wherein R6 is O and R7 is as previously defined, in the presence of a base such as triethylamine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula Ib.
    Figure imgb0006
  • In step a of Scheme VI, ureas and carbamates are made from the aminothiazoles of Formula VIIa-k. Compounds of Formula VIIa-k, wherein X, R1, R2, R3, R4 and R5 are as previously defined, are allowed to react with phosgene to provide the intermediate carbamoyl chloride. In steps b and c of Scheme VI, the carbamoyl chloride is treated with an amine or alcohol, respectively, to generate an urea of Formula Ic or a carbamate of Formula Id, respectively. Alkylation of the urea nitrogen of compounds of Formula Ic with an alkyl halide such as iodomethane, in the presence of a base such as sodium hydride and in a polar aprotic solvent such as N,N-dimethylformamide (DMF) yields compounds of Formula Ie as shown in step d of Scheme VI.
    Figure imgb0007
  • Oxidation of the sulfide to the sulfoxide or sulfone is accomplished as in Scheme VII where (~) can be any number of atoms and bonds previously mentioned within the scope of this invention. The sulfide of Formula If, wherein X, R1, R2, R3, R4 and R5 are as previously defined, is treated with an oxidant such as sodium perborate tetrahydrate in a polar protic solvent such as glacial acetic acid to give the sulfoxide of Formula Ig as in step a of Scheme VII. The sulfoxide of Formula Ig can be further oxidized to the sulfone of Formula Ih by sodium perborate tetrahydrate in a polar protic solvent such as glacial acetic acid as in step b of Scheme VII. Alternatively, the sulfone of Formula Ih can be generated in a one-step procedure from the sulfide of Formula If by using the aforementioned conditions with ≥2 equivalents of sodium perborate tetrahydrate, as in step c of Scheme VII.
    Figure imgb0008
  • In step a of Scheme VIII, compounds of Formula XIIb, wherein X, R1, R2, R3 and R4 are as previously defined, can be treated with an acid chloride of Formula XXc, wherein R6 is O and R7 are as previously defined, in the presence of a base such as triethylamine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula XXIV. In step b of Scheme VIII the Boc group of XXIV can be removed under acidic conditions, such as trifluoroacetic acid (TFA) in a polar aprotic solvent such a dichloromethane to provide compounds of Formula Ii. Alkylation of the amide functionality with an alkyl halide such as benzoic acid chloromethyl ester, in the presence of a base such as sodium hydride and in a polar protic solvent such as N,N-dimethylformamide (DMF) yields alkyl amide of Formula Ij, as shown in step c of Scheme VIII.
    Figure imgb0009
    Figure imgb0010
  • In step a of Scheme IX, compounds of Formula XIIIc, wherein X, R1, R2, R3 and R5 are as previously defined, can be treated with an electrophilic source of halogen, such as N-bromosuccinimide or N-iodosuccinimide in a polar aprotic solvent such as acetonitrile to yield compounds of Formula XIIId, wherein R4 is limited to halogens. Palladium-catalyzed cross coupling reactions such as the Stille coupling on compounds of Formula XIIId can be performed as in step b using a palladium ; catalyst such as bis(triphenylphosphine)palladium(II)chloride in a polar aprotic solvent such as dioxane to yield carbamates of Formula XXV. Also, compounds of the formula XIIIe, where R4 is a cyano group, can be prepared by treating the compound of the formula XIIId with CuCN in a solvent such as N,N-dimethylformamide (DMF) at a suitable temperature as in step c .
    Figure imgb0011
  • In step a of Scheme X, the compound of Formula XVIIb where R4 is H can be treated with BOC-anhydride in the presence of a base such as triethylamine in a polar aprotic solvent such as tetrahydrofuran (THF) to yield compounds of Formula XXV. Next, as in step b, compounds of Formula XXV can be allowed to react under Suzuki coupling conditions with a boronic acid of Formula XIXc, wherein X, R1, R2, R3 and R4 are as previously defined, to provide the heterocycle-coupled thiazole of Formula XXVI. In step c, compounds of Formula XXVI can be treated with an electrophilic source of halogen, such as Selectfluor™, in a mixture of polar aprotic solvents such as acetonitrile and N,N-dimethylformamide (DMF) to yield compounds of Formula XXVII, wherein R4 is limited to halogens. Finally, one of the BOC-groups can be removed under acidic conditions such as trifluoroacetic acid (TFA) in a polar aprotic solvent such as dichloromethane (DCM) to yield compounds of Formula XIIc as in step d of Scheme X, where R1, R2, R3 and R4 are as previously defined.
    Figure imgb0012
  • Oxidation of the sulfide to the sulfoximine is accomplished as in Scheme XI. The sulfide of Formula Ik, wherein X, R1, R2, R3, R4 and R5 are as previously defined, is oxidized as in step a with iodobenzene diacetate in the presence of cyanamide in a polar aprotic solvent such as methylene chloride (DCM) to give sulfilimine of the Formula Im. The sulfilimine of Formula Im may be further oxidized to the sulfoximine of Formula In with mCPBA in the presence of a base such as potassium carbonate in a protic polar solvent system such as ethanol and water as in step b of Scheme XI.
    Figure imgb0013
  • In step a of Scheme XII, the compound of Formula VIIIb, wherein X, R1, R2 and R3 are as previously defined, can be treated with ethyl bromopyruvate in a polar protic solvent such as ethanol to yield compounds of Formula XXVIII. In step b of Scheme XII, the 5-bromothiazole of Formula XXIX is formed by reaction of the thiazole ester of Formula XXVIII with a base such as postassium bis(trimethylsilyl)amide and N-bromosuccinimide in a polar aprotic solvent such as THF. In step c , the bromine is displaced with sodium azide in a solvent system such as N,N-dimethylformamide (DMF)/H2O. The resultant azide was thermally reduced (75 °C) to give the 5-aminothiazole of Formula XXX in Scheme XII.
    Figure imgb0014
    Figure imgb0015
  • In step a of Scheme XIII, the thioamide Iq is prepared from the amide of Formula Ip. The compound of Formula Ip, wherein X, R1, R2, R3, R4, R5 and R7 are as previously defined, is allowed to react under microwave irradiation conditions with Lawesson's reagent in a solvent such as dioxane to give the thioamide of Formula Iq in Scheme XIII.
    Figure imgb0016
  • In step a of Scheme XIV, compounds of Formula VIIg, wherein X, R1, R2, R3, R4, and R5 are as previously defined, can be treated with substituted isothiocyanates of Formula XXXI where R9 is as previously defined, in refluxing dioxane to yield compounds of Formula Ir.. In step b of Scheme XIV, the S-alkylated pseudothioureas of Formula Is can be formed by treating thioureas of Formula Ir with alkylating agents in refluxing ethanol under basic conditions, wherein each R9 can be the same or different.
    Figure imgb0017
    Figure imgb0018
  • In step a of Scheme XV, the compound of Formula XXXV wherein R4 is as defined previously, can be allowed to react under Suzuki coupling conditions with a boronic acid of Formula XIXd, wherein R1, R2, R3 and X are as defined previously to provide the heterocycle-coupled thiazole of Formula XXII. In step b of Scheme XV, compounds of the Formula XXXII, wherein R1, R2, R3, R4 and X are as defined previously, can be converted to compounds of the Formula XXXIIIa, wherein R1, R2, R3, R4 and X are as defined previously by treatment with a nitrating reagent such as a mixture of fuming nitric acid and concentrated sulfuric acid at a suitable temperature. In step c , compounds of Formula XXXIIIa, wherein R1, R2, R3, and X are as defined previously and R4 is a leaving group such as chloro, can be treated with a nucleophile such as sodium thiomethoxide to produce the compounds of Formula XXXIIIb, wherein R1, R2, R3, and X are as defined previously and R4 is thioalkyl. In step d , compounds of Formula XXXIIIb can be converted to compounds of Formula VIIh, wherein R1, R2, R3, R4 and X are as defined previously and R5 is H, by treatment with molecular hydrogen in the presence of a catalyst such as Pd on C and an acid such as acetic acid in a solvent such as ethyl acetate.
    Figure imgb0019
    Figure imgb0020
  • In step a of Scheme XVI, compounds of Formula VIIi, wherein X, R1, R2, R3, R4 and R5 are as previously defined, can be treated with an acid of Formula XXXIV, wherein R6 is O and R7 is as previously defined, in the presence of a coupling reagent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC HCl) and a base such as N,N-dimethylaminopyridine (DMAP) in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula It.
    Figure imgb0021
  • Another approach to substituted aminothiazoles is illustrated in Scheme XVII. In step a , the thiazole ester of Formula Xb is formed in one step by reaction of a commercially available thioamide of Formula VIIIb, wherein R1, R2, R3 and X are as previously defined, with a β-ketoester of Formula IXb such as ethyl 2-chloro-3-oxobutanoate, wherein R4 is as previously defined, and heating to 70-80 °C in a solvent such as ethyl alcohol. Saponification of the ester can be accomplished as in step b of Scheme XVII using a base such as lithium hydroxide in a solvent such as tetrahydrofuran (THF) to give the acid of Formula XIb. In step c of Scheme XVII, the tert-butyl carbamate of Formula XIIc is formed by reaction of the acid of Formula XIb with a chlorinating agent such as thionyl chloride to give the acid chloride, treatment of the acid chloride with sodium azide in a biphasic solution such as dichloroethane (DCE) and ater to give the acyl azide, and then heating the acyl azide in tert-butanol as solvent. Alkylation of the carbamate nitrogen with an alkyl halide such as iodomethane, in the presence of a base such as sodium hydride and in a polar aprotic solvent such as N,N-dimethylformamide (DMF) may yield the compounds of Formula XIIIf as shown in step d of Scheme XVII. Finally in step e of Scheme XVII, deprotection of the amine in the presence of an acid, such as 4M HCl in dioxane, affords the aminothiazole as the HCl salt as in Formula VIIj.
    Figure imgb0022
  • Another approach to aminothiazole is through coupling of the desired amine-protected thiazole and the heterocycle as in Scheme XVIII. In step a , a 2-halo-4-substituted thiazole-5-carboxylic acid ethyl ester of Formula XIVb, wherein R4 is as previously defined, is hydrolyzed under basic conditions, such as lithium hydroxide hydrate, in a solvent system such as aqueous tetrahydrofuran (THF) to afford the corresponding acid of Formula XVb. Compounds of Formula XVb are transformed to the tert-butyl carbamate of Formula XVIIc by reaction with diphenyl phosphoryl azide in tert-butanol as solvent in the presence of a base such as triethylamine as in step b of Scheme XVIII. Alkylation of the carbamate functionality with an alkyl halide such as iodomethane, in the presence of a base such as sodium hydride and in a polar aprotic solvent such as N,N-dimethylformamide (DMF) yields the alkyl carbamate of Formula XVIIId, as shown in step c of Scheme XVIII. In step d of Scheme XVIII, compounds of Formula XVIIc or XVIIId, wherein R4 and R5 are as previously defined, can be allowed to react under Suzuki coupling conditions with a boronic acid of Formula XIXe, wherein X, R1, R2 and R3 are as previously defined, to provide the heterocycle-coupled thiazole of Formula XIIIg. In the event that R5 is as previously defined, the Boc-group can be removed under acidic conditions such as 4M HCl in dioxane to give compounds of Formula VIIk as in step e of Scheme XVIII.
    Figure imgb0023
  • In step a of Scheme XIX, compounds of Formula VIIa-k, wherein X, R1, R2, R3, R4 and R5 are as previously defined, can be treated with an acid chloride of Formula XXd, wherein R6 is O and R7 is as previously defined, in the presence of a catalyst such as N,N-dimethylaminopyridine (DMAP) and a base such as pyridine in a polar aprotic solvent such as dichloromethane (DCM) to yield compounds of Formula Iv.
    Figure imgb0024
  • In step a of Scheme XX, compounds of Formula XXXVI can be treated with an electrophilic source of halogen such as N-chlorosuccinimide in a polar aprotic solvent such as acetonitrile to yield compounds of Formula XXXVII. The Boc-group in compounds of Formula XXXVII can be removed under acidic conditions such as trifluoroacetic acid (TFA) in a polar aprotic solvent such as dichloromethane as in step b to give compounds of Formula XXXVIII. In step c compounds of Formula XXXVIII can be treated with 3-methylsulfanyl-propionyl chloride in the presence of a base such as N,N-dimethyl amino-pyridine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula XXXIX. In step d compounds of Formula XXXVIII can be treated with 2-methyl-3-methylsulfanyl-propionyl chloride in the presence of a base such as N,N-dimethylamino-pyridine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula XXXX.
    Figure imgb0025
  • In step a of Scheme XXI, compounds of Formula XXXI can be treated with an electrophilic source of halogen such as N-chlorosuccinimide in a polar aprotic solvent such as acetonitrile to yield compounds of Formula XXXXII. The Boc-group in compounds of Formula XXXXII can be removed under acidic conditions such as trifluoroacetic acid (TFA) in a polar aprotic solvent such as dichloromethane (DCM) as in step b to give compounds of Formula XXXXIII In step c compounds of Formula XXXXIII can be treated with 3-methylsulfanyl-propionyl chloride in the presence of a base such as N,N-dimethyl amino-pyridine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula XXXXIV. In step d compounds of Formula XXXXIII can be treated with 2-methyl-3-methylsulfanylpropionyl chloride in the presence of a base such as N,N-dimethylamino-pyridine in a polar aprotic solvent such as dichloroethane (DCE) to yield compounds of Formula XXXXV.
    Figure imgb0026
  • Examples
  • The examples are for illustration purposes.
  • Starting materials, reagents and solvents which were obtained from commercial sources were used without further purification. Anhydrous solvents were purchased as Sure/Seal™ from Aldrich and were used as received. Melting points were obtained on a Thomas Hoover Unimelt capillary melting point apparatus or an OptiMelt Automated Melting Point System from Stanford Research Systems and are uncorrected. Molecules are given their known names, named according to naming programs within ISIS Draw, ChemDraw or ACD Name Pro. If such programs are unable to name a molecule, the molecule is named using conventional naming rules. All NMR are in ppm (δ) and were recorded at 300, 400 or 600 MHz unless otherwise stated.
  • Example 1: Preparation of [(pyridine-3-carbonyl)-amino]-acetic acid methyl ester Method A
  • Figure imgb0027
  • An ice-cold suspension of the hydrochloride salt of nicotinoyl chloride (5 grams (g), 28 millimoles (mmol)) in dichloroethane (DCE, 150 milliliters (mL)) was treated with glycine methyl ester hydrochloride (3.7 g, 29 mmol) in portions, followed by dropwise addition of triethylamine (Et3N, 15.6 mL, 0.111 moles (mol)) via syringe. The reaction mixture was allowed to come to room temperature under nitrogen over 14 hours (h), washed with water (2 x 100 mL), brine (100 mL), dried over magnesium sulfate (MgSO4) and purified by silica gel chromatography (ethyl acetate/hexanes gradient) to yield an orange solid (1.8 g, 33%). The aqueous washings of the crude reaction mixture were saturated with sodium chloride (NaCl), extracted with dichloromethane (CH2Cl2) and purified by silica gel chromatography (ethyl acetate/hexanes gradient) to yield a yellow solid (1.6 g, 29%; total yield 3.4 g, 62%): mp 66-68 °C; 1H NMR (300 MHz, CDCl3) δ 9.04 (d, J = 2.2 Hz, 1H), 8.76 (dd, J = 4.8, 1.5 Hz, 1H), 8.15 (dt, J = 8.1, 1.8 Hz, 1H), 7.42 (dd, J = 8.1, 4.8 Hz, 1H), 6.84 (br s, 1H), 4.28 (d, J = 5.2 Hz, 2H), 3.82 (s, 3H); ESIMS m/z 195 (M+1).
  • Method B
  • A mixture of nicotinic acid (10 g, 81 mmol), p-toluenesulfonyl chloride (17 g, 89 mmol), benzyltriethylammonium chloride (1.85 g, 8.1 mmol), and potassium carbonate (K2CO3, 44.9 g, 320 mmol) in chloroform (CHCl3, 500 mL) was stirred mechanically at 40 °C for 1 h. Glycine methyl ester hydrochloride (10.2 g, 81 mmol) and K2CO3 (11.2 g, 80 mmol) were then added and stirred at 50 °C for 90 minutes (min). The reaction mixture was filtered through Celite® and the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (2% methanol/ethyl acetate) to give the desired product as an orange gum which solidified upon standing at room temperature (4.7 g, 30%): 1H NMR (400 MHz, CDCl3) δ 9.04 (d, J = 2.2 Hz, 1H), 8.76 (dd, J = 4.8, 1.5 Hz, 1H), 8.15 (dt, J = 8.1, 1.8 Hz, 1H), 7.42 (dd, J = 8.1, 4.8 Hz, 1H), 6.84 (br s, 1H), 4.28 (d, J = 5.2 Hz, 2H), 3.87 (s, 3H); ESIMS m/z 195 (M+1).
  • Example 2: Preparation of 2-[(pyridine-3-carbonyl)-amino]-propionic acid methyl ester
  • Figure imgb0028
  • (±)-Alanine methyl ester hydrochloride salt (35.2 g, 280 mmol) and Et3N (58.5 mL, 420 mmol) were sequentially added to a stirred solution of nicotinoyl chloride (19.8 g, 140 mmol) in acetonitrile (800 mL) and stirred at ambient temperature for 10 min and then 80 °C for 2 h. The reaction mixture was poured into a separatory funnel containing brine and ethyl acetate. The biphasic mixture was separated, and the organic layer was washed one time with brine, dried over MgSO4, filtered and concentrated to dryness. The crude product was triturated in 80% ethyl acetate/hexanes overnight at ambient temperature. The solids were removed by filtration over Celite® and the filtrate was concentrated in vacuo to give the desired product as a clear brown oil (20 g, 69%): 1H NMR (300 MHz, CDCl3) δ 9.04 (d, J = 2.2 Hz, 1H), 8.75 (dd, J = 4.9, 1.4 Hz, 1H), 8.13 (dt, J = 7.7, 1.9 Hz, 1H), 7.40 (dd, J = 8.0, 4.9 Hz, 1H), 6.92 (br s, 1H), 4.82 (m, 1H), 3.81 (s, 3H), 1.55 (d, J = 7.1 Hz, 3H); ESIMS m/z 209 (M+1), m/z 207 (M-1).
  • Example 3: Preparation of [(2-chloro-5-fluoropyridine-3-carbonyl)-amino]-acetic acid methyl ester
  • Figure imgb0029
  • To a solution of 2-chloro-5-fluoro-nicotinic acid (21.9 g, 124 mmol) in DCE (300 mL) were added oxalyl chloride (21.5 mL, 249 mmol) and then a drop of N,N-dimethylformamide (DMF). After the vigorous bubbling subsided (ca 5 min), the reaction mixture was heated to 65 °C for 1 h. The reaction solvents were removed in vacuo to afford the acid chloride as a yellow oil which was used directly in the next step. The freshly made acid chloride was dissolved in 1,4-dioxane (300 mL), and the solution was cooled to 0 °C in an ice bath. Glycine methyl ester hydrochloride (16.3 g, 130 mmol) and then Et3N (50 mL, 370 mmol) were added. After stirring for 10 min, the solution was allowed to warm to ambient temperature and was then heated to reflux for 1.5 h. LC-MS analysis of a quenched aliquot (water/ethyl acetate) showed incomplete conversion to the desired product so additional glycine methyl ester hydrochloride (15 g, 130 mmol), Et3N (20 mL, 143 mmol), and 1,4-dioxane (200 mL) were added, and the reaction mixture was heated at reflux overnight. LC-MS analysis of a quenched aliquot (water/ethyl acetate) showed no starting material and 74% of the desired product. The reaction mixture was cooled and then added to a separatory funnel containing water and ethyl acetate. After separating the layers, the organic layer was washed with water and brine. To the initial aqueous layer was added salt and then ethyl acetate. After separation, the organic layer was washed with water and brine. The combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. The crude material was purified via silica gel chromatography (40% to 70% ethyl acetate/hexanes) to afford a brown oil (20.5 g, 67%): 1H NMR (300 MHz, CDCl3) δ 8.36 (d, J = 3.0 Hz, 1H), 7.92 (dd, J = 7.7, 3.0 Hz, 1H), 7.32 (br s, 1H), 4.27 (d, J = 5.2 Hz, 2H), 3.82 (s, 3H); ESIMS m/z 247 (M+1), m/z 245 (M-1).
  • Example 4: Preparation of [(5-fluoropyridine-3-carbonyl)-amino]-acetic acid methyl ester
  • Figure imgb0030
  • To a solution of [(2-chloro-5-fluoropyridine-3-carbonyl)-amino]-acetic acid methyl ester (4.65 g, 18.9 mmol) in methanol (200 mL) in a Parr vessel was added Et3N (3.15 mL, 22.6 mmol) and palladium hydroxide on carbon (1.5 g, 20 wt % Pd, moisture 60%). The vessel was evacuated and then put under an atmosphere of hydrogen (initial pressure 42 psi -289,6 kPa). After 5 min the hydrogen pressure was 14 psi (96,5 kPa). The catalyst was removed via suction filtration over Celite® and then the filtrate was concentrated. Purification by silica gel chromatography (0 to 100% ethyl acetate /hexanes) afforded a light yellow solid (3.83 g, 95%): mp 80-82 °C; 1H NMR (300 MHz, CDCl3) δ 8.84 (s, 1H), 8.62 (d, J = 2.7 Hz, 1H), 7.87 (m, 1H), 7.00 (br s, 1H), 4.27 (d, J = 5.3 Hz, 2H), 3.82 (s, 3H); ESIMS m/z 213 (M+1).
  • Example 5: Preparation of N-methylcarbamoylmethyl-nicotinamide
  • Figure imgb0031
  • A suspension of [(pyridine-3-carbonyl)-amino]-acetic acid methyl ester (1.5 g, 7.7 mmol) and methylamine (33 wt % in absolute ethanol, 3.86 mL, 38.6 mmol) in ethanol (8 mL) was heated at 55 °C in a Parr reactor for 6 h. The mixture was cooled and then concentrated under reduced pressure to yield the product as a iridescent beige plates (1.41 g, 94%): 1H NMR (300 MHz, DMSO-d 6) δ 9.05 (d, J = 2.2 Hz, 1H), 9.00 (t, J = 5.8 Hz, 1H), 8.77 (d, J = 4.0 Hz, 1H), 8.23 (br d, J = 8.1 Hz, 1H), 7.90 (q, J = 4.1 Hz, 1H), 7.53 (dd, J = 7.7, 4.7 Hz, 1H), 3.86 (d, J = 5.8 Hz, 2H), 2.61 (d, J = 4.4 Hz, 3H); IR (KBr) 3314, 1641 cm-1; ESIMS m/z 194 (M+1).
  • Example 6: Preparation of N-(1-methylcarbamoyl-ethyl)nicotinamide
  • Figure imgb0032
  • To a solution of 2-[(pyridine-3-carbonyl)-amino]-propionic acid methyl ester (10.4 g, 50 mmol) in ethanol (50 mL) was added methylamine (24 g, 33 wt % solution in ethanol, 250 mmol). The reaction mixture was heated at 55 °C for 45 min. The solvents were removed in vacuo and the residue was recrystallized from hot ethyl acetate and hexanes. The yellow crystals thus obtained were washed with cold ethyl acetate and dried to give the desired product (5.2 g, 50%): 1H NMR (300 MHz, DMSO-d 6) δ 9.05 (br s, 1H), 8.77-8.70 (m, 2H), 8.24 (m, 2H), 7.89 (br s, 1H), 7.50 (m, 1H), 2.59 (d, J = 4.7 Hz, 3H), 1.33 (d, J = 7.4 Hz, 3H); ESIMS m/z 208.1 (M+1), m/z 206.1 (M-1).
  • Example 7: Preparation of 5-fluoro-N-methylcarbamoylmethyl-nicotinamide
  • Figure imgb0033
  • To a solution of [(5-fluoropyridine-3-carbonyl)-amino]-acetic acid methyl ester (2.96 g, 14.0 mmol) in ethanol (15 mL) was added methylamine (1.5 g, 33 wt % solution in ethanol, 70 mmol). This clear solution was then immediately put onto a 55 °C heating mantle for 10 min at which time the product had precipitated out of solution. The mixture was filtered in vacuo and the precipitate was washed with ethanol. The filtrate was concentrated and recrystallized from hot ethanol. This process was repeated again to give a white fluffy material (2.11 g, 72%): mp 201-202 °C; 1H NMR (300 MHz, DMSO-d 6) δ 9.10 (m, 1H), 8.93 (s, 1H), 8.76 (d, J = 2.5 Hz, 1H), 8.10 (m, 1H), 7.95 (br s, 1H), 3.86 (d, J = 5.8 Hz, 2H), 2.61 (d, J = 4.4 Hz, 3H); ESIMS m/z 212 (M+1), m/z 210 (M-1).
  • Example 8: Preparation of methyl-(2-pyridin-3-yl-thiazol-5-yl)-amine
  • Figure imgb0034
  • A suspension of phosphorus pentasulfide (1.73 g, 7.8 mmol) and N-methylcarbamoylmethyl-nicotinamide (1 g, 5 mmol) in dry toluene (10 mL) was stirred at reflux under nitrogen for 16 h. The mixture was cooled to room temperature and then dry pyridine (4 mL) was added. The mixture was stirred at reflux under nitrogen for 8 h, then it was cooled to room temperature and the organic layer was removed. The dark residue was treated with hot saturated aqueous sodium bicarbonate (Na2CO3, 40 mL) and the aqueous layer was extracted with ethyl acetate (2 x 50 mL). The combined organic extracts were washed with brine (50 mL), dried over magnesium sulfate (MgSO4), and purified by silica gel chromatography (1% methanol in dichloromethane) to yield a brown amorphous solid (0.22 g, 22%): mp 141-146 °C; 1H NMR (300 MHz, CDCl3) δ 8.97 (d, J = 2.4 Hz, 1H), 8.53 (dd, J = 5.0, 1.8 Hz, 1H), 8.06 (ddd, J = 7.2, 3.3, 0.6 Hz, 1H), 7.31 (ddd, J = 5.5, 4.7, 0.5 Hz, 1H), 6.96 (s, 1H), 2.97 (d, J = 5.0 Hz, 3H); ESIMS m/z 192 (M+1).
  • Example 9: Preparation of methyl-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-amine
  • Figure imgb0035
  • To a 10 mL microwave vessel containing DCE (5 mL) was added N-(1-methylcarbamoyl-ethyl)nicotinamide (207 mg, 1.0 mmol) followed by Lawesson's reagent (2,4-bis-(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane 2,4-disulfide, 404 mg, 1.0 mmol) in one portion. The heterogeneous mixture was heated in a microwave for 5 min at 130 °C. The reaction mixture was partitioned between CH2Cl2 and saturated aqueous sodium bicarbonate (NaHCO3). The layers were separated and the organic layer was washed once with brine. The solution was dried over MgSO4, filtered and concentrated in vacuo. The crude material was purified by silica gel column chromatography (ethyl acetate) to give the desired product as an orange solid (141 mg, 68%): mp 84-87 °C; 1H NMR (300 MHz, CDCl3) δ 8.98 (d, J = 1.7 Hz, 1H), 8.51 (dd, J = 4.9, 1.7 Hz, 1H), 8.08 (dt, J = 8.0, 1.7 Hz, 1H), 7.29 (m, 1H), 3.00 (s, 3H), 2.30 (s, 3H); ESIMS m/z 206.4 (M+1), m/z 204.2 (M-1).
  • Example 10: Preparation of 2,2,2-trifluoro-N-[2-(5-fluoropyridin-3-yl)-thiazol-5-yl]-N-methyl-acetamide (Compound 1)
  • Figure imgb0036
  • To a 10 mL microwave tube was added 5-fluoro-N-methylcarbamoylmethyl-nicotinamide (211 mg, 1.00 mmol), 4 Å molecular sieves (100 mg, spheres), Lawesson's reagent (404 mg, 1.00 mmol) and then toluene (5 mL). The tube was capped and heated to 130 °C for 30 seconds via microwave irradiation. The resulting orange solution was diluted with CH2Cl2 and filtered to remove the sieves. This solution was concentrated in vacuo to a semi-solid. To this crude material was added CH2Cl2 (2 mL) and trifluoroacetic anhydride (2 mL). Gas evolution was noted immediately. After stirring for 2 h at room temperature, the solvents were removed in vacuo. The residue was partitioned between CH2Cl2 and pH 7.0 buffer. The layers were separated and the buffer was extracted with CH2Cl2. The combined organic extracts were dried over MgSO4, filtered, and concentrated in vacuo. Purification by silica gel chromatography (0 to 100% ethyl acetate/hexanes) afforded the product as a white solid (282 mg, 92%): mp 168-170 °C; 1H NMR (300 MHz, CDCl3) mixture of isomers δ 8.98 and 8.95 (2 br s, 1H), 8.55 and 8.54 (m and app d, J = 2.4 Hz, 1H), (dt, J = 9.0 Hz, 2.2 Hz, 1H), 7.80 (s, 1H), 3.75 and 3.47 (2 s, 3H); ESIMS m/z 306 (M+1).
  • The following compounds were made via the methods in the previous examples.
  • 2,2,2-Trifluoro-N-methyl-N-(2-pyridin-3-yl-thiazol-5-yl)-acetamide (Compound 2)
  • Figure imgb0037
  • Purification by silica gel chromatography (0 to 100% ethyl acetate/hexanes) afforded the product as an orange solid (1.13 g, 65%): mp 154-158°C; ESIMS m/z 306.4 (M+1).
  • N-(4-Ethyl-2-pyridin-3-yl-thiazol-5-yl)-2,2,2-trifluoro-N-methyl-acetamide (Compound 3)
  • Figure imgb0038
  • The compound was isolated after purification via silica gel chromatography eluting with an ethyl acetate/hexanes gradient to yield an amber gum (0.98 g, 63%): IR (thin film) 1717 cm-1; ESIMS m/z 318.21 (M+3).
  • 2,2,2-Trifluoro-N-methyl-N-(4-phenyl-2-pyridin-3-yl-thiazol-5-yl)-acetamide (Compound 4) (comparative)
  • Figure imgb0039
  • The compound was isolated after purification via silica gel chromatography eluting with a gradient of ethyl acetate in hexanes to yield an amorphous yellow solid (0.17 g, 31%): IR (thin film) 1674 cm-1; ESIMS m/z 365.4 (M+2).
  • N-Ethyl-2,2,2-trifluoro-N-(4-phenyl-2-pyridin-3-yl-thiazol-5-yl)-acetamide (Compound 5) (comparative)
  • Figure imgb0040
  • The compound was isolated after purification via silica gel chromatography (ethyl acetate in hexanes) to yield a yellow solid (0.89 g, 75%): mp 81-92 °C; IR (KBr) 1713 cm-1; ESIMS m/z 379.4 (M+2).
  • Example 11: N-(4-Chloro-2-pyridin-3-yl-thiazol-5-yl)-2,2,2-tritluoro-N-methylacetamide (Compound 6)
  • Figure imgb0041
  • A suspension of 2,2,2-trifluoro-N-methyl-N-(2-pyridin-3-yl-thiazol-5-yl)-acetamide (1.0 g, 3.5 mmol) and N-chlorosuccinimide (0.557 g, 4.2 mmol) in acetonitrile (30 mL) was heated to 63 °C under nitrogen for 3 h. The reaction mixture was cooled to room temperature and it was treated with additional N-chlorosuccinimide (0.557 g, 4.2 mmol) and heated to 35 °C under nitrogen for 2 h. The reaction mixture was cooled and concentrated under reduced pressure. The residue was redissolved in dichloromethane (80 mL) and washed with water (70 mL). The aqueous layer was re-extracted with methylene chloride (100 mL). The combined organic layers were washed with water (50 mL) and brine (50 mL), dried over sodium sulfate, filtered, concentrated under reduced pressure and purified using reverse phase chromatography. The product eluted with a gradient of acetonitrile in water. The desired product was isolated as a thick brown gum (0.337 g, 30%): 1H NMR (400 MHz, CDCl3) δ 9.12 (br, 1H), 8.75 (br, 1H), 8.22 (d, J = 7.9 Hz, 1H), 7.28 (br, 1H), 3.40 (s, 3H); 19F NMR (376 MHz, CDCl3) δ -69.3; ESIMS m/z 324.3 (M + 2); IR (thin film) 1772 cm-1.
  • Example 12: Synthesis of (4-chloro-2-pyridin-3-yl-thiazol-5-yl)-methyl-amine
  • Figure imgb0042
  • A solution of N-(4-chloro-2-pyridin-3-yl-thiazol-5-yl)-2,2,2-trifluoro-N-methyl-acetamide (0.337 g, 1 mmol) in ice-cold methanol (18 mL) was treated with potassium carbonate (0.434 g, 3.1 mmol) and stirred under nitrogen for 20 min. The solids were removed by filtration, and the filtrate was concentrated under reduced pressure and it was adsorbed onto silica gel. Purification by silica gel chromatography eluting with a gradient of ethyl acetate in hexanes afforded a bright yellow solid (0.195 g, 82%): mp 79 °C (dec); 1H NMR (400 MHz, CDCl3) δ 8.97 (d, J = 2.1 Hz, 1H), 8.55 (dd, J = 4.8, J = 1.5 Hz, 1H), 8.08 (ddd, J = 8.1, 2.0, 2.0 Hz, 1H), 7.32 (dd, J = 8.1, 4.8 Hz, 1H), 4.07 (br m, 1H), 3.03 (d, J = 5.3 Hz, 3H); ESIMS m/z 228.23 (M+2); IR 1540 cm-1.
  • Example 13: Preparation of 2-pyridin-3-yl-4-trifluoromethyl-thiazole-5-carboxylic acid ethyl ester
  • Figure imgb0043
  • To a 20 mL microwave tube was added thionicotinamide (0.552 g, 4.0 mmol), ethanol (15 mL) and 2-chloro-4,4,4-trifluoro-3-oxo-butyric acid ethyl ester (1.75 g, 8 mmol). The tube was capped and heated in a microwave at 150 °C for 10 min. The reaction mixture was cooled to ambient temperature and Et3N (1.7 mL, 12 mmol) was added. The tube was capped and heated in a microwave at 130 °C for 1 min. After cooling to ambient temperature the solvent was evaporated and the crude reaction mixture was directly subjected to silica gel chromatography (0 to 100% ethyl acetate/hexanes) to give the desired product as an orange oil which subsequently solidified (0.885 g, 73%): IR (KBr) 2988, 1737, 1712 cm-1; 1H NMR (300 MHz, CDCl3) δ 9.21 (dd, J = 2.5, 0.8 Hz, 1H), 8.77 (dd, J = 5.0, 1.7 Hz, 1H), 8.33 (dt, J = 8.0, 2.2 Hz, 1H), 7.47 (ddd, J = 11.8, 4.7, 0.8 Hz, 1H), 4.45 (q, J = 14.3, 7.1 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H); ESIMS m/z 303 (M+1).
  • Example 14: Preparation of 2-pyridin-3-yl-4-trifluoromethyl-thiazole-5-carboxylic acid
  • Figure imgb0044
  • To a solution of 2-pyridin-3-yl-4-trifluoromethyl-thiazole-5-carboxylic acid ethyl ester (13.9 g, 46 mmol, ca. 85% pure) in methanol (150 mL) was added an aqueous solution of sodium hydroxide (total volume 75 mL, 140 mmol), and the mixture was stirred for 40 min. Upon addition of 2 N HCl (70 mL, ca pH = 3) to the reaction mixture, a precipitate was formed. Water (300 mL) was then added and the heterogeneous mixture was filtered under reduced pressure. The precipitate was rinsed further with water and dried in vacuo to give the desired product as an off-white solid (7.37 g, 58%): mp 209 °C; 1H NMR (300 MHz, DMSO-d 6) δ 9.21 (d, J = 2.5 Hz, 1H), 8.77 (dd, J = 4.9, 1.7 Hz, 1H), 8.41 (dt, J = 8.0, 1.7 Hz, 1H), 7.60 (dd, J = 8.0, 4.9 Hz, 1H), 3.4 (br s, 1H); ESIMS m/z 276.2 (M+1).
  • Example 15: Preparation of (2-pyridin-3-yl-4-trifluoromethyl-thiazol-5-yl)-carbamic acid tert-butyl ester (Compound 7)
  • Figure imgb0045
  • To 2-pyridin-3-yl-4-trifluoromethyl-thiazole-5-carboxylic acid (6.33 g, 23.1 mmol) in toluene/tert-butyl alcohol (100 mL each) was added Et3N (3.21 mL, 23.1 mmol) and diphenyl phosphoryl azide (5 mL, 23.1 mmol). The reaction mixture was stirred at room temperature for 5 min and then heated at 95 °C for 4 h. The mixture was cooled to room temperature and the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography (0 to 100% ethyl acetate/hexanes) to give the desired product as a white solid (4.7 g, 59%): mp 145-147 °C; 1H NMR (300 MHz, CDCl3) δ 9.11 (dd, J = 2.5, 0.8 Hz, 1H), 8.67 (dd, J = 5.0, 1.7 Hz, 1H), 8.22 (ddd, J = 8.0, 2.5, 1.7 Hz, 1H), 7.58 (br s, 1H), 7.39 (ddd, J = 8.0, 4.7, 0.8 Hz, 1H), 1.59 (s, 9H); ESIMS m/z 346.5 (M+1), m/z 344.2 (M-1).
  • The following compounds were made via the methods in the previous examples.
  • (4-Methyl-2-pyrimidin-5-yl-thiazol-5-yl)-carbamic acid tert-butyl ester (Compound 8)
  • Figure imgb0046
  • The compound was isolated after purification via silica gel column chromatography (0 to 100% ethyl acetate/hexanes) to give the desired product as a light yellow solid (0.25 g, 86%): mp 155 °C; ESIMS m/z 292.83 (M+1).
  • (4-Methyl-2-pyridin-3-yl-thiazol-5-yl)-carbamic acid tert-butyl ester (Compound 9)
  • Figure imgb0047
  • The compound was isolated after purification via silica gel column chromatography (0 to 100% ethyl acetate/hexanes) to yield a yellow solid (4.15 g, 61 %): mp 146-148 °C; ESIMS m/z 292.5 (M+1).
  • Example 16: Preparation of methyl-(2-pyridin-3-yl-4-trifluoromethyl-thiazol-5-yl)carbamic acid tert-butyl ester (Compound 10)
  • Figure imgb0048
  • To a solution of (2-pyridin-3-yl-4-trifluoromethyl-thiazol-5-yl)-carbamic acid tert-butyl ester (4.7 g, 13.6 mmol) in DMF (70 mL) at 0 °C was added sodium hydride (NaH, 0.65 g, 16.3 mmol, 60% dispersion in mineral oil) in one portion and the mixture was stirred for 50 min. Iodomethane (0.89 mL, 14.3 mmol) was added in one portion, and after 5 min the reaction mixture was wanned to room temperature and stirred for 5.5 h. Water and ethyl acetate were added, the resulting biphasic mixture was separated and the aqueous layer was extracted one time with ethyl acetate. The combined organic extracts were washed twice with brine, dried over MgSO4, filtered and concentrated to dryness under reduced pressure. The crude product was purified by silica gel column chromatography (0 to 100% ethyl acetate/hexanes) to give the desired product as a clear orange oil (2.72 g, 56%); IR (KBr) 3428, 2981, 1728, 1561 cm-1H NMR (300 MHz, CDCl3) δ 9.11 (d, J = 2.5 Hz, 1H), 8.72 (dd, J = 4.9, 1.1 Hz, 1H), 8.26 (dt, J = 8.0, 1.7 Hz, 1H), 7.42 (dd, J = 8.0, 4.9 Hz, 1H), 3.28 (s, 3H), 1.45 (s, 9H); ESIMS m / z 360.6 (M+1).
  • The following compounds were made via the methods in the previous examples.
  • Methyl-(4-methyl-2-pyrimidin-5-yl-thiazol-5-yl)-carbamic acid tert-butyl ester (Compound 11)
  • Figure imgb0049
  • The compound was isolated after purification by silica gel column chromatography (0 to 100% ethyl acetate/hexanes) to yield a white solid (0.66 g, 75%): ESIMS m/z 307.3 (M+1).
  • Ethyl-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-carbamic acid tert-butyl ester (Compound 12)
  • Figure imgb0050
  • The compound was isolated after purification via reverse-phase high-performance liquid chromatography (CH3CN/H2O) to yield an orange oil (0.16 g, 51%): IR (thin film) 1709 cm-1; ESIMS m/z 320.3 (M+1).
  • Isopropyl-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-carbamic acid tert-butyl ester (Compound 13)
  • Figure imgb0051
  • The compound was isolated after purification via reverse-phase high-performance liquid chromatography (CH3CN/H2O) to yield a tan solid (0.15 g, 46%): mp 88-89 °C; ESIMS m/z 334.3 (M+1).
  • Isobutyl-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-carbamic acid tert-butyl ester (Compound 14)
  • Figure imgb0052
  • The compound was isolated after purification via reverse-phase high-performance liquid chromatography (CH3CN/H2O) to yield a brown solid (0.13 g, 37%): mp 87-88 °C; ESIMS m/z 348.3 (M+1).
  • Benzyl-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-carbamic acid tert-butyl ester (Compound 15) (comparative)
  • Figure imgb0053
  • The compound was isolated after purification via reverse-phase high-performance liquid chromatography (CH3CN/H2O) to yield a brown solid (0.25 g, 65%): mp 108-109 °C; ESIMS m/z 382.3 (M+1).
  • Example 17: Preparation of methyl-(2-pyridin-3-yl-4-trifluoromethyl-thiazol-5-yl)-amine
  • Figure imgb0054
  • To a solution of DCE (4 mL) was added methyl-(2-pyridin-3-yl-4-trifluoromethyl-thiazol-5-yl)-carbamic acid tert-butyl ester (0.616 g, 1.7 mmol) and trifluoroacetic acid (4 mL) and the mixture was stirred for 15 min. The solvents were removed under reduced pressure and the resulting residue was re-dissolved in DCE and aqueous saturated NaHCO3. The biphasic mixture was separated and the aqueous layer was extracted three times with DCE. The organic extracts were combined, dried over MgSO4, filtered and concentrated to dryness under reduced pressure. The crude product was purified by silica gel column chromatography (0 to 100% ethyl acetate/hexanes) to give the desired product as an off-white solid (0.357 g, 80%): mp 152-157 °C; 1H NMR (300 MHz, CDCl3) δ 8.95 (d, J = 2.3 Hz, 1H), 8.57 (dd, J = 4.9, 1.7 Hz, 1H), 8.111 (dt, J = 8.2, 2.3 Hz, 1H), 7.23 (ddd, J = 7.9, 4.9, 0.7 Hz, 1H), 4.83 (br s, 1H), 3.05 (d, J= 4.9 Hz, 3H); ESIMS m/z 2.60 (M+1), m/z 257.9 (M-1).
  • Example 18: Preparation of 2-bromo-4-methyl-thiazole-5-carboxylic acid
  • Figure imgb0055
  • To a solution of 2-bromo-4-methyl-thiazole-5-carboxylic acid ethyl ester (3.0 g, 12 mmol) in tetrahydrofuran (THF, 50 mL) and water (5 mL) was added lithium hydroxide hydrate (1.0 g, 24 mmol). The reaction mixture was stirred at ambient temperature for 16 h. The reaction mixture was diluted with water and ethyl acetate. The aqueous layer was made acidic to pH 1 with 2 N hydrochloric acid (HCl) and then was extracted with ethyl acetate. The organic extracts were dried over sodium sulfate (Na2SO4), filtered and concentrated to provide product as an orange solid (2.6 g, 98%): mp 152-155 °C; 1H NMR (300 MHz, CDCl3) δ 2.74 (s, 3H); ESIMS m/z 221 (M-1).
  • Example 19: Preparation of 2-bromo-4-methyl-thiazole-5-carbonyl-azide
  • Figure imgb0056
  • To a solution of 2-bromo-4-methyl-thiazole-5-carboxylic acid (5.0 g, 22.5 mmol) in toluene (100 mL) was added Et3N (2.28 g, 22.5 mmol) followed by diphenyl phosphoryl azide (DPPA, 6.20 g, 22.5 mmol). The reaction mixture was stirred at ambient temperature for 4 h. The reaction mixture was concentrated and purified by silica gel chromatography (0-100% ethyl acetate/hexanes) to afford a brown solid (4.67 g, 84%): mp 86-89 °C; IR (KBr) 2183, 1672 cm-1; 1H NMR (300 MHz, CDCl3) δ 2.79 (s, 3H); ESIMS m/z 221 ((M-N2)+2).
  • Example 20: Preparation of (2-bromo-4-methyl-thiazol-5-yl)-carbamic acid tert-butyl ester
  • Figure imgb0057
  • A solution of 2-bromo-4-methyl-thiazole-5-carbonyl-azide (3.0 g, 12.1 mmol) in toluene (80 mL) was heated to reflux and stirred for 2 h before tert-butyl alcohol (2 mL, 20.6 mmol) was added. The reaction mixture was further stirred at reflux for 1 h, then it was cooled and concentrated. Purification by silica gel chromatography (0-100% ethyl acetate/hexanes) afforded an off-white solid (3.4 g, 95%): mp 114-116 °C; 1H NMR (300 MHz, CDCl3) δ 6.58 (br s, 1H), 2.29 (s, 3H), 1.54 (s, 9H); ESIMS m/z 295 (M+2).
  • Example 21: Preparation of (2-bromo-4-methyl-thiazol-5-yl)-methyl-carbamic acid tert-butyl ester
  • Figure imgb0058
  • To a solution of (2-bromo-4-methyl-thiazol-5-yl)-carbamic acid tert-butyl ester (2.93 g, 10 mmol) in DMF (50 mL) at 0 °C was added NaH (480 mg, 12 mmol, 60% dispersion in mineral oil) in one portion and the suspension was stirred for 1 h. Iodomethane (0.65 mL, 10.5 mmol) was added in one portion, and after 5 min the reaction mixture was warmed to ambient temperature and stirred for 5 h. Water and ethyl acetate were added and the resulting biphasic mixture was separated. The aqueous layer was extracted one time with ethyl acetate. The combined organic extracts were washed twice with brine, dried over Na2SO4, filtered and concentrated to dryness under reduced pressure. The crude product was purified by silica gel chromatography (0-100% ethyl acetate/hexanes) to give the desired product as a clear oil (1.66 g, 54%): IR (KBr) 1688 cm-1; 1H NMR (300 MHz, CDCl3) δ 2.98 (s, 3H), 2.29 (s, 3H), 1.54 (s, 9H); ESIMS m/z 309 (M+2).
  • Example 22: Preparation of [2-(6-chloropyridin-3-yl)-thiazol-5-yl]-methyl-carbamic acid tert-butyl ester (Compound 16)
  • Figure imgb0059
  • To a suspension of 6-chloro-3-pyridine boronic acid (158 mg, 1.0 mmol) in toluene (4 mL) was added absolute ethanol (2 mL) followed by a 2.0 M solution of K2CO3 (1.0 mL). To this mixture was added (2-bromo-thiazol-5-yl)-methyl-carbamic acid tert-butyl ester (322 mg, 1.1 mmol) followed by tetrakis(triphenylphosphine)palladium(0) (58 mg, 0.05 mmol). The reaction mixture was heated to 100 °C for 16 h. The mixture was cooled and diluted with ethyl acetate. The organic layer was washed with saturated aqueous NaHCO3, dried over Na2SO4, filtered and concentrated. The organic layer was purified by silica gel chromatography (0-100% ethyl acetate/hexanes) to afford an off-white solid (270 mg, 83%): mp 167-170 °C; 1H NMR (300 MHz, CDCl3) δ 8.88 (br s, 1H), 8.16 (dd J = 3.0, 8.0 Hz, 1H), 7.40 (d, J = 7.0 Hz, 1H), 7.39 (s, 1H), 3.45 (s, 3H), 1.61 (s, 9H); ESIMS m/z 326 (M+1).
  • The following compound was made according to the procedure in Example 22.
  • N-[2-(5-chloropyridin-3-yl)-4-methyl-thiazol-5-yl]-2-methyl-3-methylsulfanyl-propionamide (Compound 17)
  • Figure imgb0060
  • The compound was isolated after purification via silica gel chromatography (0-100% ethyl acetate/hexanes) to afford a viscous brown oil (74 mg, 43 %): IR (KBr) 3283, 2968, 2917, 1667, 1562 cm-1; 1H NMR (300 MHz, CDCl3) δ 8.96 (d, J = 2.0 Hz, 1H), 8.58 (br s, 1H), 8.56 (d, J = 2.0 Hz, 1H), 8.22 (t, J = 2.0 Hz, 1H), 2.88 (m, 1H), 2.78 (m, 2H), 2.51 (s, 3H), 2.23 (s, 3H), 1.40 (d, J = 6.0 Hz, 3H); ESIMS m/z 342 (M+1).
  • Example 23: Preparation of [2-(6-chloropyridin-3-yl)-thiazol-5-yl]-methyl-amine
  • Figure imgb0061
  • To a solution of [2-(6-chloropyridin-3-yl)-thiazol-5-yl]-methyl-carbamic acid tert-butyl ester (90 mg, 0.27 mmol) in CH2Cl2 (2 mL) was added trifluoroacetic acid (2 mL), and the reaction mixture was stirred for 1 h at ambient temperature. The reaction was quenched with saturated aqueous NaHCO3 and extracted with CH2Cl2. The organic layer was dried over Na2SO4, filtered, concentrated and purified by silica gel chromatography (0-100% ethyl acetate/hexanes) to afford a yellow oil (50 mg, 80%): IR (KBr) 2924, 1591, 1498 cm-1; 1H NMR 300 MHz, CDCl3) δ 8.71 (d, J = 3.0 Hz, 1H), 8.00 (dd J = 3.0, 8.0 Hz, 1H), 7.31 (d, J = 7.0 Hz, 1H), 7.30 (s, 1H), 4.28 (br s, 1H), 3.05 (d, J = 8.0 Hz, 3H); ESIMS m/z 226 (M+1).
  • Example 24: Preparation of 4-methyl-2-pyridin-3-yl-thiazol-5-ylamine
  • Figure imgb0062
  • To (4-methyl-2-pyridin-3-yl-thiazol-5-yl)-carbamic acid tert-butyl ester (3.73 g, 12.8 mmol) in methanol (100 mL) at 0 °C was slowly added acetyl chloride (28 mL, 400 mmol). The flask was stoppered and removed from the ice bath. The reaction mixture was allowed to warm to ambient temperature and was stirred overnight. The resulting yellow heterogeneous solution was poured slowly into a separatory funnel containing ethyl acetate and saturated aqueous NaHCO3. When the addition was complete, more saturated aqueous NaHCO3 was added until the pH=7. The layers were separated, and the aqueous layer was extracted twice with ethyl acetate. The combined organic extracts were washed with brine, dried over MgSO4, filtered, and concentrated under reduced pressure. The residue was purified via normal phase chromatography (0 to 100% ethyl acetate/hexanes) to afford the amino-thiazole as a yellow solid (1.66 g, 68%): mp 160-162 °C; 1H NMR (300 MHz, CDCl3) δ 8.96 (d, J = 2.3 Hz, 1H), 8.58 (dd, J = 5.0, 1.7 Hz, 1H), 8.06 (dt, J = 7.9, 2.3 Hz, 1H), 7.30 (dd, J = 7.9, 5.0 Hz, 1H), 3.57 (br s, 2H), 2.32 (s, 3H); ESIMS m/z 192 (M+1).
  • Example 25: Preparation of N-(2-bromo-4-methyl-thiazol-5-yl)-2-methyl-3-methylsulfanyl-propionamide
  • Figure imgb0063
  • To a solution of (2-bromo-4-methyl-thiazol-5-yl)-carbamic acid tert-butyl ester (3.1 g, 10.57 mmol) in DCE (50 mL) was added Et3N (3.7 mL, 26.4 mmol) followed by 2-methyl-3-methylsulfanyl-propionyl chloride (2.42 g, 15.8 mmol). The reaction mixture was heated to 65 °C for 3 h. The mixture was cooled, diluted with DCE, washed with saturated aqueous ammonium chloride (NH4Cl) and dried over Na2SO4. The crude product was dissolved in CH2Cl2 (30 mL) and trifluoroacetic acid (10 mL) was added. The reaction mixture was stirred at ambient temperature for 30 min. The reaction was quenched with saturated aqueous NaHCO3 and extracted with CH2Cl2. The organic layer was dried over Na2SO4. filtered, concentrated and purified by silica gel chromatography (0-100% ethyl acetate/hexanes) to afford a clear oil (2.68 g, 82 %): IR (KBr) 3282, 2966, 2916, 1668 cm-1; 1H NMR (300 MHz, CDCl3) δ 9.97 (br s, 1H), 4.17 (m, 3H), 3.79 (s, 3H), 3.59 (s, 3H), 2.76 (d, J = 7.0 Hz, 3H); ESIMS m/z 311 (M+2).
  • Example 26: Preparation of N-[2-(5-fluoropyridin-3-yl)-thiazol-5-yl]-2,2,N-trimethyl-3-methylsulfanyl-propionamide (Compound 18)
  • Figure imgb0064
  • To a solution of 2,2,2-trifluoro-N-[2-(5-fluoro-pyridin-3-yl)-thiazol-5-yl]-N-methylacetamide (244 mg, 0.80 mmol) in methanol (6 mL) was added an aqueous solution of sodium hydroxide (160 mg, 4 mmol, in 3 mL H2O), and the mixture was stirred at room temperature for 45 min. To this solution was added pH 7.0 aqueous buffer and ethyl acetate. The layers were separated, and the aqueous layer was extracted with ethyl acetate. The combined organic extracts were dried over MgSO4, filtered, and concentrated in vacuo. To this crude material was added DCE (5 mL), 4-dimethylaminopyridine (DMAP, 300 mg, 2.5 mmol) and then a solution of the 2,2-dimethyl-3-methylthiopropionyl chloride (250 mg, 1.5 mmol) in DCE (3.0 mL). This mixture was heated to 75 °C and stirred overnight. The heterogeneous mixture thus obtained was loaded directly onto a chromatographic column. Silica gel chromatography (0 to 100% ethyl acetate/hexanes) afforded the product as a red solid (161 mg, 59%): mp 98-102 °C; 1H NMR (300 MHz, CDCl3) δ 8.95 (app s, 1H), 8.51 (d, J = 2.8 Hz, 1H), 7.98 (app dt, J = 9.3, 2.5 Hz, 1H), 7.66 (s, 1H), 3.59 (s, 3H), 2.87 (s, 3H), 2.17 (s, 2H), 1.47 (s, 6H); ESIMS m/z 340 (M+1).
  • Example 27: Preparation of N-methyl-3-methylsulfanyl-N-(2-pyridin-3-yl-thiazol-5-yl)-propionamide (Compound 19)
  • Figure imgb0065
  • A solution of 3-methylsulfanyl-propionyl chloride (120 mg, 0.9 mmol) in DCE (1 mL) was pipetted at a dropwise rate into an ice-cold suspension of methyl-(2-pyridin-3-yl-thiazol-5-yl)-amine (114 mg, 0.6 mmol) in DCE (5 mL), and the mixture was stirred for 5 min before adding a solution of DMAP (80 mg, 0.6 mmol) in DCE (1 mL). The ice bath was removed after 30 min, and the mixture was stirred at reflux under nitrogen for 15 min. The reaction mixture was cooled, diluted with DCE (70 mL), washed with saturated aqueous NaHCO3 (50 mL), dried over MgSO4 and purified by silica gel chromatography (3:1 ethyl acetate/hexanes) to afford a fine yellow powder (131 mg, 75%): mp 116-118 °C; 1H NMR (400 MHz, DMSO-d6) δ 9.08 (d, J = 2.0 Hz, 1H), 8.61 (dd, J = 4.8, 1.4 Hz, 1H), 8.24 (dt, J = 9.8, 1.8 Hz, 1H), 7.81 (s, 1H), 7.51 (dd, J = 7.7,4.7 Hz, 1H), 3.56 (s, 3H), 3.02 (t, J = 7.0 Hz, 2H), 2.76 (t, J = 7.2 Hz, 2H), 2.12 (s, 3H); ESIMS m/z 294 (M+1).
  • Example 28: N-[2-(6-fluoropyridin-3-yl)-4-methyl-thiazol-5-y1]-2,2-dimethyl-3-methylsulfanyl-propionamide (Compound 20)
  • Figure imgb0066
  • To a solution of [2-(6-fluoropyridin-3-yl)-4-methyl-thiazol-5-yl]-carbamic acid tert-butyl ester (170 g, 0.55 mmol) in DCE (2.5 mL) was added Et3N (0.19 mL, 1.37 mmol), followed by 2,2-dimethyl-3-methylsulfanyl-propionyl chloride (140 mg, 0.82 mmol). The reaction mixture was heated to 65 °C for 16 h. The mixture was cooled, diluted with DCE, washed with saturated aqueous NaHCO3 and dried over Na2SO4. The crude product was dissolved in CH2Cl2 (2 mL), and trifluoroacetic acid (1 mL) was added. The reaction mixture was stirred at ambient temperature for 30 min. The reaction was quenched with saturated aqueous NaHCO3 and extracted with CH2Cl2. The organic layer was dried over Na2SO4, filtered and concentrated. Silica gel chromatography (0-100% ethyl acetate/hexanes) afforded a yellow oil (142 mg, 76%): IR (KBr) 3284, 2969, 2918, 1668, 1562, 1498 cm-1 ; 1H NMR (300 MHz, CDCl3) δ 8.89 (bs, 1H), 8.72 (d, J = 2.0 Hz, 1H), 8.27 (dt, J = 8.0, 2.0 Hz, 1H), 6.99 (dd, J = 8.0, 3.0 Hz 1H), 2.88 (s, 2H), 2.51 (s, 3H), 2.24 (s, 3H), 1.45 (s, 6H); ESIMS m/z 340 (M+1).
  • The following molecule, Compound 21, and Compounds 22-65 and 67-71 in Table 1 were made using the procedures disclosed above.
  • N-isobutyryl-N-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-isobutyramide (Compound 21) (comparative)
  • Figure imgb0067
  • The compound was isolated after purification by silica gel chromatography (0-100% ethyl acetate/hexanes) as a yellow oil (150 mg, 90%): IR (KBr) 2974, 1721 cm-1; 1H NMR (300 MHz, CDCl3) δ 9.13 (d, J = 2.0 Hz, 1H), 8.69 (dd, J = 5.0, 3.0 Hz, 1H), 8.21 (dt, J = 12.0, 2.0 Hz, 1H), 7.42 (dd, J = 8.0, 5.0 Hz, 1H), 3.24 (septet, J = 7.0 Hz, 2H), 2.32 (s, 3H), 1.24 (d, J = 7.0 Hz, 12H); ESIMS m/z 332 (M+1).
  • Example 29: Preparation of [2-(5-fluoropyridin-3-yl)-thiazol-5-yl]-1-methyl-3-(2-methylsulfanyl-ethyl)urea (Compound 72)
  • Figure imgb0068
  • To a solution of [2-(5-fluoropyridin-3-yl)-thiazol-5-yl]-methyl-amine (0.4 g, 1.91 mmol) in DCE (5 mL) at 0 °C was added phosgene (1.3 mL, 2.5 mmol, 20 wt % solution in toluene). After 5 min, DMAP (0.5 g, 4.1 mmol) was added in one portion and the ice bath was removed. After another 5 min, the mixture was heated to reflux and stirred for 20 min. The reaction was cooled to ambient temperature and half of the solution was transferred to a vial and to this was added 2-(methylthio)ethanamine (0.183 g, 2.0 mmol) and DMAP (0.244 g, 2.0 mmol). The reaction was capped and heated at 80 °C overnight. The reaction was quenched upon addition of ethyl acetate and 0.1 N HCl. The layers were separated, and the organic layer was washed separately with saturated aqueous NaHCO3 and brine. The ethyl acetate layer was dried over MgSO4, filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (0 to 100% ethyl acetate/hexanes) to give the desired product as an off-white solid (0.253 g, 81%): mp 117-119 °C; 1H NMR (300 MHz, CDCl3) δ 8.94 (br s, 1H), 8.50 (d, J = 2.7 Hz, 1H), 7.99-7.94 (m, 1H), 7.54 (s, 1H), 5.37 (m, 1H), 3.53 (q, J = 11.8, 5.5 Hz, 2H), 3.43 (s, 3H), 2.72 (app t, J = 6.6 Hz, 2H), 2.13 (s, 3H); ESIMS m/z 327.1 (M+H); m/z 325.0 (M-1).
  • The following molecule, Compound 73, was made using the procedures disclosed in Example 29.
  • 3-sec-Butyl-1-[2-(5-fluoropyridin-3-yl)-thiazol-5-yl]-1-methyl-urea (Compound 73)
  • Figure imgb0069
  • The compound was isolated after purification via silica gel chromatography (0 to 100% ethyl acetate/hexanes) to yield a yellow solid (0.07 g, 42%): mp 159-161 °C; ESIMS m/z 309 (M+1).
  • Example 30: Preparation of [2-(5-fluoropyridin-3-yl)-thiazol-5-yl]-1,3-dimethyl-3-(2-methylsulfanyl-ethyl)urea (Compound 74)
  • Figure imgb0070
  • To a solution of [2-(5-fluoropyridin-3-yl)-thiazol-5-yl]-1-methyl-3-(2-methylsulfanyl-ethyl)urea (173 mg, 0.53 mmol) in DMF (5 mL) cooled to 0 °C was added NaH (26 mg, 0.65 mmol, 60% dispersion in mineral oil) and the mixture was stirred for 30 min. To this was added iodomethane (47 µL, 0.75 mmol) and the reaction mixture was stirred for 1 h. The reaction was quenched by addition of ethyl acetate and 1 N HCl. The layers were separated, and the ethyl acetate layer was washed three times with water and once with brine, dried over MgSO4, filtered and concentrated to dryness under reduced pressure to give the desired product as a yellow solid (0.110 g, 61%): mp 68-69 °C; 1H NMR (300 MHz, CDCl3) δ 8.90 (s, 1H), 8.47 (d, J = 2.8 Hz, 1H), 7.93 (dt, J = 9.3, 2.2 Hz, 1H), 7.45 (s, 1H), 3.54 (t, J = 6.9 Hz, 2H), 3.41 (s, 3H), 2.94 (s, 3H), 2.74 (t, J = 7.1 Hz, 2H), 2.16 (s, 3H); ESIMS mlz 341.1 (M+1).
  • Example 31: Preparation of [2-(5-fluoropyridin-3-yl)-thiazol-5-yll-methyl-carbamic acid 2-methylsulfanyl-ethyl ester (Compound 75)
  • Figure imgb0071
  • The carbamoyl chloride was formed as in Example 29. A 0.72 mmol solution of carbamoyl chloride in DCE was added to 2-(methylthio)ethanol (0.092 g, 1.0 mmol) and DMAP (0.122 g, 1.0 mmol) and heated at reflux overnight. The reaction was quenched upon addition of ethyl acetate and 0.1 N HCl. The layers were separated, and the organic layer was washed with saturated aqueous NaHCO3 and brine. The ethyl acetate layer was dried over MgSO4, filtered and concentrated to dryness under reduced pressure. The crude product was purified by silica gel column chromatography (0 to 100% ethyl acetate/hexanes) to give the desired product as a tan solid (0.102 g, 65%): mp 115-117 °C; 1H NMR (300 MHz, CDCl3,) δ 8.90 (s, 1H), 8.46 (d, J = 2.6 Hz, 1H), 7.92 (dt, J = 9.2, 2.6 Hz, 1H), 7.45 (br s, 1H), 4.44 (t, J = 6.9 Hz, 2H), 3.49 (s, 3H), 2.83 (t, J = 6.6 Hz, 2H), 2.18 (s, 3H); ESIMS m/z 328.1 (M+1).
  • Compounds 76-77 were made using the procedures disclosed above.
  • [2-(5-Fluoropyridin-3-yl)-thiazol-5-yl]-methyl-carbamic acid ethyl ester (Compound 76)
  • Figure imgb0072
  • The compound was isolated after purification via silica gel chromatography (0 to 100% ethyl acetate/hexanes) to yield an off-white solid (0.067 g, 45%): mp 122-124 °C; ESIMS m/z 282.1 (M+1).
  • [2-(5-Fluoropyridin-3-yl)-thiazol-5-yl]-methyl-carbamic acid 5-nitro-furan-2-ylmethyl ester (Compound 77)
  • Figure imgb0073
  • The compound was isolated after purification via silica gel chromatography (0 to 100% ethyl acetate/hexanes) to yield a brown solid (0.025 g, 28%): mp 95-99 °C; ESIMS m/z 379.1 (M+1).
  • Example 32: Preparation of N-[2-(5-fluoropyridin-3-yl)-thiazol-5-yl]-3-methanesulfinyl-N-methyl-propionamide (Compound 78)
  • Figure imgb0074
  • To N-[2-(5-fluoro-pyridin-3-yl)-thiazol-5-yl]-N-methyl-3-methylsulfanyl-propionamide (Compound 30, 44 mg, 0.14 mmol) in glacial acetic acid (1.5 mL) was added sodium perborate tetrahydrate (23 mg, 0.14 mmol), and the mixture was heated at 65 °C for 2 h. The reaction mixture was carefully poured into a separatory funnel containing saturated aqueous NaHCO3 resulting in gas evolution. When the gas evolution had ceased, DCE was added and the layers were separated. The aqueous layer was extracted twice with DCE, and all the organic layers were combined, dried over MgSO4, filtered and concentrated under reduced pressure to give the desired product as white solid (20 mg, 45%): mp 152-154 °C; 1H NMR (300 MHz, CDCl3) δ 8.95 (s, 1H), 8.59 (s, 0.3H), 8.49 (s, 0.7H), 7.98 (d, J = 9.3 Hz, 1H), 7.73 (s, 0.3H), 7.62 (s, 0.7H), 3.64 (s, 2.1H), 3.36 (s, 0.9H), 3.40-2.70 (m, 4H), 2.69 (s, 2.1H), 2.61 (s, 0.9H); ESIMS m/z 328.1 (M+1), m/z 326.1 (M-1).
  • Compounds 79-94 in Table 1 were made using the procedures disclosed above.
  • Example 33: Preparation of 3-methanesulfonyl-N-methyl-N-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-propionamide (Compound 95)
  • Figure imgb0075
  • To N-methyl-N-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-3-methylsulfanyl-propionamide (Compound 19, 132 mg, 0.43 mmol) in glacial acetic acid (4.0 mL) was added sodium perborate tetrahydrate (165 mg, 1.07 mmol), and the mixture was heated at 65 °C for 16 h. The reaction mixture was carefully poured into a separatory funnel containing saturated aqueous NaHCO3 resulting in gas evolution. When the gas evolution had ceased, dichloromethane was added and the layers were separated. The aqueous layer was extracted twice with dichloromethane, and all the organic layers were combined, dried over MgSO4, filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (0 to 10% methanol/dichloromethane) to give the desired product as a white oil (77 mg, 65%): IR (KBr) 2927, 1675 cm-1; 1H NMR (300 MHz, CDCl3) δ 9.10 (d, J = 2.0 Hz, 1H), 8.68 (dd, J = 4.9, 1.7 Hz, 1H), 8.19 (dt, J = 8.2, 2.0 Hz, 1H), 7.41 (dd, J = 7.9, 4.9 Hz, 1H), 3.41 (t, J = 6.9 Hz, 2H), 3.28 (s, 3H), 2.96 (s, 3H), 2.77 (t, J = 7.3 Hz, 2H), 2.38 (s, 3H); ESIMS m/z 340.2 (M+1).
  • Compounds 96-101 were made using the procedures disclosed above.
  • Example 34: Preparation of [4-methyl-2-(5-methyl-pyridin-3-yl)-thiazol-5-yl]-(2-methyl-3-methylsulfanyl-propionyl)-carbamic acid tert-butyl ester (Compound 156) (comparative)
  • Figure imgb0076
  • To a solution of [4-methyl-2-(5-methyl-pyridin-3-yl)-thiazol-5-yl]-carbamic acid tert-butyl ester (175 mg, 0.57 mmol) in dichloroethane (3 mL) was added triethylamine (0.2 mL, 1.44 mmol) followed by 2-methyl-3-methylsulfanyl-propionyl chloride (131 mg, 0.86 mmol). The reaction mixture was stirred at 65 °C for 16 hrs. The mixture was cooled, diluted with dichloroethane, washed with saturated aqueous NaHCO3 and dried over Na2SO4, filtered and concentrated. The crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford an orange oil (142 mg, 59%): IR (KBr) 1743. 1713 cm-1; 1H NMR (300 MHz, CDCl3) δ 8.87 (d, J = 2.0 Hz, 1H), 8.48 (s, 1H), 8.02 (s, 1H), 4.00 - 3.87 (m, 1H), 2.94 (dd, J = 13.2, 8.3 Hz, 1H), 2.58 (dd, J = 13.2, 6.1 Hz, 1H), 2.40 (s, 3H), 2.28 (s, 3H), 2.15 (s, 3H), 1.45 (s, 9H), 1.35 (d, J = 6.8 Hz, 3H); ESIMS m/z 422 (M+1).
  • Example 35: Preparation of 2-methyl-N-[4-methyl-2-(5-methyl-pyridin-3-yl)-thiazol-5-yl]-3-methylsulfanyl-propionamide (Compound 171)
  • Figure imgb0077
  • To a solution of [4-methyl-2-(5-methyl-pyridin-3-yl)-thiazol-5-yl]-(2-methyl-3-methylsulfanyl-propionyl)-carbamic acid tert-butyl ester (117 mg, 0.27 mmol) in dichloromethane (2 mL) was added trifluoroacetic acid (0.6 mL) and the reaction was stirred for 30 minutes at ambient temperature. The reaction was quenched with saturated aqueous NaHCO3 and the mixture was extracted with dichloromethane. The organic layer was dried over Na2SO4, filtered and concentrated. The crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford a yellow gum (75 mg, 85%): IR (KBr) 2973, 2920, 1711 cm-1; 1H NMR (300 MHz, CDCl3) δ 8.89 (d, J= 1.9 Hz, 1H), 8.43 (s, 1H), 8.00 (s, 1H), 2.91 - 2.69 (m, 3H), 2.47 (d, J = 1.6 Hz, 3H), 2.39 (d, J = 0.5 Hz, 3H), 2.19 (s, 3H), 2.13 (s, 1H), 1.37 (d, J = 6.6 Hz, 3H); ESIMS m/z 322 (M+1).
  • Example 36: Benzoic acid [(2-methyl-3-methylsulfanyl-propionyl)-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-amino]-methyl ester (Compound 203) (comparative)
  • Figure imgb0078
  • To a solution of 2-methyl-N-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-(3-methylsulfanyl-propionamide (200 mg, 0.65 mmol) in DMF (3.2 mL) was added sodium hydride (52 mg, 1.3 mmol) and the reaction was stirred for 30 min at ambient temperature. To the reaction mixture was added benzoic acid chloromethyl ester (221 mg, 1.3 mmol) and the reaction was stirred at ambient temperature for 16 h. The reaction was quenched with saturated aqueous NH4Cl and the mixture was extracted with ethyl acetate. The organic layer was dried over Na2SO4, filtered and concentrated. The crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford a light yellow oil (48 mg, 16%): IR (KBr) 1722, 1695 cm-1; 1H NMR (400 MHz, CDCl3) 8 9.10 (s, 1H), 8.68 (d, J = 3.6 Hz, 1H), 8.19 (d, J = 7.4 Hz, 1H), 8.05 (d, J = 7.3 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.40 (dd, J = 5.1, 2.2 Hz, 1H), 6.11 (t, J = 10.8 Hz, 1H), 5.78 (dd, J = 24.2, 9.4 Hz, 1H), 3.01- 2.82 (m, 2H), 2.48 (s, 3H), 2.42 (s, 1H), 2.05 (t, J = 6.3 Hz, 3H), 1.22 (d, J = 6.5 Hz, 3H); ESIMS m/z 442 (M+1).
  • Example 37: Preparation of (4-bromo-2-pyridin-3-yl-thiazol-5-yl)-methyl-carbamic acid tert-butyl ester (Compound 242)
  • Figure imgb0079
  • To a solution of methyl-(2-pyridin-3-yl-thiazol-5-yl)-carbamic acid tert-butyl ester (100 mg, 0.34 mmol) in acetonitrile (2 mL) was added N-bromosuccinimide (122 mg, 0.68 mmol) in one portion and the reaction mixture was stirred for 1 h. The reaction mixture was concentrated and the crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to give the desired product as a white solid (81 mg, 64%): mp 88-91 °C; IR (KBr) 1715 cm-1 ; 1H NMR (300 MHz, CDCl3) δ 9.11 (s, 1H), 8.70 (d, J=4.2 Hz, 1H), 8.28 - 8.17 (m, 1H), 7.42 (dd, J = 8.1, 4.8 Hz, 1H), 3.27 (s, 3H), 1.48 (s, 9H); ESIMS m/z 372 (M+2).
  • Example 38: Preparation of tert-butyl 2-(5-fluoropyridin-3-yl)-4-iodothiazol-5-yl carbamate (Compound 481)
  • Figure imgb0080
  • To a solution of tert-butyl 2-(5-fluoropyridin-3-yl)thiazol-5-ylcarbamate (1.50 g, 5.08 mmol) in acetonitrile (50 mL) at 0 °C was added N-iodosuccinimide (2.40 g, 10.67 mmol). The mixture was stirred at 0 °C for 5 min and diluted with ethyl acetate and water. The organic phase was separated and rinsed with brine, dried over MgSO4 and concentrated in vacuo to give a dark solid. This solid was passed through a bed of silica gel (100g) eluting with 10% ether in hexanes (600 mL) to give tert-butyl 2-(5-fluoropyridin-3-yl)-4-iodothiazol-5-ylcarbamate as a pale yellow solid (1.80 g, 84% yield): mp 148-149 °C; 1H NMR (300 MHz, CDCl3) δ 8.87 (t, J = 1.5 Hz, 1H), 8.47 (d, J = 2.7 Hz, 1H), 7.93 (ddd, J = 9.0, 2.5, 1.9 Hz, 1H), 7.08 (s, 1H), 1.57 (s, 9H). ESIMS m/z 422.1 (M+1), 420.2 (M-1),
  • Example 39: Preparation of tert-butyl 2-(5-fluoropyridin-3-yl)-4-iodothiazol-5-yl(methyl)carbamate (Compound 497)
  • Figure imgb0081
  • To a solution of tert-butyl 2-(5-fluoropyridin-3-yl)-4-iodothiazol-5-ylcarbamate (1.20 g, 2.85 mmol) in DMF (5.7 mL) at 0 °C was added sodium hydride (125 mg, 3.13 mmol, 60% oil suspension) and the mixture was stirred at 0° C for 10 min. To the yellow mixture was added iodomethane (0.49g, 3.42 mmol) and the reaction mixture was stirred at 0 °C for 30 min. The ice-water bath was removed and the mixture was stirred for an additional 1 hour. The mixture was acidified with 0.1 N aq. HCl to neutral pH and diluted with ethyl acetate (100 mL) and aqueous sodium bicarbonate (5 mL). The organic phase was separated and rinsed with brine, dried over MgSO4, filtered and concentrated in vacuo to give a yellow residue. This residue was purified on silica gel chromatography (6:4 hexane/ethyl acetate) to give tert-butyl 2-(5-fluoropyridin-3-yl)-4-iodothiazol-5-yl(methyl)carbamate as a pale yellow solid (1.13 g, 91%): mp 70-71 °C; 1H NMR (300 MHz, CDCl3) δ 8.87 (s, 1H), 8.53 (bs, 1H), 7.99 (d, J = 0.9 Hz, 1H), 3.23 (s, 3H), 1.45 (s, 9H); ESIMS m/z 436.1 (M+1).
  • Example 40: Preparation of N-(4-cyano-2-(5-fluoropyridin-3-yl)thiazol-5-yl)-N-methyl-3-(methylthio)propanamide (Compound 495)
  • Figure imgb0082
  • To a nitrogen-purged solution of tert-butyl 2-(5-fluoropyridin-3-yl)-4-iodothiazol-5-yl(methyl)carbamate (1.0 g, 2.298 mmol) in DMF (8 mL) was added CuCN (288 mg, 3.22 mmol) and the mixture was heated in a microwave at 120 °C for 80 min. The mixture was diluted with ethyl acetate (75 mL) and successively washed with an aqueous solution (15, mL) of ethylene diamine (5% v/v), and brine, dried over MgSO4 filtered, and concentrated on a rotary evaporator under vacuum to give a yellow solid, 2-(5-fluoropyridin-3-yl)-5-(methylamino)thiazole-4-carbonitrile. The solid was used in the preparation of N-(4-cyano-2-(5-fluoropyridin-3-yl)thiazol-5-yl)-N-methyl-3-(methylthio)propanamide. To a solution of crude 2-(5-fluoropyridin-3-yl)-5-(methylamino)thiazole-4-carbonitrile (200 mg, 0.83 mmol) in CH2Cl2 (2 mL) were added K2CO3 (178 mg, 1.28 mmol) and 3-(methylthio)propanoyl chloride (130 mg, 0.94 mmol) followed by dimethylaminopyridine (21 mg, 0.17 mmol). The mixture was stirred at room temperature for 36 h and diluted with ethyl acetate (20 mL) and saturated aqueous sodium bicarbonate (5 mL). The organic phase was separated and washed with brine, dried over MgSO4 and concentrated in vacuo to give a brown gummy residue. This residue was purified by silica gel chromatography (6:4 hexane/ethyl acetate) to give N-(4-cyano-2-(5-fluoropyridin-3-yl)thiazol-5-yl)-N-methyl-3-(inethylthio)propanamide as a pale yellow solid (164 mg, 57% yield): mp 97-98 °C; 1H NMR (300 MHz, CDCl3) δ 8.98 (bs, 1H), 8.72 (d, J = 2.7 Hz, 1H), 8.27 (dt, J = 9.6, 1.8Hz, 1H), 2.73 (t, J = 7.5 Hz, 2H), 2.62 (t, J= 7.62, 2H), 2.09 (s, 3H), 2.03 (s, 3H): ESIMS m/z 337.2 (M+1).
  • Example 41: Preparation of [2-(5-fluoro-pyridin-3-yl)-4-vinyl-thiazol-5-yl]-methyl-carbamic acid-tert-butyl ester (Compound 363)
  • Figure imgb0083
  • To a solution of [2-(5-fluoro-pyridin-3-yl)-4-bromo-thiazol-5-yl]-methyl-carbamic acid-tert-butyl ester (100 mg, 0.257 mmol) in anhydrous 1,4-dioxane (1.5 mL) was added vinyl tributyl tin (163 mg, 0.514 mmol). The solution was degassed prior to the addition of bis(triphenylphosphine)palladium(II) chloride (9 mg, 0.012 mmol). The reaction mixture was stirred at 100 °C for 3 hours. The mixture was concentrated and the product was purified via silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford a yellow oil (55 mg, 64 %): IR (KBr) 1675 cm-1; NMR (300 MHz, CDCl3) δ 8.89 (d, J = 1.5 Hz, 1H), 8.50 (d, J = 2.7 Hz, 1H), 7.99 (m, 1H), 6.58 (m, 1H), 6.22 (dd, J = 14.0, 1.5 Hz, 1H), 5.51 (dd, J = 8.0, 1.5 Hz, 1H), 3.22 (s, 3H), 1.43 (s, 9H); ESIMS m/z 336 (M+1).
  • Example 42: Preparation of di(tert-butyl) 2-bromo-1,3-thiazol-5-ylimidodicarbonate
  • Figure imgb0084
  • To a tetrahydrofuran (THF) (200 mL) solution of (2-bromo-thiazol-5-yl)-carbamic acid tert-butyl ester (19.8 g, 70.9 mmol), at 0 °C (ice bath) was added NaH (3.12 g, 78 mmol, 60% dispersion in mineral oil) in one portion. Gas evolution was observed. The reaction was stirred for 30 minutes. (Boc)2O (17.0 g, 78 mmol) was added in one portion. The reaction was stirred for 5 minutes. The reaction vessel was pulled from the cooling bath and the reaction allowed to stir for 30 more minutes. Water and ethyl acetate were added to the reaction mixture. The layers were separated and the aqueous layer was extracted ethyl acetate (2 X). The combined organic layers were dried over MgSO4, filtered, and concentrated. Silica gel column chromatography (20 to 50% ethyl acetate/hexanes) afforded the final product as a white solid (25.0 g, 93% yield): mp 87-89 °C; 1H NMR (300 MHz, CDCl3) δ 7.24 (s, 1H), 1.48 (s, 18H); ESIMS m/z 379, 381 (M+1).
  • Example 43: Preparation of di(tert-butyl) 2-(5-fluoropyridin-3-yl)-1,3-thiazol-5-ylimidodicarbonate (Compound 277) (comparative)
  • Figure imgb0085
  • To a 3-neck round bottom flask was added fluoropyridine boronic acid (4.55 g, 32.3 mmol), ethanol (54 mL), and aqueous K2CO3 solution (27 mL, 2.0 M, 53.8 mmol), followed by 50 mL toluene. To this mixture was added di(tert-butyl) 2-bromo-1,3-thiazol-5-ylimidodicarbonate (10.2 g, 26.9 mmol). Next, tetrakis(triphenylphosphine)palladium(0) (6.2 g, 5.4 mmol) was added in one portion. The flask was fitted with a reflux condenser and was heated to reflux. After 45 minutes, the reaction was cooled in an ice bath and partitioned between aqueous saturated NaHCO3 and ethyl acetate. The layers were separated and the aqueous layer was extracted once with ethyl acetate. The combined organics were washed once with brine, dried over MgSO4, filtered, and then concentrated. This solid was triturated with 20% ethyl acetate/hexanes. The solids were filtered off and the filtrate evaporated to provide a residue which was purified via silica gel column chromatography (0 to 100% ethyl acetate/hexanes) to afford the desired product as an off-white solid (7.74 g, 73% yield): mp 94-96 °C; 1H NMR (300 MHz, CDCl3) δ 8.91 (app t, J = 1.3 Hz, 1H), 8.52 (d, J = 3.0 Hz, 1H), 7.96 (ddd, J = 9.2, 3.0, 1.8 Hz, 1H), 7.66 (s, 1H), 1.48 (s, 18H); ESIMS m/z 396 (M+1).
  • Example 44: Preparation of di(tert-butyl) 4-fluoro-2-(5-fluoropyridin-3-yi)-1,3-thiazol-5-ylimidodicarbonate
  • Figure imgb0086
  • To a degassed solution of di(tert-butyl) 2-(5-fluoropyridin-3-yl)-1,3-thiazol-5-ylimidodicarbonate (1.0 g, 2.53 mmol) in anhydrous acetonitrile (20 mL) and DMF (10 mL) was added F-TEDA (SELECTFLUOR™) (1.8 g, 5.06 mmol). The reaction mixture was stirred at ambient temperature for 7 days. Water was added to the reaction mixture and the target extracted with ethyl acetate (2x). The organic layer was dried over sodium sulfate, was filtered and was concentrated. The crude mixture was purified via silica gel chromatography (0-100% ethyl acetate/hexanes) to afford a beige solid (860 mg, 82 %): mp 143-143 °C; 1H NMR (300 MHz, CDCl3) δ 8.87 (t, J = 1.4 Hz, 1H), 8.54 (d, J = 2.7 Hz, 1H), 7.91 (ddd, J = 8.9, 2.7, 1.8 Hz, 1H), 1.48 (s, 18H); ESIMS m/z 414 (M+1).
  • Example 45: Preparation of [4-fluoro-2-(5-fluoro-pyridin-3-yl)-thiazol-5-yl]-carbamic acid tert-butyl ester (Compound 353)
  • Figure imgb0087
  • To a solution of di(tert-butyl) 4-fluoro-2-(5-fluoropyridin-3-yl)-1,3-thiazol-5-ylimidodicarbonate (320 mg, 0.77 mmol) in DCM (7 mL) was added trifluoroacetic acid (TFA) (0.7 mL). The solution was stirred at room temperature for 10 minutes, before quenched slowly with saturated NaHCO3 solution. The organic layer was separated and the aqueous layer was extracted with dichloromethane (DCM). The combined organic layer was dried over Na2SO4, filtered and purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to give product as a pale yellow solid (166 mg, 68%): mp 188-191 °C; 1H NMR (300 MHz, CDCl3) δ 8.84 (s, 1H), 8.46 (d, J = 2.7 Hz, 1H), 7.85 (ddd, J = 9.1, 2.6, 1.7 Hz, 1H), 6.92 (br s, 1H), 1.55 (s, 9H); ESIMS mlz 312 (M-1).
  • Example 46: Preparation of 2,3-diethyl-1-methyl-1-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-isothiourea (Compound 471)
  • Figure imgb0088
  • A solution of 3-ethyl-1-methyl-1-(4-methyl-2-(pyridin-3-yl)thiazol-5-yl)thiourea (70 mg, 0.239 mmol) and iodoethane (74.7 mg, 0.479 mmol) in ethanol (5 mL) was heated at 80°C for 6 h in a sealed tube. Upon cooling the solvent was removed under reduced pressure and the residue purified via silica gel chromatography (0 to 100% ethyl acetate/hexanes) to furnish the title compound as a clear oil (30 mg, 39%): 1H NMR (400 MHz, CDCl3) δ 9.10 (d, J = 2.0 Hz, 1H), 8.64 (dd, J = 4.6 Hz, 1.4 Hz, 1H), 8.20 (d, J = 4.2 Hz, 1H), 7.41-7.37 (m, 1H), 3.63 (q, J = 7.6 Hz, 2H), 3.22 (s, 3H), 2.72 (q, J = 7.8 Hz, 2H), 2.38 (s, 3H), 1.28-1.17 (m, 6H); ESIMS m/z 321 (M+1).
  • Example 47: Preparation of 3-cyclopropyl-1-[2-(5-fluoro-pyridin-3-yl)-4-methyl-thiazol-5-yl]-1-methyl-thiourea (Compound 519)
  • Figure imgb0089
  • A solution of 2-(5-fluoropyridin-3-yl)-N,4-dimethylthiazol-5-amine (200 mg, 0.896. mmol) and isothiocyanatocyclopropane (266 mg, 2.69 mmol) in dioxane (10 mL) was heated at 100 °C for 24 h before the solvent was removed under reduced pressure. The residue was purified via silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford the title compound as a yellow solid (211 mg, 73%): mp 117-119 °C; 1H NMR (400 MHz, CDCl3) δ 8.89 (s, 1H), 8.56 (d, J = 2.8 Hz, 1H), 7.96 (dt, J = 9.2 Hz, 2.4 Hz, 1H), 5.91 (br s, 1H), 3.62 (s, 3H), 3.04-2.99 (m, 1H), 2.31 (s, 3H), 0.89-0.81 (m, 2H), 0.57-0.48 (m, 2H); ESIMS m/z 323 (M+1).
  • Example 48: Preparation of ethyl 2-(pyridin-3-yl)thiazole-4-carboxylate
  • Figure imgb0090
  • To a suspension of thionicotinamide (30.0 g, 217.1 mmol) in EtOH (400 mL) at room temperature was added ethyl bromopyruvate (90% technical, 30.6 mL, 219 mmol). The reaction mixture was heated to reflux and stirred for 2.5 days. The reaction mixture was cooled to room temperature and the precipitate that formed upon cooling was collected via vacuum filtration. The cake was rinsed twice with hexanes. This solid was added to a separatory funnel containing ethyl acetate and saturated aqueous NaHCO3. The biphasic mixture was separated and the organic layer was washed with brine, dried over MgSO4, filtered, and concentrated in vacuo. The crude product was purified using silica gel chromatography, (0 to 100% ethyl acetate/hexanes) to afford the desired product as a tan solid (24.1 g, 47%): mp 73-75 °C; 1H NMR (300 MHz, CDCl3) δ 9.19 (dd, J = 2.6, 1.0 Hz, 1H), 8.69 (dd, J = 4.6, 1.6 Hz, 1H), 8.34 (dt, J = 7.9, 1.6 Hz, 1H), 8.22 (s, 1H), 7.41 (ddd, J = 7.9, 4.6, 1.0 Hz, 1H), 4.47 (q, J = 6.9 Hz, 2H), 1.43 (t, J = 6.9 Hz, 3H); ESIMS m/z 236.1 (M+2).
  • Example 49: Preparation of ethyl 5-bromo-2-(pyridin-3-yl)thiazole-4-carboxylate
  • Figure imgb0091
  • A tetrahydrofuran (15 mL) solution of ethyl 2-(pyridin-3-yl)thiazole-4-carboxylate (1.17 g, 5.0 mmol) was added to -78 °C solution of potassium bis(trimethylsilyl)amide (12 mL, 6 mmol), 0.5 M in toluene) over 2 min. This reaction mixture was allowed to stir for 1.5 h and then was transferred via canula into a -78 °C solution of N-bromosuccinimide (1.35 g, 7.5 mmol) in tetrahydrofuran (5 mL). This mixture was stirred for 5 min and then the reaction vessel was removed from the cooling bath and allowed to warm to room temperature over 3 h. The reaction was quenched by pouring into a mixture of ether and water. The layers were separated and the aqueous layer was extracted twice with ethyl acetate. The combined organics were dried over MgSO4, filtered, and the solvent was removed in vacuo. The residue was subjected to silica gel chromatography (0 to 100% ethyl acetate/hexanes) to give the desired product as a white solid (824 mg, 52%): 1H NMR (300 MHz, CDCl3) δ 9.09 (d, J = 2.3 Hz, 1H), 8.71 (dd, J = 4.9, 1.3 H, 1H), 8.25 (dt, J = 8.2, 1.7 Hz, 1H), 7.41 (dd, J = 7.9, 4.9 Hz, 1H), 4.48 (q, J = 7.3 Hz, 2H), 1.46 (t, J = 7.3 Hz, 3H); ESIMS m/z 315.0 (M+2).
  • Example 50: Preparation of ethyl 5-amino-2-(pyridin-3-yl)thiazole-4-carboxylate
  • Figure imgb0092
  • To a round bottom flask containing ethyl 5-bromo-2-(pyridin-3-yl)thiazole-4-carboxylate (2.5 g, 7.98 mmol) in DMF (26.6 ml)/water (13.3 ml) was carefully added sodium azide (2.59 g, 39.9 mmol) and stirred overnight at 75 °C. The reaction was cooled to room temperature and poured into water which was extracted with ethyl acetate. The ethyl acetate layers were combined and washed with hexanes/water. The ethyl acetate extracts were dried (MgSO4), filtered and concentrated to dryness. The crude material was purified by silica gel column chromatography (0 to 75% ethylacetate/hexanes) to give the desired product as a white solid (0.6 g, 30%) 1H NMR (300 MHz, CDCl3) δ 8.98 (s, 1H), 8.63 (d, 1H), 8.19 (d, 1H), 7.45-7.32 (m, 1H), 6.3 (s, 2H), 4.46 (q, 2H), 1.43 (t, 3H). ESIMS m/z 251.1 (M+2).
  • Example 51: Preparation of 3-[cyano(methyl)sulfonimidoyl]-N-[2-(5-fluoropyridin-3-yl)-4-methyl-1,3-thiazol-5-yl]-2-methylpropanamide (Compound 163)
  • Figure imgb0093
  • To a solution of N-[2-(5-fluoro-pyridin-3-yl)-4-methyl-thiazol-5-yl]-2-methyl-3-methylsulfanyl-propionamide (0.250 g, 0.76 mmol) in dichloromethane (3.07 ml) at 0 °C was added cyanamide (0.064 g, 1.53 mmol) and iodobenzenediacetate (0.272 g, 0.84 mmol) and subsequently stirred at room temperature for 1 hour. The reaction was concentrated to dryness. The crude material was purified by silica gel column chromatography (10% methanol/ethyl acetate) to give the desired product as a light yellow solid (0.220 g, 60%): mp 75-81 °C; 1H NMR (400 MHz, CDCl3) δ 9.85 (s, 1H), 8.94 - 8.70 (m, 1H), 8.57 - 8.34 (m, 1H), 8.07 - 7.77 (m, 1H), , 3.69 - 3.40 (m, 2H),, 3.22 - 3.00 (m, 1H), 2.92 - 2.77 (m, 3H), 2.50 (m, 3H), 1.49 (m, 3H); ESIMS m/z 363.9 (M-2).
  • Example 52-A: Preparation of 3-[cyano(methyl)sulfonimidoyl]-N-[2-(5-fluoropyridin-3-yl)-4-methyl-1,3-thiazol-5-yl]-2-methylpropanamide (Compound 164)
  • Figure imgb0094
  • To a solution of 70% mCPBA (0.13 g, 0.61 mmol) in EtOH (2 ml) at 0 °C was added a solution of potassium carbonate (0.17 g, 1.23 mmol) in water (2 ml) and stirred for 20 minutes after which a solution of 3-[cyano(methyl)sulfonimidoyl]-N-[2-(5-fluoropyridin-3-yl)-4-methyl-1,3-thiazol-5-yl]-2-methylpropanamide (0.15 g, 0.41 mmol) in EtOH (2 ml) was added in one portion. The reaction was stirred for 1 h at 0 °C. The excess mCPBA was quenched with 10% Na2S2O3 and the reaction was concentrated to dryness. To the white solid was added dichloromethane and the mixture was filtered to remove solids. The filtrate was collected and concentrated to dryness. The crude material was purified by silica gel chromatography (100% ethyl acetate) to give the desired product as a light yellow solid (0.034 g, 22%): 1H NMR (400 MHz, CDCl3) δ 8.87 (s, 1H), 8.53 (s, 1H), 8.45 (t, J = 4.1 Hz, 1H), 7.93 - 7.85 (m, 1H), 3.74 (dd, J = 14.2, 9.3 Hz, 1H), 3.38 - 3.25 (m, 1H), 3.14 (dd, J = 14.2, 3.0. Hz, 1H), 3.01 (s, 3H), 2.47 (s, 3H), 1.48 (t, J = 7.6 Hz, 3H).
  • Example 52-B: Preparation of 2-methyl-N-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)-3-methylsulfanyl-thiopropionamide (Compound 180)
  • Figure imgb0095
  • To a microwave reaction vessel was added 2-methyl-N-(4-methyl-2-pyridin-3-yl-thiazol-5-yl)3-methylsulfanyl-propionamide (0.10 g, 0.32 mmol) in dioxane and Lawesson's reagent (0.19 g, 0.48 mmol). The vessel was capped and heated in a Biotage Initiator microwave rector for 1 min art 130 °C, with external IR-sensor temperature monitoring from the side. The reaction was concentrated to dryness and the crude material was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to give the desired product as a yellow semi solid (0.019 g, 18%): 1H NMR (300 MHz, CDCl3) δ 9.9 (m, 1H), 9.2 (d, 1H), 8.65 (d, 1H), 8.4 (m, 1H), 7.4 (m, 1H), 3.15 (m, 1H), 2.9 (m, 2H), 2.5 (s, 3H), 2.2 (s, 3H), 1.5 (d, 3H); ESIMS m/z 324.12 (M+1).
  • Example 53: Preparation of N-(4-chloro-2-pyridin-3-yl-thiazol-5-yl)-N-ethyl-2-methyl-3-methylsulfanyl-propionamide (Compound 316).
  • Figure imgb0096
  • To a solution of (4-chloro-2-pyridin-3-yl-thiazol-5-yl)-ethylamine (800 mg, 3.33 mmol) in dichloroethane (30 mL) was added 2-methyl-3-methylsulfanyl-propionic acid (prepared according to literature reference J. Org. Chem. 1996, 51, 1026-1029) (894 mg, 6.66 mmol) and N,N-dimethylaminopyridine (814 mg, 6.66 mmol) followed by triethylamine (0.2 mL, 1.44 mmol). To this was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.92 g, 9.99 mmol). The reaction mixture was stirred at ambient temperature for 16 h. The reaction mixture was concentrated and the crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford a beige solid (715 mg, 60%): mp 79-81 °C; 1H NMR (300 MHz, CDCl3) δ 9.11 (d, J = 1.7 Hz, 1H), 8.71 (d, J = 4.8 Hz, 1H), 8.27 - 8.13 (m, 1H), 7.42 (dd, J = 8.0, 4.9 Hz, 1H), 3.90 (bs, 1H), 3.69 (bs, 1H), 2.80 (bs, 2H), 2.47 (bs, 1H), 2.02 (s, 3H), 1.21 (q, J = 7.3 Hz, 6H); ESIMS m/z 356 (M+1).
  • Example 54: Preparation of 4-chloro-5-nitro-2-(pyridin-3-yl)thiazole
  • Figure imgb0097
  • 4-Chloro-2-(pyridin-3-yl)thiazole (1.00g, 5.09 mmol) was placed in a dry flask and concentrated H2SO4 (2.50g, 25.4 mmol) was added. The contents were cooled to 0°C, and fuming HNO3 (641 mg, 10.17 mmol) was slowly added. The mixture was stirred at 40 °C for 3 h and cooled to room temperature. The contents were slowly added to an ice-cold saturated aqueous solution of NaHCO3. The mixture was extracted with ethyl acetate (2X50 mL) and the extracts were combined, rinsed with brine and concentrated in vacuo to give 4-chloro-5-nitro-2-(pyridin-3-yl)thiazole as a peach-colored solid (985mg, 80% yield): mp 110-112 °C; 1H NMR (300 MHz, CDCl3) 9.18 (d, J = 2.1 Hz, 1H), 8.81 (dd, J = 5.1, 1.8 Hz, 1H) 8.27 (ddd, J = 7.3, 4.2, 2.4 Hz, 1H), 7.49 (dd, J = 7.8, 5.1 Hz, 1H); EIMS m/z 241 ([M+H])+.
  • Example 55: Preparation of 4-(methylthio)-5-nitro-2-(pyridin-3-yl)thiazole
  • Figure imgb0098
  • To a solution of 4-chloro-5-nitro-2-(pyridin-3-yl)thiazole (500 mg, 2.07 mmol) in 1,4-dioxane (2 mL) was added in one portion solid sodium thiomethoxide (145 mg, 2.07 mmol). The orange-red mixture was stirred at room temperature for 3 hours. The mixture was diluted with ethyl acetate and rinsed with brine, dried over MgSO4 and concentrated in vacuo to give a yellow solid. This solid was purified by silica gel chromatography (ethyl acetate/hexanes) to give 4-(methylthio)-5-nitro-2-(pyridin-3-yl)thiazole (358 mg, 68%): 1H NMR (300 MHz, CDCl3) δ 9.21 (d, J = 5.4 Hz, 1H), 8.79 (dd, J = 4.8, 1.8 Hz, 1H), 8.24 (dt, J = 7.8, 2.1 Hz, 1H), 7.46 (ddd, J = 8.1, 4.8, 0.9 Hz, 1H), 2.81 (s, 3H); EIMS mlz 253.
  • Example 56: Preparation of 3-(methylthio)-N-(4-(methylthio)-2-(pyridin-3-yl)thiazol-5-yl)propanamide (Compound 589)
  • Figure imgb0099
  • To a nitrogen-purged solution of 4-(methylthio)-5-nitro-2-(pyridin-3-yl)thiazole (253 mg, 1 mmol) in ethyl acetate (50 mL) in a Parr bottle were added glacial acetic acid (601 mg, 10 mmol), followed by Pd on carbon (35 mg, 10% (w)). Hydrogen was added and the mixture was shaken in a Parr shaker for 2 hours and filtered through a bed of Celite®. The filtrate was concentrated under vacuum to give 4-(methylthio)-2-(pyridin-3-yl)thiazol-5-amine as a pale yellow solid, which was placed under high vacuum to remove residual acetic acid. This crude was found to be 95% pure by GC-MS. The crude 4-(methylthio)-2-(pyridin-3-yl)thiazol-5-amine was used without further purification to prepare 3-(methylthio)-N-(4-(methylthio)-2-(pyridin-3-yl)thiazol-5-yl)propanamide. To a solution of 4-(methylthio)-2-(pyridin-3-yl)thiazol-5-amine (100 mg, 0.45 mmol) in methylene chloride (2 mL) were added dimethylaminopyridine (137 mg, 1.12 mmol) followed by 3-(methylthio)propanoyl chloride (68 mg, 0.49 mmol). The mixture was stirred at room temperature for 30 min. The mixture was diluted with dichloromethane (10 mL) and water (5 mL). The organic phase was separated, rinsed with brine, dried over MgSO4 and concentrated in vacuo to give a yellow solid. This solid was purified by silica gel chromatography (methylene chloride-methanol) to give 3-(methylthio)-N-(4-(methylthio)-2-(pyridin-3-yl)thiazol-5-yl)propanamide as a yellow solid (32 mg, 22%): mp 72-74 °C, 1H NMR (300 MHz, DMSO-d6 ) δ 10.90 (s, 1H), 9.08 (m, 1H), 8.64 (d, J = 4.8 Hz, 1H), 8.32 (d, J = 9.0 Hz, 1H), 7.57 (dd, J = 5.1 Hz, 8.4 Hz, 1H), 3.25 (s, 3H), 2.85 (m, 2H), 2.73 (m, 2H), 2.07 (s, 3H); ESIMS m/z 326.1(M+1), 324.1 (M-1).
  • Example 57: Preparation of 1-(2-methyl-pentanoyl)-piperidine-3-carboxylic acid [2-(5-fluoro-pyridin-3-yl)-4-methyl-thiazol-5-yl]-methyl-amide (Compound 582)
  • Figure imgb0100
  • A solution of N-(2-(5-fluoropyridin-3-yl)-4-methylthiazol-5-yl)-N-methylpiperidine-3-carboxamide (250 mg, 0.75 mmol), DMAP (91 mg, 0.75 mmol), potassium carbonate (310 mg, 2.243 mmol), and 2-methylpentanoyl chloride (201 mg, 1.495 mmol) in DCE (10 mL) was heated at 80 °C for 6 h. The cooled contents were diluted with water:dichloromethane (1:1, 20 mL) and the organic layer was collected and concentrated. The residue was purified via reversed phase chromatography (0 to 100% acetonitrile/water) to furnish the title compound as a clear oil (207 mg, 64%): 1H NMR (400 MHz, CDCl3) δ 8.89 (s, 1H), 8.54 (d, J = 2.2 Hz, 1H), 7.96 (dt, J = 9.0, 2.2 Hz, 1H), 4.63-4.59 (m, 1H), 3.92-3.78 (m, 1H), 3.42 (s, 3H), 2.66-2.48 (m, 4H), 2.38 (s, 3H), 1.89-1.73 (m, 2H), 1.71-1.68 (m, 2H), 1.38-1.17 (m, 4H), 1.08-1.01 (m, 3H), 0.97-0.86 (m, 3H); ESIMS m/z 433 (M+1).
  • Example 58: Preparation of (4-chloro-2-pyridin-3-yl-thiazol-5-yl)-ethyl-carbamic acid tert-butyl ester (Compound 304)
  • Figure imgb0101
  • To a suspension of 3-pyridine boronic acid (1.5 g, 12.2 mmol) in toluene (50 mL) was added absolute ethanol (25 mL) followed by a 2.0 M solution of K2CO3 (12.5 mL). To this mixture was added (2-bromo-4-chloro-thiazol-5-yl)-ethyl-carbamic acid tert-butyl ester (4.2 g, 12.2 mmol) followed by tetrakis(triphenylphosphine)palladium(0) (708 mg, 0.61 mmol). The reaction mixture was heated to 100 °C for 16 h. The mixture was cooled and diluted with ethyl acetate. The organic layer was washed with saturated aqueous NaHCO3, dried over Na2SO4, filtered and concentrated. The organic layer was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford a red oil (3.3 g, 79%): 1H NMR (300 MHz, CDCl3) δ 9.09 (d, J = 1.9 Hz, 1H), 8.68 (dd, J = 4.8, 1.6 Hz, 1H), 8.19 (dd, J = 5.9, 4.2 Hz, 1H), 7.39 (dd, J = 7.6, 5.2 Hz, 1H), 3.68 (q, J = 7.2 Hz, 2H), 1.45 (s, 9H), 1.22 (t, J = 7.0 Hz, 3H); ESIMS m/z 340 (M+1).
  • Example 59: Preparation of (2-bromo-4-chloro-thiazol-5-yl)-methyl-carbamic acid tert-butyl ester
  • Figure imgb0102
  • To a solution of (2-bromo-thiazol-5-yl)-ethyl-carbamic acid tert-butyl ester (4.0 g, 13 mmol) in acetonitrile (75 mL) was added N-chlorosuccinimide (3.48 g, 26 mmol) in one portion and the reaction mixture was stirred for 16 h. The reaction mixture was concentrated and the crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to give the desired product as a grey solid (4.2 g, 95%): IR (KBr) 1738 cm-1; 1H NMR (300 MHz, CDCl3) δ 3.61 (q, J = 7.1 Hz, 2H), 1.43 (s, 9H), 1.16 (t, J = 7.1 Hz, 3H).
  • Example 60: Preparation of 2,4-dichloro-thiazole-5-carbonyl-azide
  • Figure imgb0103
  • To a solution of 2,4-dichloro-thiazole-5-carboxylic acid (1.98 g, 10 mmol) in toluene (50 mL) was added Et3N (1.01 g, 10 mmol) followed by diphenyl phosphoryl azide (2.75 g, 10 mmol). The reaction mixture was stirred at room temperature for 20 h. The reaction mixture was concentrated in vacuo and purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford product as a brown solid (1.82 g, 82%): 13C NMR (75 MHz, CDCl3) δ 163.33, 156.83, 143.94, 124.02.
  • Example 61: Preparation of (2,4-dichloro-thiazol-5-yl)-carbamic acid tert-butyl ester
  • Figure imgb0104
  • To a 250 mL round bottom flask filled with N2 was added 2,4-dichloro-thiazole-5-carbonylazide (1.82 g, 12.1 mmol) and toluene (55 mL). The solution was heated to reflux for 2 h before tert-butyl alcohol (1.21 g mL, 16.3 mmol) was added. The reaction mixture was then refluxed for 1.5 h, cooled and concentrated in vacuo. Purification by silica gel chromatography (0 to 100% ethyl acetate/hexanes) gave product as a white solid (2.06 g, 94%): mp 111-112 °C; 1H NMR (300 MHz, CDCl3) δ 6.96 (s, 1H), 1.54 (s, 9H).
  • Example 62: Preparation of (2,4-dichloro-thiazol-5-yl)-(3-methylsulfanyl-propionyl)-carbamic acid tert-butyl ester
  • Figure imgb0105
  • To a solution of (2,4-dichloro-thiazol-5-yl)-carbamic acid tert-butyl ester (1.0 g, 3.7 mmol) in dichloroethane (20 mL) stirring at room temperature was added triethylamine (935 mg, 9.25 mmol), followed by dropwise addition of methylsulfanyl-propionyl chloride (776 mg, 5.6 mmol) and the mixture was stirred for 5 min before DMAP (45 mg, 0.37 mmol) was added. The mixture was stirred at 75 °C for 4 h. The reaction mixture was cooled, quenched with H2O (30 mL). The organic layer was separated and the aqueous layer extracted with dichloromethane (20 mL). The combined organic layer was dried over Na2SO4 and purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to give product as a colorless oil (1.11 g, 81%): 1H, NMR (300 MHz, CDCl3) δ 3.32 (t, J = 7.3 Hz, 2H), 2.83 (t, J = 7.3 Hz, 2H), 2.16 (s, 3H), 1.46 (s, 9H); ESIMS m/z 371.2 (M+1).
  • Example 63: Preparation of N-(2,4-dichloro-thiazol-5-yl)-3-methylsulfanylpropionamide
  • Figure imgb0106
  • To a solution of (2,4-dichloro-thiazol-5-yl)-(3-methylsulfanyl-propionyl)-carbamic acid tert-butyl ester (1.10 g, 2.97 mmol) in DCM (10 mL) was added trifluoroacetic acid (3.4 g, 2,2 mL, 30 mmol). The solution was stirred at room temperature for 15 minutes, before it was quenched slowly with saturated NaHCO3 solution. The organic layer was separated and the aqueous layer was extracted with 20 mL DCM. The combined organic layer was dried over Na2SO4 and purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to give product as a white solid (612 mg, 76%): 1H NMR (300 MHz, CDCl3) δ 8.79 (s, 1H), 2.90 (t, J = 7.2 Hz, 2H), 2.79 (t, J = 7.2 Hz, 2H), 2.29 (s, 3H); ESIMS mlz 271.0 (M+1).
  • Example 64: Preparation of N-(2,4-dichloro-thiazol-5-yl)-N-methyl-3-methylsulfanylpropionamide
  • Figure imgb0107
  • To a solution of N-(2,4-dichloro-thiazol-5-yl)-3-methylsulfanyl-propionamide (596 mg, 2.2 mmol) in DMF (11 mL) stirring at 25 °C was added K2CO3 (365 mg, 2.64 mmol) and iodomethane (375 mg, 1.2 mmol), the solution was stirred at 25 °C for 20 h. The solution was diluted with 50 mL H2O and extracted with ethyl acetate (3 x 20 mL). The combined organic extracts were washed with H2O (3 x 20 mL), dried over Na2SO4, filtered and concentrated to dryness under reduced pressure. The crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to give the desired product as a clear oil (273 mg, 44%): 1H NMR (300 MHz, CDCl3) δ 3.23 (s, 3H), 2.79 (t, J = 7.2 Hz, 2H), 2.52 (t, J = 7.2 Hz, 2H), 2.09 (s, 3H); ESIMS m/z 285.1 (M+1).
  • Example 65: Preparation of N-[4-chloro-2-(6-fluoro-pyridin-3-yl)-thiazol-5-yl]-N-methyl-3-methylsulfanyl-propionamide (Compound 453)
  • Figure imgb0108
  • To a solution of N-(2,4-dichloro-thiazol-5-yl)-N-methyl-3-methylsulfanyl-propionamide (273 mg, 0.96 mmol) in toluene (4 mL) was added 6-fluoropyridine-3-boronic acid (162 mg, 1.15 mmol) and Pd(PPh3)4 (56 mg, 0.048 mmol), followed by 1 mL 2M K2CO3 solution and 2 mL EtOH. The solution was deoxygenated by three vacuum-flush cycles under nitrogen and heated in 110 °C oil bath for 8 hours. H2O (10 mL) was added and the aqueous layer was extracted with ethyl acetate (2 x 10 mL). The combined organic layer was dried over Na2SO4, concentrated in vacuo and purifid by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford product as a colorless oil (131 mg, 75%): 1H NMR (300 MHz, CDCl3) δ 8.74 (d, J = 2.1 Hz, 1H), 8.48 - 8.21 (m, 1H), 7.09 (dd, J = 8.6, 2.9 Hz, 1H), 3.29 (s, 3H), 2.82 (t, J = 7.3 Hz, 2H), 2.57 (t, J = 7.3 Hz, 2H), 2.09 (s, 3H); IR (KBr) 1685; ESIMS m/z 346.2 (M+1).
  • Example 66: Preparation of (4-chloro-2-pyridin-3-yl-thiazol-5-yl)-methyl-carbamic acid tert-butyl ester (Compound 228)
  • Figure imgb0109
  • To a solution of methyl-(2-pyridin-3-yl-thiazol-5-yl)-carbamic acid tert-butyl ester (3.0 g, 10.29 mmol) in acetonitrile (60 mL) was added N-chlorosuccinimide (2.75 g, 20.58 mmol) in one portion and the reaction mixture was stirred at 45 °C for 16 h. The reaction mixture was concentrated and the crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to give the desired product as a yellow solid (2.10 g, 62%): mp 119-122 °C; IR (KBr) 1718 cm-1; 1H NMR (300 MHz, CDCl3) δ 9.08 (s, 1H), 8.67 (d, J = 4.2 Hz, 1H), 8.22 - 8.16 (m, 1H), 7.39 (dd, J = 7.9, 5.0 Hz, 1H), 3.26 (s, 3H), 1.46 (s, 9H); ESIMS m/z 326 (M+1).
  • Example 67: Preparation of (4-chloro-2-pyridin-3-yl-thiazol-5-yl)-methyl-amine
  • Figure imgb0110
  • To a solution of (4-chloro-2-pyridin-3-yl-thiazol-5-yl)-methyl-carbamic acid tert-butyl ester (0.072 g, 0.22 mmol) in dichloromethane (1 mL) was added thiophenol (34 µL, 0.33 mmol) followed by trifluoroacetic acid (1 mL). The reaction was stirred for 30 minutes at ambient temperature. The reaction was quenched with saturated aqueous NaHCO3 and the mixture was extracted with dichloromethane. The organic layer was dried over Na2SO4, filtered and concentrated. The crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford a bright yellow solid (0.048 g, 98%): mp 79 °C; IR (KBr) 1540 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.97 (d, J = 2.1 Hz, 1H), 8.55 (dd, J = 4.8, J = 1.5 Hz, 1H), 8.08 (ddd, J = 8.1, 2.0, 2.0 Hz, 1H), 7.32 (dd, J = 8.1, 4.8 Hz, 1H), 4.07 (br m, 1H), 3.03 (d, J = 5.3 Hz, 3H); ESIMS m/z 226 (M+1).
  • Example 68: Preparation of N-(4-chloro-2-pyridin-3-yl-thiazol-5-yl)-N-methyl-3-methylsulfanyl-propionamide (Compound 66)
  • Figure imgb0111
  • To a solution of (4-chloro-2-pyridin-3-yl-thiazol-5-yl)-methylamine (49 mg, 0.21 mmol) in dichloroethane (2 mL) was added N,N-dimethylaminopyridine (39 mg, 0.32 mmol) followed by 3-methylsulfanyl-propionyl chloride (45 mg, 0.32 mmol). The reaction mixture was stirred at ambient temperature for 16 hours. The reaction was diluted with saturated aqueous NaHCO3 and the mixture was extracted with dichloromethane. The organic layer was dried over Na2SO4, filtered and concentrated. The crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford a pale yellow gum (52 mg, 73%): IR (KBr) 1682 cm-1; 1H NMR (300 MHz, CDCl3) δ 9.11 (s, 1H), 8.73 (d, J = 3.4 Hz, 1H), 8.28 - 8.14 (m, 1H), 7.43 (dd, J= 8.2, 5.0 Hz, 1H), 3.28 (s, 3H), 2.81 (t, J = 7.2 Hz, 2H), 2.56 (t, J = 7.2 Hz, 2H), 2.08 (s, 3H); ESIMS m/z 328 (M+1).
  • Example 69: Preparation of N-(4-chloro-2-pyridin-3-yl-thiazol-5-yl)-2,N-dimethyl-3-methylsulfanyl-propionamide (Compound 227)
  • Figure imgb0112
  • To a solution of (4-chloro-2-pyridin-3-yl-thiazol-5-yl)-methylamine (200 mg, 0.88 mmol) in dichloroethane (2 mL) was added pyridine (83 mg, 1.05 mmol), N,N-dimethylaminopyridine (54 mg, 0.44 mmol) followed by 2-methyl-3-methylsulfanyl-propionyl chloride (160 mg, 1.05 mmol). The reaction mixture was stirred at ambient temperature for 16 hours. The reaction was diluted with water and the mixture was extracted with dichloromethane. The organic layer was dried over Na2SO4, filtered and concentrated. The crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford a light yellow solid (250 mg, 84%): mp 70-73 °C; 1H NMR (300 MHz, CDCl3) δ 9.14 (s, 1H), 8.75 (d, J = 3.8 Hz, 1H), 8.28 - 8.15 (m, 1H), 7.45 (dd, J = 8.0, 4.9 Hz, 1H), 3.32 (s, 3H), 2.99 - 2.72 (m, 2H), 2.50 (d, J = 7.5 Hz, 1H), 2.06 (d, J = 2.5 Hz, 3H), 1.31 - 1.14 (m, 3H); ESIMS m/z 342 (M+1).
  • Example 70: Preparation of (4-chloro-2-pyridin-3-yl-thiazol-5-yl)-ethyl-carbamic acid tert-butyl ester (Compound 304)
  • Figure imgb0113
  • To a solution of ethyl-(2-pyridin-3-yl-thiazol-5-yl)-carbamic acid tert-butyl ester (3.0 g, 9.82 mmol) in acetonitrile (58 mL) was added N-chlorosuccinimide (2.62 g, 19.64 mmol) in one portion and the reaction mixture was stirred at 45 °C for 16 h. The reaction mixture was concentrated and the crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford a red oil (2.24 g, 67%): 1H NMR (300 MHz, CDCl3) δ 9.09 (d, J = 1.9 Hz, 1H), 8.68 (dd, J = 4.8, 1.6 Hz, 1H), 8.19 (dd, J = 5.9, 4.2 Hz, 1H), 7.39 (dd, J = 7.6, 5.2 Hz, 1H), 3.68 (q, J = 7.2 Hz, 2H), 1.45 (s, 9H), 1.22 (t, J = 7.0 Hz, 3H); ESIMS m/z 340 (M+1).
  • Example 71: Preparation of (4-chloro-2-pyridin-3-yl-thiazol-5-yl)-ethyl-amine hydrochloride
  • Figure imgb0114
  • Into a 1 L three-necked flask fitted with a J-KEM type-T temperature probe, overhead stirrer, and nitrogen inlet was added (4-chloro-2-pyridin-3-yl-thiazol-5-yl)-ethyl-carbamic acid tert-butyl ester (63.5 g, 187 mmol) and 1,4-dioxane (125 mL). To the solution was added 4 M HCl/dioxane (100 mL, 400 mmol). The mixture exothermed from 31 °C to 49 °C over 10 seconds and slowly turned from an auburn solution to a green-black solution. After 10 minutes the reaction had cooled back to 25 °C. After 30 min a green-yellow precipitate began to form in the reaction mixture. The reaction conversion was 31% after 10 min, 32% after 1.5 hours and 67% after 16 hours. Additional 4M HCl/dioxane (75 mL, 300 mmol) was added (note: no exotherm this time) and the reaction stirred at 23 °C for 1.5 hours (no change in reaction progress by HPLC analysis). The reaction was heated to 40 °C for 4 hours which led to complete conversion. The reaction was allowed to cool to 25 °C and ether (200 mL) was added. The green-yellow suspension was stirred for 30 min and the solid collected by vacuum filtration and washed with ether (2 x 50 mL). This gave a green-yellow filter cake which was allowed to stand in the air for 16 hours. This gave 67.99 g (131%) of a green-yellow wet cake that assayed to >99% purity by HPLC at 254 nm. The sample was placed into a vacuum oven (55 °C, 74 mmHg vacuum, 4 hours). This gave 53.96 g (quantitative yield) of a green solid: mp 180-182 C; 1H NMR (400 MHz, DMSO-d6 ) δ 9.08 (d, J = 2.1 Hz, 1H), 8.75 (dd, J = 5.5, 0.9 Hz, 1H), 8.66 (ddd, J = 8.3, 2.2, 1.3 Hz, 1H), 7.97 (ddd, J = 8.3, 5.5, 0.6 Hz, 1H), 3.21 (q, J = 7.1 Hz, 2H), 2.51 (dt, J = 3.7, 1.8 Hz, 1H), 1.24 (dd, J = 9.2, 5.1 Hz, 3H); ESIMS m/z 240 (M+1).
  • Example 72: Preparation of N-(4-chloro-2-pyridin-3-yl-thiazol-5-yl)-N-ethyl-3-methylsulfanyl-propionamide (Compound 313)
  • Figure imgb0115
  • To a solution of (4-chloro-2-pyridin-3-yl-thiazol-5-yl)-ethylamine hydrochloride (275 mg, 1.0 mmol) in dichloroethane (2 mL) was added N,N-dimethylaminopyridine (305 mg, 2.5 mmol) followed by 3-methylsulfanyl-propionyl chloride (180 mg, 1.3 mmol). The reaction mixture was stirred at ambient temperature for 16 hours. The reaction was diluted with saturated aqueous NaHCO3 and the mixture was extracted with dichloromethane. The organic layer was dried over Na2SO4, filtered and concentrated. The crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford a yellow oil (298 mg, 87%): IR (KBr) 1680 cm-1; 1H NMR (300 MHz, CDCl3) δ 9.11 (s, 1H), 8.73 (d, J = 3.4 Hz, 1H), 8.28 - 8.14 (m, 1H), 7.43 (dd, J = 8.2, 5.0 Hz, 1H), 3.77 (br s, 2H), 2.81 (t, J = 7.2 Hz, 2H), 2.56 (t, J = 7.2 Hz, 2H), 2.08 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H); ESIMS m/z 342 (M+1).
  • Example 73: Preparation of N-(4-chloro-2-pyridin-3-yl-thiazol-5-yl)-N-ethyl-2-methyl-3-methylsulfanyl-propionamide (Compound 316)
  • Figure imgb0116
  • Into a 500-mL three-necked flask fitted with a J-KEM type-T temperature probe, overhead stirrer, reflux condensor, and nitrogen inlet was added (4-chloro-2-pyridin-3-yl-thiazol-5-yl)-ethyl-amine hydrochloride (20.0 g, 72.4 mmol green solid) and dichloromethane (150 mL). To this suspension was added pyridine (14.32 g, 181mmol, 2.5 eq) (portionwise over 1 min to form a dark green-black solution. To this solution was added DMAP (4.4 g, 36 mmol) followed by 2-methyl-3-methylthiopropanoyl chloride (16.5 g, 108.6 mmol), which was added portionwise over 1 minute. The reaction exotherm went from 20 °C to 31 °C during the addition of the acid chloride. The reaction was heated to 35 °C for 10 hours then cooled to 25 °C for 14 h. To the dark brown reaction mixture was added dichloromethane (200 mL) and the solution was transferred to a 500 mL separatory funnel. The solution was washed with water (100 mL) and the layers were separated. The brown aqueous layers was extracted with dichloromethane (50 mL) and the dark brown dichloromethane extracts combined, washed with brine (100 mL), dried (MgSO4), filtered and rotary evaporated. This gave 30.49 g (74% pure by HPLC at 254 nm) of a crude black oil. The crude product was purified by silica gel chromatography (0 to 100% ethyl acetate/hexanes) to afford a beige solid (23.2 g, 89%): mp 79-81 °C; 1H NMR (300 MHz, CDCl3) δ 9.11 (d, J = 1.7 Hz, 1H), 8.71 (d, J = 4.8 Hz, 1H), 8.27 - 8.13 (m, 1H), 7.42 (dd, J = 8.0, 4.9 Hz, 1H), 3.90 (bs, 1H), 3.69 (bs, 1H), 2.80 (bs, 2H), 2.47 (bs, 1H), 2.02 (s, 3H), 1.21 (q, J = 7.3 Hz, 6H); ESIMS m/z 356 (M+1).
  • Example 74: Preparation of 3-(4-Chloro-thiazole-2-yl)pyridine
  • Figure imgb0117
  • To a suspension of pyridin-3-ylboronic acid (3.87 g, 31.5 mmol) in toluene (120 mL) was added 2,4-dichlorothiazole (4.62 g, 30 mmol) followed by ethanol (60 mL) and a 2.0 M solution of K2CO3 (30.0 mL, 60.0 mmol). The solution was degassed by applying vacuum and then purging with nitrogen (3 times). To the reaction mixture was added tetrakis(triphenylphosphine)palladium (0) (1.733 g, 1.500 mmol) and the flask was heated at 95 °C under nitrogen for 16 hours. The aqueous layer was removed and the organic layer was concentrated. The crude product was purified via silica gel chromatography (0-100% ethyl acetate/hexanes) to afford the title compound as a brown solid (4.6 g, 74%): mp 84-86 °C; IR (KBr) 3092 cm-1; 1H NMR (400 MHz, CDCl3) δ 9.16 - 9.13 (m, 1H), 8.69 (dd, J = 4.8, 1.6 Hz, 1H), 8.23 (ddd, J = 8.0, 2.2, 1.7 Hz, 1H), 7.40 (ddd, J = 8.0, 4.8, 0.8 Hz, 1H), 7.16 (s, 1H).
  • Example 75: Preparation of 2,2-dimethyl-3-(methylthio)propanoic acid
  • Figure imgb0118
  • Example 75 can be prepared as demonstrated in the literature (reference Musker, W. K.; et al. J. Org. Chem. 1996, 51, 1026-1029). Sodium methanethiolate (1.0 g, 14 mmol, 2.0 equiv) was added to a stirred solution of 3-chloro-2,2-dimethylpropanoic acid (1.0 g, 7.2 mmol, 1.0 equiv) in N,N-dimethylformamide (3.7 mL) at 0 °C. The resulting brown suspension was allowed to warm to 23 °C and stirred for 24 h. The reaction mixture was diluted with a saturated solution of sodium bicarbonate (300 mL) and washed with diethyl ether (3 x 75 mL). The aqueous layer was acidified to pH≈1 with concentrated hydrochloric acid and extracted with diethyl ether (3 x 75 mL). The combined organic layers were dried (sodium sulfate), gravity filtered, and concentrated to afford a colorless oil (1.2 g, 99% crude yield). 1H NMR (300 MHz, CDCl3) δ 2.76 (s, 2H), 2.16 (s, 3H), 1.30 (s, 6H).
  • Example 76: Preparation of 3-methyl-3-methylsulfanyl-butyric acid
  • Figure imgb0119
  • Example 76 was made using the procedures disclosed in J.Chem Soc Perkin 1, 1992, 10, 1215-21).
  • Example 77: Preparation of 3-methylsulfanyl-butyric acid
  • Figure imgb0120
  • Example 77 was made using the procedures disclosed in Synthetic Comm., 1985, 15 (7), 623-32.
  • Example 78: Preparation of tetrahydro-thiophene-3-carboxylic acid
  • Figure imgb0121
  • Example 78 was made using the procedures disclosed in Heterocycles, 2007, 74, 397-409.
  • Example 79: Preparation of 2-methyl-3-methylsulfanyl-butyric acid
  • Figure imgb0122
  • Example 79 was made using the procedures disclosed in J. Chem Soc Perkin 1, 1992, 10, 1215-21.
  • Example 80: Preparation of (1S,2S)-2-(methylthio)cyclopropanecarboxylic acid
  • Figure imgb0123
  • Example 80 was made using the procedures disclosed in Synthetic Comm., 2003, 33 (5); 801-807.
  • The following compounds were made in accordance with Schemes I through XXI above.
  • The following compounds were made in accordance with the procedures shown in Scheme I steps a , b , e , i and j followed by Scheme VII above: 138, 174.
  • The following compounds were made in accordance with the procedures shown in Scheme I steps a , b , e , i and j above: 120.
  • Compound 476 was prepared according to Scheme XVIII.
  • Compound 502 was prepared from Compound 481 according to the Scheme IX (step c ) and the Scheme V (Step a ), respectively.
  • Compound 494 was prepared from Compound 481 according to Scheme IX (step c ) and Scheme VIII (step a ), respectively.
  • Compound 503 was prepared from Compound 277 according to the Scheme VIII (steps b and c ), Scheme IX (step a , c ) and Scheme III (steps f ) and Scheme V (step a ), respectively.
  • Compound 451 was prepared as disclosed in Scheme VII from compound 421.
  • Compound 459 was prepared as disclosed in Scheme VII from compound 451.
  • The following compound was made in accordance with the procedures shown in Scheme I steps c , e , and h followed by Scheme XIV steps a and b : 472.
  • The following compounds were made in accordance with the procedures shown in Scheme I steps c , e , and h followed by Scheme XIV step a: 449, 386, 398, 450, 511, 512.
  • The following compounds were made in accordance with the procedures shown in Scheme I steps c , e , i , j , and k , Scheme XVI step a , and Scheme VIII step b then a , respectively: 583, 584, and 586.
  • The following compound was made in accordance with the procedures shown in Scheme I steps c , e , i , j , and k followed by Scheme XVI step a: 580.
  • The following compound was made in accordance with the procedures shown in Scheme I steps c , e , i , j , and k , Scheme XVI step a , and Scheme VIII step b , respectively: 581.
  • The following compound was made in accordance with the procedures shown in Scheme I steps c , e , i , j , and k , Scheme XVI step a , Scheme VIII step b , and Scheme XIV step a , respectively: 585.
  • The following compound was made in accordance with the procedures shown in Scheme I steps c , e , i , j , and k , Scheme XVI step a , Scheme VIII step b , and Scheme II step d , respectively: 587.
  • The following compound was made in accordance with the procedures shown in Scheme II steps a , b , c : 309.
  • Compounds 473, 500, 508, 509, 513, 515, 551 were made in accordance with Schemes III (step b , c ) and Scheme IV.
  • Compounds 469, 470, 474, 475, 501, 510, 514, 558 were made in accordance with Schemes III (step b , c ), Scheme IV and Scheme VII.
  • Compounds 527, 528, 529, 540, 541, 542, 543, 544, 545; 547, 548, 550, 554, 555, 556, 557, 561, 562, 563, 564, 570, 571, 574, 575, 576, 577, 578, 579 were made in accordance with Schemes III (step b , c , d , e , f ) and Scheme XVI.
  • Compound 549 was made in accordance with Schemes III (step b , c , d , e , f ), Scheme XVI and Scheme VII (step a ).
  • Compounds 139-142, 252 were made in accordance with Schemes I and V.
  • Compounds 143-148 were made in accordance with Schemes I; V, and VII.
  • Compounds 133-136 were made in accordance with Schemes II and V.
  • Compounds 251 and 265 were made in accordance with Scheme III.
  • Compound 296 was made in accordance with Schemes III and V.
  • Compound 317 was made in accordance with Schemes III and X.
  • Compound 318 was made in accordance with Schemes III and IX.
  • Compounds 149-151, 160, 241, 243-245, and 267 were made in accordance with Scheme III.
  • Compounds 193, 209-210, 221-224, 226, 231, 233, 236, 237, 240, 253, 254, 255, 262-264, 266, 274, 275, 278, 279, 298, 299, 305, 308, 525, 530-532, 535, 539 and 546 were made in accordance with Schemes III and V.
  • Compounds 137, 153-155, 158-159, 161, 169-170, 172, 175, 176, 196, 197, 204-205 and 207 were made in accordance with Schemes III and VIII.
  • Compounds 452 was made in accordance with Schemes III and IX.
  • Compounds 297, 352, 422 and 478 were made in accordance with Schemes III and X.
  • Compounds 186, 187, 194, 206, 208, 232, 268, 276, 280-283, 290-295, 310-312, 326, 327, 329, 330-347, 350, 351, 355, 365, 533, 534, 536 and 573 were made in accordance with Schemes III and XVI.
  • Compounds 152, 162, 173, 183-185, 188, 189, 195 and 200 were made in accordance with Schemes III, IV and V.
  • Compounds 225, 229, 230, 234, 235, 238, 239, 246, 247, 249, 250, 256-261, 269-273, 288, 289, 306, 307, 314, 315, 348, 349, 559 and 560 were made in accordance with Schemes III, V and VII.
  • Compound 211 was made in accordance with Schemes III, V and VIII.
  • Compound 328 was made in accordance with Schemes III, IX and XVI.
  • Compounds 303, 366 and 423 were made in accordance with Schemes III (step a-c ), Scheme X (step a-d ) and Scheme II (step d ).
  • Compound 364 was made in accordance with Schemes III (step a-c ), Scheme X (step a-d ) and Scheme VIII (step a and b ).
  • Compounds 384, 385, 424, 425, 441 and 456 were made in accordance with Schemes III (step a-c ), Scheme X (step a-d ), Scheme II (step d and e ) and Scheme V.
  • Compounds 354, 457, 458, 480, 498, 499 and 505 were made in accordance with Schemes III (step a-e ), Scheme IX (step a ), Scheme III (step f ) and Scheme V.
  • Compounds 504, 506, 507 and 526 were made in accordance with Schemes III (step a-e ), Scheme IX (step a ), Scheme III (step f ), Scheme V and Scheme VII.
  • Compounds 392, 393, 427, 454 and 455 were made in accordance with Schemes III (step a-c ), Scheme X (step a-d ), Scheme II (step d and e ), Scheme V and Scheme VII.
  • Compound 477 and 496 were made in accordance with Schemes III (step a-e ), Scheme V.
  • Compounds 356, 426, and 460-468 were prepared according to Scheme II (steps c - e ) and Scheme XVI.
  • Compounds 357, 518, 567 and 568 were prepared according to Scheme II (steps c and d ).
  • Compounds 358-362, 367-374, 381, 382, 383, 387 - 390, 394, 396, 397, 420-421 and 428-440 were prepared according to Scheme XVI.
  • Compounds 167 and 168 were prepared in accordance with Schemes III, V and XI.
  • Compound 165 was made according to Scheme III.
  • Compounds 166, 190, 300 and 446-448 were prepared in accordance with Schemes III and V.
  • Compounds 178, 179, 181, 182, 191, 192, 198 and 199 were prepared in accordance with Schemes III and VI.
  • Compounds 212-220, 248, 319, 324, 405, 409, 411, 413, 401, 415, 442-445, 487, 516, 517, 538, 552, 553, 566, 569, 588 were prepared in accordance with Schemes III and XVI.
  • Compounds 284, 301, 302, 375-378, 379, 380, 482-486, 491-493 were prepared according to Scheme II.
  • Compounds 285, 287 520-524, 537, 565 were prepared in accordance with Schemes III, XVI and VII.
  • Compound 286 was prepared according to Schemes II and V.
  • Compounds 320-323, 400, 402-404, 407, 410 and 412 were prepared in accordance with Schemes II and XVI.
  • Compound 395 was prepared in accordance with Schemes XII and XVI.
  • Compounds 399, 406, 408, 414, 416-418 were prepared in accordance with Schemes II, III and VI.
  • Compound 489 was prepared in accordance with Schemes III, XVI and VIII.
  • Compounds 201 and 202 were prepared in accordance with Scheme II.
  • Compound 177 was prepared in accordance with Schemes in and VI.
  • Compound 325 was prepared in accordance with Schemes II and VI.
  • Compound 488 was prepared in accordance with Schemes III and XVI.
  • Compound 490 was prepared in accordance with Schemes III, XVI, and VIII.
  • INSECTICIDAL TESTING
  • The compounds were tested against cotton aphid, green peach aphid, and sweet potato whitefly using procedures described in the following examples and reported in Table 2.
  • In each case of Table 2, the rating scale is as follows at 200 ppm.
    % Control (or Mortality) Rating
    80-100 A
    Less than 80 B
    Not tested C
  • Example 81: Insecticidal test for green peach aphid (Myzus persicae) in foliar spray assay.
  • Cabbage seedlings grown in 3-inch pots, with 2-3 small (3-5 cm) true leaves, were used as test substrate. The seedlings were infested with 20-50 green peach aphids (wingless adult and nymph) one day prior to chemical application. Four pots with individual seedlings were used for each treatment. Compounds (2 mg) were dissolved in 2 mL of acetone/methanol (1:1) solvent, forming stock solutions of 1000 ppm. The stock solutions were diluted 5X with 0.025% Tween 20 in H2O to obtain a test solution at 200 ppm. A hand-held Devilbiss sprayer was used for spraying a solution to both sides of cabbage leaves until runoff. Reference plants (solvent check) were sprayed with the diluent only. Treated plants were held in a holding room for three days at approximately 25 °C and 40% relative humidity (RH) prior to grading. Evaluation was conducted by counting the number of live aphids per plant under a microscope. Insecticidal activity was measured by using Abbott's correction formula are presented in Table 2: (See col. "MYZUPE"). Corrected % Control = 100 * X Y / X
    Figure imgb0124

    where
    • X = No. of live aphids on solvent check plants
    • Y = No. of live aphids on treated plants
    Example 82: Insecticidal test for cotton aphid (Aphis gossypii) in foliar spray assay
  • Squash or cotton seedlings with fully expanded cotyledon leaves were trimmed to one cotyledon per plant and infested with cotton aphid (wingless adult and nymph) one day prior to chemical application. Each plant was examined before chemical application to ensure uniform infestation (ca. 30-70 aphids per plant). Compounds (2 mg) were dissolved in 2 mL of acetone/methanol (1:1) solvent, forming stock solutions of 1000 ppm. The stock solutions were diluted 5X with 0.025% Tween 20 in H2O to obtain a solution at 200 ppm. A hand-held Devilbiss aspirator type sprayer was used to apply the spray solutions until runoff to both sides of the squash cotyledon leaves. Four plants (4 replications) were used for each concentration of each compound. Reference plants (solvent check) were sprayed with the diluent only. Treated plants were held in a holding room for three days at approximately 25 °C and 40% RH before the number of live aphids on each plant was recorded. Insecticidal activity was measured by Corrected % Control using Abbott's correction formula and presented in Table 2 (see col. "APHIGO"): Corrected % Control = 100 * X Y / X
    Figure imgb0125

    where
    • X = No. of live aphids on solvent check plants
    • Y = No. of live aphids on treated plants
    Example 83: Insecticidal test for sweetpotato whitefly-crawler (Bemisia. tabaci) in foliar spray assay
  • Cotton plants grown in 3-inch pots, with 1 small (3-5 cm) true leaf, were used as test substrate. The plants were placed in a room with whitefly adults. Adults were allowed to deposit eggs for 2-3 days. After a 2-3 day egg-laying period, plants were taken from the adult whitefly room. Adults were blown off leaves using a hand-held Devilbiss sprayer (23 psi). Plants with egg infestation (100-300 eggs per plant) were placed in a holding room for 5-6 days at 82 °F and 50% RH for egg hatch and crawler stage to develop. Four cotton plants were used for each treatment. Compounds (2 mg) were dissolved in 1 mL of acetone solvent, forming stock solutions of 2000 ppm. The stock solutions were diluted 10X with 0.025% Tween 20 in H2O to obtain a test solution at 200 ppm. A hand-held Devilbiss sprayer was used for spraying a solution to both sides of cotton leaf until runoff. Reference plants (solvent check) were sprayed with the diluent only. Treated plants were held in a holding room for 8-9 days at approximately 82°F and 50% RH prior to grading. Evaluation was conducted by counting the number of live nymphs per plant under a microscope. Insecticidal activity was measured by using Abbott's correction formula and presented in Table 2 (see col. "BEMITA"): Corrected % Control = 100 * X Y / X
    Figure imgb0126

    where
    • X = No. of live aphids on solvent check plants
    • Y = No. of live aphids on treated plants
    PESTICIDALLY ACCEPTABLE ACID ADDITION SALTS, SALT DERIVATIVES, SOLVATES, ESTER DERIVATIVES, POLYMORPHS, ISOTOPES AND RADIONUCLIDES
  • Molecules of Formula I may be formulated into pesticidally acceptable acid addition salts. By way of a non-limiting example, an amine function can form salts with hydrochloric, hydrobromic, sulfuric, phosphoric, acetic, benzoic, citric, malonic, salicylic, malic, fumaric, oxalic, succinic, tartaric, lactic, gluconic, ascorbic, maleic, aspartic, benzenesulfonic, methanesulfonic, ethanesulfonic, hydroxymethanesulfonic, and hydroxyethanesulfonic acids. Additionally, by way of a non-limiting example, an acid function can form salts including those derived from alkali or alkaline earth metals and those derived from ammonia and amines. Examples of preferred cations include sodium, potassium, magnesium, and ammonium cations.
  • Molecules of Formula I may be formulated into salt derivatives. By way of a non-limiting example, a salt derivative can be prepared by contacting a free base with a sufficient amount of the desired acid to produce a salt. A free base may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous sodium hydroxide (NaOH), potassium carbonate, ammonia, and sodium bicarbonate. As an example, in many cases, a pesticide, such as 2,4-D, is made more water-soluble by converting it to its dimethylamine salt.
  • Molecules of Formula I may be formulated into stable complexes with a solvent, such that the complex remains intact after the non-complexed solvent is removed. These complexes are often referred to as "solvates." However, it is particularly desirable to form stable hydrates with water as the solvent.
  • - Molecules of Formula I may be made as various crystal polymorphs. Polymorphism is important in the development of agrochemicals since different crystal polymorphs or structures of the same molecule can have vastly different physical properties and biological performances.
  • Molecules of Formula I may be made with different isotopes. Of particular importance are molecules having 2H (also known as deuterium) in place of 1H.
  • Molecules of Formula I may be made with different radionuclides. Of particular importance are molecules having 14C.
  • STEREOISOMERS
  • Molecules of Formula I may exist as one or more stereoisomers. Thus, certain molecules can be produced as racemic mixtures. It will be appreciated by those skilled in the art that one stereoisomer may be more active than the other stereoisomers. Individual stereoisomers may be obtained by known selective synthetic procedures, by conventional synthetic procedures using resolved starting materials, or by conventional resolution procedures.
  • INSECTICIDES
  • Molecules of Formula I may also be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more of the following insecticides - 1,2-dichloropropane, abamectin, acephate, acetamiprid, acethion, acetoprole, acrinathrin, acrylonitrile, alanycarb, aldicarb, aldoxycarb, aldrin, allethrin, allosamidin, allyxycarb, alpha-cypermethrin, alpha-ecdysone, alpha-endosulfan, amidithion, aminocarb, amiton, amiton oxalate, amitraz, anabasine, athidathion, azadirachtin, azamethiphos, azinphos-ethyl, azinphos-methyl, azothoate, barium hexafluorosilicate, barthrin, bendiocarb, benfuracarb, bensultap, beta-cyfluthrin, beta-cypermethrin, bifenthrin, bioallethrin, bioethanomethrin, biopermethrin, bistrifluron, borax, boric acid, bromfenvinfos, bromocyclen, bromo-DDT, bromophos, bromophos-ethyl, bufencarb, buprofezin, butacarb, butathiofos, butocarboxim, butonate, butoxycarboxim, cadusafos, calcium arsenate, calcium polysulfide, camphechlor, carbanolate, carbaryl, carbofuran, carbon disulfide, carbon tetrachloride, carbophenothion, carbosulfan, cartap, cartap hydrochloride, chlorantraniliprole, chlorbicyclen, chlordane, chlordecone, chlordimeform, chlordimeform hydrochloride, chlorethoxyfos, chlorfenapyr, chlorfenvinphos, chlorfluazuron, chlormephos, chloroform, chloropicrin, chlorphoxim, chlorprazophos, chlorpyrifos, chlorpyrifos-methyl, chlorthiophos, chromafenozide, cinerin I, cinerin II, cinerins, cismethrin, cloethocarb, closantel, clothianidin, copper acetoarsenite, copper arsenate, copper naphthenate, copper oleate, coumaphos, coumithoate, ciotamiton, crotoxyphos, crufomate, cryolite, cyanofenphos, cyanophos, cyanthoate, cyantraniliprole, cyclethrin, cycloprothrin, cyfluthrin, cyhalothrin, cypermethrin, cyphenothrin, cyromazine, cythioate, DDT, decarbofuran, deltamethrin, demephion, demephion-O, demephion-S, demeton, demeton-methyl, demeton-O, demeton-O-methyl, demeton-S, demeton-S-methyl, demeton-S-methylsulphon, diafenthiuron, dialifos, diatomaceous earth, diazinon, dicapthon, dichlofenthion, dichlorvos, dicresyl, dicrotophos, dicyclanil, dieldrin, diflubenzuron, dilor, dimefluthrin, dimefox, dimetan, dimethoate, dimethriil, dimethylvinphos, dimetilan, dinex, dinex-diclexine, dinoprop, dinosam, dinotefuran, diofenolan, dioxabenzofos, dioxacarb, dioxathion, disulfoton, dithicrofos, d-limonene, DNOC, DNOC-ammonium, DNOC-potassium, DNOC-sodium, doramectin, ecdysterone, emamectin, emamectin benzoate, EMPC, empenthrin, endosulfan, endothion, endrin, EPN, epofenonane, eprinomectin, esdepalléthrine, esfenvalerate, etaphos, ethiofencarb, ethion, ethiprole, ethoate-methyl, ethoprophos, ethyl format, ethyl-DDD, ethylene dibromide, ethylene dichloride, ethylene oxide, etofenprox, etrimfos, EXD, famphur, fenamiphos, fenazaflor, fenchlorphos, fenethacarb, fenfluthrin, fenitrothion, fenobucarb, fenoxacrim, fenoxycarb, fenpirithrin, fenpropathrin, fensulfothion, fenthion, fenthion-ethyl, fenvalerate, fipronil, flonicamid, flubendiamide (additionally resolved isomers thereof), flucofuron, flucycloxuron, flucythrinate, flufenerim, flufenoxuron, flufenprox, fluvalinate, fonofos, formetanate, formetanate hydrochloride, formothion, formparanate, formparanate hydrochloride, fosmethilan, fospirate, fosthietan, fufenozide, furathiocarb, furethrin, gamma-cyhalothrin, gamma-HCH, halfenprox, halofenozide, HCH, HEOD, heptachlor, heptenophos, heterophos, hexaflumuron, HHDN, hydramethylnon, hydrogen cyanide, hydroprene, hyquincarb, imidacloprid, imiprothrin, indoxacarb, iodomethane, IPSP, isazofos, isobenzan, isocarbophos, isodrin, isofenphos, isofenphos-methyl, isoprocarb, isoprothiolane, isothioate, isoxathion, ivermectin, jasmolin I, jasmolin II, jodfenphos, juvenile hormone I, juvenile hormone II, juvenile hormone III, kelevan, kinoprene, lambdacyhalothrin, lead arsenate, lepimectin, leptophos, lindane, lirimfos, lufenuron, lythidathion, malathion, malonoben, mazidox, mecarbam, mecarphon, menazon, meperfluthrin, mephosfolan, mercurous chloride, mesulfenfos, metaflumizone, methacrifos, methamidophos, methidathion, methiocarb, methocrotophos, methomyl, methoprene, methothrin, methoxychlor, methoxyfenozide, methyl bromide, methyl isothiocyanate, methylchloroform, methylene chloride, metofluthrin, metolcarb, metoxadiazone, mevinphos, mexacarbate, milbemectin, milbemycin oxime, mipafox, mirex, molosultap, monocrotophos, monomehypo, monosultap, morphothion, moxidectin, naftalofos, naled, naphthalene, nicotine, nifluridide, nitenpyram, nithiazine, nitrilacarb, novaluron, noviflumuron, omethoate, oxamyl, oxydemeton-methyl, oxydeprofos, oxydisulfoton, para-dichlorobenzene, parathion, parathion-methyl, penfluron, pentachlorophenol, permethrin, phenkapton, phenothrin, phenthoate, phorate, phosalone, phosfolan, phosmet, phosnichlor, phosphamidon, phosphine, phoxim, phoxim-methyl, pirimetaphos, pirimicarb, pirimiphos-ethyl, pirimiphos-methyl, potassium arsenite, potassium thiocyanate, pp'-DDT, prallethrin, precocene I, precocene II, precocene III, primidophos, profenofos, profluralin, profluthrin, promacyl, promecarb, propaphos, propetamphos, propoxur, prothidathion, prothiofos, prothoate, protrifenbute, pymetrozine, pyraclofos, pyrafluprole, pyrazophos, pyresmethrin, pyrethrin I, pyrethrin II, pyrethrins, pyridaben, pyridalyl, pyridaphenthion, pyrifluquinazon, pyrimidifen, pyrimitate, pyriprole, pyriproxyfen, quassia, quinalphos, quinalphos-methyl, quinothion, rafoxanide, resmethrin, rotenone, ryania, sabadilla, schradan, selamectin, silafluofen, silica gel, sodium arsenite, sodium fluoride, sodium hexafluorosilicate, sodium thiocyanate, sophamide, spinetoram, spinosad, spiromesifen, spirotetramat, sulcofuron, sulcofuron-sodium, sulfluramid, sulfotep, sulfoxaflor, sulfuryl fluoride, sulprofos, tau-fluvalinate, tazimcarb, TDE, tebufenozide, tebufenpyrad, tebupirimfos, teflubenzuron, tefluthrin, temephos, TEPP, terallethrin, terbufos, tetrachloroethane, tetrachlorvinphos, tetramethrin, tetramethylfluthrin, theta-cypermethrin, thiacloprid, thiamethoxam, thicrofos, thiocarboxime, thiocyclam, thiocyclam oxalate, thiodicarb, thiofanox, thiometon, thiosultap, thiosultap-disodium, thiosultap-monosodium, thuringiensin, tolfenpyrad, tralomethrin, transfluthrin, transpermethrin, triarathene, triazamate, triazophos, trichlorfon, trichlormetaphos-3, trichloronat, trifenofos, triflumuron, trimethacarb, triprene, vamidothion, vaniliprole, XMC, xylylcarb, zeta-cypermethrin, zolaprofos (collectively these commonly named insecticides are defined as the "Insecticide Group").
  • ACARICIDES
  • Molecules of Formula I may also be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more of the following acaricides - acequinocyl, amidoflumet, arsenous oxide, azobenzene, azocyclotin, benomyl, benoxafos, benzoximate, benzyl benzoate, bifenazate, binapacryl, bromopropylate, chinomethionat, chlorbenside, chlorfenethol, chlorfenson, chlorfensulphide, chlorobenzilate, chloromebuform, chloromethiuron, chloropropylate, clofentezine, cyenopyrafen, cyflumetofen, cyhexatin, dichlofluanid, dicofol, dienochlor, diflovidazin, dinobuton, dinocap, dinocap-4, dinocap-6, dinocton, dinopenton, dinosulfon, dinoterbon, diphenyl sulfone, disulfiram, dofenapyn, etoxazole, fenazaquin, fenbutatin oxide, fenothiocarb, fenpyroximate, fenson, fentrifanil, fluacrypyrim, fluazuron, flubenzimine, fluenetil, flumethrin, fluorbenside, hexythiazox, mesulfen, MNAF, nikkomycins, proclonol, propargite, quintiofos, spirodiclofen, sulfiram, sulfur, tetradifon, tetranactin, tetrasul, and thioquinox (collectively these commonly named acaricides are defined as the "Acaricide Group").
  • NEMATICIDES
  • Molecules of Formula I may also be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more of the following nematicides - 1,3-dichloropropene, benclothiaz, dazomet, dazomet-sodium, DBCP, DCIP, diamidafos, fluensulfone, fosthiazate, furfural, imicyafos, isamidofos, isazofos, metam, metam-ammonium, metam-potassium, metam-sodium, phosphocarb, and thionazin (collectively these commonly named nematicides are defined as the "Nematicide Group")
  • FUNGICIDES
  • Molecules of Formula I may also be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more of the following fungicides - (3-ethoxypropyl)mercury bromide, 2-methoxyethylmercury chloride, 2-phenylphenol, 8-hydroxyquinoline sulfate, 8-phenylmercurioxyquinoline, acibenzolar, acibenzolar-S-methyl, acypetacs, acypetacs-copper, acypetacs-zinc, aldimorph, allyl alcohol, ametoctradin, amisulbrom, ampropylfos, anilazine, aureofungin, azaconazole, azithiram, azoxystrobin, barium polysulfide, benalaxyl, benalaxyl-M, benodanil, benomyl, benquinox, bentaluron, benthiavalicarb, benthiavalicarb-isopropyl, benzalkonium chloride, benzamacril, benzamacril-isobutyl, benzamorf, benzohydroxamic acid, bethoxazin, binapacryl, biphenyl, bitertanol, bithionol, bixafen, blasticidin-S, Bordeaux mixture, boscalid, bromuconazole, bupirimate, Burgundy mixture, buthiobate, butylamine, calcium polysulfide, captafol, captan, carbamorph, carbendazim, carboxin, carpropamid, carvone, Cheshunt mixture, chinomethionat, chlobenthiazone, chloraniformethan, chloranil, chlorfenazole, chlorodinitronaphthalene, chloroneb, chloropicrin, chlorothalonil, chlorquinox, chlozolinate, climbazole, clotrimazole, copper acetate, copper carbonate, basic, copper hydroxide, copper naphthenate, copper oleate, copper oxychloride, copper silicate, copper sulfate, copper zinc chromate, cresol, cufraneb, cuprobam, cuprous oxide, cyazofamid, cyclafuramid, cycloheximide, cyflufenamid, cymoxanil, cypendazole, cyproconazole, cyprodinil, dazomet, dazomet-sodium, DBCP, debacarb, decafentin, dehydroacetic acid, dichlofluanid, dichlone, dichlorophen, dichlozoline, diclobutrazol, diclocymet, diclomezine, diclomezine-sodium, dicloran, diethofencarb, diethyl pyrocarbonate, difenoconazole, diflumetorim, dimethirimol, dimethomorph, dimoxystrobin, diniconazole, diniconazole-M, dinobuton, dinocap, dinocap-4, dinocap-6, dinocton, dinopenton, dinosulfon, dinoterbon, diphenylamine, dipyrithione, disulfiram, ditalimfos, dithianon, DNOC, DNOC-ammonium, DNOC-potassium, DNOC-sodium, dodemorph, dodemorph, acetate, dodemorph benzoate, dodicin, dodicin-sodium, dodine, drazoxolon, edifenphos, epoxiconazole, etaconazole, etem, ethaboxam, ethirimol, ethoxyquin, ethylmercury, 2,3-dihydroxypropyl mercaptide, ethylmercury acetate, ethylmercury bromide, methylmercury chloride, ethylmercury phosphate, etridiazole, famoxadone, fenamidone, fenaminosulf, fenapanil, fenarimol, fenbuconazole, fenfuram, fenhexamid, fenitropan, fenoxanil, fenpiclonil, fenpropidin, fenpropimorph, fentin, fentin chloride, fentin hydroxide, ferbam, ferimzone, fluazinam, fludioxonil, flumetover, flumorph, fluopicolide, fluopyram, fluoroimide, fluotrimazole, fluoxastrobin, fluquinconazole, flusilazole, flusulfamide, flutianil, flutolanil, flutriafol, fluxapyroxad, folpet, formaldehyde, fosetyl, fosetyl-aluminium, fuberidazole, furalaxyl, furametpyr, furcarbanil, furconazole, furconazole-cis, furfural, furmecyclox, furophanate, glyodin, griseofulvin, guazatine, halacrinate, hexachlorobenzene, hexachlorobutadiene, hexaconazole, hexylthiofos, hydrargaphen, hymexazol, imazalil, imazalil nitrate, imazalil sulfate, imibenconazole, iminoctadine, iminoctadine triacetate, iminoctadine trialbesilate, iodomethane, ipconazole, iprobenfos, iprodione, iprovalicarb, isoprothiolane, isopyrazam, isotianil, isovaledione, kasugamycin, kresoxim-methyl, mancopper, mancozeb, mandipropamid, maneb, mebenil, mecarbinzid, mepanipyrim, mepronil, meptyldinocap, mercuric chloride, mercuric oxide, mercurous chloride, metalaxyl, metalaxyl-M, metam, metam-ammonium, metam-potassium, metam-sodium, metazoxolon, metconazole, methasulfocarb, methfuroxam, methyl bromide, methyl isothiocyanate, methylmercury benzoate, methylmercury dicyandiamide, methylmercury pentachlorophenoxide, metiram, metominostrobin, metrafenone, metsulfovax, milneb, myclobutanil, myclozolin, N-(ethylmercury)-p-toluenesulphonanilide, nabam, natamycin, nitrostyrene, nitrothal-isopropyl, nuarimol, OCH, octhilinone, ofurace, orysastrobin, oxadixyl, oxine-copper, oxpoconazole, oxpoconazole fumarate, oxycarboxin, pefurazoate, penconazole, pencycuron, penflufen, pentachlorophenol, penthiopyrad, phenylmercuriurea, phenylmercury acetate, phenylmercury chloride, phenylmercury derivative of pyrocatechol, phenylmercury nitrate, phenylmercury salicylate, phosdiphen, phthalide, picoxystrobin, piperalin, polycarbamate, polyoxins, polyoxorim, polyoxorim-zinc, potassium azide, potassium polysulfide, potassium thiocyanate, probenazole, prochloraz, procymidone, propamocarb, propamocarb hydrochloride, propiconazole, propineb, proquinazid, prothiocarb, prothiocarb hydrochloride, prothioconazole, pyracarbolid, pyraclostrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyrazophos, pyribencarb, pyridinitril, pyrifenox, pyrimethanil, pyriofenone, pyroquilon, pyroxychlor, pyroxyfur, quinacetol, quinacetol sulfate, quinazamid, quinconazole, quinoxyfen, quintozene, rabenzazole, salicylanilide, sedaxane, silthiofam, simeconazole, sodium azide, sodium orthophenylphenoxide, sodium pentachlorophenoxide, sodium polysulfide, spiroxamine, streptomycin, sulfur, sultropen, TCMTB, tebuconazole, tebufloquin, tecloftalam, tecnazene, tecoram, tetraconazole, thiabendazole, thiadifluor, thicyofen, thifluzamide, thiochlorfenphim, thiomersal, thiophanate, thiophanate-methyl, thioquinox, thiram, tiadinil, tioxymid, tolclofos-methyl, tolylfluanid, tolylmercury acetate, triadimefon, triadimenol, triamiphos, triarimol, triazbutil, triazoxide, tributyltin oxide, trichlamide, tricyclazole, tridemorph, trifloxystrobin, triflumizole, triforine, triticonazole, uniconazole, uniconazole-P, validamycin, valifenalate, vinclozolin, zarilamid, zinc naphthenate, zineb, ziram, zoxamide (collectively these commonly named fungicides are defined as the "Fungicide Group").
  • HERBICIDES
  • Molecules of Formula I may also be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more of the following herbicides - 2,3,6-TBA, 2,3,6-TBA-dimethylammonium, 2,3,6-TBA-sodium, 2,4,5-T, 2,4,5-T-2-butoxypropyl, 2,4,5-T-2-ethylhexyl, 2,4,5-T-3-butoxypropyl, 2,4,5-TB, 2,4,5-T-butometyl, 2,4,5-T-butotyl, 2,4,5-T-butyl, 2,4,5-T-isobutyl, 2,4,5-T-isoctyl, 2,4,5-T-isopropyl, 2,4,5-T-methyl, 2,4,5-T-pentyl, 2,4,5-T-sodium, 2,4,5-T-triethylammonium, 2,4,5-T-trolamine, 2,4-D, 2,4-D-2-butoxypropyl, 2,4-D-2-ethylhexyl, 2,4-D-3-butoxypropyl, 2,4-D-ammonium, 2,4-DB, 2,4-DB-butyl, 2,4-DB-dimethylammonium, 2,4-DB-isoctyl, 2,4-DB-potassium, 2,4-DB-sodium, 2,4-D-butotyl, 2,4-D-butyl, 2,4-D-diethylammonium, 2,4-D-dimethylammonium, 2,4-D-diolamine, 2,4-D-dodecylammonium, 2,4-DEB, 2,4-DEP, 2,4-D-ethyl, 2,4-D-heptylammonium, 2,4-D-isobutyl, 2,4-D-isoctyl, 2,4-D-isopropyl, 2,4-D-isopropylammonium, 2,4-D-lithium, 2,4-D-meptyl, 2,4-D-methyl, 2,4-D-octyl, 2,4-D-pentyl, 2,4-D-potassium, 2,4-D-propyl, 2,4-D-sodium, 2,4-D-tefuryl, 2,4-D-tetradecylammonium, 2,4-D-triethylammonium, 2,4-D-tris(2-hydroxypropyl)ammonium, 2,4-D-trolamine, 3,4-DA, 3,4-DB, 3,4-DP, 4-CPA, 4-CPB, 4-CPP, acetochlor, acifluorfen, acifluorfen-methyl, acifluorfen-sodium, aclonifen, acrolein, alachlor, allidochlor, alloxydim, alloxydim-sodium, allyl alcohol, alorac, ametridione, ametryn, amibuzin, amicarbazone, amidosulfuron, aminocyclopyrachlor, aminocyclopyrachlor-methyl, aminocyclopyrachlor-potassium, aminopyralid, aminopyralid-potassium, aminopyralid-tris(2-hydroxypropyl)ammonium, amiprofos-methyl, amitrole, ammonium sulfamate, anilofos, anisuron, asulam, asulam-potassium, asulam-sodium, atraton, atrazine, azafenidin, azimsulfuron, aziprotryne, barban, BCPC, beflubutamid, benazolin, benazolin-dimethylammonium, benazolin-ethyl, benazolin-potassium, bencarbazone, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, bentazone-sodium, benzadox, benzadox-ammonium, benzfendizone, benzipram, behzobicyclon, benzofenap, benzofluor, benzoylprop, benzoylprop-ethyl, benzthiazuron, bicyclopyrone, bifenox, bilanafos, bilanafos-sodium, bispyribac, bispyribac-sodium, borax, bromacil, bromacil-lithium, bromacil-sodium, bromobonil, bromobutide, bromofenoxim, bromoxynil, bromoxynil butyrate, bromoxynil heptanoate, bromoxynil octanoate, bromoxynil-potassium, brompyrazon, butachlor, butafenacil, butamifos, butenachlor, buthidazole, buthiuron, butralin, butroxydim, buturon, butylate, cacodylic acid, cafenstrole, calcium chlorate, calcium cyanamide, cambendichlor, carbasulam, carbetamide, carboxazole, carfentrazone, carfentrazone-ethyl, CDEA, CEPC, chlomethoxyfen, chloramben, chloramben-ammonium, chloramben-diolamine, chloramben-methyl, chloramben-methylammonium, chloramben-sodium, chloranocryl, chlorazifop, chlorazifop-propargyl, chlorazine, chlorbromuron, chlorbufam, chloreturon, chlorfenac, chlorfenac-sodium, chlorfenprop, chlorfenprop-methyl, chlorflurazole, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chlornitrofen, chloropon, chlorotoluron, chloroxuron, chloroxynil, chlorprocarb, chlorpropham, chlorsulfuron, chlorthal, chlorthal-dimethyl, chlorthal-monomethyl, chlorthiamid, cinidon-ethyl, cinmethylin, cinosulfuron, cisanilide, clethodim, cliodinate, clodinafop, clodinafop-propargyl, clofop, clofop-isobutyl, clomazone, clomeprop, cloprop, cloproxydim, clopyralid, clopyralid-methyl, clopyralid-olamine, clopyralid-potassium, clopyralid-tris(2-hydroxypropyl)ammonium, cloransulam, cloransulam-methyl, CMA, copper sulfate, CPMF, CPPC, credazine, cresol, cumyluron, cyanamide, cyanatryn, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cycluron, cyhalofop, cyhalofop-butyl, cyperquat, cyperquat chloride, cyprazine, cyprazole, cypromid, daimuron, dalapon, dalapon-calcium, dalapon-magnesium, dalapon-sodium, dazomet, dazomet-sodium, delachlor, desmedipham, desmetryn, di-allate, dicamba, dicamba-dimethylammonium, dicamba-diolamine, dicamba-isopropylammonium, dicamba-methyl, dicamba-olamine, dicamba-potassium, dicamba-sodium, dicamba-trolamine, dichlobenil, dichloralurea, dichlormate, dichlorprop, dichlorprop-2-ethylhexyl, dichlorprop-butotyl, dichlorprop-dimethylammonium, dichlorprop-ethylammonium, dichlorprop-isoctyl, dichlorprop-methyl, dichlorprop-P, dichlorprop-P-dimethylammonium, dichlorprop-potassium, dichlorprop-sodium, diclofop, diclofop-methyl, diclosulam, diethamquat, diethamquat dichloride, diethatyl, diethatyl-ethyl, difenopenten, difenopenten-ethyl, difenoxuron, difenzoquat, difenzoquat metilsulfate, diflufenican, diflufenzopyr, diflufenzopyr-sodium, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimexano, dimidazon, dinitramine, dinofenate, dinoprop, dinosam, dinoseb, dinoseb acetate, dinoseb-ammonium, dinoseb-diolamine, dinoseb-sodium, dinoseb-trolamine, dinoterb, dinoterb acetate, diphacinone-sodium, diphenamid, dipropetryn, diquat, diquat dibromide, disul, disul-sodium, dithiopyr, diuron, DMPA, DNOC, DNOC-ammonium, DNOC-potassium, DNOC-sodium, DSMA, EBEP, eglinazine, eglinazine-ethyl, endothal, endothal-diammonium, endothal-dipotassium, endothal-disodium, epronaz, EPTC, erbon, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethidimuron, ethiolate, ethofumesate, ethoxyfen, ethoxyfen-ethyl, ethoxysulfuron, etinofen, etnipromid, etobenzanid, EXD, fenasulam, fenoprop, fenoprop-3-butoxypropyl, fenoprop-butometyl, fenoprop-butotyl, fenoprop-butyl, fenoprop-isoctyl, fenoprop-methyl, fenoprop-potassium, fenoxaprop, fenoxaprop-ethyl, fenoxaprop-P, fenoxaprop-P-ethyl, fenoxasulfone, fenteracol, fenthiaprop, fenthiaprop-ethyl, fentrazamide, fenuron, fenuron TCA, ferrous sulfate, flamprop, flamprop-isopropyl, flamprop-M, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, fluazifop, fluazifop-butyl, fluazifop-methyl, fluazifop-P, fluazifop-P-butyl, fluazolate, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenican, flufenpyr, flufenpyr-ethyl, flumetsulam, flumezin, flumiclorac, flumiclorac-pentyl, flumioxazin, flumipropyn, fluometuron, fluorodifen, fluoroglycofen, fluoroglycofen-ethyl, fluoromidine, fluoronitrofen, fluothiuron, flupoxam, flupropacil, flupropanate, flupropanate-sodium, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-butometyl, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, fosamine-ammonium, furyloxyfen, glufosinate, glufosinate-ammonium, glufosinate-P, glufosinate-P-ammonium, glufosinate-P-sodium, glyphosate, glyphosate-diammonium, glyphosate-dimethylammonium, glyphosate-isopropylammonium, glyphosate-monoammonium, glyphosate-potassium, glyphosate-sesquisodium, glyphosate-trimesium, halosafen, halosulfuron, halosulfuron-methyl, haloxydine, haloxyfop, haloxyfop-etotyl, haloxyfop-methyl, haloxyfop-P, haloxyfop-P-etotyl, haloxyfop-P-methyl, haloxyfop-sodium, hexachloroacetone, hexaflurate, hexazinone, imazamethabenz, imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic-ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazaquin-methyl, imazaquin-sodium, imazethapyr, imazethapyr-ammonium, imazosulfuron, indanofan, indaziflam, iodobonil, iodomethane, iodosulfuron, iodosulfuron-methyl-sodium, ioxynil, ioxynil octanoate, ioxynil-lithium, ioxynil-sodium, ipazine, ipfencarbazone, iprymidam, isocarbamid, isocil, isomethiozin, isonoruron, isopolinate, isopropalin, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, isoxapyrifop, karbutilate, ketospiradox, lactofen, lenacil, linuron, MAA, MAMA, MCPA, MCPA-2-ethylhexyl, MCPA-butotyl, MCPA-butyl, MCPA-dimethylammonium, MCPA-diolamine, MCPA-ethyl, MCPA-isobutyl, MCPA-isoctyl, MCPA-isopropyl, MCPA-methyl, MCPA-olamine, MCPA-potassium, MCPA-sodium, MCPA-thioethyl, MCPA-trolamine, MCPB, MCPB-ethyl, MCPB-methyl, MCPB-sodium, mecoprop, mecoprop-2-ethylhexyl, mecoprop-dimethylammonium, mecoprop-diolamine, mecoprop-ethadyl, mecoprop-isoctyl, mecoprop-methyl, mecoprop-P, mecoprop-P-dimethylammonium, mecoprop-P-isobutyl, mecoprop-potassium, mecoprop-P-potassium, mecoprop-sodium, mecoprop-trolamine, medinoterb, medinoterb acetate, mefenacet, mefluidide, mefluidide-diolamine, mefluidide-potassium, mesoprazine, mesosulfuron, mesosulfuron-methyl, mesotrione, metam, metam-ammonium, metamifop, metamitron, metam-potassium, metam-sodium, metazachlor, metazosulfuron, metflurazon, methabenzthiazuron, methalpropalin, methazole, methiobencarb, methiozolin, methiuron, methometon, methoprotryne, methyl bromide, methyl isothiocyanate, methyldymron, metobenzuron, metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinate, monalide, monisouron, monochloroacetic acid, monolinuron, monuron, monuron TCA, morfamquat, morfamquat dichloride, MSMA, naproanilide, napropamide, naptalam, naptalam-sodium, neburon, nicosulfuron, nipyraclofen, nitralin, nitrofen, nitrofluorfen, norflurazon, noruron, OCH, orbencarb, ortho-dichlorobenzene, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxapyrazon, oxapyrazon-dimolamine, oxapyrazon-sodium, oxasulfuron, oxaziclomefone, oxyfluorfen, parafluron, paraquat, paraquat dichloride, paraquat dimetilsulfate, pebulate, pelargonic acid, pendimethalin, penoxsulam, pentachlorophenol, pentanochlor, pentoxazone, perfluidone, pethoxamid, phenisopham, phenmedipham, phenmedipham-ethyl, phenobenzuron, phenylmercury acetate, picloram, picloram-2-ethylhexyl, picloram-isoctyl, picloram-methyl, picloram-olamine, picloram-potassium, picloram-triethylammonium, picloram-tris(2-hydroxypropyl)ammonium, picolinafen, pinoxaden, piperophos, potassium arsenite, potassium azide, potassium cyanate, pretilachlor, primisulfuron, primisulfuron-methyl, procyazine, prodiamine, profluazol, profluralin, profoxydim, proglinazine, proglinazine-ethyl, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamide, prosulfalin, prosulfocarb, prosulfuron, proxan, proxan-sodium, prynachlor, pydanon, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotole, pyrazolynate, pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribenzoxim, pyributicarb, pyriclor, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quinonamid, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, rhodethanil, rimsulfuron, saflufenacil, sebuthylazine, secbumeton, sethoxydim, siduron, simazine, simeton, simetryn, SMA, S-metolachlor, sodium arsenite, sodium azide, sodium chlorate, sulcotrione, sulfallate, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron, sulfuric acid, sulglycapin, swep, TCA, TCA-ammonium, TCA-calcium, TCA-ethadyl, TCA-magnesium, TCA-sodium, tebutam, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbuchlor, terbumeton, terbuthylazine, terbutryn, tetrafluron, thenylchlor, thiazafluron, thiazopyr, thidiazimin, thidiazuron, thiencarbazone, thiencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiocarbazil, tioclorim, topramezone, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, tricamba, triclopyr, triclopyr-butotyl, triclopyr-ethyl, triclopyr-triethylammonium, tridiphane, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifluralin, triflusulfuron, triflusulfuron-methyl, trifop, trifop-methyl, trifopsime, trihydroxytriazine, trimeturon, tripropindan, tritac, tritosulfuron, vernolate, xylachlor, (collectively these commonly named herbicides are defined as the "Herbicide Group").
  • BIOPESTICIDES
  • Molecules of Formula I may also be used in combination (such as in a compositional mixture, or a simultaneous or sequential application) with one or more biopesticides. The term "biopesticide" is used for microbial biological pest control agents that are applied in a similar manner to chemical pesticides. Commonly these are bacterial, but there are also examples of fungal control agents, including Trichoderma spp. and Ampelomyces quisqualis (a control agent for grape powdery mildew). Bacillus subtilis are used to control plant pathogens. Weeds and rodents have also been controlled with microbial agents. One well-known insecticide example is Bacillus thuringiensis, a bacterial disease of Lepidoptera, Coleoptera, and Diptera. Because it has little effect on other organisms, it is considered more environmentally friendly than synthetic pesticides. Biological insecticides include products based on:
    1. 1. entomopathogenic fungi (e.g. Metarhizium anisopliae);
    2. 2. entomopathogenic nematodes (e.g. Steinernema feltiae); and
    3. 3. entomopathogenic viruses (e.g. Cydia pomonella granulovirus).
  • Other examples of entomopathogenic organisms include, but are not limited to, baculoviruses, bacteria and other prokaryotic organisms, fungi, protozoa and Microsproridia. Biologically derived insecticides include, but not limited to, rotenone, veratridine, as well as microbial toxins; insect tolerant or resistant plant varieties; and organisms modified by recombinant DNA technology to either produce insecticides or to convey an insect resistant property to the genetically modified organism. In one embodiment, the molecules of Formula I may be used with one or more biopesticides in the area of seed treatments and soil amendments. The Manual of Biocontrol Agents gives a review of the available biological insecticide (and other biology-based control) products. Copping L.G. (ed.) (2004). The Manual of Biocontrol Agents (formerly the Biopesticide Manual) 3rd Edition. British Crop Production Council (BCPC), Farnham, Surrey UK.
  • OTHER ACTIVE COMPOUNDS
  • Molecules of Formula I may also be used in combination (such as in a compositional mixture, or a simultaneous or sequential application) with one or more of the following:
    1. 1. 3-(4-chloro-2,6-dimethylphenyl)-4-hydroxy-8-oxa-1-azaspiro[4,5]dec-3-en-2-one;
    2. 2. 3-(4'-chloro-2,4-dimethyl[1,1'-biphenyl]-3-yl)-4-hydroxy-8-oxa-1-azaspiro[4,5]dec-3-en-2-one;
    3. 3. 4-[[(6-chloro-3-pyridinyl)methyl]methylamino]-2(5H)-furanone;
    4. 4. 4-[[(6-chloro-3-pyridinyl)methyl]cyclopropylamino]-2(5H)-furanone;
    5. 5. 3-chloro-N2-[(1S)-1-methyl-2-(methylsulfonyl)ethyl]-N1-[2-methyl-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl]-1,2-benzenedicarboxamide;
    6. 6. 2-cyano-N-ethyl-4-fluoro-3-methoxy-benenesulfonamide;
    7. 7. 2-cyano-N-ethyl-3-methoxy-benzenesulfonamide;
    8. 8. 2-cyano-3-difluoromethoxy-N-ethyl-4-fluoro-benzenesulfonamide;
    9. 9. 2-cyano-3-fluoromethoxy-N-ethyl-benzenesulfonamide;
    10. 10. 2-cyano-6-fluoro-3-methoxy-N,N-dimethyl-benzenesulfonamide;
    11. 11. 2-cyano-N-ethyl-6-fluoro-3-methoxy-N-methyl-benzenesulfonamide;
    12. 12. 2-cyano-3-difluoromethoxy-N,N-dimethylbenzenesulfon-amide;
    13. 13. 3-(difluoromethyl)-N-[2-(3,3-dimethylbutyl)phenyl]-1-methyl-1H-pyrazole-4-carboxamide;
    14. 14. N-ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro-α,α,α-trifluoro-p-tolyl) hydrazone;
    15. 15. N-ethyl-2,2-dichloro-1-methylcyclopropane-carboxamide-2-(2,6-dichloro-α,α,α-trifluoro-p-tolyl) hydrazone nicotine;
    16. 16. O-{(E-)-[2-(4-chloro-phenyl)-2-cyano-1-(2-trifluoromethylphenyl)-vinyl]} S-methyl thiocarbonate;
    17. 17. (E)-N1-[(2-chloro-1,3-thiazol-5-ylmethyl)]-N2-cyano-N1-methylacetamidine;
    18. 18. 1-(6-chloropyridin-3-ylmethyl)-7-methyl-8-nitro-1,2,3,5,6,7-hexahydro-imidazo[1,2-a]pyridin-5-ol;
    19. 19. 4-[4-chlorophenyl-(2-butylidine-hydrazono)methyl)]phenyl mesylate; and
    20. 20. N-Ethyl-2,2-dichloro-1-methylcyclopropanecarboxamide-2-(2,6-dichloro-alpha, alpha, alpha-trifluoro-p-tolyl)hydrazone.
  • Molecules of Formula I may also be used in combination (such as in a compositional mixture, or a simultaneous or sequential application) with one or more compounds in the following groups: algicides, antifeedants, avicides, bactericides, bird repellents, chemosterilants, herbicide safeners, insect attractants, insect repellents, mammal repellents, mating disrupters, molluscicides, plant activators, plant growth regulators, rodenticides, and/or virucides (collectively these commonly named groups are defined as the "AI Group"). It should be noted that compounds falling within the AI Group, Insecticide Group, Fungicide Group, Herbicide Group, Acaricide Group, or Nematicide Group might be in more than one group, because of multiple activities the compound has. For more information consult the " COMPENDIUM OF PESTICIDE COMMON NAMES" located at http://www.alanwood.net/pesticides/index.html . Also consult " THE PESTICIDE MANUAL" 14th Edition, edited by C D S Tomlin, copyright 2006 by British Crop Production Council, or its prior or more recent editions.
  • SYNERGISTIC MIXTURES AND SYNERGISTS
  • Molecules of Formula I may be used with the compounds in the Insecticide Group to form synergistic mixtures where the mode of action of such compounds compared to the mode of action of the molecules of Formula I are the same, similar, or different. Examples of modes of action include, but are not limited to: acetylcholinesterase inhibitor; sodium channel modulator; chitin biosynthesis inhibitor; GABA-gated chloride channel antagonist; GABA and glutamate-gated chloride channel agonist; acetylcholine receptor agonist; MET I inhibitor; Mg-stimulated ATPase inhibitor; nicotinic acetylcholine receptor; Midgut membrane disrupter; oxidative phosphorylation disrupter, and ryanodine receptor (RyRs). Additionally, molecules of Formula I may be used with compounds in the Fungicide Group, Acaricide Group, Herbicide Group, or Nematicide Group to form synergistic mixtures. Furthermore, molecules of Formula I may be used with other active compounds, such as the compounds under the heading "OTHER ACTIVE COMPOUNDS", algicides, avicides, bactericides, molluscicides, rodenticides, virucides, herbicide safeners, adjuvants, and/or surfactants to form synergistic mixtures. Generally, weight ratios of the molecules of Formula I in a synergistic mixture with another compound are from about 10:1 to about 1:10, preferably from about 5:1 to about 1:5, and more preferably from about 3:1, and even more preferably about 1:1. Additionally, the following compounds are known as synergists and may be used with the molecules disclosed in Formula I: piperonyl butoxide, piprotal, propyl isome, sesamex, sesamolin, sulfoxide, and tribufos (collectively these synergists are defined as the "Synergists Group").
  • FORMULATIONS
  • A pesticide is rarely suitable for application in its pure form. It is usually necessary to add other substances so that the pesticide can be used at the required concentration and in an appropriate form, permitting ease of application, handling, transportation, storage, and maximum pesticide activity. Thus, pesticides are formulated into, for example, baits, concentrated emulsions, dusts, emulsifiable concentrates, fumigants, gels, granules, microencapsulations, seed treatments, suspension concentrates, suspoemulsions, tablets, water soluble liquids, water dispersible granules or dry flowables, wettable powders, and ultra low volume solutions. For further information on formulation types see "Catalogue of Pesticide Formulation Types and International Coding System" Technical Monograph n°2, 5th Edition by CropLife International (2002).
  • Pesticides are applied most often as aqueous suspensions or emulsions prepared from concentrated formulations of such pesticides. Such water-soluble, water-suspendable, or emulsifiable formulations are either solids, usually known as wettable powders, or water dispersible granules, or liquids usually known as emulsifiable concentrates, or aqueous suspensions. Wettable powders, which may be compacted to form water dispersible granules, comprise an intimate mixture of the pesticide, a carrier, and surfactants. The concentration of the pesticide is usually from about 10% to about 90% by weight. The carrier is usually chosen from among the attapulgite clays, the montmorillonite clays, the diatomaceous earths, or the purified silicates. Effective surfactants, comprising from about 0.5% to about 10% of the wettable powder, are found among sulfonated lignins, condensed naphthalenesulfonates, naphthalenesulfonates, alkylbenzenesulfonates, alkyl sulfates, and non-ionic surfactants such as ethylene oxide adducts of alkyl phenols.
  • Emulsifiable concentrates of pesticides comprise a convenient concentration of a pesticide, such as from about 50 to about 500 grams per liter of liquid dissolved in a carrier that is either a water miscible solvent or a mixture of water-immiscible organic solvent and emulsifiers. Useful organic solvents include aromatics, especially xylenes and petroleum fractions, especially the high-boiling naphthalenic and olefinic portions of petroleum such as heavy aromatic naphtha. Other organic solvents may also be used, such as the terpenic solvents including rosin derivatives, aliphatic ketones such as cyclohexanone, and complex alcohols such as 2-ethoxyethanol. Suitable emulsifiers for emulsifiable concentrates are chosen from conventional anionic and non-ionic surfactants.
  • Aqueous suspensions comprise suspensions of water-insoluble pesticides dispersed in an aqueous carrier at a concentration in the range from about 5% to about 50% by weight. Suspensions are prepared by finely grinding the pesticide and vigorously mixing it into a carrier comprised of water and surfactants. Ingredients, such as inorganic salts and synthetic or natural gums may also be added, to increase the density and viscosity of the aqueous carrier. It is often most effective to grind and mix the pesticide at the same time by preparing the aqueous mixture and homogenizing it in an implement such as a sand mill, ball mill, or piston-type homogenizer.
  • Pesticides may also be applied as granular compositions that are particularly useful for applications to the soil. Granular compositions usually contain from about 0.5% to about 10% by weight of the pesticide, dispersed in a carrier that comprises clay or a similar substance. Such compositions are usually prepared by dissolving the pesticide in a suitable solvent and applying it to a granular carrier which has been pre-formed to the appropriate particle size, in the range of from about 0.5 to about 3 mm. Such compositions may also be formulated by making a dough or paste of the carrier and compound and crushing and drying to obtain the desired granular particle size.
  • Dusts containing a pesticide are prepared by intimately mixing the pesticide in powdered form with a suitable dusty agricultural carrier, such as kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1% to about 10% of the pesticide. They can be applied as a seed dressing or as a foliage application with a dust blower machine.
  • It is equally practical to apply a pesticide in the form of a solution in an appropriate organic solvent, usually petroleum oil, such as the spray oils, which are widely used in agricultural chemistry.
  • Pesticides can also be applied in the form of an aerosol composition. In such compositions the pesticide is dissolved or dispersed in a carrier, which is a pressure-generating propellant mixture. The aerosol composition is packaged in a container from which the mixture is dispensed through an atomizing valve.
  • Pesticide baits are formed when the pesticide is mixed with food or an attractant or both. When the pests eat the bait they also consume the pesticide. Baits may take the form of granules, gels, flowable powders, liquids, or solids. They can be used in pest harborages.
  • Fumigants are pesticides that have a relatively high vapor pressure and hence can exist as a gas in sufficient concentrations to kill pests in soil or enclosed spaces. The toxicity of the fumigant is proportional to its concentration and the exposure time. They are characterized by a good capacity for diffusion and act by penetrating the pest's respiratory system or being absorbed through the pest's cuticle. Fumigants are applied to control stored product pests under gas proof sheets, in gas sealed rooms or buildings or in special chambers.
  • Pesticides can be microencapsulated by suspending the pesticide particles or droplets in plastic polymers of various types. By altering the chemistry of the polymer or by changing factors in the processing, microcapsules can be formed of various sizes, solubility, wall thicknesses, and degrees of penetrability. These factors govern the speed with which the active ingredient within is released, which in turn, affects the residual performance, speed of action, and odor of the product.
  • Oil solution concentrates are made by dissolving pesticide in a solvent that will hold the pesticide in solution. Oil solutions of a pesticide usually provide faster knockdown and kill of pests than other formulations due to the solvents themselves having pesticidal action and the dissolution of the waxy covering of the integument increasing the speed of uptake of the pesticide. Other advantages of oil solutions include better storage stability, better penetration of crevices, and better adhesion to greasy surfaces.
  • Another embodiment is an oil-in-water emulsion, wherein the emulsion comprises oily globules which are each provided with a lamellar liquid crystal coating and are dispersed in an aqueous phase, wherein each oily globule comprises at least one compound which is agriculturally active, and is individually coated with a monolamellar or oligolamellar layer comprising: (1) at least one non-ionic lipophilic surface-active agent, (2) at least one non-ionic hydrophilic surface-active agent and (3) at least one ionic surface-active agent, wherein the globules having a mean particle diameter of less than 800 nanometers. Further information on the embodiment is disclosed in U.S. patent publication 20070027034 published February 1, 2007 , having Patent Application serial number 11/495,228 . For ease of use, this embodiment will be referred to as "OIWE".
  • For further information consult "Insect Pest Management" 2nd Edition by D. Dent, copyright CAB International (2000). Additionally, for more detailed information consult "Handbook of Pest Control - The Behavior, Life History, and Control of Household Pests" by Arnold Mallis, 9th Edition, copyright 2004 by GIE Media Inc.
  • OTHER FORMULATION COMPONENTS
  • Generally, when the molecules disclosed in Formula I are used in a formulation, such formulation can also contain other components. These components, include, but are not limited to, (this is a non-exhaustive and non-mutually exclusive list) wetters, spreaders, stickers, penetrants, buffers, sequestering agents, drift reduction agents, compatibility agents, anti-foam agents, cleaning agents, and emulsifiers. A few components are described forthwith.
  • A wetting agent is a substance that when added to a liquid increases the spreading or penetration power of the liquid by reducing the interfacial tension between the liquid and the surface on which it is spreading. Wetting agents are used for two main functions in agrochemical formulations: during processing and manufacture to increase the rate of wetting of powders in water to make concentrates for soluble liquids or suspension concentrates; and during mixing of a product with water in a spray tank to reduce the wetting time of wettable powders and to improve the penetration of water into water-dispersible granules. Examples of wetting agents used in wettable powder, suspension concentrate, and water-dispersible granule formulations are: sodium lauryl sulfate; sodium dioctyl sulfosuccinate; alkyl phenol ethoxylates; and aliphatic alcohol ethoxylates.
  • A dispersing agent is a substance which adsorbs onto the surface of particles and helps to preserve the state of dispersion of the particles and prevents them from reaggregating. Dispersing agents are added to agrochemical formulations to facilitate dispersion and suspension during manufacture, and to ensure the particles redisperse into water in a spray tank. They are widely used in wettable powders, suspension concentrates and water-dispersible granules. Surfactants that are used as dispersing agents have the ability to adsorb strongly onto a particle surface and provide a charged or steric barrier to reaggregation of particles. The most commonly used surfactants are anionic, non-ionic, or mixtures of the two types. For wettable powder formulations, the most common dispersing agents are sodium lignosulfonates. For suspension concentrates, very good adsorption and stabilization are obtained using polyelectrolytes, such as sodium naphthalene sulfonate formaldehyde condensates. Tristyrylphenol ethoxylate phosphate esters are also used. Non-ionics such as alkylarylethylene oxide condensates and EO-PO block copolymers are,sometimes combined with anionics as dispersing agents for suspension concentrates. In recent years, new types of very high molecular weight polymeric surfactants have been developed as dispersing agents. These have very long hydrophobic 'backbones' and a large number of ethylene oxide chains forming the 'teeth' of a 'comb' surfactant. These high molecular weight polymers can give very good long-term stability to suspension concentrates because the hydrophobic backbones have many anchoring points onto the particle surfaces. Examples of dispersing agents used in agrochemical formulations are: sodium lignosulfonates; sodium naphthalene sulfonate formaldehyde condensates; tristyrylphenol ethoxylate phosphate esters; aliphatic alcohol ethoxylates; alkyl ethoxylates; EO-PO block copolymers; and graft copolymers.
  • An emulsifying agent is a substance which stabilizes a suspension of droplets of one liquid phase in another liquid phase. Without the emulsifying agent the two liquids would separate into two immiscible liquid phases. The most commonly used emulsifier blends contain alkylphenol or aliphatic alcohol with twelve or more ethylene oxide units and the oil-soluble calcium salt of dodecylbenzenesulfonic acid. A range of hydrophile-lipophile balance ("HLB") values from 8 to 18 will normally provide good stable emulsions. Emulsion stability can sometimes be improved by the addition of a small amount of an EO-PO block copolymer surfactant.
  • A solubilizing agent is a surfactant which will form micelles in water at concentrations above the critical micelle concentration. The micelles are then able to dissolve or solubilize water-insoluble materials inside the hydrophobic part of the micelle. The types of surfactants usually used for solubilization are non-ionics, sorbitan monooleates, sorbitan monooleate ethoxylates, and methyl oleate esters.
  • Surfactants are sometimes used, either alone or with other additives such as mineral or vegetable oils as adjuvants to spray-tank mixes to improve the biological performance of the pesticide on the target. The types of surfactants used for bioenhancement depend generally on the nature and mode of action of the pesticide. However, they are often non-ionics such as: alkyl ethoxylates; linear aliphatic alcohol ethoxylates; aliphatic amine ethoxylates.
  • A carrier or diluent in an agricultural formulation is a material added to the pesticide to give a product of the required strength. Carriers are usually materials with high absorptive capacities, while diluents are usually materials with low absorptive capacities. Carriers and diluents are used in the formulation of dusts, wettable powders, granules and water-dispersible granules.
  • Organic solvents are used mainly in the formulation of emulsifiable concentrates, oil-in-water emulsions, suspoemulsions, and ultra low volume formulations, and to a lesser extent, granular formulations. Sometimes mixtures of solvents are used. The first main groups of solvents are aliphatic paraffinic oils such as kerosene or refined paraffins. The second main group (and the most common) comprises the aromatic solvents such as xylene and higher molecular weight fractions of C9 and C10 aromatic solvents. Chlorinated hydrocarbons are useful as cosolvents to prevent crystallization of pesticides when the formulation is emulsified into water. Alcohols are sometimes used as cosolvents to increase solvent power. Other solvents may include vegetable oils, seed oils, and esters of vegetable and seed oils.
  • Thickeners or gelling agents are used mainly in the formulation of suspension concentrates, emulsions and suspoemulsions to modify the rheology or flow properties of the liquid and to prevent separation and settling of the dispersed particles or droplets. Thickening, gelling, and anti-settling agents generally fall into two categories, namely water-insoluble particulates and water-soluble polymers. It is possible to produce suspension concentrate formulations using clays and silicas. Examples of these types of materials, include, but are not limited to, montmorillonite, bentonite, magnesium aluminum silicate, and attapulgite. Water-soluble polysaccharides have been used as thickening-gelling agents for many years. The types of polysaccharides most commonly used are natural extracts of seeds and seaweeds or are synthetic derivatives of cellulose. Examples of these types of materials include, but are not limited to, guar gum; locust bean gum; carrageenam; alginates; methyl cellulose; sodium carboxymethyl cellulose (SCMC); hydroxyethyl cellulose (HEC). Other types of anti-settling agents are based on modified starches, polyacrylates, polyvinyl alcohol and polyethylene oxide. Another good anti-settling agent is xanthan gum.
  • Microorganisms can cause spoilage of formulated products. Therefore preservation agents are used to eliminate or reduce their effect. Examples of such agents include, but are not limited to: propionic acid and its sodium salt; sorbic acid and its sodium or potassium salts; benzoic acid and its sodium salt; p-hydroxybenzoic acid sodium salt; methyl p-hydroxybenzoate; and 1,2-benzisothiazolin-3-one (BIT).
  • The presence of surfactants often causes water-based formulations to foam during mixing operations in production and in application through a spray tank. In order to reduce the tendency to foam, anti-foam agents are often added either during the production stage or before filling into bottles. Generally, there are two types of anti-foam agents, namely silicones and non-silicones. Silicones are usually aqueous emulsions of dimethyl polysiloxane, while the non-silicone anti-foam agents are water-insoluble oils, such as octanol and nonanol, or silica: In both cases, the function of the anti-foam agent is to displace the surfactant from the air-water interface.
  • "Green" agents (e.g., adjuvants, surfactants, solvents) can reduce the overall environmental footprint of crop protection formulations. Green agents are biodegradable and generally derived from natural and/or sustainable sources, e.g. plant and animal sources. Specific examples are: vegetable oils, seed oils, and esters thereof, also alkoxylated alkyl polyglucosides.
  • For further information, see "Chemistry and Technology of Agrochemical Formulations" edited by D.A. Knowles, copyright 1998 by Kluwer Academic Publishers. Also see "Insecticides in Agriculture and Environment - Retrospects and Prospects" by A.S. Perry, I. Yamamoto, I. Ishaaya, and R. Perry, copyright 1998 by Springer-Verlag.
  • PESTS
  • In general, the molecules of Formula I may be used to control pests e.g. beetles, earwigs, cockroaches, flies. aphids, scales, whiteflies, leafhoppers, ants, wasps, termites, moths, butterflies, lice, grasshoppers, locusts, crickets, fleas, thrips, bristletails, mites, ticks, nematodes, and symphylans.
  • In another embodiment, the molecules of Formula I may be used to control pests in the Phyla Nematoda and/or Arthropoda.
  • In another embodiment, the molecules of Formula I may be used to control pests in the Subphyla Chelicerata, Myriapoda, and/or Hexapoda.
  • In another embodiment, the molecules of Formula I may be used to control pests in the Classes of Arachnida, Symphyla, and/or Insecta.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Anoplura. A non-exhaustive list of particular genera includes, but is not limited to, Haematopinus spp., Hoplopleura spp., Linognathus spp., Pediculus spp., and Polyplax spp. A non-exhaustive list of particular species includes, but is not limited to, Haematopinus asini, Haematopinus suis, Linognathus setosus, Linognathus ovillus, Pediculus humanus capitis, Pediculus humanus humanus, and Pthirus pubis.
  • In another embodiment, the molecules of Formula I may be used to control pests in the Order Coleoptera. A non-exhaustive list of particular genera includes, but is not limited to, Acanthoscelides spp., Agriotes spp., Anthonomus spp., Apion spp., Apogonia spp., Aulacophora spp., Bruchus spp., Cerosterna spp., Cerotoma spp., Ceutorhynchus spp., Chaetocnema spp., Colaspis spp., Ctenicera spp., Curculio spp., Cyclocephala spp., Diabrotica spp., Hypera spp., Ips spp., Lyctus spp., Megascelis spp., Meligethes spp., Otiorhynchus spp., Pantomorus spp., Phyllophaga spp., Phyllotreta spp., Rhizotrogus spp., Rhynchites spp., Rhynchophorus spp., Scolytus spp., Sphenophorus spp., Sitophilus spp., and Tribolium spp. A non-exhaustive list of particular species includes, but is not limited to, Acanthoscelides obtectus, Agrilus planipennis, Anoplophora glabripennis, Anthonomus grandis, Ataenius spretulus, Atomaria linearis, Bothynoderes punctiventris, Bruchus pisorum, Callosobruchus maculatus, Carpophilus hemipterus, Cassida vittata, Cerotoma trifurcata, Ceutorhynchus assimilis, Ceutorhynchus napi, Conoderus scalaris, Conoderus stigmosus, Conotrachelus nenuphar, Cotinis nitida, Crioceris asparagi, Cryptolestes ferrugineus, Cryptolestes pusillus, Cryptolestes turcicus, Cylindrocopturus adspersus, Deporaus marginatus, Dermestes lardarius, Dermestes maculatus, Epilachna varivestis, Faustinus cubae, Hylobius pales, Hypera postica, Hypothenemus hampei, Lasioderma serricorne, Leptinotarsa decemlineata, Liogenys fuscus, Liogenys suturalis, Lissorhoptrus oryzophilus, Maecolaspis joliveti, Melanotus communis, Meligethes aeneus, Melolontha melolontha, Oberea brevis, Oberea linearis, Oryctes rhinoceros, Oryzaephilus mercator, Oryzaephilus surinamensis, Oulema melanopus, Oulema oryzae, Phyllophaga cuyabana, Popillia japonica, Prostephanus truncatus, Rhyzopertha dominica" Sitona lineatus, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum, Tribolium castaneum, Tribolium confusum, Trogoderma variabile, and Zabrus tenebrioides.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Dermaptera.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Blattaria. A non-exhaustive list of particular species includes, but is not limited to, Blattella germanica, Blatta orientalis, Parcoblatta pennsylvanica, Periplaneta americana, Periplaneta australasiae, Periplaneta brunnea, Periplaneta fuliginosa, Pycnoscelus surinamensis, and Supella longipalpa.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Diptera. A non-exhaustive list of particular genera includes, but is not limited to, Aedes spp., Agromyza spp., Anastrepha spp., Anopheles spp., Bactrocera spp., Ceratitis spp., Chrysops spp., Cochliomyia spp., Contarinia spp., Culex spp., Dasineura spp., Delia spp., Drosophila spp., Fannia spp., Hylemyia spp., Liriomyza spp., Musca spp., Phorbia spp., Tabanus spp., and Tipula spp. A non-exhaustive list of particular species includes, but is not limited to, Agromyza frontella, Anastrepha suspensa, Anastrepha ludens, Anastrepha obliqa, Bactrocera cucurbitae, Bactrocera dorsalis, Bactrocera invadens, Bactrocera zonata, Ceratitis capitata, Dasineura brassicae, Delia platura, Fannia canicularis, Fannia scalaris, Gasterophilus intestinalis, Gracillia perseae, Haematobia irritans, Hypoderma lineatum, Liriomyza brassicae, Melophagus ovinus, Musca autumnalis, Musca domestica, Oestrus ovis, Oscinella frit, Pegomya betae, Psila rosae, Rhagoletis cerasi, Rhagoletis pomonella, Rhagoletis mendax, Sitodiplosis mosellana, and Stomoxys calcitrans.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Hemiptera. A non-exhaustive list of particular genera includes, but is not limited to, Adelges spp., Aulacaspis spp., Aphrophora spp., Aphis spp., Bemisia spp., Ceroplastes spp., Chionaspis spp., Chrysomphalus spp., Coccus spp., Empoasca spp., Lepidosaphes spp., Lagynotomus spp., Lygus spp., Macrosiphum spp., Nephotettix spp., Nezara spp., Philaenus spp., Phytocoris spp., Piezodorus spp., Planococcus spp., Pseudococcus spp., Rhopalosiphum spp., Saissetia spp., Therioaphis spp., Toumeyella spp., Toxoptera spp., Trialeurodes spp., Triatoma spp. and Unaspis spp. A non-exhaustive list of particular species includes, but is not limited to, Acrosternum hilare, Acyrthosiphon pisum, Aleyrodes proletella, Aleurodicus dispersus, Aleurothrixus floccosus, Amrasca biguttula biguttula, Aonidiella aurantii, Aphis gossypii, Aphis glycines, Aphis pomi, Aulacorthum solani, Bemisia argentifolii, Bemisia tabaci, Blissus leucopterus, Brachycorynella asparagi, Brevennia rehi, Brevicoryne brassicae, Calocoris norvegicus, Ceroplastes rubens, Cimex hemipterus, Cimex lectularius, Dagbertus fasciatus, Dichelops furcatus, Diuraphis noxia, Diaphorina citri, Dysaphis plantaginea, Dysdercus suturellus, Edessa meditabunda, Eriosoma lanigerum, Eurygaster maura, Euschistus heros, Euschistus servus, Helopeltis antonii, Helopeltis theivora, Icerya purchasi, Idioscopus nitidulus, Laodelphax striatellus, Leptocorisa oratorius, Leptocorisa varicomis, Lygus hesperus, Maconellicoccus hirsutus, Macrosiphum euphorbiae, Macrosiphum granarium, Macrosiphum rosae, Macrosteles quadrilineatus, Mahanarva frimbiolata, Metopolophium dirhodum, Mictis longicornis, Myzus persicae, Nephotettix cinctipes, Neurocolpus longirostris, Nezara viridula, Nilaparvata lugens, Parlatoria pergandii, Parlatoria ziziphi, Peregrinus maidis, Phylloxera vitifoliae, Physokermes piceae" Phytocoris californicus, Phytocoris relativus, Piezodorus guildinii, Poecilocapsus lineatus, Psallus vaccinicola, Pseudacysta perseae, Pseudococcus brevipes, Quadraspidiotus perniciosus, Rhopalosiphum maidis, Rhopalosiphum padi, Saissetia oleae, Scaptocoris castanea, Schizaphis graminum, Sitobion avenae, Sogatella furcifera, Trialeurodes vaporariorum, Trialeurodes abutiloneus, Unaspis yanonensis, and Zulia entrerriana.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Hymenoptera. A non-exhaustive list of particular genera includes, but is not limited to, Acromyrmex spp., Atta spp., Camponotus spp., Diprion spp., Formica spp., Monomorium spp., Neodiprion spp., Pogonomyrmex spp., Polistes spp., Solenopsis spp., Vespula spp., and Xylocopa spp. A non-exhaustive list of particular species includes, but is not limited to, Athalia rosae, Atta texana, Iridomyrmex humilis, Monomorium minimum, Monomorium pharaonis, Solenopsis invicta, Solenopsis geminata, Solenopsis molesta, Solenopsis richtery, Solenopsis xyloni, and Tapinoma sessile.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Isoptera. A non-exhaustive list of particular genera includes, but is not limited to, Coptotermes spp., Cornitermes spp., Cryptotermes spp., Heterotermes spp., Kalotermes spp., Incisitermes spp., Macrotermes spp., Marginitermes spp., Microcerotermes spp., Procornitermes spp., Reticulitermes spp., Schedorhinotermes, spp., and Zootennopsis spp. A non-exhaustive list of particular species includes, but is not limited to, Coptotermes curvignathus, Coptotermes frenchi, Coptotermes formosanus, Heterotennes aureus, Microtermes obesi, Reticulitermes banyulensis, Reticulitermes grassei, Reticulitermes flavipes, Reticulitermes hageni, Reticulitermes hesperus, Reticulitennes santonensis, Reticulitermes speratus, Reticulitermes tibialis, and Reticulitermes virginicus.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Lepidoptera. A non-exhaustive list of particular genera includes, but is not limited to, Adoxophyes spp., Agrotis spp., Argyrotaenia spp., Cacoecia spp., Caloptilia spp., Chilo spp., Chrysodeixis spp., Colias spp., Crambus spp., Diaphania spp., Diatraea spp., Earias spp., Ephestia spp., Epimecis spp., Feltia spp., Gortyna spp., Helicoverpa spp., Heliothis spp., Indarbela spp., Lithocolletis spp., Loxagrotis spp., Malacosoma spp., Peridroma spp., Phyllonorycter spp., Pseudaletia spp., Sesamia spp., Spodoptera spp., Synanthedon spp., and Yponomeuta spp. A non-exhaustive list of particular species includes, but is not limited to, Achaea janata, Adoxophyes orana, Agrotis ipsilon, Alabama argillacea, Amorbia cuneana, Amyelois transitella, Anacamptodes defectaria, Anarsia lineatella, Anomis sabulifera, Anticarsia gemmatalis, Archips argyrospila, Archips rosana, Argyrotaenia citrana, Autographa gamma, Bonagota cranaodes, Borbo cinnara, Bucculatrix thurberiella, Capua reticulana, Carposina niponensis, Chlumetia transversa, Choristoneura rosaceana, Cnaphalocrocis medinalis, Conopomorpha cramerella, Cossus cossus, Cydia caryana, Cydia funebrana, Cydia molesta, Cydia nigricana, Cydia pomonella, Darna diducta, Diatraea saccharalis, Diatraea gran.diosella, Earias insulana, Earias vittella, Ecdytolopha aurantianum, Elasmopalpus lignosellus, Ephestia cautella, Ephestia elutella, Ephestia kuehniella, Epinotia aporema, Epiphyas postvittana, Erionota thrax, Eupoecilia ambiguella, Euxoa auxiliaris, Grapholita molesta, Hedylepta indicata, Helicoverpa armigera, Helicoverpa zea, Heliothis virescens, Hellula undalis, Keiferia lycopersicella, Leucinodes orbonalis, Leucoptera coffeella, Leucoptera malifoliella, Lobesia botrana, Loxagrotis albicosta, Lymantria dispar, Lyonetia clerkella, Mahasena corbetti, Mamestra brassicae, Maruca testulalis, Metisa plana, Mythimna unipuncta, Neoleucinodes elegantalis, Nymphula depunctalis, Operophtera brumata, Ostrinia nubilalis, Oxydia vesulia, Pandemis cerasana, Pandemis heparana, Papilio demodocus, Pectinophora gossypiella, Peridroma saucia, Perileucoptera coffeella, Phthorimaea operculella, Phyllocnistis citrella, Pieris rapae, Plathypena scabra, Plodia interpunctella, Plutella xylostella, Polychrosis viteana, Prays endocarpa, Prays oleae, Pseudaletia unipuncta, Pseudoplusia includens, Rachiplusia nu, Scirpophaga incertulas, Sesamia inferens, Sesamia nonagrioides, Setora nitens, Sitotroga cerealella, Sparganothis pilleriana, Spodoptera exigua, Spodoptera frugiperda, Spodoptera eridania, Thecla basilides, Tineola bisselliella, Trichoplusia ni, Tuta absoluta, Zeuzera coffeae, and Zeuzera pyrina.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Mallophaga. A non-exhaustive list of particular genera includes, but is not limited to, Anaticola spp., Bovicola spp., Chelopistes spp., Goniodes spp., Menacanthus spp., and Trichodectes spp. A non-exhaustive list of particular species includes, but is not limited to, Bovicola bovis, Bovicola caprae, Bovicola ovis, Chelopistes meleagridis, Goniodes dissimilis, Goniodes gigas, Menacanthus stramineus, Menopon gallinae, and Trichodectes canis.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Orthoptera. A non-exhaustive list of particular genera includes, but is not limited to, Melanoplus spp., and Pterophylla spp. A non-exhaustive list of particular species includes, but is not limited to, Anabrus simplex, Gryllotalpa africana, Gryllotalpa australis, Gryllotalpa brachyptera, Gryllotalpa hexadactyla, Locusta migratoria, Microcentrum retinerve, Schistocerca gregaria, and Scudderia furcata.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Siphonaptera. A non-exhaustive list of particular species includes, but is not limited to, Ceratophyllus gallinae, Ceratophyllus nigger, Ctenocephalides canis, Ctenocephalides felis, and Pulex irritans.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Thysanoptera. A non-exhaustive list of particular genera includes, but is not limited to, Caliothrips spp., Frankliniella spp., Scirtothrips spp., and Trips spp. A non-exhaustive list of particular sp. includes, but is not limited to, Frankliniella fusca, Frankliniella occidentalis, Frankliniella schultzei, Frankliniella williamsi, Heliothrips haemorrhoidalis, Rhipiphorothrips cruentatus, Scirtothrips citri, Scirtothrips dorsalis, and Taeniothrips rhopalantennalis, Trips hawaiiensis, Trips nigropilosus, Trips orientalis, Thrips tabaci.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Thysanura. A non-exhaustive list of particular genera includes, but is not limited to, Lepisma spp. and Thermobia spp.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Order Acarina. A non-exhaustive list of particular genera includes, but is not limited to, Acarus spp., Aculops spp., Boophilus spp., Demodex spp., Dennacentor spp., Epitrimerus spp., Eriophyes spp., Ixodes spp., Oligonychus spp., Panonychus spp., Rhizoglyphus spp., and Tetranychus spp. A non-exhaustive list of particular species includes, but is not limited to, Acarapis woodi, Acarus siro, Aceria mangiferae, Aculops lycopersici, Aculus pelekassi, Aculus schlechtendali, Amblyomma americanum, Brevipalpus obovatus, Brevipalpus phoenicis, Dermacentor variabilis, Dermatophagoides pteronyssinus, Eotetranychus carpini, Notoedres cati, Oligonychus coffeae, Oligonychus ilicis, Panonychus citri, Panonychus ulmi, Phyllocoptruta oleivora, Polyphagotarsonemus latus, Rhipicephalus sanguineus, Sarcoptes scabiei, Tegolophus perseaflorae, Tetranychus urticae, and Varroa destructor.
  • In another embodiment, the molecules of Formula I may be used to control pest of the Order Symphyla. A non-exhaustive list of particular sp. includes, but is not limited to, Scutigerella immaculata.
  • In another embodiment, the molecules of Formula I may be used to control pests of the Phylum Nematoda. A non-exhaustive list of particular genera includes, but is not limited to, Aphelenchoides spp., Belonolaimus spp., Criconemella spp., Ditylenchus spp., Heterodera spp., Hirschmanniella spp., Hoplolaimus spp., Meloidogyne spp., Pratylenchus spp., and Radopholus spp. A non-exhaustive list of particular sp. includes, but is not limited to, Dirofilaria immitis, Heterodera zeae, Meloidogyne incognita, Meloidogyne javanica, Onchocerca volvulus, Radopholus similis, and Rotylenchulus reniformis.
  • For additional information consult " HANDBOOK OF PEST CONTROL - THE BEHAVIOR, LIFE HISTORY, AND CONTROL OF HOUSEHOLD PESTS" by Arnold Mallis, 9th Edition, copyright 2004 by GIE Media Inc.
  • APPLICATIONS
  • Molecules of Formula I are generally used in amounts from about 0.01 grams per hectare to about 5000 grams per hectare to provide control. Amounts from about 0.1 grams per hectare to about 500 grams per hectare are generally preferred, and amounts from about 1 gram per hectare to about 50 grams per hectare are generally more preferred.
  • The area to which a molecule of Formula I is applied can be any area inhabited (or maybe inhabited, or traversed by) a pest, for example: where crops, trees, fruits, cereals, fodder species, vines, turf and ornamental plants, are growing; where domesticated animals are residing; the interior or exterior surfaces of buildings (such as places where grains are stored), the materials of construction used in building (such as impregnated wood), and the soil around buildings. Particular crop areas to use a molecule of Formula I include areas where apples, corn, sunflowers, cotton, soybeans, canola, wheat, rice, sorghum, barley, oats, potatoes, oranges, alfalfa, lettuce, strawberries, tomatoes, peppers, crucifers, pears, tobacco, almonds, sugar beets, beans and other valuable crops are growing or the seeds thereof are going to be planted. It is also advantageous to use aluminum sulfate with a molecule of Formula I when growing various plants.
  • Controlling pests generally means that pest populations, pest activity, or both, are reduced in an area. This can come about when: pest populations are repulsed from an area; when pests are incapacitated in or around an area; or pests are exterminated, in whole, or in part, in or around an area. Of course, a combination.of these results can occur. Generally, pest populations, activity, or both are desirably reduced more than fifty percent, preferably more than 90 percent. Generally, the area is not in or on a human; consequently, the locus is generally a non-human area.
  • The molecules of Formula I may be used in mixtures, applied simultaneously or sequentially, alone or with other compounds to enhance plant vigor (e.g. to grow a better root system, to better withstand stressful growing conditions). Such other compounds are, for example, compounds that modulate plant ethylene receptors, most notably 1-methylcyclopropene (also know as 1-MCP).
  • The molecules of Formula I can be applied to the foliar and fruiting portions of plants to control pests. The molecules will either come in direct contact with the pest, or the pest will consume the pesticide when eating leaf, fruit mass, or extracting sap, that contains the pesticide. The molecules of Formula I can also be applied to the soil, and when applied in this manner, root and stem feeding pests can be controlled. The roots can absorb a molecule taking it up into the foliar portions of the plant to control above ground chewing and sap feeding pests.
  • Generally, with baits, the baits are placed in the ground where, for example, termites can come into contact with, and/or be attracted to, the bait. Baits can also be applied to a surface of a building, (horizontal, vertical, or slant surface) where, for example, ants, termites, cockroaches, and flies, can come into contact with, and/or be attracted to, the bait. Baits can comprise a molecule of Formula I.
  • The molecules of Formula I can be encapsulated inside, or placed on the surface of a capsule. The size of the capsules can range from nanometer size (about 100-900 nanometers in diameter) to micrometer size (about 10-900 microns in diameter).
  • Because of the unique ability of the eggs of some pests to resist certain pesticides, repeated applications of the molecules of Formula I may be desirable to control newly emerged larvae.
  • Systemic movement of pesticides in plants may be utilized to control pests on one portion of the plant by applying (for example by spraying an area) the molecules of Formula I to a different portion of the plant. For example, control of foliar-feeding insects can be achieved by drip irrigation or furrow application, by treating the soil with for example pre- or post-planting soil drench, or by treating the seeds of a plant before planting.
  • Seed treatment can be applied to all types of seeds, including those from which plants genetically modified to express specialized traits will germinate. Representative examples include those expressing proteins toxic to invertebrate pests, such as Bacillus thuringiensis or other insecticidal toxins, those expressing herbicide resistance, such as "Roundup Ready" seed, or those with "stacked" foreign genes expressing insecticidal toxins, herbicide resistance, nutrition-enhancement, drought resistance, or any other beneficial traits. Furthermore, such seed treatments with the molecules of Formula I may further enhance the ability of a plant to better withstand stressful growing conditions. This results in a healthier, more vigorous plant, which can lead to higher yields at harvest time. Generally, about 1 gram of the molecules of Formula I to about 500 grams per 100,000 seeds is expected to provide good benefits, amounts from about 10 grams to about 100 grams per 100,000 seeds is expected to provide better benefits, and amounts from about 25 grams to about 75 grams per 100,000 seeds is expected to provide even better benefits.
  • It should be readily apparent that the molecules of Formula I may be used on, in, or around plants genetically modified to express specialized traits, such as Bacillus thuringiensis or other insecticidal toxins, or those expressing herbicide resistance, or those with "stacked" foreign genes expressing insecticidal toxins, herbicide resistance, nutrition-enhancement, or any other beneficial traits.
  • The molecules of Formula I may be used for controlling endoparasites and ectoparasites in the veterinary medicine sector or in the field of non-human animal keeping. The molecules of Formula I are applied, such as by oral administration in the form of, for example, tablets, capsules, drinks, granules, by dermal application in the form of, for example, dipping, spraying, pouring on, spotting on, and dusting, and by parenteral administration in the form of, for example, an injection.
  • The molecules of Formula I may also be employed advantageously in livestock keeping, for example, horses, cattle, sheep, pigs, chickens, and geese. They may also be employed advantageously in pets such as, horses, dogs, and cats. Particular pests to control would be fleas and ticks that are bothersome to such animals. Suitable formulations are administered orally to the animals with the drinking water or feed. The dosages and formulations that are suitable depend on the species.
  • The molecules of Formula I may also be employed in therapeutic methods for human health care. Such methods include, but are limited to, oral administration in the form of, for example, tablets, capsules, drinks, granules, and by dermal application.
  • Before a pesticide can be used or sold commercially, such pesticide undergoes lengthy evaluation processes by various governmental authorities (local, regional, state, national, and international). Voluminous data requirements are specified by regulatory authorities and must be addressed through data generation and submission by the product registrant or by a third party on the product registrant's behalf, often using a computer with a connection to the World Wide Web. These governmental authorities then review such data and if a determination of safety is concluded, provide the potential user or seller with product registration approval. Thereafter, in that locality where the product registration is granted and supported, such user or seller may use or sell such pesticide.
  • The headings in this document are for convenience only and must not be used to interpret any portion hereof.
    TABLE 1
    Compound Number Appearance mp (°C) IR MS (ESIMS m/z) MOLECULAR STRUCTURE
    22 pale yellow solid 162-163 234.0 (M+1)
    Figure imgb0127
    23 pale yellow solid 102-105 276.2 (M+1)
    Figure imgb0128
    24 pale yellow solid 113-114 262.2 (M+1)
    Figure imgb0129
    25 pale yellow solid 126-128 302.0 (M+1)
    Figure imgb0130
    26 pale yellow solid 173-175 297.0 (M+1)
    Figure imgb0131
    27 pale yellow solid 127-129 306.2 (M+1)
    Figure imgb0132
    28 light yellow solid 98-100 307.9 (M+1)
    Figure imgb0133
    29 white solid 92-94 322.2 (M+1)
    Figure imgb0134
    30 white solid 111-114 312.1 (M+1)
    Figure imgb0135
    31 orange solid 75-77 326.1 (M+1)
    Figure imgb0136
    32 white solid 156-158 279.9 (M+1)
    Figure imgb0137
    33 tan solid 153-155 293.8 (M+1)
    Figure imgb0138
    34 white solid 83-88 336.2 (M+1)
    Figure imgb0139
    35 clear oil 2918, 1674, 1553 308.2 (M+1)
    Figure imgb0140
    36 light yellow oil 2973, 2917, 1675, 1554 322.2 (M+1)
    Figure imgb0141
    37 clear orange oil 2917, 2934, 1676, 1554 275.9 (M+1)
    Figure imgb0142
    38 colorless oil 1679 326.2 (M+1)
    Figure imgb0143
    39 colorless oil 1663 354.3 (M+1)
    Figure imgb0144
    40 yellow oil 1676 340.2 (M+1)
    Figure imgb0145
    41 yellow solid 123 294.2 (M+1)
    Figure imgb0146
    42 yellow oil 1697 336.2 (M+1)
    Figure imgb0147
    43 yellow oil 1686 362 (M+1)
    Figure imgb0148
    44 yellow oil 1688 376 (M+1)
    Figure imgb0149
    45 clear colorless oil 1663 390.4 (M+1)
    Figure imgb0150
    46 clear yellow oil 1694 332.3 (M+3)
    Figure imgb0151
    47 yellow gum 1678 324.4 (M+3)
    Figure imgb0152
    48 yellow gum 291.59 (M+2)
    Figure imgb0153
    49 yellow gum 1656, 1684 352.3 (M+2)
    Figure imgb0154
    50 yellow gum 1676 336.0 (M+1)
    Figure imgb0155
    51 yellow oil 1679 310.5 (M+2)
    Figure imgb0156
    52 yellow-orange oil 1676 324.5 (M+2)
    Figure imgb0157
    53 yellow solid 123-125 338.6 (M+2)
    Figure imgb0158
    54 white solid 108-109 378.5 (M+2)
    Figure imgb0159
    55 yellow solid 136-139 1668, 1573 291.9 (M-1)
    Figure imgb0160
    56 orange solid 132-136 308.2 (M+1)
    Figure imgb0161
    57 orange oil 1671, 1560 322.2 (M+1)
    Figure imgb0162
    58 yellow solid 159-162 261.9 (M+1)
    Figure imgb0163
    59 beige gum 1686, 1715 338.4 (M+3)
    Figure imgb0164
    60 yellow gum 1674 350.3 (M+1)
    Figure imgb0165
    61 orange gum 1675 384.3 (M+1)
    Figure imgb0166
    62 brown gum 1672 397.13 (M+)
    Figure imgb0167
    63 gold gum 1713, 1676 353.66 (M+2)
    Figure imgb0168
    64 yellow solid 86-88 1711 265.98 (M-1)
    Figure imgb0169
    65 yellow green gum 1677 369.1 (M+)
    Figure imgb0170
    66 beige gum 1682 320.29 (M+1)
    Figure imgb0171
    67 brown gum 1674 383.11 (M+)
    Figure imgb0172
    68 light brown solid 104-108 1623 356.1 (M+1)
    Figure imgb0173
    69 light yellow solid 155-159 1643 296.1 (M+1)
    Figure imgb0174
    70 beige solid 160-164 328.1 (M+1)
    Figure imgb0175
    71 white solid 182-186 280.1 (M+1)
    Figure imgb0176
    79 tan solid 135-140 324.1 (M+1)
    Figure imgb0177
    80 white solid 118-122 338.1 (M+1)
    Figure imgb0178
    81 dark green solid 68-70 342.1 (M+1)
    Figure imgb0179
    82 yellow solid 202-203 343.1 (M+1)
    Figure imgb0180
    83 yellow solid 95-99 357.1 (M+1)
    Figure imgb0181
    84 white solid 153-155 344.1 (M+1)
    Figure imgb0182
    85 yellow solid 155-159 356.2 (M+1)
    Figure imgb0183
    86 colorless oil 1677 355.8 (M+1)
    Figure imgb0184
    87 yellow oil 1674 338.2 (M+1)
    Figure imgb0185
    88 yellow oil 1684 378.2 (M+1)
    Figure imgb0186
    89 yellow oil 1682 392.3 (M+1)
    Figure imgb0187
    90 white oil 1674 324.2 (M+1)
    Figure imgb0188
    91 yellow syrup 1675 342.2 (M+1)
    Figure imgb0189
    92 white solid 160-163 323.9 (M+1)
    Figure imgb0190
    93 yellow solid 171-173 307.8 (M+1)
    Figure imgb0191
    94 yellow foam 55-60 338.5 (M+1)
    Figure imgb0192
    96 colorless oil 1676 360.3 (M+1)
    Figure imgb0193
    97 milky white oil 1648 368.3 (M+1)
    Figure imgb0194
    98 white solid 105-109 372.2 (M+1)
    Figure imgb0195
    99 white solid 175-180 340.2(M+1)
    Figure imgb0196
    100 white solid 222-224 326.1 (M+1)
    Figure imgb0197
    101 yellow solid 134-136 354.4 (M+1)
    Figure imgb0198
    120 Thick beige gum 1720 332.0 (M+3)
    Figure imgb0199
    133 white solid 131-133 346.1 (M-1)
    Figure imgb0200
    134 orange oil 1556 360.1 (M-1)
    Figure imgb0201
    135 orange oil 1555 374.2 (M-1)
    Figure imgb0202
    136 white solid 130-131 314.2 (M-1)
    Figure imgb0203
    137 viscous yellow oil 3258, 2971, 2918, 1710 338.2 (M+1)
    Figure imgb0204
    138 Yellow gum 1674 349.51 (M+2)
    Figure imgb0205
    139 orange oil 1558 340.5 (M+1)
    Figure imgb0206
    140 yellow solid 155-159 280.4 (M+1)
    Figure imgb0207
    141 orange-yellow solid 110-113 323.9 (M-1)
    Figure imgb0208
    142 white solid 126-130 309.9 (M-1)
    Figure imgb0209
    143 white solid 160-163 353.9 (M-1)
    Figure imgb0210
    144 white solid 157-167 369.9 (M-1)
    Figure imgb0211
    145 white solid 194-198 342.1 (M+1)
    Figure imgb0212
    146 white solid 187-189 358.1 (M+1)
    Figure imgb0213
    147 white solid 181-184 325.9 (M-1)
    Figure imgb0214
    148 white solid 230-232 341.9 (M-1)
    Figure imgb0215
    149 light yellow solid 154-157 326.2 (M+1)
    Figure imgb0216
    150 dark yellow solid 135-138 304.2 (M-1)
    Figure imgb0217
    151 orange solid 171-174 317.2 (M+1)
    Figure imgb0218
    152 yellow gum 1713 456.1 (M+1)
    Figure imgb0219
    153 light yellow solid 82-85 442.1 (M+1)
    Figure imgb0220
    154 yellow oil 1744, 1714 426.2 (M+1)
    Figure imgb0221
    155 yellow oil 1743, 1725 480.2 (M+1)
    Figure imgb0222
    156 orange oil 1743, 1713 422.2 (M+1)
    Figure imgb0223
    157 orange gum 1744, 1711 486.2 (M+1)
    Figure imgb0224
    158 white solid 125-128 433.2 (M+1)
    Figure imgb0225
    159 off-white solid 143-146 325.8 (M+1)
    Figure imgb0226
    160 orange solid 124-128 364.5 (M+1)
    Figure imgb0227
    161 white solid 168-172 387.1 (M+1)
    Figure imgb0228
    162 light yellow oil 1722 350.2 (M+1)
    Figure imgb0229
    163 light yellow solid 75-81 365.93 (M+1)
    Figure imgb0230
    164 light yellow solid
    Figure imgb0231
    165 white semisolid 1714.54 324.43 (M+1)
    Figure imgb0232
    166 yellow oil 1671.41 432.5 (M+1)
    Figure imgb0233
    167 clear oil 508.36 (M+1)
    Figure imgb0234
    168 clear oil 397.4 (M+2)
    Figure imgb0235
    169 light yellow solid 142-146 342.1 (M+1)
    Figure imgb0236
    170 dark orange gum 3214, 2979, 2919, 1712 379.9 (M+1)
    Figure imgb0237
    171 yellow gum 2973, 2920 322.5 (M+1)
    Figure imgb0238
    172 yellow solid 127-131 333.1 (M+1)
    Figure imgb0239
    173 dark orange oil 1715 424.2 (M+1)
    Figure imgb0240
    174 Yellow gum 1681 343.74 (M-2)
    Figure imgb0241
    175 beige solid 136-140 322.5 (M+1)
    Figure imgb0242
    176 dark yellow oil 1743, 1713 438.5 (M+1)
    Figure imgb0243
    177 yellow solid 115-119 324.5 (M+2)
    Figure imgb0244
    178 tan solid 145-146 324.5 (M+1)
    Figure imgb0245
    179 yellow oil 1648.92 309.4 (M+1)
    Figure imgb0246
    180 yellow semisolid 2972, 2918 324.12 (M+1)
    Figure imgb0247
    181 white solid 123-126 311.89 (M+2)
    Figure imgb0248
    182 light yellow semisolid 1711.82 437.8 (M+1)
    Figure imgb0249
    183 dark orange oil 1720 377.9 (M+1)
    Figure imgb0250
    184 orange oil 1712 350.5 (M+1)
    Figure imgb0251
    185 yellow oil 1721 414.1 (M+1)
    Figure imgb0252
    186 light yellow solid 180-182 235.1 (M+1)
    Figure imgb0253
    187 light yellow solid 166-169 362.9 (M+1)
    Figure imgb0254
    188 light yellow oil 1713 442.1 (M+1)
    Figure imgb0255
    189 orange oil 1723 423.2 (M+1)
    Figure imgb0256
    190 yellow oil 451.4 (M+1)
    Figure imgb0257
    191 yellow solid 140-143 347.9 (M+1)
    Figure imgb0258
    192 yellow oil 1712.68 321.4 (M+1)
    Figure imgb0259
    193 yellow solid 127-130 249.1 (M+1)
    Figure imgb0260
    194 semi-solid orange 1708, 1679 377.1 (M+1)
    Figure imgb0261
    195 light orange oil 1707 439.2 (M+1)
    Figure imgb0262
    196 light orange oil 1684 351.9 (M+1)
    Figure imgb0263
    197 light yellow solid 151-153 306.5 (M+1)
    Figure imgb0264
    198 yellow oil 1711.53 331.99 (M+1)
    Figure imgb0265
    199 yellow solid 120-123 322.5 (M+1)
    Figure imgb0266
    200 yellow oil 1719 396.2 (M+1)
    Figure imgb0267
    201 white solid 137-139 324.1 (M-1)
    Figure imgb0268
    202 white solid 159-160 248.1 (M-1)
    Figure imgb0269
    203 light yellow oil 1721, 1694 442.1 (M+1)
    Figure imgb0270
    204 orange oil 1710 362.0 (M+1)
    Figure imgb0271
    205 beige solid 68-70 346.5 (M+1)
    Figure imgb0272
    206 yellow oil 1671 320.1 (M+1)
    Figure imgb0273
    207 yellow oil 1740, 1694 409.2 (M+1)
    Figure imgb0274
    208 yellow solid 165-167 247.1 (M+1)
    Figure imgb0275
    209 yellow solid 144-147 296.1 (M+1)
    Figure imgb0276
    210 yellow oil 1671 336.2 (M+1)
    Figure imgb0277
    211 orange semi-solid 1695 259.9 (M+1)
    Figure imgb0278
    212 white solid 73-80 354.2 (M+1)
    Figure imgb0279
    213 yellow oil 1670.97 340.2 (M+1)
    Figure imgb0280
    214 yellow semi solid 1661.6 338.1
    Figure imgb0281
    215 yellow oil 1673.26 354.2 (M+1)
    Figure imgb0282
    216 white solid 88-90 338.1 (M+1)
    Figure imgb0283
    217 off white solid 123-126 340.2 (M+1)
    Figure imgb0284
    218 off white solid 130-133 326.1 (M+1)
    Figure imgb0285
    219 yellow solid 209-213 324.1 (M+1)
    Figure imgb0286
    220 dark yellow solid 206-212 324.1 (M+1)
    Figure imgb0287
    221 yellow oil 1671 398.2 (M+1)
    Figure imgb0288
    222 yellow oil 1699 350.2 (M+1)
    Figure imgb0289
    223 thick yellow gum 1672 364.2 (M+1)
    Figure imgb0290
    224 yellow oil 3039, 2975, 2938, 1635 334.1 (M+1)
    Figure imgb0291
    225 pale yellow solid 147-149 349.9 (M+1)
    Figure imgb0292
    226 orange solid 76-79 352.2 (M+1)
    Figure imgb0293
    227 yellow oil 1681 342.2 (M+1)
    Figure imgb0294
    228 yellow solid 119-122 326.2 (M+1)
    Figure imgb0295
    229 yellow solid 170-174 368.2 (M+1)
    Figure imgb0296
    230 clear gum 1678 358.2 (M+1)
    Figure imgb0297
    231 clear oil 1686 296.2 (M+1)
    Figure imgb0298
    232 pale yellow oil 1746, 1679 334.3 (M+1)
    Figure imgb0299
    233 pale yellow oil 1676 290.2 (M+1)
    Figure imgb0300
    234 clear oil 1660 352.2 (M+1)
    Figure imgb0301
    235 pale yellow oil 1668 368.3 (M+1)
    Figure imgb0302
    236 pale yellow oil 1675 322.2 (M+1)
    Figure imgb0303
    237 dark red oil 1650 350.3 (M+1)
    Figure imgb0304
    238 white solid 89-92 1672 338.3 (M+1)
    Figure imgb0305
    239 clear oil 1674 354.2 (M+1)
    Figure imgb0306
    240 dark red oil 1675 354.3 (M+1)
    Figure imgb0307
    241 tan solid 104-107 326.1 (M+1)
    Figure imgb0308
    242 white solid 88-91 372.1 (M+2)
    Figure imgb0309
    243 yellow solid 148-151 1682 310.2 (M+1)
    Figure imgb0310
    244 beige solid 124-126 397.9 (M+1)
    Figure imgb0311
    245 light pink solid 89-92 323.8 (M+1)
    Figure imgb0312
    246 clear viscous oil 1684 362.5 (M+1)
    Figure imgb0313
    247 light yellow oil 1680 377.3 (M+1)
    Figure imgb0314
    248 dark oil 1684.18 342.1 (M+1)
    Figure imgb0315
    249 clear oil 1641 387.9 (M+1)
    Figure imgb0316
    250 clear oil 1646 382.9 (M+1)
    Figure imgb0317
    251 white solid 74-76 386.2 (M+2)
    Figure imgb0318
    252 clear oil 1715 320.3 (M+1)
    Figure imgb0319
    253 orange solid 1678 308.6 (M+1)
    Figure imgb0320
    254 light red oil 1675 341.6 (M+1)
    Figure imgb0321
    255 red oil 1653 368.6 (M+1)
    Figure imgb0322
    256 pale yellow oil 1673 356.2 (M+1)
    Figure imgb0323
    257 pale yellow oil 1675 372.2 (M+1)
    Figure imgb0324
    258 yellow oil 1670 370.2 (M+1)
    Figure imgb0325
    259 clear solid 148.7-156.9 1676 386.2 (M+1)
    Figure imgb0326
    260 light yellow oil 1645 384.2 (M+1)
    Figure imgb0327
    261 clear oil 1648 400.2 (M+1)
    Figure imgb0328
    262 yellow oil 1684 360.2 (M+1)
    Figure imgb0329
    263 light yellow solid 123-125 314.2 (M+1)
    Figure imgb0330
    264 light yellow solid 103-106 356.2 (M+1)
    Figure imgb0331
    265 pink solid 98-99 398.3 (M+1)
    Figure imgb0332
    266 yellow oil 1698 346.2 (M+1)
    Figure imgb0333
    267 dark red oil 1718 358.2 (M+1)
    Figure imgb0334
    268 yellow solid 151-155 352.2 (M+1)
    Figure imgb0335
    269 clear gum 1653 372.2 (M+1)
    Figure imgb0336
    270 light yellow gum 1680 376.2 (M+1)
    Figure imgb0337
    271 white solid 151-154 1686 392.2 (M+1)
    Figure imgb0338
    272 beige solid 123-126 362.2 (M+1)
    Figure imgb0339
    273 yellow gum 1684 378.1 (M+1)
    Figure imgb0340
    274 red oil 1684 360.2 (M+1)
    Figure imgb0341
    275 red oil 1685 328.2 (M+1)
    Figure imgb0342
    276 orange oil 1713, 1692 363.3 (M+1)
    Figure imgb0343
    277 off white solid 94-96 396.3 (M+1)
    Figure imgb0344
    278 red oil 1660 388.2 (M+1)
    Figure imgb0345
    279 orange oil 1681 374.2 (M+1)
    Figure imgb0346
    280 clear gum 1709, 1672 453.4 (M+1)
    Figure imgb0347
    281 yellow oil 1710, 1678 437.3 (M+1)
    Figure imgb0348
    282 yellow gum 377.3 (M+1)
    Figure imgb0349
    283 pale yellow oil 1710, 1677
    Figure imgb0350
    284 yellow oil 1729.59 334.3 (M+1)
    Figure imgb0351
    285 clear oil 1675.42 356.2(M+1)
    Figure imgb0352
    286 clear oil 1674.32 350.3 (M+1)
    Figure imgb0353
    287 clear oil 1677.01 356.2 (M+1)
    Figure imgb0354
    288 orange gum 1682 376.2 (M+1)
    Figure imgb0355
    289 colorless gum 1687 390.2 (M+1)
    Figure imgb0356
    290 pale yellow oil 1711, 1678 499.4 (M+1)
    Figure imgb0357
    291 yellow gum 1707, 1675 568.5 (M+1)
    Figure imgb0358
    292 yellow oil 1695 403.3 (M+1)
    Figure imgb0359
    293 red oil 1712, 1674 497.4 (M+1)
    Figure imgb0360
    294 clear gum 1684 391.3 (M+1)
    Figure imgb0361
    295 clear oil 1671 291.3 (M+1)
    Figure imgb0362
    296 yellow solid 79-81 402.2 (M+2)
    Figure imgb0363
    297 white solid 164-166 376.2 (M+1)
    Figure imgb0364
    298 white solid 160-163 378.1 (M+2)
    Figure imgb0365
    299 yellow gum 3163, 3057, 2919, 1679 391.9 (M+2)
    Figure imgb0366
    300 yellow oil 354.3 (M+1)
    Figure imgb0367
    301 yellow oil 1714.5 338.3 (M+1)
    Figure imgb0368
    302 oil 1713.23 336.3 (M+1)
    Figure imgb0369
    303 pale yellow oil 1720 403.2 (M+1)
    Figure imgb0370
    304 red oil 1718 340.3 (M+1)
    Figure imgb0371
    305 red oil 1679 342.2 (M+1)
    Figure imgb0372
    306 white solid 172-175 408.1 (M+2)
    Figure imgb0373
    307 beige solid 185-188 424 (M+2)
    Figure imgb0374
    308 beige solid 78-81 326.2 (M+1)
    Figure imgb0375
    309 pale yellow crystalline solid 160-161 310.1 (M+1)
    Figure imgb0376
    310 yellow oil 1712, 1680 484.4 (M+1)
    Figure imgb0377
    311 clear oil 1711, 1692 405.4 (M+1)
    Figure imgb0378
    312 pale yellow oil 1711, 1679 391.4 (M+1)
    Figure imgb0379
    313 red oil 1680 342.2 (M+1)
    Figure imgb0380
    314 orange oil 1680 358.3 (M+1)
    Figure imgb0381
    315 yellow oil 1681 374.3 (M+1)
    Figure imgb0382
    316 orange oil 79-81 356.3 (M+1)
    Figure imgb0383
    317 off white solid 154-156 476.2 (M+2)
    Figure imgb0384
    318 tan solid 108-110 390.2 (M+2)
    Figure imgb0385
    319 yellow oil 1676.65 354.3 (M+1)
    Figure imgb0386
    320 brownish oil 1673.91 398.3 (M+1)
    Figure imgb0387
    321 brownish oil 1674.03 384.3 (M+1)
    Figure imgb0388
    322 yellow oil 1675.46 336.3 (M+1)
    Figure imgb0389
    323 yellow oil 1676.25 350.6 (M+1)
    Figure imgb0390
    324 brown oil 1681.22 356.2 (M+1)
    Figure imgb0391
    325 yellow solid 106-111 308.3 (M+1)
    Figure imgb0392
    326 2979, 2938, 1718, 1670 344.2 (M+1)
    Figure imgb0393
    327 1718, 1675 358.3 (M+1)
    Figure imgb0394
    328 1678 378.2 (M+1)
    Figure imgb0395
    329 3197, 2917, 1665 384.2 (M+1)
    Figure imgb0396
    330 1669 398.3 (M+1)
    Figure imgb0397
    331 1677 418.2 (M+1)
    Figure imgb0398
    332 3247, 2985, 1697 357.3 (M+1)
    Figure imgb0399
    333 1678 391.2 (M+1)
    Figure imgb0400
    334 3448, 1748 306.2 (M+1)
    Figure imgb0401
    335 1743, 1692 320.3 (M+1)
    Figure imgb0402
    336 1742, 1699 340.2 (M+1)
    Figure imgb0403
    337 3209, 2976, 1682, 1661 375.3 (M+1)
    Figure imgb0404
    338 1701 389.3 (M+1)
    Figure imgb0405
    339 1669 409.2 (M+1)
    Figure imgb0406
    340 3346, 1669 303.2 (M+1)
    Figure imgb0407
    341 1658 337.1 (M+1)
    Figure imgb0408
    342 3389, 1667 287.2 (M+1)
    Figure imgb0409
    343 1665 301.2 (M+1)
    Figure imgb0410
    344 3167, 2937, 1641 303.2 (M+1)
    Figure imgb0411
    345 1654 317.2 (M+1)
    Figure imgb0412
    346 1659 337.1 (M+1)
    Figure imgb0413
    347 3173, 2975, 1658, 1637 344.2 (M+1)
    Figure imgb0414
    348 yellow oil 1679 372.2 (M+1)
    Figure imgb0415
    349 white solid 152-154 388.2 (M+1)
    Figure imgb0416
    350 yellow oil 1668, 1643 358.2 (M+1)
    Figure imgb0417
    351 pale yellow oil 1669, 1640 378.2 (M+1)
    Figure imgb0418
    352 off white solid 125-128 430.2 (M+1)
    Figure imgb0419
    353 pale yellow solid 188-191 258.1 (M+1)
    Figure imgb0420
    354 red oil 1682 406.1 (M+1)
    Figure imgb0421
    355 pale yellow solid 219-222 300.3 (M+1)
    Figure imgb0422
    356 white solid 72-76 333 (M+2)
    Figure imgb0423
    357 tan oil 394 (M+1)
    Figure imgb0424
    358 brown oil 1673 308 (M+1)
    Figure imgb0425
    359 tan solid 135-138 1665 294 (M+1)
    Figure imgb0426
    360 tacky tan solid 1673 308 (M+1)
    Figure imgb0427
    361 tan solid 97-104 1663 328 (M+1)
    Figure imgb0428
    363 pale yellow oil 1685 336.3 (M+1)
    Figure imgb0429
    364 yellow gum 3258, 3072, 2977, 2919, 1682 346.2 (M+1)
    Figure imgb0430
    365 yellow oil 1655 317.2 (M+1)
    Figure imgb0431
    366 yellow solid 81-84 328.2 (M+1)
    Figure imgb0432
    367 yellow oil 1672 294.4 (M+1)
    Figure imgb0433
    368 brown oil 1677 322 (M+1)
    Figure imgb0434
    369 tan solid 111-114 1661 316 (M+2)
    Figure imgb0435
    370 tan solid 68-71 1667 328.2 (M+1)
    Figure imgb0436
    371 brown oil 1684 344 (M+2)
    Figure imgb0437
    372 light yellow solid 164-167 1674 282.4 (M+2)
    Figure imgb0438
    373 yellow solid 157-158 1668 294 (M+1)
    Figure imgb0439
    374 yellow solid 110-112 1642 308 (M+1)
    Figure imgb0440
    375 yellow solid 163-167 319.3 (M+2)
    Figure imgb0441
    376 light yellow solid 88-94 306.3 (M+1)
    Figure imgb0442
    377 yellow solid 108-110 292 (M+1)
    Figure imgb0443
    378 yellow solid 133-137 332.3 (M+1)
    Figure imgb0444
    379 yellow solid 131-134 294.2 (M+1)
    Figure imgb0445
    380 yellow solid 170-178 318.2 (M+1)
    Figure imgb0446
    381 fluffy yellow solid 158-159 376.2, 378.2
    Figure imgb0447
    382 pale yellow oil 412.2
    Figure imgb0448
    383 rust colored solid 121-124 349.2
    Figure imgb0449
    384 orange oil 1684 331.4 (M+1)
    Figure imgb0450
    385 yellow oil 1683 345.5 (M+1)
    Figure imgb0451
    386 white solid 163-164 307.3
    Figure imgb0452
    387 pale yellow solid 129-130 315.3, 314.3
    Figure imgb0453
    388 pale yellow solid 190-194 395.4, 393.4
    Figure imgb0454
    389 off-white solid 214-215 435
    Figure imgb0455
    390 off-white solid 185-186 468.08
    Figure imgb0456
    391 yellow solid 150-151 290.12
    Figure imgb0457
    392 white solid 113-116 346.1 (M+1)
    Figure imgb0458
    393 pale yellow gum 1682 381.9 (M+1)
    Figure imgb0459
    394 orange glass 1675 429.3
    Figure imgb0460
    395 white solid 93-101 366.1 (M+1)
    Figure imgb0461
    396 off-white solid 97-98 331
    Figure imgb0462
    397 tan oil 1663 391.06
    Figure imgb0463
    398 white solid 53-54 374.04
    Figure imgb0464
    399 1653.05 286.2 (M+1)
    Figure imgb0465
    400 1658.56 300.2 (M+1)
    Figure imgb0466
    401 1668.99 320.2 (M+1)
    Figure imgb0467
    402 1657.88 372.3 (M+1)
    Figure imgb0468
    403 1664.94 392.2 (M+1)
    Figure imgb0469
    404 1662.35 342.3 (M+1)
    Figure imgb0470
    405 1673.28 362.2 (M+1)
    Figure imgb0471
    406 1665 311.3 (M+1)
    Figure imgb0472
    407 1674 345.2 (M+1)
    Figure imgb0473
    408 1660.22 346.2 (M+1)
    Figure imgb0474
    409 1713.63 380.2 (M+1)
    Figure imgb0475
    410 1668.86 387.3 (M+1)
    Figure imgb0476
    411 1676.13 407.3 (M+1)
    Figure imgb0477
    412 1668.23 359.3 (M+1)
    Figure imgb0478
    413 1675.32 379.3 (M+1)
    Figure imgb0479
    414 1648 345.3 (M+1)
    Figure imgb0480
    415 324.2 (M+1)
    Figure imgb0481
    416 1668.03 288.3 (M+1)
    Figure imgb0482
    417 1672.2 274.2 (M+1)
    Figure imgb0483
    418 1672.45 288.3 (M+1)
    Figure imgb0484
    420 tan glass 1695 451.2
    Figure imgb0485
    421 off-white solid 153-154 332,330
    Figure imgb0486
    422 beige solid 114-117 378.3 (M+1)
    Figure imgb0487
    423 yellow oil 1718 342.3 (M+1)
    Figure imgb0488
    424 orange gum 1684 312.3 (M+1)
    Figure imgb0489
    425 yellow oil 1684 344.2 (M+1)
    Figure imgb0490
    426 tan oil 348 (M+1)
    Figure imgb0491
    427 yellow oil 1676 360.2
    Figure imgb0492
    428 1708 438 (M+1)
    Figure imgb0493
    429 1652 385 (M+1)
    Figure imgb0494
    430 1689 399 (M+1)
    Figure imgb0495
    431 1695 419 (M+1)
    Figure imgb0496
    432 1691 311 (M+1)
    Figure imgb0497
    433 1686 355 (M+1)
    Figure imgb0498
    434 1696 375 (M+1), 377 (M+3)
    Figure imgb0499
    435 1683 429 (M+1)
    Figure imgb0500
    436 1688 443 (M+1)
    Figure imgb0501
    437 1695 463 (M+1)
    Figure imgb0502
    438 1670 373 (M+1)
    Figure imgb0503
    439 1702 426 (M+2)
    Figure imgb0504
    440 1692 445 (M+1)
    Figure imgb0505
    441 orange oil 1686 392.1 (M+2)
    Figure imgb0506
    442 yellow oil 1675.84
    Figure imgb0507
    443 white solid 1673.55 375.84 (M+2)
    Figure imgb0508
    444 white solid 1673.04 375:8 (M+2)
    Figure imgb0509
    445 orange oil 1677.42 357.87 (M+1)
    Figure imgb0510
    446 dark oil 1683.62 375.8 (M+2)
    Figure imgb0511
    447 dark oil 1685.07 387:9 ((M+1)
    Figure imgb0512
    448 dark oil 1675.15 372.06 (M+1)
    Figure imgb0513
    449 orange solid 137-140
    Figure imgb0514
    450 brown solid 361.98
    Figure imgb0515
    451 fluffy white solid 184-185 348,346
    Figure imgb0516
    452 orange oil 1717 384.1 (M+2)
    Figure imgb0517
    453 oil 1685 346.2 (M+1)
    Figure imgb0518
    454 white solid 170-173 408 (M+1)
    Figure imgb0519
    455 off-white solid 198-201 424.1 (M+1)
    Figure imgb0520
    456 yellow oil 1682 358.3 (M+1)
    Figure imgb0521
    457 orange oil 1683 356.2 (M+2)
    Figure imgb0522
    458 yellow oil 1683 388.2 (M+2)
    Figure imgb0523
    459 white solid 239-240 364, 362
    Figure imgb0524
    460 tan oil 1713 350 (M+1)
    Figure imgb0525
    461 tan oil 383 (M+2)
    Figure imgb0526
    462 tan oil 347 (M+2)
    Figure imgb0527
    463 tan oil 347 (M+2)
    Figure imgb0528
    464 brown oil 406 (M+1)
    Figure imgb0529
    465 tan oil 366 (M+1)
    Figure imgb0530
    466 light yellow oil 1674 362 (M+2)
    Figure imgb0531
    467 Tan Oil 1677 400 (M+2)
    Figure imgb0532
    468 tan oil 1674 362 (M+1)
    Figure imgb0533
    469 light yellow oil 1684 362.1 (M+1)
    Figure imgb0534
    470 white solid 42-46 1672 378.1 (M+1)
    Figure imgb0535
    471 clear oil 321.8 (M+1)
    Figure imgb0536
    472 orange oil 349.5 (M+1)
    Figure imgb0537
    473 yellow oil 1683 394.2 (M+1)
    Figure imgb0538
    474 light yellow solid 30-35 1682 410.1 (M+1)
    Figure imgb0539
    475 white solid 55-61 1683 426 (M+1)
    Figure imgb0540
    476 light yellow solid 119-120 1723.48 344.53 (M+1)
    Figure imgb0541
    477 brown reddish solid 65-67 306.1 (M+1)
    Figure imgb0542
    478 dark yellow solid 184-186 296.2 (M+1)
    Figure imgb0543
    480 orange oil 1682 402.1 (M+2)
    Figure imgb0544
    481 dirt yellow solid 148-149 422.1 (M+1), 420.2 (M-1),
    Figure imgb0545
    482 yellow oil 1715.43 320.3 (M+1)
    Figure imgb0546
    483 yellow oil 1719.48 306.3 (M+1)
    Figure imgb0547
    484 yellow oil 1716.41 322.2 (M+1)
    Figure imgb0548
    485 yellow oil 1719.95 308.2 (M+1)
    Figure imgb0549
    486 yellow oil 1737.4 332.2 (M+1)
    Figure imgb0550
    487 brown solid 120-125 328.1 (M+1)
    Figure imgb0551
    488 tan solid 113-115 342.2(M+1)
    Figure imgb0552
    489 yellow semi solid 1678.14 356.1 (M+1)
    Figure imgb0553
    490 yellow oil 1683.6 370.1 (M+1)
    Figure imgb0554
    491 yellow solid 65-69 334.2 (M+1)
    Figure imgb0555
    492 yellow oil 1731.07 360.4 (M+1)
    Figure imgb0556
    493 yellow oil 1715.81 346.2 (M+1)
    Figure imgb0557
    494 yellow solid 105-106 423.2 (M+1), 422.1 (M-1);
    Figure imgb0558
    495 yellow solid 219-220 323.1 (M+1), 322.1 (M-1);
    Figure imgb0559
    496 brown oil 444.2 (M+1)
    Figure imgb0560
    497 yellow solid 70-71 436.1 (M+1)
    Figure imgb0561
    498 orange oil 1683 374 (M+2)
    Figure imgb0562
    499 dark orange oil 1684 388 (M+2)
    Figure imgb0563
    500 light yellow oil 1686 362.1 (M+1)
    Figure imgb0564
    501 colorless oil 1684 378 (M+1)
    Figure imgb0565
    502 yellow solid 231-232 275.1 (M+1), 273.1 (M-1)
    Figure imgb0566
    503 yellow solid 97-98 336.1 (M+1)+;
    Figure imgb0567
    504 yellow foam 1681 404 (M+2)
    Figure imgb0568
    505 red oil 1681 388 (M+2)
    Figure imgb0569
    506 yellow oil 1682 390 (M+2)
    Figure imgb0570
    507 white foam 1683 406 (M+2)
    Figure imgb0571
    508 red oil 1684, 2237 353.0 (M+1)
    Figure imgb0572
    509 light yellow oil 1674 329.1 (M+1)
    Figure imgb0573
    510 white solid 137-140 1684 345.1 (M+1)
    Figure imgb0574
    511 sticky orange-brown solid 1513 377,375
    Figure imgb0575
    512 brown oil 1521 457, 455
    Figure imgb0576
    513 light yellow oil 1648 358.1 (M+1)
    Figure imgb0577
    514 white amorphous solid 1683 374.1 (M+1)
    Figure imgb0578
    515 off-white solid 74-76 1648 346.1 (M+1)
    Figure imgb0579
    516 orange oil 1682.18 356.1 (M+1)
    Figure imgb0580
    517 yellow oil 1681.17 340.1 (M+1)
    Figure imgb0581
    518 tan oil 1724 377 (M+2)
    Figure imgb0582
    519 yellow solid 117-119 323.4 (M+1)
    Figure imgb0583
    520 light yellow oil 1683.5 358.1 (M+1)
    Figure imgb0584
    521 light yellow oil 1683.77 372.1 (M+1)
    Figure imgb0585
    522 1679 372.1 (M+1)
    Figure imgb0586
    523 light yellow oil 1678.82 356.1 (M+1)
    Figure imgb0587
    524 light yellow oil 1681.3 372.1 (M+1)
    Figure imgb0588
    525 thick clear oil 1682 354.1 (M+1)
    Figure imgb0589
    526 pale yellow solid 121-125 1678 338 (M+1)
    Figure imgb0590
    527 light yellow oil 1660 350.1 (M+1)
    Figure imgb0591
    528 light yellow oil 1683 364.1 (M+1)
    Figure imgb0592
    529 white solid 82-86 1660 351.1 (M+1)
    Figure imgb0593
    530 yellow oil 1686 324.1 (M+1)
    Figure imgb0594
    531 brown oil 1684 324.1 (M+1)
    Figure imgb0595
    533 orange oil 1688 282.1 (M+1)
    Figure imgb0596
    534 orange oil 1671 322.1 (M+1)
    Figure imgb0597
    535 brown oil 1675 294.1 (M+1)
    Figure imgb0598
    536 yellow solid 144-146 392 (M+1)
    Figure imgb0599
    537 light yellow oil 1679.81 386.1 (M+1)
    Figure imgb0600
    538 dark oil 1679.94 370.1 (M+1)
    Figure imgb0601
    540 yellow oil 1683 406.1 (M+1)
    Figure imgb0602
    541 white solid 102-105 1674 405.2 (M+1)
    Figure imgb0603
    542 yellow amorphous solid 1668 335.1 (M+1)
    Figure imgb0604
    543 yellow amorphous solid 1669 392.1 (M+1)
    Figure imgb0605
    544 light yellow oil 1675 359.1 (M+1)
    Figure imgb0606
    545 light yellow oil 1657 394.1 (M+1)
    Figure imgb0607
    546 brown solid 2977 326 (M+1)
    Figure imgb0608
    547 white solid 110-111 1675 415.9 (M+1)
    Figure imgb0609
    548 light yellow solid 102-103 1674 432.8 (M+1)
    Figure imgb0610
    549 colorless oil 2925 409.9 (M+1)
    Figure imgb0611
    1650
    550 brown oil 1681 363.9 (M+1)
    Figure imgb0612
    551 white solid 92-94 1681 375.9 (M+1)
    Figure imgb0613
    552 yellow oil 1675.25 431.9 (M+1)
    Figure imgb0614
    553 dark oil 1682.96 321.9 (M+1)
    Figure imgb0615
    554 light yellow oil 1645 349.8 (M+1)
    Figure imgb0616
    555 light yellow oil 1660 365.0 (M+1)
    Figure imgb0617
    556 light yellow oil 1668 365.9 (M+1)
    Figure imgb0618
    557 red oil 1683 405.9 (M+1)
    Figure imgb0619
    558 white solid 132-135 1684 391.9 (M+1)
    Figure imgb0620
    559 pale yellow oil 1674 386 (M+1)
    Figure imgb0621
    560 pale yellow oil 1675 402 (M+1)
    Figure imgb0622
    561 dark brown oil 1684 392.9 (M+1)
    Figure imgb0623
    562 dark brown oil 2926 1681 358.9 (M+1)
    Figure imgb0624
    563 light yellow oil 1683 379.9 (M+1)
    Figure imgb0625
    564 white solid 172-174 1674 413.8 (M+1)
    Figure imgb0626
    565 yellow oil 1673.19 388.0 (M+2)
    Figure imgb0627
    566 yellow oil 1669.72 307.98 (M+1)
    Figure imgb0628
    567 tan solid 63-68 367.6 (M+1)
    Figure imgb0629
    568 clear oil 398 (M+1)
    Figure imgb0630
  • Compound numbers 4, 5, 15, 21, 61-65, 67, 152-158, 162, 173, 176, 183-185, 188-189, 195-196,200,203-205,207, 211, 221, 244, 265, 277, 301, 317, 352, 356-357, 395, 422, 426, 460-461, 463, 464-467, 494, 518, 567-568 are comparative examples.
    TABLE 1
    Compound Number Appearance mp (°C) IR MS (ESIMS m/z) MOLECULAR STRUCTURE
    569 dark oil 1675.09 307.98 (M+1)
    Figure imgb0631
    570 yellow solid 118-120 1658 335.1 (M+1)
    Figure imgb0632
    571 colorless oil 1669 345.1 (M+1)
    Figure imgb0633
    573 yellow oil 1656 334.0 (M+1)
    Figure imgb0634
    574 dark brown oil 1669 345.5 (M+1)
    Figure imgb0635
    575 yellow oil 1684 394.0 (M+2)
    Figure imgb0636
    576 yellow oil 1658 336.0 (M+2)
    Figure imgb0637
    577 white solid 115-117 1672 418.0 (M+2)
    Figure imgb0638
    578 yellow oil 1659 404.1 (M+1)
    Figure imgb0639
    579 yellow solid 46-49 1653 425.5 (M+1)
    Figure imgb0640
    580 yellow solid 51-60 435.5 (M+1)
    Figure imgb0641
    581 yellow oil 334.5 (M+1)
    Figure imgb0642
    582 clear oil 433.5 (M+1)
    Figure imgb0643
    583 clear oil 407.4 (M+1)
    Figure imgb0644
    584 clear oil 445.4 (M+1)
    Figure imgb0645
    585 off-white solid 190-192 434.5 (M+1)
    Figure imgb0646
    586 yellow oil 407.4 (M+1)
    Figure imgb0647
    587 orange semisolid 391.5 (M+1)
    Figure imgb0648
    588 1681.88 328.05 (M+1)
    Figure imgb0649
    589 yellow solid 72-74 326.1 (M+1), 324.1 (M-1)
    Figure imgb0650
    TABLE 2: Biological Results
    Compound Number MYZUPE 200 ppm APHIGO 200 ppm BEMITA 200 ppm
    1 B C A
    2 B C B
    3 B C B
    4 B C B
    5 C C C
    6 B C B
    7 B C B
    8 A C C
    9 A C A
    10 B C A
    11 B C C
    12 A C A
    13 A C A
    14 B C A
    15 A C A
    16 B C A
    17 A C A
    18 A C A
    19 A B B
    20 A C A
    21 A C A
    22 B C B
    23 A C B
    24 A C A
    25 A C B
    26 B C B
    27 A C B
    28 A C A
    29 A C A
    30 A C B
    31 A C A
    32 A C A
    33 B C A
    34 A C A
    35 A C A
    36 A C A
    37 A C A
    38 A C A
    39 A C A
    40 A C A
    41 A C A
    42 A C A
    43 A C A
    44 A C A
    45 B C A
    46 B C B
    47 A C A
    48 A C A
    49 B C A
    50 A C A
    51 A C A
    52 B C A
    53 B C A
    54 A C A
    55 A C A
    56 A C A
    57 A C A
    58 A C A
    59 B C A
    60 B C B
    61 B C B
    62 B C B
    63 B C B
    64 B C B
    65 B C B
    66 A C A
    67 B C B
    68 A C A
    69 B C A
    70 B C B
    71 A C C
    72 A C B
    73 A C A
    74 A C A
    75 A C B
    76 A C A
    77 A C B
    78 A C B
    79 A C B
    80 A C A
    81 A C A
    82 A C B
    83 A C A
    84 A C C
    85 A C A
    86 A C A
    87 A C A
    88 A C A
    89 B C A
    90 A C A
    91 A C A
    92 A C B
    93 A C B
    94 A C B
    95 A C A
    96 A C A
    97 A C A
    98 A C A
    99 A C A
    100 A C B
    101 A C A
    120 C C C
    133 A C B
    134 A C B
    135 A C B
    136 A C B
    137 B C B
    138 A C A
    139 A C A
    140 A C B
    141 A C A
    142 A C B
    143 A C B
    144 A C B
    145 A C B
    146 A C B
    147 A C B
    148 A C B
    149 B C B
    150 A C B
    151 B C B
    152 B C B
    153 B C A
    154 B C B
    155 B C B
    156 A C B
    157 B C B
    158 B C B
    159 A C A
    160 B C B
    161 B C B
    162 A C A
    163 A C B
    164 A C B
    165 A C A
    166 A C A
    167 B C A
    168 A C A
    169 B C A
    170 B C B
    171 A C B
    172 A C A
    173 A C A
    174 A C A
    175 B C B
    176 B C B
    177 A C B
    178 A C B
    179 A C A
    180 A C A
    181 A C B
    182 A C B
    183 A C A
    184 A C A
    185 A C A
    186 B C B
    187 A C B
    188 A C A
    189 A C A
    190 A C A
    191 A C B
    192 A C A
    193 A C A
    194 A C A
    195 A C A
    196 A C A
    197 A C B
    198 A C A
    199 A C A
    200 A C A
    201 B C B
    202 B C B
    203 A C A
    204 A C B
    205 A C A
    206 A C A
    207 A C A
    208 B C B
    209 A C B
    210 A A A
    211 A C A
    212 A C A
    213 A C A
    214 A C A
    215 A C A
    216 A C A
    217 A C B
    218 A A A
    219 A C B
    220 A C A
    221 A C B
    222 A C B
    223 A C A
    224 A C A
    225 A C A
    226 A A A
    227 A A A
    228 A A A
    229 A A B
    230 A A A
    231 A C A
    232 B C A
    233 A A A
    234 A A A
    235 A A A
    236 A C A
    237 A C A
    238 A C A
    239 A C A
    240 A A A
    241 A A A
    242 A B A
    243 A A A
    244 B B B
    245 A A A
    246 A C A
    247 A A A
    248 A C A
    249 A B A
    250 A B B
    251 B C A
    252 A C A
    253 A A A
    254 A A A
    255 A A A
    256 A C A
    257 A C A
    258 A C A
    259 A C A
    260 A C A
    261 A C A
    262 A A A
    263 A C A
    264 A C A
    265 A C B
    266 A C A
    267 A C A
    268 A C A
    269 A C A
    270 A B A
    271 A C A
    272 A A A
    273 A C A
    274 A A A
    275 A C A
    276 A C B
    277 A C A
    278 A C A
    279 A A A
    280 B C B
    281 B C B
    282 A C A
    283 B C B
    284 A C A
    285 A C A
    286 A C A
    287 A C A
    288 A A A
    289 A A A
    290 B C B
    291 B C B
    292 B C A
    293 A C B
    294 B C B
    295 B C A
    296 A C A
    297 B C B
    298 A C B
    299 A C A
    300 A C B
    301 A C A
    302 B C A
    303 B C A
    304 A C A
    305 A C A
    306 A C B
    307 A C B
    308 A C A
    309 B C B
    310 B C C
    311 A C C
    312 A C A
    313 A C A
    314 A C A
    315 A C A
    316 A C B
    317 A C B
    318 A C B
    319 A C A
    320 A C B
    321 A C B
    322 A C B
    323 A C B
    324 A C B
    325 A C A
    326 B C B
    327 B C B
    328 B C B
    329 B C B
    330 B C B
    331 B C A
    332 A C B
    333 A C B
    334 A C B
    335 A C A
    336 A C A
    337 B C A
    338 C C A
    339 B C A
    340 A C B
    341 B C B
    342 B C B
    343 A C B
    344 B C B
    345 A C A
    346 B C A
    347 B C B
    348 A C A
    349 A C A
    350 B C B
    351 B C B
    352 A C B
    353 B C A
    354 A C A
    355 A C B
    356 A C A
    357 A C A
    358 A C A
    359 A C A
    360 A C B
    361 A C B
    363 B C A
    364 A C ,A
    365 A C B
    366 A C A
    367 A C B
    368 A C A
    369 A C A
    370 A C A
    371 A C A
    372 A C A
    373 A C A
    374 A C A
    375 B C B
    376 A C A
    377 B C A
    378 A C A
    379 A C B
    380 B C B
    381 B C B
    382 B C B
    383 B C A
    384 A C A
    385 A C B
    386 A C A
    387 B C A
    388 A C A
    389 B C B
    390 B C A
    391 A C A
    392 A C A
    393 A C A
    394 A C A
    395 B C B
    396 A C A
    397 A C A
    398 B C A
    399 A C A
    400 C C C
    401 A C A
    402 A C A
    403 A C B
    404 A C B
    405 A C B
    406 A C B
    407 A C B
    408 A C A
    409 A C A
    410 A C A
    411 A C A
    412 A C A
    413 A C B
    414 A C A
    415 A C A
    416 A C A
    417 A C A
    418 A C A
    420 B C A
    421 A C B
    422 A C B
    423 B C A
    424 A C A
    425 A C A
    426 A C A
    427 A C A
    428 B C B
    429 A C B
    430 A C B
    431 A C B
    432 B C B
    433 A C A
    434 A C A
    435 B C B
    436 B C B
    437 B C B
    438 A C B
    439 B C B
    440 B C B
    441 A C A
    442 A C A
    443 A C A
    444 A C A
    445 A C A
    446 A C A
    447 A C A
    448 A C A
    449 A C A
    450 A C A
    451 'A C B
    452 A C A
    453 A C A
    454 A C A
    455 A C A
    456 A C B
    457 A C A
    458 A C A
    459 A C B
    460 B C B
    461 A C B
    462 A C B
    463 B C B
    464 A C B
    465 A C B
    466 A C B
    467 A C B
    468 A C B
    469 A C B
    470 A C B
    471 A C B
    472 A C B
    473 C C B
    474 B C B
    475 B C B
    476 A C B
    477 C C C
    478 A C B
    480 A C A
    481 B C B
    482 A C A
    483 B C A
    484 B C A
    485 A C A
    486 A C B
    487 A C A
    488 A C A
    489 A C A
    490 A C B
    491 A C A
    492 B C A
    493 A C A
    494 B C B
    495 B C B
    496 A C B
    497 A C A
    498 A C A
    499 A C B
    500 A C A
    501 A C A
    502 B C B
    503 B C B
    504 A C A
    505 A C A
    506 A C B
    507 A C A
    508 B C A
    509 A C A
    510 A C A
    511 A C B
    512 B C A
    513 B C B
    514 B C B
    515 B C B
    516 A C B
    517 A C B
    518 A C B
    519 A C B
    520 A C B
    521 A C B
    522 A C B
    523 A C B
    524 A C A
    525 C C C
    526 A C A
    527 B C A
    528 B C A
    529 A C B
    530 A C A
    531 A C A
    533 A C A
    534 B C A
    535 B C A
    536 B C B
    537 A C B
    538 A C A
    540 A C A
    541 A C B
    542 A C A
    543 A C A
    544 A C B
    545 A C B
    546 A C A
    547 A C A
    548 A C A
    549 A C A
    550 B C A
    551 B C B
    552 A C B
    553 B C A
    554 B C B
    555 A C B
    556 A C B
    557 B C B
    558 B C B
    559 A C A
    560 A C A
    561 A C B
    562 A C B
    563 A C B
    564 B C B
    565 A C A
    566 A C A
    567 A C B
    568 B C B
    569 A C A
    570 A C B
    571 A C B
    573 B C B
    574 A C B
    575 A C B
    576 A C B
    577 A C B
    578 A C A
    579 A C B
    580 B C A
    581 B C B
    582 A C A
    583 A C A
    584 B C B
    585 A C B
    586 A C A
    587 A C A
    588 A C A
    589 B C B
  • Compound numbers 4, 5, 15, 21, 61-65, 67, 152-158, 162, 173, 176, 183-185, 188-189, 195-196, 200, 203-205, 207, 211, 221, 244; 265, 277, 301, 317, 352, 356-357, 395, 422, 426, 460-461, 463, 464-467, 494, 518, 567-568 are comparative examples.

Claims (21)

  1. A molecule having the following formula ("Formula I"):
    Figure imgb0651
    wherein:
    (a) X is N or CR8;
    (b) R1 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, substituted or unsubstituted C1-C20 heterocyclyl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
    wherein each said R1, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, C6-C20 aryl, or C1-C20 heterocyclyl, (each of which that can be substituted, may optionally be substituted with R9);
    (c) R2 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryle, substituted or unsubstituted C1-C20 heterocyclyl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
    wherein each said R2, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, C6-C20 aryl, or C1-C20 heterocyclyl, (each of which that can be substituted, may optionally be substituted with R9);
    (d) R3 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, substituted or unsubstituted C1-C20 heterocyclyl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
    wherein each said R3, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, C6-C20 aryl, or C1-C20 heterocyclyl, (each of which that can be substituted, may optionally be substituted with R9);
    (e) R4 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substitute or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C1-C20 heterocyclyl, OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
    wherein each said R4, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, C6-C20 aryl, or C1-C20 heterocyclyl, (each of which that can be substituted, may optionally be substituted with R9);
    (f) R5 is H or unsubstituted C1-C6 alkyl;
    (g) R6 is O, S, NR9, or NOR9;
    (h) R7 is substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, substituted or unsubstituted C1-C20 heterocyclyl, OR9, OR9S(O)nR9, C(=X1)R9, C(=X1)OR9, R9C(=X1)OR9, R9X2C(=X1)R9X2R9, C(=X1)N(R9)2, N(R9)2, N(R9)(R9S(O)nR9), N(R9)C(=X1)R9, SR9, S(O)nOR9, R9S(O)nR9, C1-C6alkylOC(=O)C1-C6alkyl, OC1-C6 alkyl C1-C20 heterocyclyl, C1-C6alkylC1-C20 heterocyclyl, C1-C6, alkylS(=N-CN)(C1-C6alkyl), C1-C6alkylS(O)(=N-CN)(C1-C6alkyl), C1-C6alkylS(O)n(C1-C6alkylC1-C20heterocyclyl), C1-C6alkylS(O)(=N-CN)(C1-C6 alkyl-C1-C20heterocyclyl), C1-C6alkylNH(C(=O)OC1-C6 alkyl), C1-C6 alkylC(=O)OC1-C6 alkyl, C1-C6alkyl(C6-C20aryl)NH(C(=O)OC1-C6alkyl), C1-C6alkyl(S-C1-C6 alkyl)NH(C(=O)OC1-C6alkyl), C1-C6alkyl(S-C1-C6alkyl-C6-C20aryl)NH(C(=O)OC1-C6alkyl), C1-C6 alkyl(NHC(=O)OC1-C6alkylC6-C20aryl)NH(C(=O)OC1-C6alkyl), C1-C6alkyl(OC1-C6alkylC6-C20aryl)NH(C(=O)OC1-C6alkyl), C1-C6alkylN(C1-C6alkyl)(C(=O)OC1-C6alkyl), C1-C6alkylNH(C1-C6alkyl), C6-C20arylSC1-C6haloalkyl, C1-C6alkyl-N(C1-C6 alkyl)(C(=O)C1-C6alkylC6-C20aryl), C1-C6alkylN(C1-C6alkyl)(C1-C6alkyl), C1-C6alkylN(C1-C6 alkyl)(S(O)nC1-C6 alkyl), C1-C6 alkylN(C1-C6alkyl)(S(O)nC1-C6 alkenylC6-C20 aryl), C1-C6 alkylN(C1-C6alkyl)(C(=O)C1-C20heterocyclyl), C1-C6alkylN(C1-C6alkyl)(C(=O)OC1-C6alkylC6-C20aryl), NH(C1-C6alkylS(O)nC1-C6alkyl), NH(C1-C6alkylS(O)nC6-C20 aryl), C1-C6alkyl(S(O)nC1-C6alkyl)(C(=O)C1-C6alkylS(O)n(C1-C6alkyl), or R9S(O)n(NZ)R9,
    wherein each said R7, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, C6-C20 aryl, or C1-C20 heterocyclyl, (each of which that can be substituted, may optionally be substituted with R9), C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, =X2, N(R9)2, S(=X2)nR9, R9S(O)nR9, S(O)nN(R9)2;
    (i) R8 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, substituted or unsubstituted C1-C20 heterocyclyl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nR9, S(O)nOR9, or R9S(O)nR9,
    wherein each said R8, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, C6-C20 aryl, or C1-C20 heterocyclyl, (each of which that can be substituted, may optionally be substituted with R9);
    (j) R9 (each independently) is H, CN, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, substituted or unsubstituted C1-C20 heterocyclyl , S(O)nC1-C6 alkyl, N(C1-C6alkyl)2,
    wherein each said R9, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OC1-C6 alkyl, OC1-C6 haloalkyl, S(O)nC1-C6alkyl, S(O)nOC1-C6 alkyl, C6-C20 aryl, or C1-C20heterocyclyl;
    (k) n is 0, 1, or 2;
    (l) X1 is (each independently) O or S;
    (m) X2 is (each independently) O, S, =NR9, or =NOR9; and
    (n) Z is CN, NO2 C1-C6 alkyl(R9), C(=X1)N(R9)2.
  2. The molecule according to claim 1, wherein
    (a) X is N or CR8;
    (b) R1 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
    wherein each said R1, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, or C6-C20 aryl, (each of which that can be substituted, may optionally be substituted with R9);
    (c) R2 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
    wherein each said R2, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9; S(O)nOR9, or C6-C20 aryl, (each of which that can be substituted, may optionally be substituted with R9);
    (d) R3 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6, alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
    wherein each said R3, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, or C6-C20 aryl, (each of which that can be substituted, may optionally be substituted with R9);
    (e) R4 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
    wherein each said R4, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, or C6-C20 aryl, (each of which that can be substituted, may optionally be substituted with R9);
    (f) R5 is H or unsubstituted C1-C6 alkyl;
    (g) R6 is O, S, NR9, or NOR9;
    (h) R7 is substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, OR9, OR9S(O)nR9, C(=X1)R9, C(=X1)OR9, R9C(=X1)OR9, R9X2C(=X1)R9X2R9, C(=X1)N(R9)2, N(R9)2, N(R9)(R9S(O)nR9), N(R9)C(=X1)R9, SR9, S(O)nOR9, R9S(O)nR9, or R9S(O)n(NZ)R9,
    wherein each said R7, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, or C6-C20 aryl, (each of which that can be substituted, may optionally be substituted with R9)
    (i) R8 is H, F, Cl, Br, I, CN, NO2, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, OR9, C(=X1)R9, C(=X1)OR9, C(=X1)N(R9)2, N(R9)2, N(R9)C(=X1)R9, SR9, S(O)nOR9, or R9S(O)nR9,
    wherein each said R8, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, or C6-C20 aryl (each of which that can be substituted, may optionally be substituted with R9);
    (j) R9 (each independently) is H, CN, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl,
    wherein each said R9, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OC1-C6 alkyl, OC1-C6 haloalkyl, S(O)nOC1-C6 alkyl, C6-C20 aryl;
    (k) n is 0, 1, or 2;
    (l) X1 is (each independently) O or S;
    (m) X2 is (each independently) O, S, =NR9, or =NOR9; and
    (n) Z is CN, NO2, C1-C6 alkyl(R9), C(=X1)N(R9)2.
  3. The molecule according to claim 1 or 2 wherein
    (a) X is CR8;
    (b) R1 is H;
    (c) R2 is H;
    (d) R3 is H;
    (e) R4 is Cl or CH3;
    (f) R5 is H or unsubstituted C1-C6 alkyl;
    (g) R6 is O;
    (h) R7 is (unsubstituted C1-C6 alkyl)S(O)n(unsubstituted C1-C6 alkyl), (unsubstituted C1-C6 alkyl)S(O)n(unsubstituted C1-C6 alkenyl), O(unsubstituted C1-C6 alkyl), (C1-C6 alkyl);
    (i) R8 is H or F; and
    (k) n is 0, 1, or 2.
  4. The molecule according to any one of claims 1-3, wherein:
    (a) X is CR8;
    (b) R1 is H;
    (c) R2 is H;
    (d) R3 is H;
    (e) R4 is Cl;
    (f) R5 is an unsubstituted C1-C6 alkyl;
    (g) R6 is O;
    (h) R7 is (unsubstituted C1-C6 alkyl)S(O)n(unsubstituted C1-C6 alkyl);
    (i) R8 is H or F; and
    (k) n is 0, 1, or 2.
  5. The molecule according to any one of claims 1-4, having the following structure:
    Figure imgb0652
  6. The molecule according to any one of claims 1-4 having the following structure:
    Figure imgb0653
  7. The molecule according to any one of claims 1-4 having the following structure:
    Figure imgb0654
  8. The molecule according to claim 4 in the form of a pesticidally acceptable acid addition salt, salt derivative, or solvate.
  9. The molecule according to claim 4 having at least one 2H.
  10. The molecule according to claim 4 having at least one 14C.
  11. The molecule according to claim 4 that is a resolved stereoisomer.
  12. A composition comprising a molecule according to claim 4 and at least one member of the Insecticide Group, Acaricide Group, Nematicide Group, Fungicide Group, or Herbicide Group.
  13. A composition comprising a molecule according to claim 4 and at least one biopesticide.
  14. A composition comprising a molecule according to claim 4 and at least one of the following compounds:
    (a) 3-(4-chloro-2,6-dimethylphenyl)-4-hydroxy-8-oxa-1-azaspiro[4,5]dec-3-en-2-one;
    (b) 3-(4'-chloro-2,4-dimethyl[1,1'-biphenyl]-3-yl)-4-hydroxy-8-oxa-1-azaspiro[4,5]dec-3-en-2-one;
    (c) 4-[[(6-chloro-3-pyridinyl)methyl]methylamino]-2(5H)-furanone;
    (d) 4-[[(6-chloro-3-pyridinyl)methyl]cyclopropylamino]-2(5H)-furanone;
    (e) 3-chloro-N2-[(1S)-1-methyl-2-(methylsulfonyl)ethyl]-N1-[2-methyl-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl]-1,2-benzenedicarboxamide;
    (f) 2-cyano-N-ethyl-4-fluoro-3-methoxy-benzenesulfonamide;
    (g) 2-cyano-N-ethyl-3-methoxy-benzenesulfonamide;
    (h) 2-cyano-3-difluoromethoxy-N-ethyl-4-fluoro-benzenesulfonamide;
    (i) 2-cyano-3-fluoromethoxy-N-ethyl-benzenesulfonamide;
    (j) 2-cyano-6-fluoro-3-methoxy-N,N-dimethyl-benzenesulfonamide;
    (k) 2-cyano-N-ethyl-6-fluoro-3-methoxy-N-methyl-benzenesulfonamide;
    (l) 2-cyano-3-difluoromethoxy-N,N-dimethylbenzenesulfon-amide;
    (m) 3-(difluoromethyl)-N-[2-(3,3-dimethylbutyl)phenyl]-1-methyl-1H-pyrazole-4-carboxamide;
    (n) N-ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro-α,α,α-trifluoro-p-tolyl) hydrazone;
    (o) N-ethyl-2,2-dichloro-1-methylcyclopropane-carboxamide-2-(2,6-dichloro-α,α,α-trifluoro-p-tolyl) hydrazone nicotine;
    (p) O-{(E-)-[2-(4-chloro-phenyl)-2-cyano-1-(2-trifluoromethylphenyl)-vinyl]} S-methyl thiocarbonate;
    (q) (E)-N1-[(2-chloro-1,3-thiazol-5-ylmethyl)]-N2-cyano-N1-methylacetamidine;
    (r) 1-(6-chloropyridin-3-ylmethyl)-7-methyl-8-nitro-1,2,3,5,6,7-hexahydro-imidazo[1,2-a]pyridin-5-ol;
    (s) 4-[4-chlorophenyl-(2-butylidine-hydrazono)methyl)]phenyl mesylate; or
    (t) N-Ethyl-2,2-dichloro-1-methylcyclopropanecarboxamide-2-(2,6-dichloro-alpha,alpha,alpha-trifluoro-p-tolyl)hydrazone.
  15. A process comprising applying to an area a molecule according to claim 4 in an amount sufficient to control pests.
  16. A seed treatment formulation comprising a molecule according to anyone of claims 1-7.
  17. The seed treatment formulation according to claim 16, further comprising a seed.
  18. The seed treatment formulation according to claim 16 or claim 17, wherein said molecule has the following structure
    (a) X is CR8;
    (b) R1 is H;
    (c) R2 is H;
    (d) R3 is H;
    (e) R4 is H, F, Cl, Br, I, CN, C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl or S(C1-C6 alkyl);
    (f) R5 is H or C1-C6 alkyl;
    (g) R6 is O;
    (h) R7 is substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, OR9, OR9S(O)nR9, C(=X1)R9, C(=X1)OR9, R9C(=X1)OR9, R9XZC(=X1)R9X2R9, C(=X1)N(R9)2, N(R9)2, N(R9)(R9S(O)nR9), N(R9)C(=X1)R9, SR9, S(O)nOR9, R9S(O)nR9, or R9S(O)n(NZ)R9, wherein each said R7, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OR9, S(O)nOR9, or C6-C20 aryl, (each of which that can be substituted, may optionally be substituted with R9);
    (i) R8 is H or F;
    (j) R9 (each independently) is H, CN, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C2-C6 alkenyl, substituted or unsubstituted C1-C6 alkoxy, substituted or unsubstituted C2-C6 alkenyloxy, substituted or unsubstituted C3-C10 cycloalkyl, substituted or unsubstituted C3-C10 cycloalkenyl, substituted or unsubstituted C6-C20 aryl, wherein each said R9, which is substituted, has one or more substituents selected from F, Cl, Br, I, CN, NO2, C1-C6 alkyl, C2-C6 alkenyl, C1-C6 haloalkyl, C2-C6 haloalkenyl, C1-C6 haloalkyloxy, C2-C6 haloalkenyloxy, C3-C10 cycloalkyl, C3-C10 cycloalkenyl, C3-C10 halocycloalkyl, C3-C10 halocycloalkenyl, OC1-C6 alkyl, OC1-C6 haloalkyl, S(O)nOC1-C6 alkyl, C6-C20 aryl; and
    (k) n is 0, 1 or 2.
  19. The seed treatment formulation according to any of claims 16-18, wherein said molecule has the following structure
    (a) X is CR8;
    (b) R1 is H;
    (c) R2 is H;
    (d) R3 is H;
    (e) R4 is C1-C6 alkyl, F, Cl, Br or I;
    (f) R5 is an unsubstituted C1-C6 alkyl;
    (g) R6 is O,
    (h) R7 is (substituted or unsubstituted C1-C6 alkyl)S(O)n (substituted or unsubstituted C1-C6 alkyl), wherein said substituents are selected from F, Cl, Br, or I;
    (i) R8 is H or F and
    (k) n is 0, 1 or 2.
  20. The seed treatment formulation according to anyone of claims 16-19, wherein said molecule is selected from compound NOs. 1-3, 6-14, 16-20, 22-60, 66, 68-101, 120, 133-151, 159-161, 163-172, 174, 175, 177-182, 186, 187, 190-194, 197-199, 201, 202, 206, 208-210, 212-220, 222-243, 245-264, 266-276, 278-300, 302-316, 318-351, 353-355, 358-361, 363-394, 396-418, 420, 421, 423-425, 427-459, 462, 468-478, 480-493, 495-517, 519-531, 533-538, 540-566, 569-571 and 573-589.
    Figure imgb0655
    Figure imgb0656
    Figure imgb0657
    Figure imgb0658
    Figure imgb0659
    Figure imgb0660
    Figure imgb0661
    Figure imgb0662
    Figure imgb0663
    Figure imgb0664
    Figure imgb0665
    Figure imgb0666
    Figure imgb0667
    Figure imgb0668
    Figure imgb0669
    Figure imgb0670
    Figure imgb0671
    Figure imgb0672
    Figure imgb0673
    Figure imgb0674
    Figure imgb0675
    Figure imgb0676
    Figure imgb0677
    Figure imgb0678
    Figure imgb0679
    Figure imgb0680
    Figure imgb0681
    Figure imgb0682
    Figure imgb0683
    Figure imgb0684
    Figure imgb0685
    Figure imgb0686
    Figure imgb0687
    Figure imgb0688
    Figure imgb0689
    Figure imgb0690
    Figure imgb0691
    Figure imgb0692
    Figure imgb0693
    Figure imgb0694
    Figure imgb0695
    Figure imgb0696
    Figure imgb0697
    Figure imgb0698
    Figure imgb0699
    Figure imgb0700
    Figure imgb0701
    Figure imgb0702
    Figure imgb0703
    Figure imgb0704
    Figure imgb0705
    Figure imgb0706
    Figure imgb0707
    Figure imgb0708
    Figure imgb0709
    Figure imgb0710
    Figure imgb0711
    Figure imgb0712
    Figure imgb0713
    Figure imgb0714
    Figure imgb0715
    Figure imgb0716
    Figure imgb0717
    Figure imgb0718
    Figure imgb0719
    Figure imgb0720
    Figure imgb0721
    Figure imgb0722
    Figure imgb0723
    Figure imgb0724
    Figure imgb0725
    Figure imgb0726
    Figure imgb0727
    Figure imgb0728
    Figure imgb0729
    Figure imgb0730
    Figure imgb0731
    Figure imgb0732
    Figure imgb0733
    Figure imgb0734
    Figure imgb0735
    Figure imgb0736
    Figure imgb0737
    Figure imgb0738
    Figure imgb0739
    Figure imgb0740
    Figure imgb0741
    Figure imgb0742
    Figure imgb0743
    Figure imgb0744
    Figure imgb0745
    Figure imgb0746
    Figure imgb0747
    Figure imgb0748
    Figure imgb0749
    Figure imgb0750
    Figure imgb0751
    Figure imgb0752
    Figure imgb0753
    Figure imgb0754
    Figure imgb0755
    Figure imgb0756
    Figure imgb0757
    Figure imgb0758
    Figure imgb0759
    Figure imgb0760
    Figure imgb0761
    Figure imgb0762
    Figure imgb0763
    Figure imgb0764
    Figure imgb0765
    Figure imgb0766
    Figure imgb0767
    Figure imgb0768
    Figure imgb0769
    Figure imgb0770
    Figure imgb0771
    Figure imgb0772
    Figure imgb0773
    Figure imgb0774
    Figure imgb0775
    Figure imgb0776
    Figure imgb0777
    Figure imgb0778
    Figure imgb0779
    Figure imgb0780
    Figure imgb0781
    Figure imgb0782
    Figure imgb0783
    Figure imgb0784
    Figure imgb0785
  21. The seed treatment formulation according to anyone of claims 16-20, wherein said molecule is selected from compound NOs. 36, 38, 86, 210, 227, 230, 240, 247, 262, 270, 272, 313, 314, 316 and 348. Compound Number Structure 36
    Figure imgb0786
    38
    Figure imgb0787
    86
    Figure imgb0788
    210
    Figure imgb0789
    227
    Figure imgb0790
    230
    Figure imgb0791
    240
    Figure imgb0792
    247
    Figure imgb0793
    262
    Figure imgb0794
    270
    Figure imgb0795
    272
    Figure imgb0796
    313
    Figure imgb0797
    314
    Figure imgb0798
    316
    Figure imgb0799
    348
    Figure imgb0800
EP10772663.0A 2009-05-05 2010-05-04 Pesticidal compositions Active EP2427191B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PL13159003T PL2604268T3 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
EP13158995.4A EP2614826B1 (en) 2009-05-05 2010-05-04 Process for preparation of thiazole derivatives
EP13159003.6A EP2604268B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
DK13158986.3T DK2614825T3 (en) 2009-05-05 2010-05-04 METHOD FOR PRODUCING thiazole
DK13158984.8T DK2604267T3 (en) 2009-05-05 2010-05-04 METHOD OF PRODUCING thiazole
EP13158986.3A EP2614825B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
DK13159003.6T DK2604268T3 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
EP13158984.8A EP2604267B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17565909P 2009-05-05 2009-05-05
PCT/US2010/033467 WO2010129497A1 (en) 2009-05-05 2010-05-04 Pesticidal compositions

Related Child Applications (8)

Application Number Title Priority Date Filing Date
EP13158986.3A Division-Into EP2614825B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
EP13158986.3A Division EP2614825B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
EP13158995.4A Division-Into EP2614826B1 (en) 2009-05-05 2010-05-04 Process for preparation of thiazole derivatives
EP13158995.4A Division EP2614826B1 (en) 2009-05-05 2010-05-04 Process for preparation of thiazole derivatives
EP13158984.8A Division-Into EP2604267B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
EP13158984.8A Division EP2604267B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
EP13159003.6A Division-Into EP2604268B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
EP13159003.6A Division EP2604268B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives

Publications (3)

Publication Number Publication Date
EP2427191A1 EP2427191A1 (en) 2012-03-14
EP2427191A4 EP2427191A4 (en) 2012-10-17
EP2427191B1 true EP2427191B1 (en) 2016-03-16

Family

ID=43050391

Family Applications (5)

Application Number Title Priority Date Filing Date
EP13159003.6A Active EP2604268B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
EP10772663.0A Active EP2427191B1 (en) 2009-05-05 2010-05-04 Pesticidal compositions
EP13158986.3A Active EP2614825B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
EP13158984.8A Active EP2604267B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
EP13158995.4A Active EP2614826B1 (en) 2009-05-05 2010-05-04 Process for preparation of thiazole derivatives

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13159003.6A Active EP2604268B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP13158986.3A Active EP2614825B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
EP13158984.8A Active EP2604267B1 (en) 2009-05-05 2010-05-04 Process for the preparation of thiazole derivatives
EP13158995.4A Active EP2614826B1 (en) 2009-05-05 2010-05-04 Process for preparation of thiazole derivatives

Country Status (21)

Country Link
US (5) US8350044B2 (en)
EP (5) EP2604268B1 (en)
JP (2) JP2012526123A (en)
KR (1) KR101808866B1 (en)
CN (2) CN105017240A (en)
AR (1) AR078040A1 (en)
AU (1) AU2010246102B2 (en)
BR (2) BR122014007041A2 (en)
CA (1) CA2759190C (en)
CO (1) CO6450634A2 (en)
DK (4) DK2604267T3 (en)
ES (5) ES2551432T3 (en)
HK (1) HK1170689A1 (en)
IL (1) IL215723A (en)
MX (2) MX343625B (en)
NZ (1) NZ595481A (en)
PL (5) PL2614825T3 (en)
RU (1) RU2550352C2 (en)
UA (1) UA107791C2 (en)
WO (1) WO2010129497A1 (en)
ZA (1) ZA201107366B (en)

Families Citing this family (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2008003713A1 (en) * 2007-12-20 2009-10-09 Synergistic pesticidal composition containing clothianidin, ipconazole and metalaxyl and its use in processes to protect a seed and / or shoots and foliage of a plant developed from said seed.
BRPI0916218B1 (en) * 2008-07-17 2018-11-27 Bayer Cropscience Ag heterocyclic compounds as pesticides compositions
UA107791C2 (en) 2009-05-05 2015-02-25 Dow Agrosciences Llc Pesticidal compositions
ES2651002T3 (en) 2010-04-16 2018-01-23 Bayer Intellectual Property Gmbh New heterocyclic compounds as pesticides
EP2571361A4 (en) 2010-05-19 2013-11-13 Univ North Carolina Pyrazolopyrimidine compounds for the treatment of cancer
SI2595965T1 (en) 2010-07-20 2016-09-30 Vestaron Corporation Insecticidal triazines and pyrimidines
US8815271B2 (en) 2010-11-03 2014-08-26 Dow Agrosciences, Llc. Pesticidal compositions and processes related thereto
WO2012109573A1 (en) * 2011-02-11 2012-08-16 Purdue Research Foundation Substituted thiazoles for use as antiviral agents
BR102012004142A2 (en) * 2011-02-25 2015-04-07 Dow Agrosciences Llc Pesticide compositions and processes related thereto
EP2532661A1 (en) 2011-06-10 2012-12-12 Syngenta Participations AG Novel insecticides
EP2723729A4 (en) * 2011-06-24 2015-03-11 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
EP2540718A1 (en) * 2011-06-29 2013-01-02 Syngenta Participations AG. Novel insecticides
AU2012285973A1 (en) 2011-07-15 2014-01-30 Basf Se Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests I
BR112014007788A2 (en) 2011-10-03 2017-04-18 Univ North Carolina Chapel Hill Pyrrolopyrimidine compounds for cancer treatment
CN104010505B (en) 2011-10-26 2017-03-15 陶氏益农公司 Pesticidal combination and relative method
MY168791A (en) 2012-01-06 2018-12-04 Abide Therapeutics Inc Carbamate compounds and of making and using same
WO2013106254A1 (en) * 2012-01-11 2013-07-18 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
WO2013156433A1 (en) 2012-04-17 2013-10-24 Syngenta Participations Ag Insecticidally active thiazole derivatives
WO2013156431A1 (en) 2012-04-17 2013-10-24 Syngenta Participations Ag Pesticidally active pyridyl- and pyrimidyl- substituted thiazole and thiadiazole derivatives
US9282739B2 (en) 2012-04-27 2016-03-15 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9708288B2 (en) 2012-04-27 2017-07-18 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
MX2014013069A (en) * 2012-04-27 2015-07-06 Dow Agrosciences Llc Pesticidal compositions and processes related thereto.
IN2014DN09610A (en) 2012-05-22 2015-07-31 Univ North Carolina
CA2874107C (en) * 2012-06-04 2020-07-14 Dow Agrosciences Llc Processes to produce certain 2-(pyridine-3-yl)thiazoles
ES2604761T3 (en) 2012-06-04 2017-03-09 Dow Agrosciences Llc Processes to produce certain 2- (pyridine-3-yl) thiazoles
JP6181166B2 (en) * 2012-06-04 2017-08-16 ダウ アグロサイエンシィズ エルエルシー Process for the preparation of certain 2- (pyridin-3-yl) thiazoles
EP2671881A1 (en) 2012-06-07 2013-12-11 Syngenta Participations AG. Pesticidally active pyridyl- and pyrimidyl- substituted thiazole derivatives
MX2014015265A (en) 2012-06-14 2015-08-12 Basf Se Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests.
WO2014007395A1 (en) * 2012-07-06 2014-01-09 日産化学工業株式会社 Pyrazole or thiazole derivative, salt thereof, and pest control agent
EP2909211A4 (en) 2012-10-17 2016-06-22 Univ North Carolina Pyrazolopyrimidine compounds for the treatment of cancer
WO2014060381A1 (en) 2012-10-18 2014-04-24 Bayer Cropscience Ag Heterocyclic compounds as pesticides
EP2925752A4 (en) 2012-11-27 2016-06-01 Univ North Carolina Pyrimidine compounds for the treatment of cancer
KR20150099564A (en) 2012-12-19 2015-08-31 다우 아그로사이언시즈 엘엘씨 Pesticidal compositions and processes related thereto
CN104981155A (en) * 2012-12-19 2015-10-14 美国陶氏益农公司 Pesticidal compositions and processes related thereto
WO2014100190A1 (en) 2012-12-19 2014-06-26 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
NZ708827A (en) 2012-12-19 2018-08-31 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US9556179B2 (en) 2012-12-21 2017-01-31 Bristol-Myers Squibb Company Substituted imidazoles as casein kinase 1 D/E inhibitors
CN105189489A (en) 2012-12-27 2015-12-23 巴斯夫欧洲公司 2-(pyridin-3-yl)-5-hetaryl-thiazole compounds carrying an imine or imine-derived substituent for combating invertebrate pests
US20160050923A1 (en) 2013-04-19 2016-02-25 Basf Se N-substituted acyl-imino-pyridine compounds and derivatives for combating animal pests
CA2925914A1 (en) 2013-10-17 2015-04-23 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
KR20160074542A (en) 2013-10-17 2016-06-28 다우 아그로사이언시즈 엘엘씨 Processes for the preparation of pesticidal compounds
KR20160075565A (en) 2013-10-17 2016-06-29 다우 아그로사이언시즈 엘엘씨 Processes for the preparation of pesticidal compounds
CA2925953C (en) 2013-10-17 2021-11-02 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
WO2015058021A1 (en) 2013-10-17 2015-04-23 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
KR20160072154A (en) 2013-10-17 2016-06-22 다우 아그로사이언시즈 엘엘씨 Processes for the preparation of pesticidal compounds
BR112016007518A2 (en) 2013-10-17 2017-08-01 Dow Agrosciences Llc processes for the preparation of pesticide compounds
EA201600326A1 (en) 2013-10-18 2016-10-31 Басф Агрокемикэл Продактс Б.В. APPLICATION OF PESTICIDAL ACTIVE DERIVATIVE CARBOXAMIDE IN METHODS OF APPLICATION AND TREATMENT OF SEEDS AND SOIL
MX2016005309A (en) 2013-10-22 2017-03-01 Dow Agrosciences Llc Synergistic pesticidal compositions and related methods.
AU2014340438B2 (en) 2013-10-22 2017-09-07 Dow Agrosciences Llc Synergistic pesticidal compositions and related methods
MX2016005340A (en) 2013-10-22 2016-12-16 Dow Agrosciences Llc Synergistic pesticidal compositions and related methods.
MX2016005308A (en) 2013-10-22 2016-08-08 Dow Agrosciences Llc Synergistic pesticidal compositions and related methods.
JP2016535022A (en) 2013-10-22 2016-11-10 ダウ アグロサイエンシィズ エルエルシー Agrochemical compositions and related methods
AR098093A1 (en) 2013-10-22 2016-05-04 Dow Agrosciences Llc SYNERGIC PESTICIDE COMPOSITIONS AND RELATED METHODS
KR102286233B1 (en) * 2013-10-22 2021-08-06 코르테바 애그리사이언스 엘엘씨 Pesticidal compositions and related methods
AU2014340432B2 (en) 2013-10-22 2017-09-07 Dow Agrosciences Llc Pesticidal compositions and related methods
TW201519783A (en) 2013-10-22 2015-06-01 Dow Agrosciences Llc Pesticidal compositions and related methods
KR20160074583A (en) 2013-10-22 2016-06-28 다우 아그로사이언시즈 엘엘씨 Synergistic pesticidal compositions and related methods
TW201519769A (en) 2013-10-22 2015-06-01 Dow Agrosciences Llc Synergistic pesticidal compositions and related methods
AU2014340422B2 (en) * 2013-10-22 2017-06-29 Corteva Agriscience Llc Pesticidal compositions and related methods
EP3094183A4 (en) 2013-10-22 2017-08-09 Dow AgroSciences LLC Synergistic pesticidal compositions and related methods
CN105792651A (en) 2013-10-22 2016-07-20 美国陶氏益农公司 Pesticidal compositions and related methods
CA2927202A1 (en) 2013-10-22 2015-04-30 Dow Agrosciences Llc Synergistic pesticidal compositions and related methods
MX2016005310A (en) 2013-10-22 2016-08-08 Dow Agrosciences Llc Synergistic pesticidal compositions and related methods.
RU2016119359A (en) 2013-10-22 2017-11-28 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи SYNERGETIC PESTICIDAL COMPOSITIONS AND RELATED WAYS
US9555031B2 (en) 2014-04-11 2017-01-31 The University Of North Carolina At Chapel Hill Therapeutic uses of selected pyrrolopyrimidine compounds with anti-mer tyrosine kinase activity
US9504251B2 (en) * 2014-05-16 2016-11-29 Dow Agrosciences Llc Pesticidal compositions and related methods
TWI667224B (en) 2014-06-09 2019-08-01 美商陶氏農業科學公司 Pesticidal compositions and processes related thereto
EP3174856A4 (en) 2014-07-31 2018-01-10 Dow AgroSciences LLC Process for the preparation of 3-(3-chloro-1h-pyrazol-1-yl)pyridine
WO2016018444A1 (en) 2014-07-31 2016-02-04 Dow Agrosciences Llc Process for the preparation of 3-(3-chloro-1h-pyrazol-1-yl)pyridine
BR112017000418A2 (en) 2014-07-31 2017-11-07 Dow Agrosciences Llc Process for the preparation of 3- (3-chloro-1h-pyrazol-1-yl) pyridine
KR20170042714A (en) 2014-08-19 2017-04-19 다우 아그로사이언시즈 엘엘씨 Process for the preparation of 3-(3-chloro-1h-pyrazol-1-yl)pyridine
US9085552B1 (en) 2014-09-12 2015-07-21 Dow Agrosciences Llc Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine
US20170290337A1 (en) 2014-09-24 2017-10-12 Syngenta Participations Ag Herbicidal Pyridino-/Pyrimidino-Thiazoles
US10149477B2 (en) 2014-10-06 2018-12-11 Basf Se Substituted pyrimidinium compounds for combating animal pests
CN107873027A (en) 2014-11-06 2018-04-03 巴斯夫欧洲公司 The 3 pyridine radicals Heterobicyclic compounds for controlling invertebrate pests
AU2016214305B2 (en) 2015-02-06 2020-10-08 Basf Se Pyrazole compounds as nitrification inhibitors
US10701937B2 (en) 2015-02-11 2020-07-07 Basf Se Pesticidal mixture comprising a pyrazole compound, an insecticide and a fungicide
EP3271352B1 (en) 2015-03-18 2021-05-12 H. Lundbeck A/S Piperazine carbamates and methods of making and using same
WO2016162371A1 (en) 2015-04-07 2016-10-13 Basf Agrochemical Products B.V. Use of an insecticidal carboxamide compound against pests on cultivated plants
WO2016170130A1 (en) 2015-04-22 2016-10-27 Basf Se Molluscicide and bait composition comprising a molluscicide
MX2017014344A (en) 2015-05-11 2018-04-11 Abide Therapeutics Inc Methods of treating inflammation or neuropathic pain.
AU2016260805A1 (en) 2015-05-12 2017-11-23 Basf Se Thioether compounds as nitrification inhibitors
WO2016198613A1 (en) 2015-06-11 2016-12-15 Basf Se N-(thio)acylimino compounds
WO2016198611A1 (en) 2015-06-11 2016-12-15 Basf Se N-(thio)acylimino heterocyclic compounds
WO2017016883A1 (en) 2015-07-24 2017-02-02 Basf Se Process for preparation of cyclopentene compounds
EP3356341B1 (en) 2015-10-02 2020-04-01 Basf Se Imino compounds with a 2-chloropyrimidin-5-yl substituent as pest-control agents
AU2016335964B2 (en) * 2015-10-05 2018-08-30 Corteva Agriscience Llc Methods and compositions for pest bait
CN113303339A (en) 2015-11-30 2021-08-27 巴斯夫欧洲公司 Mixture of cis-jasmone and bacillus amyloliquefaciens
US10681908B2 (en) 2016-01-25 2020-06-16 Dow Agrosciences Llc Molecules having pesticidal utility, and intermediates, compositions, and processes, related thereto
US10463753B2 (en) 2016-02-19 2019-11-05 Lundbeck La Jolla Research Center, Inc. Radiolabeled monoacylglycerol lipase occupancy probe
BR112018068034A2 (en) 2016-03-09 2019-01-08 Basf Se spiro compounds of formula I, composition, agricultural composition to combat animal pests, method of control or control of invertebrate pests, method of protecting plants, seeds and use of compounds
EP3426042A1 (en) 2016-03-11 2019-01-16 Basf Se Method for controlling pests of plants
US10709708B2 (en) 2016-03-17 2020-07-14 The University Of North Carolina At Chapel Hill Method of treating cancer with a combination of MER tyrosine kinase inhibitor and an epidermal growth factor receptor (EGFR) inhibitor
JP7027329B2 (en) 2016-04-01 2022-03-01 ビーエーエスエフ ソシエタス・ヨーロピア Bicyclic compound
AU2017267129A1 (en) 2016-05-18 2018-11-22 Basf Se Capsules comprising benzylpropargylethers for use as nitrification inhibitors
CN109996790B (en) 2016-09-19 2023-05-16 H.隆德贝克有限公司 Piperazine carbamates and methods of making and using the same
JOP20190105A1 (en) 2016-11-16 2019-05-09 Lundbeck La Jolla Research Center Inc Magl inhibitors
JOP20190106A1 (en) 2016-11-16 2019-05-09 Lundbeck La Jolla Research Center Inc Magl inhibitors
WO2018108671A1 (en) 2016-12-16 2018-06-21 Basf Se Pesticidal compounds
JP2020503336A (en) 2016-12-29 2020-01-30 ダウ アグロサイエンシィズ エルエルシー Method for preparing pesticidal compounds
CN110325036B (en) 2016-12-29 2021-10-26 美国陶氏益农公司 Process for preparing pesticidal compounds
EP3575286B1 (en) 2017-01-26 2022-05-11 Mitsui Chemicals Agro, Inc. Pyridone compound and bactericide for agricultural and horticultural use, which uses said compound as active ingredient
WO2018162312A1 (en) 2017-03-10 2018-09-13 Basf Se Spirocyclic derivatives
WO2018166855A1 (en) 2017-03-16 2018-09-20 Basf Se Heterobicyclic substituted dihydroisoxazoles
CN110506038B (en) 2017-03-28 2023-11-24 巴斯夫欧洲公司 Pesticidal compounds
RU2765370C2 (en) 2017-03-31 2022-01-28 Басф Се Pyrimidinium compounds and mixtures thereof for suppressing vermin
TWI780112B (en) 2017-03-31 2022-10-11 美商科迪華農業科技有限責任公司 Molecules having pesticidal utility, and intermediates, compositions, and processes, related thereto
EP3611164A4 (en) 2017-04-10 2020-08-26 Mitsui Chemicals Agro, Inc. Pyridone compound, and agricultural and horticultural fungicide having this as active component
US11000038B2 (en) 2017-04-10 2021-05-11 Mitsui Chemicals Agro, Inc. Pyridone compounds and agricultural and horticultural fungicides containing the same as active ingredients
TWI771402B (en) 2017-04-11 2022-07-21 日商三井化學Agro股份有限公司 Pyridone compound, and agricultural and horticultural fungicide using same as active ingredient
WO2018192793A1 (en) 2017-04-20 2018-10-25 Basf Se Substituted rhodanine derivatives
WO2018206479A1 (en) 2017-05-10 2018-11-15 Basf Se Bicyclic pesticidal compounds
WO2018224455A1 (en) 2017-06-07 2018-12-13 Basf Se Substituted cyclopropyl derivatives
WO2018225829A1 (en) 2017-06-08 2018-12-13 三井化学アグロ株式会社 Pyridone compound and agricultural and horticultural fungicide
BR112019025331A2 (en) 2017-06-16 2020-06-23 Basf Se COMPOUNDS OF FORMULA (I), COMPOSITION, METHODS OF PROTECTION OF CROPS AND COMBAT, NON-THERAPEUTIC METHOD OF TREATMENT, SEED, USE OF COMPOUNDS AND USE OF COMPOUND
US11542280B2 (en) 2017-06-19 2023-01-03 Basf Se Substituted pyrimidinium compounds and derivatives for combating animal pests
WO2018234488A1 (en) 2017-06-23 2018-12-27 Basf Se Substituted cyclopropyl derivatives
WO2019042932A1 (en) 2017-08-31 2019-03-07 Basf Se Method of controlling rice pests in rice
EP3453706A1 (en) 2017-09-08 2019-03-13 Basf Se Pesticidal imidazole compounds
BR112020006037A2 (en) 2017-10-13 2020-10-06 Basf Se compounds, pesticide mixtures, agrochemical composition, methods to control invertebrate pests, to protect plants and to protect plant propagation material, seed and use of compounds of formula (i)
AU2018387639B2 (en) 2017-12-21 2023-09-07 Basf Se Pesticidal compounds
WO2019175713A1 (en) 2018-03-14 2019-09-19 Basf Corporation New catechol molecules and their use as inhibitors to p450 related metabolic pathways
WO2019175712A1 (en) 2018-03-14 2019-09-19 Basf Corporation New uses for catechol molecules as inhibitors to glutathione s-transferase metabolic pathways
WO2019185413A1 (en) 2018-03-27 2019-10-03 Basf Se Pesticidal substituted cyclopropyl derivatives
MA52635A (en) 2018-05-15 2021-03-24 H Lundbeck As MAGL INHIBITORS
JP7291143B2 (en) 2018-07-25 2023-06-14 三井化学クロップ&ライフソリューション株式会社 Pyridone compound and agricultural and horticultural fungicide containing it as an active ingredient
EP3628156A1 (en) 2018-09-28 2020-04-01 Basf Se Method for controlling pests of sugarcane, citrus, rapeseed, and potato plants
EP3628158A1 (en) 2018-09-28 2020-04-01 Basf Se Pesticidal mixture comprising a mesoionic compound and a biopesticide
EP3628157A1 (en) 2018-09-28 2020-04-01 Basf Se Method of controlling insecticide resistant insects and virus transmission to plants
BR112021004526A2 (en) 2018-09-28 2021-06-08 Basf Se use of compost, methods of plant protection, control or combating invertebrate pests, and seed and seed treatment
BR112021008491A2 (en) 2018-11-28 2021-08-03 Basf Se compound of formula I, composition, method of combating or controlling invertebrate pests, method of protecting growing plants, seed, use of compound of formula I and method of treating or protecting animals
WO2020126591A1 (en) 2018-12-18 2020-06-25 Basf Se Substituted pyrimidinium compounds for combating animal pests
CA3138460A1 (en) * 2019-05-13 2020-11-19 Agrematch Ltd. Compositions for crop protection
TW202130273A (en) * 2019-12-06 2021-08-16 美商陶氏農業科學公司 Compositions having pesticidal utility and processes related thereto
TW202142114A (en) 2020-02-04 2021-11-16 美商陶氏農業科學公司 Compositions having pesticidal utility and processes related thereto
CN115427403A (en) 2020-04-21 2022-12-02 H.隆德贝克有限公司 Synthesis of monoacylglycerol lipase inhibitors
PE20231656A1 (en) 2020-11-02 2023-10-17 Trethera Corp CRYSTALLINE FORMS OF A DEOXYCYTIDINE KINASE INHIBITOR AND THEIR USES
JP2024507216A (en) 2021-02-19 2024-02-16 シンジェンタ クロップ プロテクション アクチェンゲゼルシャフト Control of insects and acariform pests
WO2023276813A1 (en) * 2021-06-28 2023-01-05 日本曹達株式会社 Pyridazinone compound, agricultural and horticultural germicide, nematicide, and medical and animal antifungal agent
TW202321234A (en) 2021-08-03 2023-06-01 美商科迪華農業科技有限責任公司 Polymorphs having pesticidal activity
WO2023105065A1 (en) 2021-12-10 2023-06-15 Syngenta Crop Protection Ag Insect, acarina and nematode pest control
WO2023105064A1 (en) 2021-12-10 2023-06-15 Syngenta Crop Protection Ag Insect, acarina and nematode pest control
WO2023110473A1 (en) 2021-12-14 2023-06-22 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP4198033A1 (en) * 2021-12-14 2023-06-21 Basf Se Heterocyclic compounds for the control of invertebrate pests
WO2023152340A1 (en) 2022-02-10 2023-08-17 Syngenta Crop Protection Ag Insect, acarina and nematode pest control
WO2023203038A1 (en) 2022-04-19 2023-10-26 Syngenta Crop Protection Ag Insect, acarina and nematode pest control
TW202345696A (en) 2022-05-18 2023-12-01 美商科迪華農業科技有限責任公司 Compositions having pesticidal utility and processes related thereto

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA962269A (en) * 1971-05-05 1975-02-04 Robert E. Grahame (Jr.) Thiazoles, and their use as insecticides
FR2517176A1 (en) 1981-12-01 1983-06-03 Rhone Poulenc Agrochimie INSECTICIDE AND ACARICIDE ASSOCIATION OF PYRETHROID
US4528291A (en) 1982-06-22 1985-07-09 Schering Corporation 2-(4'-Pyridinyl)-thiazole compounds and their use in increasing cardiac contractility
DD222021A1 (en) * 1984-02-27 1985-05-08 Univ Rostock PROCESS FOR THE PREPARATION OF 5-AMINO-4-ALKYL (BZW. ARYL) THIO-2-ARYL-THIAZOLENE
US5163131A (en) 1989-09-08 1992-11-10 Auspex Systems, Inc. Parallel i/o network file server architecture
ZA914888B (en) * 1990-06-27 1992-04-29 Sankyo Co Thiazolidinecarboxylic acid amide derivatives having antiallergic activity,their preparation and their use
US5399564A (en) * 1991-09-03 1995-03-21 Dowelanco N-(4-pyridyl or 4-quinolinyl) arylacetamide and 4-(aralkoxy or aralkylamino) pyridine pesticides
US5556859A (en) * 1994-12-22 1996-09-17 Dowelanco N-(4-pyrimidinyl)amide pesticides
JPH11513382A (en) 1995-10-20 1999-11-16 ドクトル カルル トーマエ ゲゼルシャフト ミット ベシュレンクテル ハフツング 5-membered heterocyclic compounds, pharmaceuticals containing these compounds, their use and methods for their preparation
US6699853B2 (en) * 1997-06-16 2004-03-02 Hoechst Schering Agrevo Gmbh 4-haloalkyl-3-heterocyclylpyridines, 4-haloalkyl-5-heterocyclyl-pyrimidines and 4-trifluoromethyl-3-oxadiazolylpyridines, processes for their preparation, compositions comprising them, and their use as pesticides
DE19725450A1 (en) * 1997-06-16 1998-12-17 Hoechst Schering Agrevo Gmbh 4-Haloalkyl-3-heterocyclylpyridines and 4-haloalkyl-5-heterocyclylpyrimidines, processes for their preparation, compositions containing them and their use as pesticides
DE60142505D1 (en) 2000-02-16 2010-08-19 Ishihara Sangyo Kaisha PHENACYLAMINE DERIVATIVES, THEIR MANUFACTURE AND DISEASES CONTAINING SUCH DERIVATIVES
US6645990B2 (en) 2000-08-15 2003-11-11 Amgen Inc. Thiazolyl urea compounds and methods of uses
WO2002087427A1 (en) 2001-05-02 2002-11-07 Universitair Medisch Centrum Utrecht Apparatus and method for measurement of specific characteristics of eyes
ATE315555T1 (en) 2001-05-11 2006-02-15 Pfizer Prod Inc THIAZOLE DERIVATIVES AND THEIR USE AS CDK INHIBITORS
GB0123589D0 (en) * 2001-10-01 2001-11-21 Syngenta Participations Ag Organic compounds
US6936629B2 (en) 2001-12-21 2005-08-30 Virochem Pharma Inc. Compounds and methods for the treatment or prevention of flavivirus infections
JP2003212864A (en) * 2002-01-24 2003-07-30 Sankyo Co Ltd 5-(m-cyanobenzylamino)thiazole derivative
US7259175B2 (en) 2002-02-25 2007-08-21 Eli Lilly And Company Peroxisome proliferator activated receptor modulators
US6737382B1 (en) * 2002-10-23 2004-05-18 Nippon Soda Co. Ltd. Insecticidal aminothiazole derivatives
US20040122016A1 (en) 2002-10-30 2004-06-24 Jingrong Cao Compositions useful as inhibitors of rock and other protein kinases
CN1829721A (en) * 2003-07-08 2006-09-06 阿斯利康(瑞典)有限公司 Spiro '1-azabicyclo' 2.2.2! octan-3,5'-oxazolidin - 2'-one! derivatives with affinity to the alpha7 nicotinic acetylcholine receptor
DE102004003812A1 (en) 2004-01-25 2005-08-11 Aventis Pharma Deutschland Gmbh Aryl-substituted heterocycles, methods of their preparation and their use as pharmaceuticals
US7319108B2 (en) 2004-01-25 2008-01-15 Sanofi-Aventis Deutschland Gmbh Aryl-substituted heterocycles, process for their preparation and their use as medicaments
US7297168B2 (en) 2004-02-02 2007-11-20 The Procter & Gamble Company Keratin dyeing compounds, keratin dyeing compositions containing them, and use thereof
BRPI0514553A (en) 2004-08-23 2008-06-17 Lilly Co Eli a compound or a pharmaceutically acceptable salt thereof, pharmaceutical composition, methods for inhibiting the h3 histamine receptor in a mammal, for treating a nervous system disorder, for treating obesity and for treating a disorder or disease, and , use of a compound or a salt thereof
NZ555325A (en) 2004-10-27 2009-07-31 Daiichi Sankyo Co Ltd Benzene compound having 2 or more substituents
JP4966866B2 (en) * 2005-01-14 2012-07-04 エフ.ホフマン−ラ ロシュ アーゲー Thiazole-4-carboxamide derivatives as mGluR5 antagonists
US7790720B2 (en) 2005-03-31 2010-09-07 Ucb Pharma, S.A. Compounds comprising an oxazole or thiazole moiety, processes for making them, and their uses
TWI402034B (en) 2005-07-28 2013-07-21 Dow Agrosciences Llc Agricultural compositions comprising an oil-in-water emulsion based on oily globules coated with a lamellar liquid crystal coating
AU2007208225B2 (en) 2006-01-25 2013-05-02 Synta Pharmaceuticals Corp. Thiazole and thiadiazole compounds for inflammation and immune-related uses
WO2008005457A2 (en) 2006-06-30 2008-01-10 Sunesis Pharmaceuticals Pyridinonyl pdk1 inhibitors
GB0701426D0 (en) * 2007-01-25 2007-03-07 Univ Sheffield Compounds and their use
AU2008276521B2 (en) * 2007-07-17 2011-11-03 Amgen Inc. Heterocyclic modulators of PKB
DE102007063099A1 (en) 2007-12-28 2009-07-02 Kuka Roboter Gmbh Robot and method for monitoring the moments on such
EP2278969B1 (en) * 2008-04-21 2013-02-13 Merck Sharp & Dohme Corp. Inhibitors of Janus kinases
EP2725021A1 (en) 2008-06-13 2014-04-30 Bayer CropScience AG New heteroaromatic thioamides as pest control agents
BRPI0916218B1 (en) 2008-07-17 2018-11-27 Bayer Cropscience Ag heterocyclic compounds as pesticides compositions
UA107791C2 (en) 2009-05-05 2015-02-25 Dow Agrosciences Llc Pesticidal compositions
WO2011011375A1 (en) * 2009-07-21 2011-01-27 Gordon Julian D Single source assembly for home care of physically impaired
MX2012003376A (en) 2009-10-12 2012-06-27 Bayer Cropscience Ag Amides and thioamides as pesticides.
CN102573478B (en) 2009-10-12 2015-12-16 拜尔农作物科学股份公司 As 1-(pyridin-3-yl)-pyrazoles and 1-(pyrimidine-5-the base)-pyrazoles of insecticide
ES2651002T3 (en) 2010-04-16 2018-01-23 Bayer Intellectual Property Gmbh New heterocyclic compounds as pesticides
EP2382865A1 (en) 2010-04-28 2011-11-02 Bayer CropScience AG Synergistic active agent compounds
ES2494716T3 (en) 2010-05-05 2014-09-16 Bayer Intellectual Property Gmbh Thiazole derivatives as pesticides
CN103119036B (en) 2010-06-28 2018-05-08 拜耳知识产权有限责任公司 Heterocyclic compound as insecticide
BR112013004920B1 (en) 2010-08-31 2018-02-14 Dow Agrosciences Llc PESTICIDES-USE MOLECULES AND PEST CONTROL PROCESSES
EP2630133A1 (en) 2010-10-22 2013-08-28 Bayer Intellectual Property GmbH Novel heterocyclic compounds as pesticides
US8815271B2 (en) 2010-11-03 2014-08-26 Dow Agrosciences, Llc. Pesticidal compositions and processes related thereto
AU2011323615B2 (en) 2010-11-03 2014-05-01 Corteva Agriscience Llc Pesticidal compositions and processes related thereto
CA2874107C (en) * 2012-06-04 2020-07-14 Dow Agrosciences Llc Processes to produce certain 2-(pyridine-3-yl)thiazoles
ES2604761T3 (en) * 2012-06-04 2017-03-09 Dow Agrosciences Llc Processes to produce certain 2- (pyridine-3-yl) thiazoles
KR102286233B1 (en) * 2013-10-22 2021-08-06 코르테바 애그리사이언스 엘엘씨 Pesticidal compositions and related methods
AU2014340422B2 (en) * 2013-10-22 2017-06-29 Corteva Agriscience Llc Pesticidal compositions and related methods

Also Published As

Publication number Publication date
CN105017240A (en) 2015-11-04
US8853246B2 (en) 2014-10-07
CN102458403A (en) 2012-05-16
PL2427191T3 (en) 2016-09-30
JP2015164921A (en) 2015-09-17
US20140348947A1 (en) 2014-11-27
AR078040A1 (en) 2011-10-12
US20100292253A1 (en) 2010-11-18
DK2427191T3 (en) 2016-06-20
IL215723A0 (en) 2012-01-31
BRPI1014543B8 (en) 2022-10-11
BRPI1014543B1 (en) 2019-07-09
US9006446B2 (en) 2015-04-14
CN102458403B (en) 2015-06-03
EP2614826B1 (en) 2017-03-01
AU2010246102A1 (en) 2011-10-27
DK2604267T3 (en) 2016-04-25
AU2010246102A8 (en) 2015-03-05
DK2614825T3 (en) 2016-06-20
PL2604268T3 (en) 2016-03-31
CO6450634A2 (en) 2012-05-31
EP2604268A1 (en) 2013-06-19
ES2573630T3 (en) 2016-06-09
ES2562907T3 (en) 2016-03-09
US20130072382A1 (en) 2013-03-21
CA2759190C (en) 2018-07-03
ZA201107366B (en) 2012-12-27
BR122014007041A2 (en) 2016-04-19
EP2614825A1 (en) 2013-07-17
AU2010246102B2 (en) 2015-03-05
HK1170689A1 (en) 2013-03-08
ES2625305T3 (en) 2017-07-19
MX343625B (en) 2016-11-14
JP5990614B2 (en) 2016-09-14
EP2604267A1 (en) 2013-06-19
RU2550352C2 (en) 2015-05-10
EP2427191A4 (en) 2012-10-17
PL2614826T3 (en) 2017-07-31
WO2010129497A1 (en) 2010-11-11
EP2614825B1 (en) 2016-03-16
PL2614825T3 (en) 2017-08-31
PL2604267T3 (en) 2016-09-30
CA2759190A1 (en) 2010-11-11
US20130089622A1 (en) 2013-04-11
DK2604268T3 (en) 2015-12-21
KR20120034636A (en) 2012-04-12
EP2614826A1 (en) 2013-07-17
JP2012526123A (en) 2012-10-25
UA107791C2 (en) 2015-02-25
EP2427191A1 (en) 2012-03-14
US8350044B2 (en) 2013-01-08
EP2604268B1 (en) 2015-09-16
BRPI1014543A2 (en) 2016-04-05
ES2568939T3 (en) 2016-05-05
ES2551432T3 (en) 2015-11-19
MX2011011763A (en) 2011-12-16
IL215723A (en) 2015-01-29
US20150045218A1 (en) 2015-02-12
KR101808866B1 (en) 2017-12-13
EP2604267B1 (en) 2016-02-03
NZ595481A (en) 2013-11-29
RU2011149256A (en) 2013-06-10
US9357780B2 (en) 2016-06-07

Similar Documents

Publication Publication Date Title
US9357780B2 (en) Pesticidal compositions
US8912338B2 (en) Pesticidal compositions
DK2672819T3 (en) PESTICIDE COMPOSITIONS AND PROCEDURES RELATED TO IT
EP2672827B9 (en) Pesticidal compositions and processes related thereto
US20120220453A1 (en) Pesticidal compostions and processes related thereto
AU2011296266B9 (en) Pesticidal compositions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20120917

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 31/44 20060101AFI20120911BHEP

Ipc: C07D 417/14 20060101ALI20120911BHEP

Ipc: C07D 417/04 20060101ALI20120911BHEP

17Q First examination report despatched

Effective date: 20130709

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZHANG, YU

Inventor name: JOHNSON, PETER

Inventor name: YAP, MAURICE

Inventor name: TRULLINGER, TONY

Inventor name: HUNTER, RICKY

Inventor name: ROSS, RONALD

Inventor name: PARKER, MARSHALL

Inventor name: NIYAZ, NOORMOHAMED

Inventor name: GARIZI, NEGAR

Inventor name: DEAMICIS, CARL

Inventor name: MCLEOD, CASANDRA

Inventor name: BUYSSE, ANN

Inventor name: ECKELBARGER, JOSEPH

Inventor name: ZHU, YUANMING

Inventor name: PERNICH, DAN

Inventor name: JOHNSON, TIMOTHY

Inventor name: BRYAN, KRISTY

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150918

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZHU, YUANMING

Inventor name: ECKELBARGER, JOSEPH

Inventor name: TRULLINGER, TONY

Inventor name: NIYAZ, NOORMOHAMED

Inventor name: MCLEOD, CASANDRA

Inventor name: DEAMICIS, CARL

Inventor name: JOHNSON, TIMOTHY

Inventor name: BUYSSE, ANN

Inventor name: GARIZI, NEGAR

Inventor name: ROSS, RONALD

Inventor name: ZHANG, YU

Inventor name: JOHNSON, PETER

Inventor name: HUNTER, RICKY

Inventor name: PARKER, MARSHALL

Inventor name: PERNICH, DAN

Inventor name: YAP, MAURICE

Inventor name: BRYAN, KRISTY

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 780592

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010031242

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2568939

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160505

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160614

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160616

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 780592

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160718

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010031242

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160616

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100504

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010031242

Country of ref document: DE

Owner name: CORTEVA AGRISCIENCE LLC, INDIANAPOLIS, US

Free format text: FORMER OWNER: DOW AGROSCIENCES LLC, INDIANAPOLIS, IND., US

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: CORTEVA AGRISCIENCE LLC; US

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: DOW AGROSCIENCES LLC

Effective date: 20220127

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: CORTEVA AGRISCIENCE LLC; US

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: DOW AGROSCIENCES LLC

Effective date: 20211206

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CORTEVA AGRISCIENCE LLC

Effective date: 20220830

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230330

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230417

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230412

Year of fee payment: 14

Ref country code: IE

Payment date: 20230412

Year of fee payment: 14

Ref country code: FR

Payment date: 20230411

Year of fee payment: 14

Ref country code: ES

Payment date: 20230602

Year of fee payment: 14

Ref country code: DK

Payment date: 20230511

Year of fee payment: 14

Ref country code: DE

Payment date: 20230331

Year of fee payment: 14

Ref country code: CH

Payment date: 20230602

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230503

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230418

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230710

Year of fee payment: 14