EP2427070B1 - Patterned heat management material - Google Patents

Patterned heat management material Download PDF

Info

Publication number
EP2427070B1
EP2427070B1 EP10772916.2A EP10772916A EP2427070B1 EP 2427070 B1 EP2427070 B1 EP 2427070B1 EP 10772916 A EP10772916 A EP 10772916A EP 2427070 B1 EP2427070 B1 EP 2427070B1
Authority
EP
European Patent Office
Prior art keywords
heat
directing elements
base material
heat management
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10772916.2A
Other languages
German (de)
French (fr)
Other versions
EP2427070A2 (en
EP2427070A4 (en
Inventor
Woody Blackford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Columbia Sportswear North America Inc
Original Assignee
Columbia Sportswear North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44581608&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2427070(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Columbia Sportswear North America Inc filed Critical Columbia Sportswear North America Inc
Priority to PL10772916T priority Critical patent/PL2427070T3/en
Priority claimed from PCT/US2010/034124 external-priority patent/WO2010129923A2/en
Publication of EP2427070A2 publication Critical patent/EP2427070A2/en
Publication of EP2427070A4 publication Critical patent/EP2427070A4/en
Application granted granted Critical
Publication of EP2427070B1 publication Critical patent/EP2427070B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G9/00Bed-covers; Counterpanes; Travelling rugs; Sleeping rugs; Sleeping bags; Pillows
    • A47G9/08Sleeping bags
    • A47G9/086Sleeping bags for outdoor sleeping
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/06Thermally protective, e.g. insulating
    • A41D31/065Thermally protective, e.g. insulating using layered materials
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/10Impermeable to liquids, e.g. waterproof; Liquid-repellent
    • A41D31/102Waterproof and breathable
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/12Hygroscopic; Water retaining
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/14Air permeable, i.e. capable of being penetrated by gases
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/14Air permeable, i.e. capable of being penetrated by gases
    • A41D31/145Air permeable, i.e. capable of being penetrated by gases using layered materials
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/34Footwear with health or hygienic arrangements with protection against heat or cold
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H15/00Tents or canopies, in general
    • E04H15/02Tents combined or specially associated with other devices
    • E04H15/10Heating, lighting or ventilating
    • E04H15/12Heating
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2400/00Functions or special features of garments
    • A41D2400/10Heat retention or warming

Definitions

  • Embodiments of the present disclosure relate generally to a fabric or other material used for body gear and other goods having designed performance characteristics, and in particular to methods and apparatuses that utilize a pattern of heat managing/directing elements coupled to a base fabric to manage heat through reflection or conductivity while maintaining the desired properties of the base fabric.
  • heat reflective materials such as aluminum and mylar typically take the form of a unitary solid film that is glued or otherwise attached to the interior of a garment, such as a jacket.
  • the purpose of this layer is to inhibit thermal radiation by reflecting the body heat of the wearer and thereby keeping the garment wearer warm in colder conditions.
  • these heat reflective linings do not transfer moisture vapor or allow air passage, thus they trap moisture near the body.
  • use of heat reflective materials during physical activity causes the inside of a garment to become wet, thereby causing discomfort and accelerating heat loss due to the increased heat conductivity inherent in wet materials. Further, these heat reflective coated materials impair the ability of the material to stretch, drape, or hang in a desired fashion.
  • Coupled may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
  • a phrase in the form "A/B” or in the form “A and/or B” means (A), (B), or (A and B).
  • a phrase in the form "at least one of A, B, and C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C).
  • a phrase in the form "(A)B” means (B) or (AB) that is, A is an optional element.
  • a material for body gear may use a pattern of heat management material elements coupled to a base fabric to manage, for example, body heat by directing the heat towards or away from the body as desired, while still maintaining the desired transfer properties of the base fabric.
  • a plurality of heat management or heat directing elements 10 may be disposed on a base fabric 20 in a generally non-continuous array, whereby some of the base fabric is exposed between adjacent heat management elements.
  • the heat directing function of the heat management elements may be generally towards the body through reflectivity or away from the body through conduction and/or radiation or other heat transfer property.
  • the heat management elements 10 may cover a sufficient surface area of the base fabric 20 to generate the desired degree of heat management (e.g. heat reflection toward the body to enhance warmth, or heat conductance away from the body to help induce cooling).
  • a sufficient area of base fabric may be exposed to provide the desired base fabric function (e.g., stretch, drape, breathability, moisture vapor or air permeability, or wicking).
  • the base fabric may be a part of any form of body gear, such as bodywear ( see e . g . Figures 1A and 4 -13 ), sleeping bags ( see e.g. Figure 14 ), blankets, tents (see e.g. Figure 15B ), rain flys (see e.g. Figure 15A ) etc.
  • bodywear see e . g . Figures 1A and 4 -13
  • sleeping bags see e.g. Figure 14
  • blankets see e.g. Figure 15B
  • rain flys see e.g. Figure 15A
  • Bodywear is defined to include anything worn on the body, including, but not limited to, outerwear such as jackets, pants, scarves, shirts, hats, gloves, mittens, and the like, footwear such as shoes, boots, slippers, and the like, sleepwear, such as pajamas, nightgowns, and robes, and undergarments such as underwear, thermal underwear, socks, hosiery, and the like.
  • outerwear such as jackets, pants, scarves, shirts, hats, gloves, mittens, and the like
  • footwear such as shoes, boots, slippers, and the like
  • sleepwear such as pajamas, nightgowns, and robes
  • undergarments such as underwear, thermal underwear, socks, hosiery, and the like.
  • single-layer body gear may be used and may be comprised of a single layer of the base fabric, whereas other embodiments may use multiple layers of fabric, including one or more layers of the base fabric, coupled to one or more other layers.
  • the base fabric may be used as a fabric lining for body gear.
  • the array of heat management elements may be disposed on a base fabric having one or more desired properties.
  • the underlying base material may have properties such as air permeability, moisture vapor transfer and/or wickability, which is a common need for body gear used in both indoor and outdoor applications.
  • the separations between heat management elements help allow the base material to have a desired drape, look, and/or texture.
  • the separations between heat management elements help allow the base material to have a desired stretch.
  • Suitable base fabrics may include nylon, polyester, rayon, cotton, spandex, wool, silk, or a blend thereof, or any other material having a desired look, feel, weight, thickness, weave, texture, or other desired property.
  • allowing a designated percentage of the base fabric to remain uncovered by the heat management material elements may allow that portion of the base fabric to perform the desired functions, while leaving enough heat management material element surface area to direct body heat in a desired direction, for instance away from or toward the body of a user.
  • the heat management elements may be positioned in such a way and be made of a material that is conducive for directing heat generated by the body.
  • the heat management elements may be configured to reflect the user's body heat toward the user's body, which may be particularly suitable in cold environments.
  • the heat management elements may be configured to conduct the user's body heat away from the user's body, which may be particularly suitable in warmer environments.
  • the base fabric may include heat management elements disposed on an innermost surface of the body gear such that the elements are disposed to face the user's body and thus are in a position to manage body heat, as discussed above (e.g. reflect heat or conduct heat).
  • the heat management elements may be disposed on the exterior surface of the body gear and/or base fabric such that they are exposed to the environment, which may allow the heat management elements, for example, to reflect heat away from the user, while allowing the base fabric to adequately perform the desired functions.
  • the heat management elements may perform these functions without adversely affecting the stretch, drape, feel, or other properties of the base fabric.
  • the heat management elements may be an aluminum-based material (particularly suited for reflectivity), copper based material (particularly suited for conductivity). or another metal or metal alloy-based material.
  • Non-metallic or alloy based materials may be used as heat directing materials in some embodiments, such as metallic plastic, mylar, or other man-made materials, provided that they have heat reflective or conductive properties.
  • the heat management elements may be permanently coupled to the base fabric in a variety of ways, including, but not limited to gluing, heat pressing, printing, or stitching. In some embodiments, the heat management elements may be coupled to the base fabric by frequency welding, such as by radio or ultrasonic welding.
  • the heat directing properties of the heat management elements may be influenced by the composition of the base fabric or the overall construction of the body gear.
  • a base fabric may be used that has significant insulating properties.
  • the insulative backing/lining may help limit any conductivity that may naturally occur and enhance the reflective properties of the heat management elements.
  • the base fabric may provide little or no insulative properties, but may be coupled to an insulating layer disposed on the side of the base fabric opposite the heat directing material elements. The separate insulation layer may help reduce the potential for heat conductivity of the elements and enhance their reflectivity.
  • the heat management elements may become more conductive as the air layer between the garment and the wearer becomes more warm and humid. Such examples may be suitable for use in cold weather applications, for instance.
  • a base fabric may be used that has little or no insulative properties.
  • the base fabric and heat-directing elements may aid in removing excess body heat generated in warmer climates or when engaging in extreme physical activity. Such embodiments may be suitable for warm weather conditions.
  • the heat management material elements may be applied in a pattern or a continuous or discontinuous array defined by the manufacturer.
  • heat management material elements 10 may be a series of dot-like heat reflective (or heat conductive) elements adhered or otherwise secured to the base fabric 20 in a desired pattern.
  • Such a configuration has been found to provide heat reflectivity and thus warmth to the user (e.g., when heat reflective elements are used), or, in the alternative, heat conduction and thus cooling to the user (e.g., when heat conductive elements are used), while still allowing the base fabric to perform the function of the desired one or more properties (e.g. breathe and allow moisture vapor to escape through the fabric in order to reduce the level of moisture build up).
  • heat management material elements may be arranged such that they are in connection with one another, such as a lattice pattern or any other pattern that permits partial coverage of the base fabric.
  • the configuration or pattern of the heat management elements themselves may be selected by the user and may take any one of a variety of forms.
  • the configuration of the heat management elements 10 disposed on a base fabric 20 used for body gear may be in the form of a variety of geometrical patterns (e.g. lines, waves, triangles, squares, logos, words, etc.)
  • the pattern of heat management elements may be symmetric, ordered, random, and/or asymmetrical. Further, as discussed below, the pattern of heat management elements may be disposed on the base material at strategic locations to improve the performance of the body wear. In various embodiments, the size of the heat management elements may also be varied to balance the need for enhanced heat directing properties and preserve the functionality of the base fabric.
  • the density or ratio of the surface area covered by the heat management material elements to the surface are of base fabric left uncovered by the heat management material elements may be from about 3:7 (30%) to about 7:3 (70%). This range has been shown to provide a good balance of heat management properties (e.g., reflectivity or conductivity) with the desired properties of the base fabric (e.g., breathability or wicking, for instance). In particular embodiments, this ratio may be from about 4:6 (40%) to about 6:4 (60%).
  • the placement, pattern, and/or coverage ratio of the heat management elements may vary.
  • the heat management elements may be concentrated in certain areas where heat management may be more critical (e.g. the body core) and non existent or extremely limited in other areas where the function of the base fabric property is more critical (e.g. area under the arms or portions of the back for wicking moisture away from the body).
  • different areas of the body gear may have different coverage ratios, e.g. 70% at the chest and 30% at the limbs, in order to help optimize, for example, the need for warmth and breathability.
  • the size of the heat management elements may be largest (or the spacing between them may be the smallest) in the core regions of the body for enhanced reflection or conduction in those areas, and the size of the heat management elements may be the smallest (or the spacing between them may be the largest) in peripheral areas of the body.
  • the degree of coverage by the heat management elements may vary in a gradual fashion over the entire garments as needed for regional heat management. Some embodiments may employ heat reflective elements in some areas and heat conductive elements in other areas of the garment.
  • the heat management elements may be configured to help resist moisture buildup on the heat management elements themselves and further enhance the function of the base fabric (e.g. breathability or moisture wicking). In one embodiment, it has been found that reducing the area of individual elements, but increasing the density may provide a better balance between heat direction (e.g. reflectivity or conductivity) and base fabric functionality, as there will be a reduced tendency for moisture to build up on the heat management elements. In some embodiments, it has been found that keeping the surface area of the individual heat management elements below 1 cm 2 can help to reduce the potential for moisture build up.
  • the heat management elements may have a maximum dimension (diameter, hypotenuse, length, width, etc.) that is less than or equal to about 1 cm. In some embodiments, the maximum dimension may be between 1-4 mm. In other embodiments, the largest dimension of a heat management element may be as small as 1 mm, or even smaller.
  • the topographic profile of the individual heat management elements can be such that moisture is not inclined to adhere to the heat management element.
  • the heat management element may be convex, conical, fluted, or otherwise protruded, which may help urge moisture to flow towards the base fabric.
  • the surface of the heat management elements may be treated with a compound that may help resist the build up of moisture vapor onto the elements and better direct the moisture to the base fabric without materially impacting the thermal directing property of the elements.
  • One such example treatment may be a hydrophobic fluorocarbon, which may be applied to the elements via lamination, spray deposition, or in a chemical bath.
  • the heat management elements may be removable from the base fabric and reconfigurable if desired using a variety of releasable coupling fasteners such as zippers, snaps, buttons, hook and loop type fasteners (e.g. Velcro), and other detachable interfaces.
  • the base material may be formed as a separate item of body gear and used in conjunction with other body gear to improve thermal management of a user's body heat.
  • an upper body under wear garment may be composed with heat management elements in accordance with various embodiments. This under wear garment may be worn by a user alone, in which case conduction of body heat away from the user's body may typically occur, or in conjunction with an insulated outer garment which may enhance the heat reflectivity of the user's body heat.
  • the heat management elements may be applied to the base fabric such that it is depressed, concave, or recessed relative to the base fabric, such that the surface of the heat management element is disposed below the surface of the base fabric.
  • This configuration may have the effect of improving, for example, moisture wicking, as the base fabric is the portion of the body gear or body gear lining that engages the user's skin or underlying clothing. Further, such contact with the base fabric may also enhance the comfort to the wearer of the body gear in applications where the skin is in direct contact with the base fabric (e.g. gloves, mittens, underwear, or socks).
  • FIGs 8-15 illustrate various views of a patterned heat management fabric used in a variety of body gear applications, such as a jacket ( Figures 8A-D ), boot ( Figure 9 ) , glove ( Figure 10 ) , hat ( Figure 11 ) , pants ( Figure 12 ) , sock ( Figure 13 ) , sleeping bag ( Figure 14 ) , tent rain fly ( Figure 15A ) and tent ( Figure 15B ) .
  • Each of the body gear pieces illustrated include a base material 20 having a plurality of heat management elements 10 disposed thereon.
  • the heat management material elements may be used on the outside of body wear, for instance to reflect or direct heat exposed to the outside surface of the gear.
  • base fabric and heat reflective elements such as those illustrated in Figures 1B-3E , may be applied to an outer or exterior surface of the body gear, such as a coat, sleeping bag, tent or tent rain fly, etc in order to reflect heat away from the user.
  • the body gear may be reversible, such that a user may determine whether to use the fabric to direct heat toward the body or away from the body.
  • An example of such reversible body gear is illustrated in Figure 15A .
  • the heat management elements may be included on one side of a tent rain fly.
  • the rain fly may be used with the heat management elements facing outward, for example in hot weather or sunny conditions, in order to reflect heat away from the body of the tent user.
  • the tent rain fly may be reversed and installed with the heat management elements facing inward, toward the body of a user, so as to reflect body heat back toward the tent interior.
  • FIG. 15B illustrates an example wherein at least a portion of the tent body includes a fabric having a plurality of heat management elements disposed thereon.
  • the heat reflective elements are facing outward and may be configured to reflect heat away from the tent and thus away from the body of the tent user. In other embodiments, the elements may be configured to face inward.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Civil Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Laminated Bodies (AREA)
  • Outer Garments And Coats (AREA)

Description

    Technical Field
  • Embodiments of the present disclosure relate generally to a fabric or other material used for body gear and other goods having designed performance characteristics, and in particular to methods and apparatuses that utilize a pattern of heat managing/directing elements coupled to a base fabric to manage heat through reflection or conductivity while maintaining the desired properties of the base fabric.
  • Background
  • Currently, heat reflective materials such as aluminum and mylar typically take the form of a unitary solid film that is glued or otherwise attached to the interior of a garment, such as a jacket. The purpose of this layer is to inhibit thermal radiation by reflecting the body heat of the wearer and thereby keeping the garment wearer warm in colder conditions. However, these heat reflective linings do not transfer moisture vapor or allow air passage, thus they trap moisture near the body. Because the application of a heat reflective material impedes the breathability and other functions of the underlying base fabric, use of heat reflective materials during physical activity causes the inside of a garment to become wet, thereby causing discomfort and accelerating heat loss due to the increased heat conductivity inherent in wet materials. Further, these heat reflective coated materials impair the ability of the material to stretch, drape, or hang in a desired fashion.
  • A heat material according to the prior art is disclosed in the document US-6.341.384-B1 .
  • Brief Description of the Drawings
  • Embodiments of the present disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings. Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
    • Figures 1A illustrates an upper body garment such as a coat having a lining of base material with heat directing/management elements disposed thereon, in accordance with various embodiments;
    • Figures 1B -1E illustrate various views of examples of patterned heat directing/management elements disposed on a base fabric or material, in accordance with various embodiments;
    • Figures 2A and 2B illustrate examples of patterned heat directing/management elements disposed on a base fabric, in accordance with various embodiments;
    • Figures 3A - 3E illustrate examples of patterned heat directing/management elements disposed on a base fabric, in accordance with various embodiments;
    • Figure 4 illustrates an upper body garment such as a coat having a lining of base material with heat directing/management elements disposed thereon, in accordance with various embodiments;
    • Figure 5 illustrates an upper body garment such as a coat having a lining of base material with heat directing/management elements disposed thereon, in accordance with various embodiments;
    • Figure 6 illustrates an upper body garment such as a coat having a lining of base material with heat directing/management elements disposed thereon, in accordance with various embodiments;
    • Figure 7 illustrates an upper body garment such as a coat having a lining of base material with heat directing/management elements disposed thereon, in accordance with various embodiments;
    • Figures 8A-D illustrate various views of a patterned heat management material as used in a jacket, in accordance with various embodiments;
    • Figure 9 illustrates an example of a patterned heat management material as used in a boot, in accordance with various embodiments;
    • Figure 10 illustrates an example of a patterned heat management material as used in a glove, where the cuff is rolled outward to show the lining, in accordance with various embodiments;
    • Figure 11 illustrates an example of a patterned heat management material as used in a hat, in accordance with various embodiments;
    • Figure 12 illustrates an example of a patterned heat management material as used in a pair of pants, in accordance with various embodiments;
    • Figure 13 illustrates an example of a patterned heat management material as used in a sock, in accordance with various embodiments;
    • Figure 14 illustrates an example of a patterned heat management material as used in a boot, in accordance with various embodiments; and
    • Figures 15A and B illustrate two views of a patterned heat management material as used in a reversible rain fly ( Figure 15A ) and as a portion of a tent body ( Figure 15B ), in accordance with various embodiments.
    Detailed Description of Embodiments
  • In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made. Therefore, the following detailed description is not to be taken in a limiting sense, and the scopes of embodiments, in accordance with the present disclosure, are defined by the appended claims.
  • Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments of the present invention; however, the order of description should not be construed to imply that these operations are order dependent.
  • The description may use perspective-based descriptions such as up/down, back/front, and top/bottom. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of embodiments of the present invention.
  • The terms "coupled" and "connected," along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, "connected" may be used to indicate that two or more elements are in direct physical or electrical contact with each other. "Coupled" may mean that two or more elements are in direct physical or electrical contact. However, "coupled" may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
  • For the purposes of the description, a phrase in the form "A/B" or in the form "A and/or B" means (A), (B), or (A and B). For the purposes of the description, a phrase in the form "at least one of A, B, and C" means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C). For the purposes of the description, a phrase in the form "(A)B" means (B) or (AB) that is, A is an optional element.
  • The description may use the phrases "in an embodiment," or "in embodiments," which may each refer to one or more of the same or different embodiments. Furthermore, the terms "comprising," "including," "having," and the like, as used with respect to embodiments of the present invention, are synonymous.
  • In various embodiments a material for body gear is disclosed that may use a pattern of heat management material elements coupled to a base fabric to manage, for example, body heat by directing the heat towards or away from the body as desired, while still maintaining the desired transfer properties of the base fabric. For example, referring to Figures 1 B-1 E , in one embodiment, a plurality of heat management or heat directing elements 10 may be disposed on a base fabric 20 in a generally non-continuous array, whereby some of the base fabric is exposed between adjacent heat management elements. The heat directing function of the heat management elements may be generally towards the body through reflectivity or away from the body through conduction and/or radiation or other heat transfer property.
  • The heat management elements 10 may cover a sufficient surface area of the base fabric 20 to generate the desired degree of heat management (e.g. heat reflection toward the body to enhance warmth, or heat conductance away from the body to help induce cooling). A sufficient area of base fabric may be exposed to provide the desired base fabric function (e.g., stretch, drape, breathability, moisture vapor or air permeability, or wicking).
  • In accordance with various embodiments, the base fabric may be a part of any form of body gear, such as bodywear (see e.g. Figures 1A and 4 -13), sleeping bags (see e.g. Figure 14 ), blankets, tents (see e.g. Figure 15B ), rain flys (see e.g. Figure 15A ) etc. Bodywear, as used herein, is defined to include anything worn on the body, including, but not limited to, outerwear such as jackets, pants, scarves, shirts, hats, gloves, mittens, and the like, footwear such as shoes, boots, slippers, and the like, sleepwear, such as pajamas, nightgowns, and robes, and undergarments such as underwear, thermal underwear, socks, hosiery, and the like.
  • In various embodiments, single-layer body gear may be used and may be comprised of a single layer of the base fabric, whereas other embodiments may use multiple layers of fabric, including one or more layers of the base fabric, coupled to one or more other layers. For instance, the base fabric may be used as a fabric lining for body gear.
  • In various embodiments, the array of heat management elements may be disposed on a base fabric having one or more desired properties. For example, the underlying base material may have properties such as air permeability, moisture vapor transfer and/or wickability, which is a common need for body gear used in both indoor and outdoor applications. In other embodiments, the separations between heat management elements help allow the base material to have a desired drape, look, and/or texture. In some embodiments, the separations between heat management elements help allow the base material to have a desired stretch. Suitable base fabrics may include nylon, polyester, rayon, cotton, spandex, wool, silk, or a blend thereof, or any other material having a desired look, feel, weight, thickness, weave, texture, or other desired property. In various embodiments, allowing a designated percentage of the base fabric to remain uncovered by the heat management material elements may allow that portion of the base fabric to perform the desired functions, while leaving enough heat management material element surface area to direct body heat in a desired direction, for instance away from or toward the body of a user.
  • For example, the heat management elements may be positioned in such a way and be made of a material that is conducive for directing heat generated by the body. In one embodiment, the heat management elements may be configured to reflect the user's body heat toward the user's body, which may be particularly suitable in cold environments. In another embodiment, the heat management elements may be configured to conduct the user's body heat away from the user's body, which may be particularly suitable in warmer environments.
  • In various embodiments, the base fabric may include heat management elements disposed on an innermost surface of the body gear such that the elements are disposed to face the user's body and thus are in a position to manage body heat, as discussed above (e.g. reflect heat or conduct heat). In some other embodiments, the heat management elements may be disposed on the exterior surface of the body gear and/or base fabric such that they are exposed to the environment, which may allow the heat management elements, for example, to reflect heat away from the user, while allowing the base fabric to adequately perform the desired functions. In some embodiments, the heat management elements may perform these functions without adversely affecting the stretch, drape, feel, or other properties of the base fabric.
  • In some embodiments, the heat management elements may be an aluminum-based material (particularly suited for reflectivity), copper based material (particularly suited for conductivity). or another metal or metal alloy-based material. Non-metallic or alloy based materials may be used as heat directing materials in some embodiments, such as metallic plastic, mylar, or other man-made materials, provided that they have heat reflective or conductive properties.
  • In various embodiments, the heat management elements may be permanently coupled to the base fabric in a variety of ways, including, but not limited to gluing, heat pressing, printing, or stitching. In some embodiments, the heat management elements may be coupled to the base fabric by frequency welding, such as by radio or ultrasonic welding.
  • In various embodiments, the heat directing properties of the heat management elements may be influenced by the composition of the base fabric or the overall construction of the body gear. For example, a base fabric may be used that has significant insulating properties. When paired with heat management elements that have heat reflective properties, the insulative backing/lining may help limit any conductivity that may naturally occur and enhance the reflective properties of the heat management elements. In another example, the base fabric may provide little or no insulative properties, but may be coupled to an insulating layer disposed on the side of the base fabric opposite the heat directing material elements. The separate insulation layer may help reduce the potential for heat conductivity of the elements and enhance their reflectivity. In some embodiments, the heat management elements may become more conductive as the air layer between the garment and the wearer becomes more warm and humid. Such examples may be suitable for use in cold weather applications, for instance.
  • In various embodiments, a base fabric may be used that has little or no insulative properties. When paired with heat directing elements that are primarily configured to conduct heat, as opposed to reflecting heat, the base fabric and heat-directing elements may aid in removing excess body heat generated in warmer climates or when engaging in extreme physical activity. Such embodiments may be suitable for warm weather conditions.
  • In various embodiments, the heat management material elements may be applied in a pattern or a continuous or discontinuous array defined by the manufacturer. For example, as illustrated in Figures 1A -1 E, heat management material elements 10, may be a series of dot-like heat reflective (or heat conductive) elements adhered or otherwise secured to the base fabric 20 in a desired pattern. Such a configuration has been found to provide heat reflectivity and thus warmth to the user (e.g., when heat reflective elements are used), or, in the alternative, heat conduction and thus cooling to the user (e.g., when heat conductive elements are used), while still allowing the base fabric to perform the function of the desired one or more properties (e.g. breathe and allow moisture vapor to escape through the fabric in order to reduce the level of moisture build up).
  • Although the illustrated embodiments show the heat management material elements as discrete elements, in some embodiments, some or all of the heat management material elements may be arranged such that they are in connection with one another, such as a lattice pattern or any other pattern that permits partial coverage of the base fabric.
  • In various embodiments, the configuration or pattern of the heat management elements themselves may be selected by the user and may take any one of a variety of forms. For example, as illustrated in Figures 2A-2B , 3A-3E, and 4-6, the configuration of the heat management elements 10 disposed on a base fabric 20 used for body gear may be in the form of a variety of geometrical patterns (e.g. lines, waves, triangles, squares, logos, words, etc.)
  • In various embodiments, the pattern of heat management elements may be symmetric, ordered, random, and/or asymmetrical. Further, as discussed below, the pattern of heat management elements may be disposed on the base material at strategic locations to improve the performance of the body wear. In various embodiments, the size of the heat management elements may also be varied to balance the need for enhanced heat directing properties and preserve the functionality of the base fabric.
  • In embodiments, the density or ratio of the surface area covered by the heat management material elements to the surface are of base fabric left uncovered by the heat management material elements may be from about 3:7 (30%) to about 7:3 (70%). This range has been shown to provide a good balance of heat management properties (e.g., reflectivity or conductivity) with the desired properties of the base fabric (e.g., breathability or wicking, for instance). In particular embodiments, this ratio may be from about 4:6 (40%) to about 6:4 (60%).
  • In various embodiments, the placement, pattern, and/or coverage ratio of the heat management elements may vary. For example the heat management elements may be concentrated in certain areas where heat management may be more critical (e.g. the body core) and non existent or extremely limited in other areas where the function of the base fabric property is more critical (e.g. area under the arms or portions of the back for wicking moisture away from the body). In various embodiments, different areas of the body gear may have different coverage ratios, e.g. 70% at the chest and 30% at the limbs, in order to help optimize, for example, the need for warmth and breathability.
  • In various embodiments, the size of the heat management elements may be largest (or the spacing between them may be the smallest) in the core regions of the body for enhanced reflection or conduction in those areas, and the size of the heat management elements may be the smallest (or the spacing between them may be the largest) in peripheral areas of the body. In some embodiments, the degree of coverage by the heat management elements may vary in a gradual fashion over the entire garments as needed for regional heat management. Some embodiments may employ heat reflective elements in some areas and heat conductive elements in other areas of the garment.
  • In various embodiments, the heat management elements may be configured to help resist moisture buildup on the heat management elements themselves and further enhance the function of the base fabric (e.g. breathability or moisture wicking). In one embodiment, it has been found that reducing the area of individual elements, but increasing the density may provide a better balance between heat direction (e.g. reflectivity or conductivity) and base fabric functionality, as there will be a reduced tendency for moisture to build up on the heat management elements. In some embodiments, it has been found that keeping the surface area of the individual heat management elements below 1 cm2 can help to reduce the potential for moisture build up. In various embodiments, the heat management elements may have a maximum dimension (diameter, hypotenuse, length, width, etc.) that is less than or equal to about 1 cm. In some embodiments, the maximum dimension may be between 1-4 mm. In other embodiments, the largest dimension of a heat management element may be as small as 1 mm, or even smaller.
  • In some embodiments, the topographic profile of the individual heat management elements can be such that moisture is not inclined to adhere to the heat management element. For example, the heat management element may be convex, conical, fluted, or otherwise protruded, which may help urge moisture to flow towards the base fabric. In some embodiments, the surface of the heat management elements may be treated with a compound that may help resist the build up of moisture vapor onto the elements and better direct the moisture to the base fabric without materially impacting the thermal directing property of the elements. One such example treatment may be a hydrophobic fluorocarbon, which may be applied to the elements via lamination, spray deposition, or in a chemical bath.
  • In various embodiments, the heat management elements may be removable from the base fabric and reconfigurable if desired using a variety of releasable coupling fasteners such as zippers, snaps, buttons, hook and loop type fasteners (e.g. Velcro), and other detachable interfaces. Further, the base material may be formed as a separate item of body gear and used in conjunction with other body gear to improve thermal management of a user's body heat. For example, an upper body under wear garment may be composed with heat management elements in accordance with various embodiments. This under wear garment may be worn by a user alone, in which case conduction of body heat away from the user's body may typically occur, or in conjunction with an insulated outer garment which may enhance the heat reflectivity of the user's body heat.
  • In various embodiments, the heat management elements may be applied to the base fabric such that it is depressed, concave, or recessed relative to the base fabric, such that the surface of the heat management element is disposed below the surface of the base fabric. This configuration may have the effect of improving, for example, moisture wicking, as the base fabric is the portion of the body gear or body gear lining that engages the user's skin or underlying clothing. Further, such contact with the base fabric may also enhance the comfort to the wearer of the body gear in applications where the skin is in direct contact with the base fabric (e.g. gloves, mittens, underwear, or socks).
  • Figures 8-15 illustrate various views of a patterned heat management fabric used in a variety of body gear applications, such as a jacket ( Figures 8A-D ), boot ( Figure 9 ), glove ( Figure 10 ), hat ( Figure 11 ), pants ( Figure 12 ), sock ( Figure 13 ), sleeping bag ( Figure 14 ), tent rain fly ( Figure 15A ) and tent ( Figure 15B ). Each of the body gear pieces illustrated include a base material 20 having a plurality of heat management elements 10 disposed thereon.
  • While the principle embodiments described herein include heat management elements that are disposed on the inner surface of the base fabric, in various embodiments, the heat management material elements may be used on the outside of body wear, for instance to reflect or direct heat exposed to the outside surface of the gear. For instance, in some embodiments, base fabric and heat reflective elements, such as those illustrated in Figures 1B-3E , may be applied to an outer or exterior surface of the body gear, such as a coat, sleeping bag, tent or tent rain fly, etc in order to reflect heat away from the user.
  • In some embodiments, the body gear may be reversible, such that a user may determine whether to use the fabric to direct heat toward the body or away from the body. An example of such reversible body gear is illustrated in Figure 15A . In this embodiment, the heat management elements may be included on one side of a tent rain fly. In one embodiment, the rain fly may be used with the heat management elements facing outward, for example in hot weather or sunny conditions, in order to reflect heat away from the body of the tent user. Conversely, in cold weather conditions, for example, the tent rain fly may be reversed and installed with the heat management elements facing inward, toward the body of a user, so as to reflect body heat back toward the tent interior. Although a tent rain fly is used to illustrate this principle, one of skill in the art will appreciate that the same concept may be applied to other body gear, such as reversible jackets, coats, hats, and the like. Figure 15B illustrates an example wherein at least a portion of the tent body includes a fabric having a plurality of heat management elements disposed thereon. In the illustrated embodiment, the heat reflective elements are facing outward and may be configured to reflect heat away from the tent and thus away from the body of the tent user. In other embodiments, the elements may be configured to face inward.

Claims (22)

  1. A heat management material adapted for use with body gear, comprising:
    a base material 20 having a transfer property that is adapted to allow, impede, and/or restrict passage of a natural element through the base material;
    an array of heat-directing elements 10 coupled to a first side of a base material 20, the heat-directing elements 10 being positioned to direct heat in a desired direction, and wherein the placement and spacing of the heat-directing elements 10 helps enable the base material to perform the element transfer property;
    wherein the base material 20 comprises an innermost layer of the body gear having an innermost surface, and wherein the heat-directing elements 10 are positioned on the innermost surface to direct heat towards the body of a body gear user.
  2. The heat management material of claim 1, wherein the natural element is air, moisture, water vapor, or heat.
  3. The heat management material of claim 1, wherein the base material is a moisture-wicking fabric.
  4. The heat management material of claim 1, wherein the base material comprises one or more insulating or waterproof materials.
  5. The heat management material of claim 1, wherein a second side of the base material is coupled to an insulating or waterproof material.
  6. The heat management material of claim 1, wherein the surface area ratio of heat-directing elements to base material is from about 7:3 to about 3:7.
  7. The heat management material of claim 6, wherein the surface area ratio of heat-directing elements to base material is from about 3:2 to about 2:3.
  8. The heat management material of claim 1, wherein the heat-directing elements comprise a metal or metal alloy.
  9. The heat management material of claim 8, wherein the heat-directing elements comprise aluminum to enhance heat reflectivity or copper to enhance heat conductivity.
  10. The heat management material of claim 1, wherein the heat-directing elements have a maximum dimension of less than about 1 cm.
  11. The heat management material of claim 1, wherein the heat-directing elements are treated with a hydrophobic material to resist moisture build-up on the heat-directing elements.
  12. The heat management material of claim 1, wherein the heat-directing elements have a maximum spacing of less than about 1 cm.
  13. The heat management material of claim 1, wherein the heat-directing elements have a minimum spacing of more than about 1 mm.
  14. The heat management material of claim 1, wherein the material is part of a coat, jacket, shoe, boot, slipper, glove, mitten, hat, scarf, pants, sock, tent, rain fly, or sleeping bag.
  15. The heat management material of claim 1, wherein the heat-directing elements are concave or convex.
  16. The heat management material of claim 1, wherein the heat-directing elements are recessed into the base material such that the outer surface of the heat-directing element is below the surface of the base material.
  17. A method of making a heat management body gear material, comprising:
    coupling an array of heat-directing elements 10 to a first side of a base material 20 having a transfer functionality that is adapted to allow, impede, and/or restrict passage of a natural element through the base material 20, the heat-directing elements being positioned to direct heat in a desired direction;
    pairing the heat management body gear material with a piece of body gear, wherein the base material 20 comprises an innermost layer of the body gear having an innermost surface, and wherein coupling the array of heat-directing elements 10 to the first side of the base material comprises positioning the array of heat-directing elements 10 on the innermost surface; and
    providing, with the material, body heat management and base material 20 functionality.
  18. The method of claim 17, wherein coupling the heat-directing elements comprises coupling heat-directing elements of a size and spacing to cover from about 30 % to about 70 % of the base material.
  19. The method of claim 17, wherein coupling the heat-directing elements comprises coupling heat-directing elements such that there is a spacing of between about 2 mm and 1 cm between adjacent elements.
  20. The method of claim 17, wherein the base material further provides insulating properties, and wherein the heat-directing elements reflect heat toward a body of a user.
  21. The method of claim 17, further comprising treating the heat-directing elements with a hydrophobic treatment that will resist moisture build-up on the heat-directing elements.
  22. The method of claim 17, wherein providing body heat management and base material transfer functionality includes:
    providing the heat-directing elements adapted to conduct heat away from a wearer's body or reflect heat towards the wearer's body; and
    providing a base material that includes one or more functional characteristics including air permeability, moisture wicking, and thermal permeability.
EP10772916.2A 2009-05-07 2010-05-07 Patterned heat management material Active EP2427070B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10772916T PL2427070T3 (en) 2009-05-07 2010-05-07 Patterned heat management material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17644809P 2009-05-07 2009-05-07
PCT/US2010/034124 WO2010129923A2 (en) 2009-05-07 2010-05-07 Patterned heat management material

Publications (3)

Publication Number Publication Date
EP2427070A2 EP2427070A2 (en) 2012-03-14
EP2427070A4 EP2427070A4 (en) 2013-01-23
EP2427070B1 true EP2427070B1 (en) 2014-03-12

Family

ID=44581608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10772916.2A Active EP2427070B1 (en) 2009-05-07 2010-05-07 Patterned heat management material

Country Status (7)

Country Link
EP (1) EP2427070B1 (en)
AR (1) AR076553A1 (en)
DE (3) DE202010017658U1 (en)
ES (1) ES2458926T3 (en)
HK (1) HK1168007A1 (en)
PL (1) PL2427070T3 (en)
TW (1) TWI495569B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1085962C (en) * 1996-06-25 2002-06-05 W·L·戈尔有限公司 Flexible water and oil resistant composites
DE60044465D1 (en) * 1999-07-27 2010-07-08 Claude Q C Hayes THERMAL LAYER
JP2007530799A (en) * 2003-07-08 2007-11-01 ハイアー ディメンション メディカル、インコーポレイテッド Flame retardant and cut resistant fabric
CN101802131A (en) * 2007-05-18 2010-08-11 攀高维度材料公司 Flame resistant and heat protective flexible material with intumescing guard plates and method of making the same

Also Published As

Publication number Publication date
DE202010017664U1 (en) 2012-04-04
ES2458926T3 (en) 2014-05-07
EP2427070A2 (en) 2012-03-14
EP2427070A4 (en) 2013-01-23
TWI495569B (en) 2015-08-11
PL2427070T3 (en) 2014-11-28
TW201043469A (en) 2010-12-16
HK1168007A1 (en) 2012-12-21
DE202010017658U1 (en) 2012-03-30
DE202010017663U1 (en) 2012-04-04
AR076553A1 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
US8424119B2 (en) Patterned heat management material
CA2761171C (en) Patterned heat management material
CA2833649C (en) Holographic patterned heat management material
JP2014237919A5 (en)
JP2012526008A5 (en)
US8479322B2 (en) Zoned functional fabrics
EP2314176B1 (en) Apparel
CA2849772C (en) Zoned functional fabrics
EP2427070B1 (en) Patterned heat management material
CN215873521U (en) Sweat-absorbing and moisture-removing coat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111020

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1168007

Country of ref document: HK

A4 Supplementary search report drawn up and despatched

Effective date: 20121220

RIC1 Information provided on ipc code assigned before grant

Ipc: A41D 13/00 20060101ALI20121214BHEP

Ipc: A41D 13/005 20060101AFI20121214BHEP

Ipc: A41D 31/00 20060101ALI20121214BHEP

Ipc: E04H 15/12 20060101ALI20121214BHEP

Ipc: A41D 13/002 20060101ALI20121214BHEP

Ipc: A43B 7/34 20060101ALI20121214BHEP

Ipc: A47G 9/08 20060101ALI20121214BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 655641

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140315

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140401

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010014275

Country of ref document: DE

Effective date: 20140424

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2458926

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140507

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20140312

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1168007

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140712

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140612

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602010014275

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140714

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: NIKE, INC.

Effective date: 20141212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602010014275

Country of ref document: DE

Effective date: 20141212

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140507

R26 Opposition filed (corrected)

Opponent name: NIKE, INC.

Effective date: 20141212

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140613

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602010014275

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100507

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20160725

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010014275

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230309

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230310

Year of fee payment: 14

Ref country code: PL

Payment date: 20230306

Year of fee payment: 14

Ref country code: GB

Payment date: 20230316

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230314

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230510

Year of fee payment: 14

Ref country code: IT

Payment date: 20230412

Year of fee payment: 14

Ref country code: ES

Payment date: 20230602

Year of fee payment: 14

Ref country code: DK

Payment date: 20230511

Year of fee payment: 14

Ref country code: DE

Payment date: 20230314

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20230513

Year of fee payment: 14

Ref country code: AT

Payment date: 20230425

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230418

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240315

Year of fee payment: 15