EP2425038A2 - Method for producing semiconductive layers - Google Patents

Method for producing semiconductive layers

Info

Publication number
EP2425038A2
EP2425038A2 EP10715825A EP10715825A EP2425038A2 EP 2425038 A2 EP2425038 A2 EP 2425038A2 EP 10715825 A EP10715825 A EP 10715825A EP 10715825 A EP10715825 A EP 10715825A EP 2425038 A2 EP2425038 A2 EP 2425038A2
Authority
EP
European Patent Office
Prior art keywords
metal oxide
substrate
zinc
precursor compound
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10715825A
Other languages
German (de)
French (fr)
Inventor
Andrey Karpov
Friederike Fleischhaker
Imme Domke
Marcel Kastler
Veronika Wloka
Lothar Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP10715825A priority Critical patent/EP2425038A2/en
Publication of EP2425038A2 publication Critical patent/EP2425038A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing

Definitions

  • the present invention relates to a process for producing a layer comprising at least one semiconducting metal oxide on a substrate comprising at least the steps of (A) preparing a solution containing at least one precursor compound of the at least one metal oxide selected from the group consisting of carboxylates of mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids, alcoholates, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazones, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, phosphines , Ammonium compounds, azides, inorganic complexes of the corresponding metal and mixtures thereof, in at least one solvent, (B) applying the solution from step (A) to the substrate and (C) thermally treating the substrate from step (B) at a Temperature of 20 to 200 0 C, the at least
  • printed electronic components can be obtained by using a printable ink containing an organometallic zinc complex as a precursor compound for the semiconductive zinc oxide. At least one oximate ligand is present in the organometallic zinc complex used. Furthermore, this zinc complex is free of alkali or alkaline earth metals.
  • An organometallic zinc complex which has a ligand selected from 2- (methoxyimino) alkanoate, 2- (ethoxyimino) alkanoate or 2- (hydroxyimino) alkanoate is preferably used in the process according to WO 2009/010142.
  • nanoscale zinc oxide layers are deposited using a precursor solution. brought as precursor compound organic zinc complexes with (2-methoxyimino) pyruvate ligands are used.
  • EP 1 993 122 A2 discloses a process for producing a semiconductive zinc oxide film as a thin film transistor using a precursor solution which can be processed at low temperatures.
  • the precursor solution contains a zinc salt and a complexing reagent.
  • Suitable zinc salts are zinc nitrate, zinc chloride, zinc sulfate or zinc acetate.
  • complexing reagents carboxylic acids or organic amines are used.
  • the object of the present invention is therefore to provide a process for the production of semiconducting layers on substrates, which is distinguished by a particularly simple process control.
  • the coated substrates obtained according to the invention should have the highest possible purity of semiconducting material, in particular zinc oxide. This is to be achieved according to the invention by using zinc oxide precursor compounds which are converted into the desired zinc oxide by thermal decomposition, but without resulting in any interfering by-products which remain in the layer formed.
  • the semiconducting layers obtained by the method according to the invention should furthermore be distinguished by improved electronic properties.
  • step (B) applying the solution of step (A) to the substrate
  • step (C) thermally treating the substrate of step (B) at a temperature of 20 to 200 ° C to convert the at least one precursor compound into at least one semiconductive metal oxide
  • step (A) electrically neutral [(OH) x (NH 3 ) y Zn] z with x, y and z is used independently of one another as precursor compound, this being carried out by reaction of zinc oxide and / or zinc hydroxide is obtained with ammonia.
  • the method according to the invention serves to produce a layer containing at least one semiconductive metal oxide on a substrate.
  • the present invention also relates to the process according to the invention, wherein the at least one semiconductive metal oxide is zinc oxide ZnO.
  • the process according to the invention makes it possible to coat all substrates known to the person skilled in the art, for example Si wafers, glass, ceramics, metals, metal oxides, semimetal oxides, plastics, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonates, polyacrylates, Polystyrenes, polysulfones etc.
  • substrates known to the person skilled in the art, for example Si wafers, glass, ceramics, metals, metal oxides, semimetal oxides, plastics, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonates, polyacrylates, Polystyrenes, polysulfones etc.
  • the substrate is mechanically flexible and comprises at least one plastic, for example selected from the group consisting of polyesters, for example polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonates, polysulfones and mixtures thereof.
  • the layer produced on the substrate by the method according to the invention containing at least one semiconductive metal oxide generally has a thickness of 5 to 250 nm, preferably 5 to 100 nm.
  • Step (A) of the process according to the invention comprises (A) preparing a solution comprising at least one precursor compound of the at least one metal oxide selected from the group consisting of carboxylates of mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids, alcoholates, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazones, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, phosphines, ammonium compounds, azides, the corresponding metal and mixtures thereof, in at least a solvent.
  • step (A) of the process according to the invention a solution of the corresponding precursor compound is prepared.
  • the solvent generally any solvent can be used in which the precursor compounds used are at least 0.01% by weight, based on the total solution, soluble.
  • Suitable solvents are, for example, selected from the group consisting of water, alcohol, for example methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol, tert-butanol, ketones, for example acetone, ethers, for example diethyl ether, methyl tert-butyl ether, tetrahydrofuran, dioxane, dimethoxyethane, esters and mixtures thereof.
  • alcohol for example methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol, tert-butanol, ketones, for example acetone, ethers, for example diethyl ether, methyl tert-butyl ether, tetrahydrofuran, dioxane, dimethoxyethane, esters and mixtures thereof.
  • a solution which comprises the at least one precursor compound of the at least one semiconductive metal oxide in a concentration of 0.01 to 20% by weight, preferably 0.1 to 10% by weight, particularly preferred 0.5 to 5 wt .-%, each based on the total solution contains.
  • step (A) of the process according to the invention at least one precursor compound of the at least one semiconductive metal oxide is dissolved in the corresponding solvent.
  • the at least one precursor compound of the at least one metal oxide is selected from the group consisting of carboxylates of Mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids, alcoholates, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidazones, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, Phosphines, ammonium compounds, azides of the corresponding metal and mixtures thereof.
  • precursor compounds are used which are at a temperature of generally below 200 0 C, preferably below 150 0 C, more preferably below 130 0 C, most preferably below 100 0 C, in the semiconductive metal oxide and volatile products, For example, decompose carbon dioxide, ethyl acetate, etc.
  • a minimum temperature for the decomposition of these precursor compounds is, for example, 50 ° C., with catalytic activation for example 20 ° C.
  • Suitable carboxylates of the corresponding metal are, for example, compounds of the corresponding metal with mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids.
  • Derivatives of mono-, di- or polycarboxylic acids are understood according to the invention to mean the corresponding mono-, di- or polyesters or anhydrides or amides.
  • the metal atom present as the central atom in the carboxylate complexes can generally have the coordination numbers 3 to 6.
  • step (A) zinc carboxylates.
  • zinc carboxylate complexes having the coordination numbers 3 to 6 are used according to the invention, where at least one ligand on zinc originates from the group of mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids ,
  • zinc carboxylates or derivatives thereof are used as precursor compounds, which are at a temperature of generally below 200 0 C, preferably below 150 0 C, more preferably below 130 0 C, most preferably below 100 0 C. , in zinc oxide and volatile products, such as carbon dioxide, acetone, etc. decompose.
  • a minimum temperature for the decomposition of these precursor compounds is, for example, 50 ° C., with catalytic activation for example 20 ° C.
  • Particularly preferred carboxylates used as precursor compounds in step (A) of the process according to the invention correspond to the general formula (I) R 1 -MOC (O) -R 2 (I),
  • R 1 is hydrogen, linear or branched C 1 -C 2 -alkyl, linear or branched C 1 -C -heteroalkyl, substituted or unsubstituted C 5 -C 6 -aryl, linear or branched, substituted or unsubstituted C 5 -C 6 -aralkyl, linear or branched, substituted or unsubstituted C 5 -C 6 -alkaryl, NR 6 R 7 with R 6 , R 7 are independently of each other si- (C 1 -C 6 -alkyl) 3 or radical of the formula -O-C (O) -R 2 with the below given meanings for R 2 , in each case optionally substituted by functional groups having an electron donor character, for example hydroxy, amino, alkylamino, amido, ether and / or oxo,
  • R 2 is linear or branched CrCl 2 -alkyl, preferably C 2 -C 2 alkyl, linear or branched d-Ci2 heteroalkyl, preferably C2-Ci2 heteroalkyl, substituted or unsubstituted C 5 -C 6 aryl, linear or branched, substituted or unsubstituted C 5 -C 6 -alkyl, linear or branched, substituted or unsubstituted C 5 -C 6 -alkaryl, each optionally substituted by functional
  • Groups of electron-donating character for example hydroxy, amino, alkylamino, amido, ether and / or oxo; or radicals of the formula O
  • R 3 is selected from O and CH 2 , n, m, c independently of one another are 0, 1, 2 or 3, preferably 0, 1, 2 and particularly preferably 0 or 1,
  • R 5 is selected from H, OH, OCH 3 , OC 2 H 5 , OSi (X 1 ) (3 - a -b) (X 2 ) a (X 3 ) b, CO 2 X 5 , OCO 2 X 5 from CO 2 X 5 ,
  • X 5 is selected from C 1 to C 4 alkyl, preferably from methyl, ethyl or tert-butyl, very particularly preferably from ethyl or tert-butyl,
  • a, b are independently 0, 1, 2 or 3 and the sum of a and b is 3 or less
  • X 1 , X 2 , X 3 , X 4 are independently selected from H, Ci to C 10 alkyl, preferably H and Ci to C 4 alkyl, more preferably H, methyl and ethyl d is an integer value of 1 to 100 .
  • X 6 is selected from H, Ci to Ci 0 alkyl, preferably from H and Ci to C 4
  • Alkyl more preferably selected from methyl or ethyl,
  • present ligands are selected from the group consisting of 3-Oxoglutar Textre- monoalkyl esters, for example, 3-Oxoglutarticakladremonomethylester, 3-OxoglutarTalkre- monoethyl ester, Malonklaremonoalkylester, for example Malonklamonomethy- lester, Malonklamonoethylester, and mixtures thereof.
  • a preferred example of a zinc carboxylate which is used as precursor compound in step (A) of the process according to the invention is the compound of the formula (II) Zn [(EtOC (O) CH 2 C (O) CH 2 COO) 2 ] ,
  • solvent molecules for. As water, etc., are present in the compounds.
  • a further particularly preferred example of a zinc carboxylate which is used as precursor compound in step (A) of the process according to the invention and which is present as an adduct of two molecules of the general formula (I) is the compound of the formula (III)
  • the compound of the formula (III) can likewise be prepared by processes known to the person skilled in the art, for example by reacting an equimolar amount of 3- Oxoglutaric acid monoethyl ester and zinc bis [bis (trimethylsilyl) amide] in benzene or toluene at room temperature.
  • the compound of the formula (IV) can likewise be prepared by processes known to the person skilled in the art.
  • a zinc carboxylate is the compound of formula (IVa) ZnKNH 2 CH 2 COO) 2 (H 2 O)], having electron donating functionality
  • R 7 R 8 is methyl or R 7 is H and R 8 is C (O) Me
  • a precursor compound of the at least one metal oxide is an alcoholate of the corresponding metal.
  • metal alcoholates as precursor compounds in which the metal atom has the coordination number 3 to 6.
  • zinc oxide used as the semiconducting metal oxide
  • zinc alkoxide complexes having coordination numbers 3 to 6 are used in which at least one ligand is an alcoholate.
  • These coordination numbers present according to the invention are realized in the precursor compounds used according to the invention by additions of identical or different molecules to one another.
  • zinc alcoholates are used as precursor compounds, which at a temperature of generally below 200 0 C, preferably below 150 0 C, more preferably below 130 0 C, most preferably below 100 0 C, in the semiconducting Metal oxide and volatile products decompose.
  • a minimum temperature for the decomposition of these precursor compounds is, for example, 50 ° C., with catalytic activation for example 20 ° C.
  • the metal alcoholates used as precursor compounds in step (A) of the process according to the invention correspond to the following general formula (V)
  • M Zn R 9 is linear or branched CrCl 2 alkyl, linear or branched C 1 -C 12 - heteroalkyl, substituted or unsubstituted C 5 -Ci6 aryl, linear or branched, substituted or unsubstituted C 5 -C 6 aralkyl, linear or branched, substituted or unsubstituted C 5 -C 6 -alkaryl, preferably linear or branched C 1 -C 6 -alkyl, in particular methyl or ethyl, each optionally substituted by functional groups with electron-donating character, for example hydroxy, amino, alkylamino, amido, ether and / or oxo
  • R 10 is hydrogen, linear or branched d-Ci 2 -alkyl, linear or branched d-Ci2 heteroalkyl, substituted or unsubstituted C 5 -C 6 aryl, linear or branched, substituted or unsubstituted C 5 -Ci6 aralkyl, linear or branched, substituted or unsubstituted C 5 -C 6 -alkaryl, NR 11 R 12 with R 11 , R 12 independently of one another are si- (C 1 -C 6 -alkyl) 3 , or radical of the formula -O-C (O) -R 2 with the meanings given above for R 2 , in each case optionally substituted by functional groups having electron donor character, for example hydroxyl, amino, alkylamino, amido, ether and / or oxo, particularly preferably R 9 is linear or branched C 1 C 6 alkyl, in particular methyl or ethyl.
  • Particularly preferred compounds of the general formula (V) are methoxymethyl-zinc or ethoxy-ethyl-zinc.
  • zinc alkoxides which are used as precursor compound in step (A) of the process according to the invention are the compounds of the formulas (Va), (Vb) and (Vc)
  • At least one precursor compound of the at least one metal oxide are hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazone, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, amides, phosphines, ammonium Compounds, azides of the corresponding metal and mixtures thereof, more preferably a hydroxo complex of the corresponding metal used.
  • Hydroxo-metal complexes or else aquo-complexes are preferably used as precursor compounds in which the metal atom has the coordination number 4 to 6.
  • zinc oxide is used as the semiconducting metal oxide, in particular zinc complexes having coordination numbers 4 to 6 are used.
  • hydroxo metal complexes are used as precursor compounds, which at a temperature of generally below 200 0 C, preferably below 150 0 C, more preferably below 130 0 C, most preferably below 100 0 C, in decompose the semiconductive metal oxide and volatile products such as ammonia.
  • a minimum temperature for the decomposition of these precursors for example, 50 0 C, under of catalytic activation, for example 20 0 C.
  • these compounds correspond to the general formula (VI).
  • the present invention particularly also relates to the process according to the invention, wherein in step (A) as at least one precursor compound of the at least one metal oxide [(OH) x (NH 3 ) y Zn] z with x, y and z is independently 0.01 to 10, so that the said complex is charged electrically neutral, and this by Reaction of zinc oxide or zinc hydroxide with ammonia is used.
  • Step (A) of the process according to the invention is generally carried out at a temperature at which a suitable solution containing at least one precursor compound of the at least one metal oxide is obtained, for example 5 to 120 ° C., preferably 10 to 60 ° C.
  • Step (A) of the process according to the invention can be carried out in all reactors known to the person skilled in the art, for example stirred reactors. Step (A) can be carried out according to the invention continuously or batchwise.
  • step (A) of the process according to the invention a solution is obtained which contains at least one precursor compound of the at least one metal oxide in a solvent.
  • the solution obtained in step (A) may contain further additives, for example for improving the selected deposition process on the substrate (step B).
  • the solution prepared in step (A) of the process according to the invention may furthermore also contain further metal cations which serve for doping the semiconductive metal oxide.
  • these metal cations are selected from the group consisting of Al 3+ , In 3+ , Sn 4+ , Ga 3+ and mixtures thereof. These metal cations can be introduced separately into the solution, or already present in the precursor compounds according to the invention.
  • the said doping metal cations can be added to produce the solution in step (A) in the form of metal oxides, metal hydroxides, metal alcoholates or in the form of soluble complexes.
  • the dopants mentioned may be added to the solution in step (A) of the process according to the invention generally in an amount of from 0.02 to 10 mol%, based on Zn, preferably from 0.1 to 5 mol%, based on Zn.
  • the present invention therefore also relates to the process according to the invention wherein the semiconductive metal oxide is doped with metal cations selected from the group consisting of Al 3+ , In 3+ , Sn 4+ , Ga 3+ and mixtures thereof.
  • Step (B) of the method of the invention comprises applying the solution of step (A) to the substrate.
  • step (B) can be carried out according to all methods known to those skilled in the art, which are suitable for applying the solution obtained from step (A) to the substrate, for example spin-coating, spray-coating, dip-coating, drop-casting or printing, such as.
  • spin-coating for example, spin-coating, spray-coating, dip-coating, drop-casting or printing, such as.
  • ink-jet printing flexo printing or gravure printing.
  • the present invention relates to the process according to the invention, wherein the application of the solution from step (A) in step (B) by spin coating, spray coating, dip coating, drop casting and / or printing he follows.
  • step (A) in step (B) of the process according to the invention is particularly preferably applied by spin-coating or ink-jet printing. These methods are known per se to the person skilled in the art.
  • the present invention therefore also relates to the process according to the invention wherein the application of the solution from step (A) in step (B) is effected by spin-coating.
  • Step (C) of the process of the invention comprises subjecting the substrate of step (B) to thermal treatment at a temperature of from 20 to 200 ° C to convert the at least one precursor compound into the at least one semiconductive metal oxide.
  • step (C) can be carried out in all devices known to those skilled in the art for heating substrates, for example a hot plate, an oven, a drying oven, a heat gun, a belt calciner or a climate cabinet.
  • step (C) of the process according to the invention is carried out at a relatively low temperature of, for example, 20 to 50 ° C.
  • the decomposition to the at least one semiconductive metal oxide is preferably effected by catalytic activation, for example by flowing with a reactive gas or by irradiation. Even at higher temperatures, catalytic activation can occur but is not preferred.
  • step (C) the at least one precursor compound of the semiconductive metal oxide, which has been applied to the substrate with the solution of step (A) in step (B), is converted into the corresponding metal oxide, in particular zinc oxide.
  • the metal oxide precursor compounds used can be converted into the corresponding metal oxide even at a temperature below 200 ° C., preferably below 150 ° C., particularly preferably below 130 ° C., in particular below 100 ° C., so that For example, plastic substrates can be used which do not deform during the production of the semiconductive metal oxide or are thermally degraded.
  • Another advantage is that due to the precursor compounds used during thermal treatment in step (C) of the process according to the invention only volatile by-products are formed, which thus escape in gaseous form, and do not remain as interfering impurities in the layer formed.
  • the precursor compounds used according to the invention are generally converted in step (C) into the corresponding metal oxide, in particular zinc oxide, and volatile compounds, or mixtures thereof.
  • no by-products of the precursor compounds for example counterions, such as halide anions, nitrate anions, cations such as Na + , K + , or neutral ligands, remain behind in the metal oxide layer formed.
  • a further advantage of the precursor compounds used in accordance with the invention is that they can generally be converted into the corresponding metal oxide in step (C) of the process according to the invention without the addition of further additives since they already contain the oxygen necessary for conversion into the corresponding oxides Have ligand sphere. Since no further additives have to be added, no by-products of these additives remain in the layer formed.
  • steps (A), (B) and (C) of the manufacturing process under ambient conditions (atmospheric oxygen, etc.) can be performed.
  • Another object of the present invention is a method for producing a semiconductor device, for.
  • a thin-film transistor TFT comprising at least steps (A), (B) and (C) as described above.
  • the precursor compounds according to the invention or the metal oxides obtainable therefrom are used as the semiconductor layer of a TFT.
  • the solution of the precursor compound (preparation as described in step (A)) can be processed as described in (B) and (C) to the semiconductor component of the TFT.
  • Dielectrics can be any of a variety of organic, inorganic or organic-inorganic hybrid materials.
  • Gate, source and drain contact materials are conductive materials, e.g. B. Al, Au, Ag, Ti / Au, Cr / Au, ITO, Si, PEDOT / PSS, etc.
  • Suitable substrates are in particular polymeric and flexible materials with low decomposition temperature, and others temperature-labile substrates, without being limited thereto.
  • Substrate, gate, source and drain contact materials as well as dielectrics are not subject to any primary limitations and may be selected according to chemical / physical compatibility, processing process and desired application.
  • the present invention also relates to a substrate which is coated with at least one semiconducting metal oxide, obtainable by the process according to the invention.
  • a substrate which is coated with at least one semiconducting metal oxide, obtainable by the process according to the invention.
  • the details and preferred embodiments relating to the substrates, the metal oxides, the precursor compound, etc. are already mentioned above.
  • the substrates coated according to the invention have outstanding properties with regard to their electronic properties.
  • a TFT produced by the process according to the invention preferably a ZnO TFT, has mobilities of 10 -4 to 100 cm 2 / V * s, preferably 10 -2 to 50 cm 2 / V * s, particularly preferably 0.1 to 10 cm 2 ⁇ / * s, for example 0.5 cm 2 ⁇ / * s, and / or an on / off ratio of 100 to 10 9 , preferably 10 3 to 10 8 , particularly preferably 10 5 to 10 8 , for example 10 7 , at a threshold voltage of 0 to 50 V, preferably 0 to 25 V, for example 19 V.
  • the present invention therefore also relates to the use of a substrate according to the invention in electronic components, for example TFTs, in particular their applications in CMOS circuits and other electronic circuits, RFID tags, displays, etc. Therefore, the present invention relates to the use of the substrate according to the invention in electronic components, wherein the electronic component is a TFT, RFID tag or a display.
  • the present invention also relates to a process for the preparation of electrically neutral [(OH) x (NH 3 ) y Zn] z with x, y and z independently 0.01 to 10, preferably integers from 1 to 6, by Reaction of zinc oxide and / or zinc hydroxide with ammonia.
  • the electrically neutral [(OH) x (NH 3 ) y Zn] z produced by the process according to the invention with x, y and z independently of one another 0.01 to 10 is characterized in that there are no impurities, eg. B.
  • solid zinc oxide or zinc hydroxide or mixtures thereof are preferably initially charged in a suitable reactor.
  • This solid zinc oxide and / or zinc hydroxide is then preferably treated with a solution of ammonia (NH 3 ) in a suitable solvent.
  • the solvent is preferably an aqueous solvent, for example an alcoholic, aqueous solution or water, more preferably water.
  • Ammonia is present in this preferably aqueous solution in a concentration of 1 to 18 mol / l, preferably 2 to 15 mol / l, particularly preferably 3 to 12 mol / l, in each case based on the total solution.
  • the amount of ammonia solution added to the solid zinc oxide is sufficient to obtain a reaction mixture in which zinc oxide is generally used at a concentration of 0.01 to 2 mol / L, preferably 0.1 to 1 mol / L, particularly preferably 0, 1 to 0.5 mol / L, is present.
  • the reaction mixture thus obtained is then stirred at a temperature of generally 10 to 120 ° C., preferably 10 to 60 ° C., particularly preferably 20 to 30 ° C.
  • the suspension is stirred until a complete conversion is obtained, for example 2 to 72 hours, preferably 2 to 24 hours.
  • the resulting solution may optionally be purified, for example by filtration.
  • the desired product is thus obtained in a particularly high purity in, preferably aqueous, solution.
  • the process is characterized in that the desired compound is obtained in a particularly high purity in only one step, without purification of the product, from particularly favorable reactants. Therefore, the thus obtained becomes electrically neutral [(OH) x (NH 3 ) y Zn] z with x, y and z independently 0.01 to 10, particularly preferably in the inventive method for producing a layer containing at least one semiconductive metal oxide on a substrate used.
  • a purified Si dot i ert substrate having SiO 2 -Dielektrikumstik (200 nm) is flooded with the aqueous solution of Example 1, and these spin-coated at 3000 revolutions / min for 30 s (gespincoated). Subsequently, the sample is heated at 150 ° C. for 20 minutes. Source / drain contacts (channel width / length ratio: 20) are produced by thermal vapor deposition of aluminum. Representative output curves (AK) and transfer curves (TK) of a corresponding transistor are shown in FIGS. 1 and 2. In this case VD applies: voltage between source and drain, VG: voltage between source and gate, ID: current between source and drain.

Abstract

The present invention relates to a method for producing a layer containing at least one semiconductive metal oxide on a substrate, comprising at least the steps of: (A) producing a solution containing at least one precursor compound of the at least one metal oxide selected from the group of carboxylates from monocarboxylic, dicarbonic, or polycarboxylic acids with at least three carbon atoms or derivatives of monocarboxylic, dicarbonic, or polycarboxylic acids, alcoholates, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidins, amidrazones, carbamide derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, phosphines, ammonium compounds, azides of the corresponding metal and compounds thereof, in at least one solvent; (B) application of the solvent of step (A) on the substrate; and (C) thermal treatment of the substrate of step (B) at a temperature of 20 to 200 degrees Celsius, in order to transfer the at least one precursor compound in at least one semiconductive metal oxide. In the event that in step (A), electrically neutral [(OH)x(NH3)yZn]z with x, y, and z independently from one another 0.01 to 10, is used as precursor compound, said precursor compound is obtained by conversion of zinc oxide or zinc hydroxide with ammonia; a substrate, which is coated with at least one semiconductive metal oxide, obtainable by said method; the application of said substrate in electronic components; and a method for producing electronically neutral [(OH)x(NH3)yZn]z with x, y, and z independently from one another 0.01 to 10, by conversion of zinc oxide and/or zinc hydroxide with ammonia.

Description

Verfahren zur Herstellung von halbleitenden Schichten Process for the preparation of semiconducting layers
Beschreibungdescription
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Schicht enthaltend wenigstens ein halbleitendes Metalloxid auf einem Substrat, umfassend mindestens die Schritte (A) Herstellen einer Lösung enthaltend wenigstens eine Vorläuferverbindung des wenigstens einen Metalloxids ausgewählt aus der Gruppe bestehend aus Carboxylaten von Mono-, Di- oder Polycarbonsäuren mit wenigstens drei Kohlenstoff- atomen oder Derivaten von Mono-, Di- oder Polycarbonsäuren, Alkoholaten, Hydroxiden, Semicarbaziden, Carbaminaten, Hydroxamaten, Isocyanaten, Amidinen, Amidra- zonen, Harnstoffderivaten, Hydroxylaminen, Oximen, Urethanen, Ammoniak, Aminen, Phosphinen, Ammonium-Verbindungen, Aziden, anorganischen Komplexen des entsprechenden Metalls und Mischungen davon, in wenigstens einem Lösungsmittel, (B) Aufbringen der Lösung aus Schritt (A) auf das Substrat und (C) thermisches Behandeln des Substrates aus Schritt (B) bei einer Temperatur von 20 bis 2000C, um die wenigstens eine Vorläuferverbindung in wenigstens ein halbleitendes Metalloxid zu überführen, wobei, falls in Schritt (A) elektrisch neutrales [(OH)x(NH3)yZn]z mit x, y und z unabhängig voneinander 0,01 bis 10, als Vorläuferverbindung eingesetzt wird, dieses durch Umsetzung von Zinkoxid oder Zinkhydroxid mit Ammoniak erhalten wird, ein Substrat, welches mit wenigstens einem halbleitenden Metalloxid beschichtet ist, erhältlich durch dieses Verfahren, die Verwendung dieses Substrates in elektronischen Bauteilen, sowie ein Verfahren zur Herstellung von elektrisch neutralem [(OH)x(NH3)yZn]z mit x, y und z unabhängig voneinander 0,01 bis 10 durch Umsetzung von Zinkoxid oder Zink- hydroxid mit Ammoniak.The present invention relates to a process for producing a layer comprising at least one semiconducting metal oxide on a substrate comprising at least the steps of (A) preparing a solution containing at least one precursor compound of the at least one metal oxide selected from the group consisting of carboxylates of mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids, alcoholates, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazones, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, phosphines , Ammonium compounds, azides, inorganic complexes of the corresponding metal and mixtures thereof, in at least one solvent, (B) applying the solution from step (A) to the substrate and (C) thermally treating the substrate from step (B) at a Temperature of 20 to 200 0 C, the at least one Vor to convert at least one semiconductive metal oxide, wherein, if in step (A) electrically neutral [(OH) x (NH 3 ) y Zn] z with x, y and z independently 0.01 to 10, is used as the precursor compound obtained by reacting zinc oxide or zinc hydroxide with ammonia, a substrate coated with at least one semiconductive metal oxide obtainable by this process, the use of this substrate in electronic components, and a process for producing electrically neutral [(OH) x (NH 3 ) y Zn] z with x, y and z independently 0.01 to 10 by reaction of zinc oxide or zinc hydroxide with ammonia.
Verfahren zum Aufbringen von Schichten aus halbleitenden Materialien auf Substraten sind aus dem Stand der Technik bereits bekannt.Methods of applying layers of semiconductive materials to substrates are already known in the art.
Gemäß WO 2009/010142 A2 können gedruckte elektronische Komponenten erhalten werden, indem eine druckbare Tinte eingesetzt wird, welche einen organometallischen Zink-Komplex als Vorläuferverbindung für das halbleitende Zinkoxid enthält. In dem eingesetzten organometallischen Zink-Komplex liegt wenigstens ein Oximat-Ligand vor. Des Weiteren ist dieser Zink-Komplex frei von Alkali- bzw. Erdalkalimetallen. Be- vorzugt wird in dem Verfahren gemäß WO 2009/010142 ein organometallischer Zink- Komplex eingesetzt, der einen Liganden ausgewählt aus 2-(Methoxyimino)-alkanoat, 2- (Ethoxyimino)-alkanoat oder 2-(Hydroxyimino)-alkanoat aufweist.According to WO 2009/010142 A2, printed electronic components can be obtained by using a printable ink containing an organometallic zinc complex as a precursor compound for the semiconductive zinc oxide. At least one oximate ligand is present in the organometallic zinc complex used. Furthermore, this zinc complex is free of alkali or alkaline earth metals. An organometallic zinc complex which has a ligand selected from 2- (methoxyimino) alkanoate, 2- (ethoxyimino) alkanoate or 2- (hydroxyimino) alkanoate is preferably used in the process according to WO 2009/010142.
JJ. Schneider et al, Adv. Mater. 20, 2008, 3383-3387 offenbaren bedruckte und flexib- Ie Feld-Effekttransistoren mit nanoskaligem Zinkoxid als aktives halbleitendes Material.JJ. Schneider et al., Adv. Mater. 20, 2008, 3383-3387 disclose printed and flexible field effect transistors with nanoscale zinc oxide as the active semiconducting material.
Diese nanoskaligen Zinkoxid-Schichten werden mit Hilfe einer Vorläufer-Lösung auf- gebracht, wobei als Vorläuferverbindung organische Zink-Komplexe mit (2- Methoxyimino)-pyruvat-Liganden verwendet werden.These nanoscale zinc oxide layers are deposited using a precursor solution. brought as precursor compound organic zinc complexes with (2-methoxyimino) pyruvate ligands are used.
EP 1 993 122 A2 offenbart ein Verfahren zur Herstellung einer halbleitenden Zinkoxid- Schicht als Dünnschichttransistor unter Verwendung einer Vorläufer-Lösung, die bei niedrigen Temperaturen verarbeitet werden kann. Die Vorläufer-Lösung enthält ein Zinksalz und ein komplexierendes Reagenz. Geeignete Zinksalze sind Zinknitrat, Zinkchlorid, Zinksulfat oder Zinkacetat. Als komplexierende Reagenzien werden Carbonsäuren oder organische Amine eingesetzt.EP 1 993 122 A2 discloses a process for producing a semiconductive zinc oxide film as a thin film transistor using a precursor solution which can be processed at low temperatures. The precursor solution contains a zinc salt and a complexing reagent. Suitable zinc salts are zinc nitrate, zinc chloride, zinc sulfate or zinc acetate. As complexing reagents carboxylic acids or organic amines are used.
S. Meiers et al, J. Am. Chem. Soc, 130(57;, 2008, 17603-17609 offenbaren wässrige anorganische Tinten für die Herstellung von Zinkoxid-TFTs bei niedriger Temperatur. Als Vorläuferverbindung für das halbleitende Zinkoxid wird Zn(OH)2(NH3)x verwendet. In einem zweistufigen Verfahren wird dieser anorganische Zink-Komplex durch Umset- zung von hochreinem Zinknitrat (99,998%) mit Natronlauge in wässriger Lösung, gefolgt von der Umsetzung des so erhaltenen Zinkhydroxids mit Ammoniak erhalten. Um die bei der Umsetzung von Zinknitrat mit Natronlauge entstehenden Salze zu entfernen, sind zahlreiche Abtrennungs- und Waschschritte notwendig.S. Meiers et al, J. Am. Chem. Soc., 130 (57 ;, 2008, 17603-17609 disclose aqueous inorganic inks for the production of zinc oxide TFTs at low temperature Zn (OH) 2 (NH 3 ) x is used as the precursor compound for the semiconductive zinc oxide In two-stage processes, this inorganic zinc complex is obtained by reacting high-purity zinc nitrate (99.998%) with aqueous sodium hydroxide solution, followed by reaction of the resulting zinc hydroxide with ammonia to remove the salts formed in the reaction of zinc nitrate with caustic soda , numerous separation and washing steps are necessary.
Die im Stand der Technik beschriebenen Verfahren zur Herstellung von halbleitenden Zinkoxid-Schichten auf Substraten weisen zum einen den Nachteil auf, dass die verwendeten Zinkoxid-Vorläuferverbindungen in aufwendigen Synthese- und Reinigungsverfahren hergestellt werden. Außerdem werden teilweise teure hochreine Edukte eingesetzt. Des Weiteren ist es bei den aus dem Stand der Technik verwendeten Vorläu- ferverbindungen von Nachteil, dass bei der thermischen Zersetzung unter Erhalt von Zinkoxid Nebenprodukte erhalten werden, welche auf dem Substrat verbleiben, und in einem weiteren Schritt abgetrennt werden müssen bzw. die Reinheit und damit die Funktionalität der gebildeten Zinkoxid-Schicht beeinträchtigen.The processes described in the prior art for the preparation of semiconducting zinc oxide layers on substrates have, on the one hand, the disadvantage that the zinc oxide precursor compounds used are prepared by complicated synthesis and purification processes. In addition, sometimes expensive high-purity starting materials are used. Furthermore, it is disadvantageous in the case of the precursors used in the prior art that during the thermal decomposition to give zinc oxide by-products are obtained which remain on the substrate and have to be separated off in a further step or the purity and thus impairing the functionality of the zinc oxide layer formed.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Herstellung von halbleitenden Schichten auf Substraten bereit zu stellen, welches sich durch eine besonders einfache Verfahrensführung auszeichnet. Des Weiteren sollen die erfindungsgemäß erhaltenen beschichteten Substrate eine möglichst hohe Reinheit an halbleitendem Material, insbesondere Zinkoxid, aufweisen. Dies soll erfindungsgemäß da- durch erzielt werden, dass Zinkoxid-Vorläuferverbindungen eingesetzt werden, die durch thermische Zersetzung in das gewünschte Zinkoxid überführt werden, wobei jedoch keine störenden Nebenprodukte erhalten werden, die in der gebildeten Schicht zurückbleiben. Die durch das erfindungsgemäße Verfahren erhaltenen halbleitenden Schichten sollen sich des Weiteren durch verbesserte elektronische Eigenschaften auszeichnen. Diese Aufgaben werden durch das erfindungsgemäße Verfahren zur Herstellung einer Schicht enthaltend wenigstens ein halbleitendes Metalloxid auf einem Substrat gelöst, umfassend mindestens die Schritte:The object of the present invention is therefore to provide a process for the production of semiconducting layers on substrates, which is distinguished by a particularly simple process control. Furthermore, the coated substrates obtained according to the invention should have the highest possible purity of semiconducting material, in particular zinc oxide. This is to be achieved according to the invention by using zinc oxide precursor compounds which are converted into the desired zinc oxide by thermal decomposition, but without resulting in any interfering by-products which remain in the layer formed. The semiconducting layers obtained by the method according to the invention should furthermore be distinguished by improved electronic properties. These objects are achieved by the method according to the invention for producing a layer comprising at least one semiconductive metal oxide on a substrate, comprising at least the steps:
(A) Herstellen einer Lösung enthaltend wenigstens eine Vorläuferverbindung des wenigstens einen Metalloxids ausgewählt aus der Gruppe bestehend aus Carboxyla- ten von Mono-, Di- oder Polycarbonsäuren mit wenigstens drei Kohlenstoffatomen oder Derivaten von Mono-, Di- oder Polycarbonsäuren, Alkoholaten, Hydroxiden, Semicarbaziden, Carbaminaten, Hydroxamaten, Isocyanaten, Amidinen, Amidra- zonen, Harnstoffderivaten, Hydroxylaminen, Oximen, Urethanen, Ammoniak, A- minen, Phosphinen, Ammonium-Verbindungen, Aziden, des entsprechenden Metalls und Mischungen davon, in wenigstens einem Lösungsmittel,(A) preparing a solution comprising at least one precursor compound of the at least one metal oxide selected from the group consisting of carboxylates of mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids, alkoxides, hydroxides, Semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazones, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, phosphines, ammonium compounds, azides, the corresponding metal and mixtures thereof, in at least one solvent,
(B) Aufbringen der Lösung aus Schritt (A) auf das Substrat und(B) applying the solution of step (A) to the substrate and
(C) thermisches Behandeln des Substrates aus Schritt (B) bei einer Temperatur von 20 bis 2000C, um die wenigstens eine Vorläuferverbindung in wenigstens ein halbleitendes Metalloxid zu überführen,(C) thermally treating the substrate of step (B) at a temperature of 20 to 200 ° C to convert the at least one precursor compound into at least one semiconductive metal oxide,
wobei, falls in Schritt (A) elektrisch neutrales [(OH)x(NH3)yZn]z mit x, y und z unabhängig voneinander 0,01 bis 10 als Vorläuferverbindung eingesetzt wird, dieses durch Um- Setzung von Zinkoxid und/oder Zinkhydroxid mit Ammoniak erhalten wird.if, in step (A), electrically neutral [(OH) x (NH 3 ) y Zn] z with x, y and z is used independently of one another as precursor compound, this being carried out by reaction of zinc oxide and / or zinc hydroxide is obtained with ammonia.
Das erfindungsgemäße Verfahren dient zur Herstellung einer Schicht enthaltend wenigstens ein halbleitendes Metalloxid auf einem Substrat.The method according to the invention serves to produce a layer containing at least one semiconductive metal oxide on a substrate.
In einer besonders bevorzugten Ausführungsform wird Zinkoxid als halbleitendes Metalloxid in dem erfindungsgemäßen Verfahren eingesetzt. Daher betrifft die vorliegende Erfindung auch das erfindungsgemäße Verfahren, wobei das wenigstens eine halbleitende Metalloxid Zinkoxid ZnO ist.In a particularly preferred embodiment, zinc oxide is used as the semiconductive metal oxide in the process according to the invention. Therefore, the present invention also relates to the process according to the invention, wherein the at least one semiconductive metal oxide is zinc oxide ZnO.
Im Allgemeinen ist es mit dem erfindungsgemäßen Verfahren möglich, alle dem Fachmann bekannten Substrate zu beschichten, beispielsweise Si-Wafer, Glas, Keramiken, Metalle, Metalloxide, Halbmetalloxide, Kunststoffe, wie Polyethylenterephthlalat (PET), Polyethylennaphthalat (PEN), Polycarbonate, Polyacrylate, Polystyrole, Polysulfone etc..In general, the process according to the invention makes it possible to coat all substrates known to the person skilled in the art, for example Si wafers, glass, ceramics, metals, metal oxides, semimetal oxides, plastics, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonates, polyacrylates, Polystyrenes, polysulfones etc.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist das Substrat mechanisch flexibel und umfasst wenigstens einen Kunststoff, beispielsweise ausgewählt aus der Gruppe bestehend aus Polyestern, beispielsweise Polyethylente- rephthalat (PET), Polyethylennaphthalat (PEN), Polycarbonaten, Polysulfonen und Mischungen davon. Die durch das erfindungsgemäße Verfahren auf dem Substrat hergestellte Schicht enthaltend wenigstens ein halbleitendes Metalloxid weist im Allgemeinen eine Dicke von 5 bis 250 nm, bevorzugt 5 bis 100 nm auf.In a preferred embodiment of the method according to the invention, the substrate is mechanically flexible and comprises at least one plastic, for example selected from the group consisting of polyesters, for example polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonates, polysulfones and mixtures thereof. The layer produced on the substrate by the method according to the invention containing at least one semiconductive metal oxide generally has a thickness of 5 to 250 nm, preferably 5 to 100 nm.
Die einzelnen Schritte des erfindungsgemäßen Verfahrens werden im Folgenden detailliert beschrieben:The individual steps of the method according to the invention are described in detail below:
Schritt (A):Step (A):
Schritt (A) des erfindungsgemäßen Verfahrens umfasst das (A) Herstellen einer Lösung enthaltend wenigstens eine Vorläuferverbindung des wenigstens einen Metalloxids ausgewählt aus der Gruppe bestehend aus Carboxylaten von Mono-, Di- oder Polycarbonsäuren mit wenigstens drei Kohlenstoffatomen oder Derivaten von Mono-, Di- oder Polycarbonsäuren, Alkoholaten, Hydroxiden, Semicarbaziden, Carbaminaten, Hydroxamaten, Isocyanaten, Amidinen, Amidrazonen, Harnstoffderivaten, Hydroxyla- minen, Oximen, Urethanen, Ammoniak, Aminen, Phosphinen, Ammonium- Verbindungen, Aziden, des entsprechenden Metalls und Mischungen davon, in wenigstens einem Lösungsmittel.Step (A) of the process according to the invention comprises (A) preparing a solution comprising at least one precursor compound of the at least one metal oxide selected from the group consisting of carboxylates of mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids, alcoholates, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazones, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, phosphines, ammonium compounds, azides, the corresponding metal and mixtures thereof, in at least a solvent.
In Schritt (A) des erfindungsgemäßen Verfahrens wird eine Lösung der entsprechenden Vorläuferverbindung hergestellt. Als Lösungsmittel kann im Allgemeinen jedes Lösungsmittel verwendet werden, in dem die verwendeten Vorläuferverbindungen zu wenigstens 0,01 Gew.-%, bezogen auf die gesamte Lösung, löslich sind.In step (A) of the process according to the invention, a solution of the corresponding precursor compound is prepared. As the solvent, generally any solvent can be used in which the precursor compounds used are at least 0.01% by weight, based on the total solution, soluble.
Geeignete Lösungsmittel sind beispielsweise ausgewählt aus der Gruppe bestehend aus Wasser, Alkohol, beispielsweise Methanol, Ethanol, iso-Propanol, n-Propanol, n- Butanol, iso-Butanol, tert-Butanol, Ketonen, beispielsweise Aceton, Ethern, beispielsweise Diethylether, Methyl-tert-butylether, Tetra hydrofu ran, Dioxan, Dimethoxyethan, Estern und Mischungen davon. Bevorzugt werden in Schritt (A) des erfindungsgemä- ßen Verfahrens wässrige, alkoholische oder etherische Lösungen eingesetzt, besonders bevorzugt wird in Schritt (A) Wasser als Lösungsmittel eingesetzt.Suitable solvents are, for example, selected from the group consisting of water, alcohol, for example methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol, tert-butanol, ketones, for example acetone, ethers, for example diethyl ether, methyl tert-butyl ether, tetrahydrofuran, dioxane, dimethoxyethane, esters and mixtures thereof. In step (A) of the process according to the invention, preference is given to using aqueous, alcoholic or ethereal solutions; it is particularly preferable to use water as solvent in step (A).
In Schritt (A) des erfindungsgemäßen Verfahrens wird eine Lösung hergestellt, die die wenigstens eine Vorläuferverbindung des wenigstens einen halbleitenden Metalloxids in einer Konzentration von 0,01 bis 20 Gew.-%, bevorzugt 0,1 bis 10 Gew.-%, besonders bevorzugt 0,5 bis 5 Gew.-%, jeweils bezogen auf die gesamte Lösung, enthält.In step (A) of the process according to the invention, a solution is prepared which comprises the at least one precursor compound of the at least one semiconductive metal oxide in a concentration of 0.01 to 20% by weight, preferably 0.1 to 10% by weight, particularly preferred 0.5 to 5 wt .-%, each based on the total solution contains.
In Schritt (A) des erfindungsgemäßen Verfahrens wird wenigstens eine Vorläuferverbindung des wenigstens einen halbleitenden Metalloxids in dem entsprechenden Lö- sungsmittel gelöst. Die wenigstens eine Vorläuferverbindung des wenigstens einen Metalloxids ist dabei ausgewählt aus der Gruppe bestehend aus Carboxylaten von Mono-, Di- oder Polycarbonsäuren mit wenigstens drei Kohlenstoffatomen oder Derivaten von Mono-, Di- oder Polycarbonsäuren, Alkoholaten, Hydroxiden, Semicarbaziden, Carbaminaten, Hydroxamaten, Isocyanaten, Amidinen, Amidrazonen, Harnstoffderivaten, Hydroxylaminen, Oximen, Urethanen, Ammoniak, Aminen, Phosphinen, Ammoni- um-Verbindungen, Aziden des entsprechenden Metalls und Mischungen davon.In step (A) of the process according to the invention, at least one precursor compound of the at least one semiconductive metal oxide is dissolved in the corresponding solvent. The at least one precursor compound of the at least one metal oxide is selected from the group consisting of carboxylates of Mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids, alcoholates, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidazones, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, Phosphines, ammonium compounds, azides of the corresponding metal and mixtures thereof.
In einer bevorzugten Ausführungsform werden Vorläuferverbindungen eingesetzt, die sich bei einer Temperatur von im Allgemeinen unterhalb 200 0C, bevorzugt unterhalb 150 0C, besonders bevorzugt unterhalb 130 0C, ganz besonders bevorzugt unterhalb 100 0C, in das halbleitende Metalloxid und flüchtige Produkte, beispielsweise Kohlendioxid, Essigester etc. zersetzen. Eine Mindesttemperatur für die Zersetzung dieser Vorläuferverbindungen ist beispielsweise 50 0C, unter katalytischer Aktivierung beispielsweise 20 0C.In a preferred embodiment, precursor compounds are used which are at a temperature of generally below 200 0 C, preferably below 150 0 C, more preferably below 130 0 C, most preferably below 100 0 C, in the semiconductive metal oxide and volatile products, For example, decompose carbon dioxide, ethyl acetate, etc. A minimum temperature for the decomposition of these precursor compounds is, for example, 50 ° C., with catalytic activation for example 20 ° C.
Geeignete Carboxylate des entsprechenden Metalls sind beispielsweise Verbindungen des entsprechenden Metalls mit Mono-, Di- oder Polycarbonsäuren mit wenigstens drei Kohlenstoffatomen oder Derivaten von Mono-, Di- oder Polycarbonsäuren. Unter Derivaten von Mono-, Di- oder Polycarbonsäuren werden erfindungsgemäß die entsprechenden Mono-, Di- oder Polyester bzw. Anhydride oder Amide verstanden. Erfin- dungsgemäß kann das als Zentralatom vorliegende Metallatom in den Carboxylat- Komplexen im Allgemeinen die Koordinationszahlen 3 bis 6 aufweisen.Suitable carboxylates of the corresponding metal are, for example, compounds of the corresponding metal with mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids. Derivatives of mono-, di- or polycarboxylic acids are understood according to the invention to mean the corresponding mono-, di- or polyesters or anhydrides or amides. According to the invention, the metal atom present as the central atom in the carboxylate complexes can generally have the coordination numbers 3 to 6.
Für den erfindungsgemäß besonders bevorzugten Fall, dass Zinkoxid als halbleitendes Metalloxid auf das Substrat aufgebracht wird, werden in Schritt (A) als bevorzugte Car- boxylate entsprechende Verbindungen des Zinks eingesetzt. Einer bevorzugten Ausführungsform werden erfindungsgemäß Zink-Carboxylat-Komplexe mit den Koordinationszahlen 3 bis 6 eingesetzt, wobei mindestens ein Ligand am Zink aus der Gruppe der Mono-, Di- oder Polycarbonsäuren mit wenigstens drei Kohlenstoffatomen oder Derivate von Mono-, Di- oder Polycarbonsäuren stammt.For the present invention particularly preferred case that zinc oxide is applied as a semiconducting metal oxide on the substrate, corresponding compounds of zinc are used in step (A) as preferred carboxylates. In a preferred embodiment, zinc carboxylate complexes having the coordination numbers 3 to 6 are used according to the invention, where at least one ligand on zinc originates from the group of mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids ,
In einer weiteren bevorzugten Ausführungsform werden als Vorläuferverbindungen Zink-Carboxylate bzw. Derivate davon eingesetzt, die sich bei einer Temperatur von im Allgemeinen unterhalb 200 0C, bevorzugt unterhalb 150 0C, besonders bevorzugt unterhalb 130 0C, ganz besonders bevorzugt unterhalb 100 0C, in Zinkoxid und flüchtige Produkte, beispielsweise Kohlendioxid, Aceton etc. zersetzen. Eine Mindesttemperatur für die Zersetzung dieser Vorläuferverbindungen ist beispielsweise 50 0C, unter katalytischer Aktivierung beispielsweise 20 0C.In a further preferred embodiment, zinc carboxylates or derivatives thereof are used as precursor compounds, which are at a temperature of generally below 200 0 C, preferably below 150 0 C, more preferably below 130 0 C, most preferably below 100 0 C. , in zinc oxide and volatile products, such as carbon dioxide, acetone, etc. decompose. A minimum temperature for the decomposition of these precursor compounds is, for example, 50 ° C., with catalytic activation for example 20 ° C.
Besonders bevorzugte in Schritt (A) des erfindungsgemäßen Verfahrens als Vorläufer- Verbindungen eingesetzte Carboxylate entsprechen der allgemeinen Formel (I) R1-M-O-C(O)-R2 (I),Particularly preferred carboxylates used as precursor compounds in step (A) of the process according to the invention correspond to the general formula (I) R 1 -MOC (O) -R 2 (I),
wobeiin which
M ZnM Zn
R1 Wasserstoff, lineares oder verzweigtes CrCi2-Alkyl, lineares oder verzweigtes d-Ci2-Heteroalkyl, substituiertes oder unsubstituiertes C5-Ci6-Aryl, lineares oder verzweigtes, substituiertes oder unsubstituiertes C5-Ci6-Aralkyl, lineares oder verzweigtes, substituiertes oder unsubstituiertes C5-Ci6-Alkaryl, NR6R7 mit R6, R7 unabhängig voneinander Si-(CrC6-Alkyl)3 oder Rest der Formel -0-C(O)-R2 mit den unten angegeben Bedeutungen für R2, jeweils gegebenenfalls substituiert mit funktionellen Gruppen mit Elektronendonor-Charakter, beispielsweise Hydro- xy-, Amino-, Alkylamino-, Amido-, Ether und/oder Oxo,R 1 is hydrogen, linear or branched C 1 -C 2 -alkyl, linear or branched C 1 -C -heteroalkyl, substituted or unsubstituted C 5 -C 6 -aryl, linear or branched, substituted or unsubstituted C 5 -C 6 -aralkyl, linear or branched, substituted or unsubstituted C 5 -C 6 -alkaryl, NR 6 R 7 with R 6 , R 7 are independently of each other si- (C 1 -C 6 -alkyl) 3 or radical of the formula -O-C (O) -R 2 with the below given meanings for R 2 , in each case optionally substituted by functional groups having an electron donor character, for example hydroxy, amino, alkylamino, amido, ether and / or oxo,
R2 lineares oder verzweigtes CrCi2-Alkyl, bevorzugt C2-Ci2-Alkyl, lineares oder verzweigtes d-Ci2-Heteroalkyl, bevorzugt C2-Ci2-Heteroalkyl, substituiertes oder unsubstituiertes C5-Ci6-Aryl, lineares oder verzweigtes, substituiertes oder unsubstituiertes C5-Ci6-Aralkyl, lineares oder verzweigtes, substituiertes oder un- substituiertes C5-Ci6-Alkaryl, jeweils gegebenenfalls substituiert mit funktionellenR 2 is linear or branched CrCl 2 -alkyl, preferably C 2 -C 2 alkyl, linear or branched d-Ci2 heteroalkyl, preferably C2-Ci2 heteroalkyl, substituted or unsubstituted C 5 -C 6 aryl, linear or branched, substituted or unsubstituted C 5 -C 6 -alkyl, linear or branched, substituted or unsubstituted C 5 -C 6 -alkaryl, each optionally substituted by functional
Gruppen mit Elektronendonor-Charakter, beispielsweise Hydroxy-, Amino-, Alkylamino-, Amido-, Ether und/oder Oxo; oder Reste der Formel oGroups of electron-donating character, for example hydroxy, amino, alkylamino, amido, ether and / or oxo; or radicals of the formula O
^ xü ^ x ü
R3 ausgewählt ist aus O und CH2, n, m, c unabhängig voneinander gleich 0, 1 , 2 oder 3 sind, bevorzugt 0, 1 , 2 und besonders bevorzugt 0 oder 1 sind,R 3 is selected from O and CH 2 , n, m, c independently of one another are 0, 1, 2 or 3, preferably 0, 1, 2 and particularly preferably 0 or 1,
R4 ausgewählt ist aus O, C=O, -X4C=CH-, OCH2,R 4 is selected from O, C = O, -X 4 C = CH-, OCH 2 ,
R5 ausgewählt aus H, OH, OCH3, OC2H5, OSi(X1 )(3-a-b)(X2)a(X3)b, CO2X5, OCO2X5, bevorzugt aus CO2X5,R 5 is selected from H, OH, OCH 3 , OC 2 H 5 , OSi (X 1 ) (3 - a -b) (X 2 ) a (X 3 ) b, CO 2 X 5 , OCO 2 X 5 from CO 2 X 5 ,
X5 ausgewählt aus Ci bis C4 Alkyl, bevorzugt aus Methyl, Ethyl oder tert- Butyl, ganz besonders bevorzugt aus Ethyl oder tert-Butyl,X 5 is selected from C 1 to C 4 alkyl, preferably from methyl, ethyl or tert-butyl, very particularly preferably from ethyl or tert-butyl,
a, b unabhängig voneinander gleich 0, 1 , 2 oder 3 sind und die Summe aus a und b maximal 3 ist,a, b are independently 0, 1, 2 or 3 and the sum of a and b is 3 or less,
X1, X2, X3, X4 unabhängig voneinander ausgewählt sind aus H, Ci bis C10 Alkyl, be- vorzugt H und Ci bis C4 Alkyl, besonders bevorzugt H, Methyl und Ethyl d ein ganzzahliger Wert von 1 bis 100, X6 ausgewählt ist aus H, Ci bis Ci0 Alkyl, bevorzugt aus H und Ci bis C4 X 1 , X 2 , X 3 , X 4 are independently selected from H, Ci to C 10 alkyl, preferably H and Ci to C 4 alkyl, more preferably H, methyl and ethyl d is an integer value of 1 to 100 . X 6 is selected from H, Ci to Ci 0 alkyl, preferably from H and Ci to C 4
Alkyl, besonders bevorzugt ausgewählt aus Methyl oder Ethyl,Alkyl, more preferably selected from methyl or ethyl,
bedeuten.mean.
Von den Verbindungen der allgemeinen Formel (I) liegen in Lösung, bevorzugt in wässriger Lösung, gegebenenfalls Agglomerate bzw. mehrkernige Addukte von zwei oder mehr Molekülen der allgemeinen Formel (I) vor, die erfindungsgemäß mit umfasst sind.Of the compounds of the general formula (I) are in solution, preferably in aqueous solution, if appropriate, agglomerates or polynuclear adducts of two or more molecules of the general formula (I), which are included according to the invention with.
In ganz besonders bevorzugten Carboxylaten, insbesondere Zn-Carboxylaten, vorliegende Liganden sind ausgewählt aus der Gruppe bestehend aus 3-Oxoglutarsäure- monoalkylestern, beispielsweise 3-Oxoglutarsäuremonomethylester, 3-Oxoglutarsäure- monoethylester, Malonsäuremonoalkylester, beispielsweise Malonsäuremonomethy- lester, Malonsäuremonoethylester, und Mischungen davon.In very particularly preferred carboxylates, in particular Zn carboxylates, present ligands are selected from the group consisting of 3-Oxoglutarsäure- monoalkyl esters, for example, 3-Oxoglutarsäuremonomethylester, 3-Oxoglutarsäure- monoethyl ester, Malonsäuremonoalkylester, for example Malonsäuremonomethy- lester, Malonsäuremonoethylester, and mixtures thereof.
Ein bevorzugtes Beispiel für ein Zink-Carboxylat, welches in Schritt (A) des erfindungsgemäßen Verfahrens als Vorläuferverbindung eingesetzt wird, ist die Verbindung der Formel (II) Zn[(EtOC(O)CH2C(O)CH2COO)2].A preferred example of a zinc carboxylate which is used as precursor compound in step (A) of the process according to the invention is the compound of the formula (II) Zn [(EtOC (O) CH 2 C (O) CH 2 COO) 2 ] ,
Bei den Verbindungen, die gemäß der vorliegenden Erfindung als Summen- und/oder Strukturformel wiedergegeben sind, können gegebenenfalls Lösungsmittelmoleküle, z. B. Wasser etc., in den Verbindungen vorliegen.In the compounds which are represented according to the present invention as a sum and / or structural formula, solvent molecules, for. As water, etc., are present in the compounds.
Verfahren zur Herstellung der Verbindung der Formel (II) sind dem Fachmann an sich bekannt, beispielsweise durch Umsetzung einer stöchiometrischen Menge an 3- Oxoglutarsäuremonoethylester mit Diethylzink in Hexan bei 0 0C.Processes for the preparation of the compound of the formula (II) are known per se to the person skilled in the art, for example by reacting a stoichiometric amount of 3-oxoglutaric acid monoethyl ester with diethylzinc in hexane at 0 ° C.
Ein weiteres besonders bevorzugtes Beispiel für ein Zink-Carboxylat, welches in Schritt (A) des erfindungsgemäßen Verfahrens als Vorläuferverbindung eingesetzt wird, und welches als Addukt von zwei Molekülen der allgemeinen Formel (I) vorliegt, ist die Verbindung der Formel (III)A further particularly preferred example of a zinc carboxylate which is used as precursor compound in step (A) of the process according to the invention and which is present as an adduct of two molecules of the general formula (I) is the compound of the formula (III)
Die Verbindung der Formel (III) ist ebenfalls durch dem Fachmann bekannte Verfahren herstellbar, beispielsweise durch Umsetzung einer äquimolaren Menge von 3- Oxoglutarsäuremonoethylester und Zink-bis[bis(trimethylsilyl)amid] in Benzol oder To- luol bei Raumtemperatur.The compound of the formula (III) can likewise be prepared by processes known to the person skilled in the art, for example by reacting an equimolar amount of 3- Oxoglutaric acid monoethyl ester and zinc bis [bis (trimethylsilyl) amide] in benzene or toluene at room temperature.
Ein weiteres besonders bevorzugtes Beispiel für ein Zink-Carboxylat, welches in Schritt (A) des erfindungsgemäßen Verfahrens als Vorläuferverbindung eingesetzt wird, ist die Verbindung der Formel (IV)Another particularly preferred example of a zinc carboxylate which is used as the precursor compound in step (A) of the process according to the invention is the compound of the formula (IV)
Die Verbindung der Formel (IV) ist ebenfalls nach dem Fachmann bekannten Verfah- ren herstellbar.The compound of the formula (IV) can likewise be prepared by processes known to the person skilled in the art.
Ein weiteres bevorzugtes Beispiel für ein Zink-Carboxylat ist die Verbindung der Formel (IVa) ZnKNH2CH2COO)2 (H2O)], mit Elektronendonor-FunktionalitätAnother preferred example of a zinc carboxylate is the compound of formula (IVa) ZnKNH 2 CH 2 COO) 2 (H 2 O)], having electron donating functionality
H2OH 2 O
Ein weiteres besonders bevorzugtes Beispiel für ein Zink-Carboxylat, welches in Schritt (A) des erfindungsgemäßen Verfahrens als Vorläuferverbindung eingesetzt wird, ist die Verbindung der Formel (IV b) Zn[{ R7R8N-N=C(CH3)CO2J2 (H2O)2] ebenfalls mit E- lektronendonor-Funktionalität in alpha-Position zur Carboxylatgruppe.Another particularly preferred example of a zinc carboxylate which is used as precursor compound in step (A) of the process according to the invention is the compound of the formula (IVb) Zn [{R 7 R 8 NN = C (CH 3 ) CO 2 J 2 (H 2 O) 2 ] also with electron donor functionality in the alpha position to the carboxylate group.
Ein weiteres bevorzugtes Beispiel für ein Zink-Carboxylat ist die Verbindung der Formel (IVc) Another preferred example of a zinc carboxylate is the compound of formula (IVc)
mit R7=R8 gleich Methyl oder R7 gleich H und R8 gleich C(O)Mewith R 7 = R 8 is methyl or R 7 is H and R 8 is C (O) Me
Weiter bevorzugt wird in Schritt (A) des erfindungsgemäßen Verfahrens als Vorläuferverbindung des wenigstens einen Metalloxids ein Alkoholat des entsprechenden Metalls eingesetzt.More preferably, in step (A) of the process according to the invention, a precursor compound of the at least one metal oxide is an alcoholate of the corresponding metal.
Bevorzugt werden Metallalkoholate als Vorläuferverbindungen eingesetzt, in denen das Metallatom die Koordinationszahl 3 bis 6 aufweist. Für den besonders bevorzugten Fall, dass Zinkoxid als halbleitendes Metalloxid verwendet wird, werden insbesondere Zink-Alkoholat-Komplexe mit Koordinationszahlen 3 bis 6 eingesetzt, in denen wenigstens ein Ligand ein Alkoholat ist. Diese erfindungsgemäß vorliegenden Koordinationszahlen werden in den erfindungsgemäß verwendeten Vorläuferverbindungen durch Anlagerungen gleicher oder unterschiedlicher Moleküle aneinander realisiert.Preference is given to using metal alcoholates as precursor compounds in which the metal atom has the coordination number 3 to 6. For the particularly preferred case where zinc oxide is used as the semiconducting metal oxide, in particular zinc alkoxide complexes having coordination numbers 3 to 6 are used in which at least one ligand is an alcoholate. These coordination numbers present according to the invention are realized in the precursor compounds used according to the invention by additions of identical or different molecules to one another.
In einer besonders bevorzugten Ausführungsform werden als Vorläuferverbindungen Zinkalkoholate eingesetzt, die sich bei einer Temperatur von im Allgemeinen unterhalb 200 0C, bevorzugt unterhalb 150 0C, besonders bevorzugt unterhalb 130 0C, ganz be- sonders bevorzugt unterhalb 100 0C, in das halbleitende Metalloxid und flüchtige Produkte zersetzen. Eine Mindesttemperatur für die Zersetzung dieser Vorläuferverbindungen ist beispielsweise 50 0C, unter katalytischer Aktivierung beispielsweise 20 0C.In a particularly preferred embodiment, zinc alcoholates are used as precursor compounds, which at a temperature of generally below 200 0 C, preferably below 150 0 C, more preferably below 130 0 C, most preferably below 100 0 C, in the semiconducting Metal oxide and volatile products decompose. A minimum temperature for the decomposition of these precursor compounds is, for example, 50 ° C., with catalytic activation for example 20 ° C.
In einer besonders bevorzugten Ausführungsform entsprechen die in Schritt (A) des erfindungsgemäßen Verfahrens als Vorläuferverbindungen eingesetzten Metallalkoholate der folgenden allgemeinen Formel (V)In a particularly preferred embodiment, the metal alcoholates used as precursor compounds in step (A) of the process according to the invention correspond to the following general formula (V)
(R9O)o-M-(R10)p (V),(R 9 O) o -M- (R 10 ) p (V),
wobeiin which
M Zn R9 lineares oder verzweigtes CrCi2-Alkyl, lineares oder verzweigtes C1-C12- Heteroalkyl, substituiertes oder unsubstituiertes C5-Ci6-Aryl, lineares oder verzweigtes, substituiertes oder unsubstituiertes C5-Ci6-Aralkyl, lineares oder verzweigtes, substituiertes oder unsubstituiertes C5-Ci6-Alkaryl, bevorzugt lineares oder verzweigtes Ci-Cβ-Alkyl, insbesondere Methyl oder Ethyl, jeweils gegebenenfalls substituiert mit funktionellen Gruppen mit Elektronendonor-Charakter, beispielsweise Hydroxy-, Amino-, Alkylamino-, Amido-, Ether und/oder OxoM Zn R 9 is linear or branched CrCl 2 alkyl, linear or branched C 1 -C 12 - heteroalkyl, substituted or unsubstituted C 5 -Ci6 aryl, linear or branched, substituted or unsubstituted C 5 -C 6 aralkyl, linear or branched, substituted or unsubstituted C 5 -C 6 -alkaryl, preferably linear or branched C 1 -C 6 -alkyl, in particular methyl or ethyl, each optionally substituted by functional groups with electron-donating character, for example hydroxy, amino, alkylamino, amido, ether and / or oxo
R10 Wasserstoff, lineares oder verzweigtes d-Ci2-Alkyl, lineares oder verzweigtes d-Ci2-Heteroalkyl, substituiertes oder unsubstituiertes C5-Ci6-Aryl, lineares oder verzweigtes, substituiertes oder unsubstituiertes C5-Ci6-Aralkyl, lineares oder verzweigtes, substituiertes oder unsubstituiertes C5-Ci6-Alkaryl, NR11R12 mit R11, R12 unabhängig voneinander Si-(Ci-C6-Alkyl)3, oder Rest der Formel -0-C(O)-R2 mit den oben angegeben Bedeutungen für R2, jeweils gegebenenfalls substituiert mit funktionellen Gruppen mit Elektronendonor-Charakter, beispielsweise Hydroxy-, Amino-, Alkylamino-, Amido-, Ether und/oder Oxo, besonders bevorzugt ist R9 lineares oder verzweigtes Ci-C6-Alkyl, insbesondere Methyl oder Ethyl.R 10 is hydrogen, linear or branched d-Ci 2 -alkyl, linear or branched d-Ci2 heteroalkyl, substituted or unsubstituted C 5 -C 6 aryl, linear or branched, substituted or unsubstituted C 5 -Ci6 aralkyl, linear or branched, substituted or unsubstituted C 5 -C 6 -alkaryl, NR 11 R 12 with R 11 , R 12 independently of one another are si- (C 1 -C 6 -alkyl) 3 , or radical of the formula -O-C (O) -R 2 with the meanings given above for R 2 , in each case optionally substituted by functional groups having electron donor character, for example hydroxyl, amino, alkylamino, amido, ether and / or oxo, particularly preferably R 9 is linear or branched C 1 C 6 alkyl, in particular methyl or ethyl.
o 1 oder 2 undo 1 or 2 and
p 0 oder 1 bedeuten, wobei die Indizes so ausgewählt werden, dass o + p = 2 gilt, so dass elektrisch neutrale Verbindungen der allgemeinen Formel (V) vorliegen.p is 0 or 1, wherein the indices are selected so that o + p = 2, so that electrically neutral compounds of the general formula (V) are present.
oder Heterocubane, beispielsweise (Et-Zn-OEt)4 oder Zn7O8MeI4 (Formel (Vb)).or heterocubans, for example (Et-Zn-OEt) 4 or Zn 7 O 8 Me I4 (formula (Vb)).
Besonders bevorzugte Verbindungen der allgemeinen Formel (V) sind Methoxy- methyl-zink oder Ethoxy-ethyl-zink.Particularly preferred compounds of the general formula (V) are methoxymethyl-zinc or ethoxy-ethyl-zinc.
Weitere bevorzugte Beispiele für Zink-Alkoholate, welche in Schritt (A) des erfindungs- gemäßen Verfahrens als Vorläuferverbindung eingesetzt werden, sind die Verbindungen der Formel (Va), (Vb) und (Vc)Further preferred examples of zinc alkoxides which are used as precursor compound in step (A) of the process according to the invention are the compounds of the formulas (Va), (Vb) and (Vc)
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden als wenigstens eine Vorläuferverbindung des wenigstens ein Metalloxids Hydroxide, Semicarbazide, Carbaminate, Hydroxamate, Isocyanate, Amidine, Amidra- zone, Harnstoffderivate, Hydroxylamine, Oxime, Urethane, Ammoniak, Amine, Amide, Phosphine, Ammonium-Verbindungen, Azide des entsprechenden Metalls und Mischungen davon, besonders bevorzugt ein Hydroxo-Komplex des entsprechenden Metalls eingesetzt.In a further preferred embodiment of the process according to the invention, at least one precursor compound of the at least one metal oxide are hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazone, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, amides, phosphines, ammonium Compounds, azides of the corresponding metal and mixtures thereof, more preferably a hydroxo complex of the corresponding metal used.
Bevorzugt werden Hydroxo-Metallkomplexe oder auch Aquo-Komplexe als Vorläuferverbindungen eingesetzt, in denen das Metallatom die Koordinationszahl 4 bis 6 aufweist. Für den besonders bevorzugten Fall, dass Zinkoxid als halbleitendes Metalloxid verwendet wird, werden insbesondere Zink-Komplexe mit Koordinationszahlen 4 bis 6 eingesetzt.Hydroxo-metal complexes or else aquo-complexes are preferably used as precursor compounds in which the metal atom has the coordination number 4 to 6. For the particularly preferred case that zinc oxide is used as the semiconducting metal oxide, in particular zinc complexes having coordination numbers 4 to 6 are used.
In einer besonders bevorzugten Ausführungsform werden als Vorläuferverbindungen Hydroxo-Metall-Komplexe eingesetzt, die sich bei einer Temperatur von im Allgemeinen unterhalb 200 0C, bevorzugt unterhalb 150 0C, besonders bevorzugt unterhalb 130 0C, ganz besonders bevorzugt unterhalb 100 0C, in das halbleitende Metalloxid und flüchtige Produkte, beispielsweise Ammoniak zersetzen. Eine Mindesttemperatur für die Zersetzung dieser Vorläuferverbindungen ist beispielsweise 50 0C, unter katalyti- scher Aktivierung beispielsweise 20 0C. In einer besonders bevorzugten Ausführungsform entsprechen diese Verbindungen der allgemeinen Formel (VI).In a particularly preferred embodiment, hydroxo metal complexes are used as precursor compounds, which at a temperature of generally below 200 0 C, preferably below 150 0 C, more preferably below 130 0 C, most preferably below 100 0 C, in decompose the semiconductive metal oxide and volatile products such as ammonia. A minimum temperature for the decomposition of these precursors, for example, 50 0 C, under of catalytic activation, for example 20 0 C. In a particularly preferred embodiment, these compounds correspond to the general formula (VI).
[(A)q(B)r(C)s(OH)tZn]u (VI)[(A) q (B) r (C) s (OH) t Zn] u (VI)
wobeiin which
A, B, C unabhängig voneinander R13 3N mit R13 gleich unabhängig voneinander Wasserstoff, CrC6-Alkyl, C5-Ci2-ArVl, C5-Ci2-Aralkyl, C5-Ci2-Alkaryl, N2R13 4 mit R13 wie oben definiert, NR13 2OH mit R13 wie oben definiert, (NR13 2)2C=O mit R13 wie oben definiert, R13N-CO2 " mit R13 wie oben definiert, N3 ", NCO", Acetohydrazide, Amidrazone, Semicarbazide, R14 3P mit R14 gleich unabhängig voneinander Wasserstoff, Methyl oder Ethyl, R14 3As mit R14 wie o- ben definiert, Oxime, Urethane, Tetra h yd rofu ran (THF), Diformamid, Di- methylformamid (DMF), Aceton, Wasser, d-Ci2-Alkohole, Ether mit 2 bis 12 Kohlenstoffatomen, beispielsweise 1 ,2-Dimethoxyethan (DME), cycli- sche Ether mit 4 bis 12 Kohlenstoffatomen, beispielsweise Dioxan, insbesondere NH3 und/oder OH,A, B, C independently of one another R 13 3 N with R 13 independently of one another are hydrogen, C 1 -C 6 -alkyl, C 5 -C 2 -arVl, C 5 -C 2 -aralkyl, C 5 -C 2 -alkaryl, N 2 R 13 4 with R 13 as defined above, NR 13 2 OH with R 13 as defined above, (NR 13 2 ) 2 C = O with R 13 as defined above, R 13 N-CO 2 " with R 13 as defined above , N 3 " , NCO " , acetohydrazides, amidrazone, semicarbazides, R 14 3 P with R 14 are each independently of one another hydrogen, methyl or ethyl, R 14 3 As with R 14 as defined above, oximes, urethanes, tetrahydrate rofu ran (THF), diformamide, dimethylformamide (DMF), acetone, water, d-Ci 2 -alcohols, ethers having 2 to 12 carbon atoms, for example, 1, 2-dimethoxyethane (DME), cyclic ethers with 4 bis 12 carbon atoms, for example dioxane, in particular NH 3 and / or OH,
q, r, s, t unabhängig voneinander 0 - 10, bevorzugt 0-6, besonders bevorzugt 0-4, bevorzugt t=2 u 1 - 10, bevorzugt u=1 ,q, r, s, t independently of one another 0-10, preferably 0-6, particularly preferably 0-4, preferably t = 2 u 1 -10, preferably u = 1,
bedeuten, wobei q, r, s, t, u so ausgewählt werden, dass elektrisch neutrale Verbindungen der allgemeinen Formel (VI) vorliegen.where q, r, s, t, u are selected such that electrically neutral compounds of the general formula (VI) are present.
Besonders bevorzugt wird in Schritt (A) des erfindungsgemäßen Verfahrens als wenigstens eine Vorläuferverbindung der anorganische Komplex [(OH)x(N H3)yZn]z mit x, y u n d z unabhängig voneinander 0,01 bis 10, ganz besonders bevorzugt [(OH)x(NH3)yZn]z mit x=2, y=2 bzw. 4 und z=1 eingesetzt, wobei x, y und z so ausgewählt sind, dass der genannte Komplex elektrisch neutral geladen ist, und dieser durch Umsetzung von Zinkoxid oder Zinkhydroxid mit Ammoniak, insbesondere durch das erfindungsgemäße Verfahren zur Herstellung von elektrisch neutralem [(OH)x(NH3)yZn]z mit x, y und z unabhängig voneinander 0,01 bis 10, bevorzugt x, y und z unabhängig voneinander ganze Zahlen von 1 bis 6, besonders bevorzugt x=2, y=2 bzw. 4 und z=1 erhalten wird.Particularly preferred in step (A) of the process according to the invention as at least one precursor compound is the inorganic complex [(OH) x (NH 3 ) y Zn] z with x, y and z independently of one another 0.01 to 10, very particularly preferably [(OH) x (NH 3 ) y Zn] z with x = 2, y = 2 or 4 and z = 1 used, where x, y and z are selected so that said complex is electrically neutral charged, and this by reaction of Zinc oxide or zinc hydroxide with ammonia, in particular by the inventive method for producing electrically neutral [(OH) x (NH 3 ) y Zn] z with x, y and z are independently 0.01 to 10, preferably x, y and z independently from one another integers from 1 to 6, particularly preferably x = 2, y = 2 or 4 and z = 1 is obtained.
Daher betrifft die vorliegende Erfindung insbesondere auch das erfindungsgemäße Verfahren, wobei in Schritt (A) als wenigstens eine Vorläuferverbindung des wenigstens einen Metalloxids [(OH)x(NH3)yZn]z mit x, y und z unabhängig voneinander 0,01 bis 10, so dass der genannte Komplex elektrisch neutral geladen ist, und dieser durch Umsetzung von Zinkoxid oder Zinkhydroxid mit Ammoniak erhalten wird, eingesetzt wird.Therefore, the present invention particularly also relates to the process according to the invention, wherein in step (A) as at least one precursor compound of the at least one metal oxide [(OH) x (NH 3 ) y Zn] z with x, y and z is independently 0.01 to 10, so that the said complex is charged electrically neutral, and this by Reaction of zinc oxide or zinc hydroxide with ammonia is used.
Schritt (A) des erfindungsgemäßen Verfahrens wird im Allgemeinen bei einer Tempera- tur durchgeführt, bei der eine geeignete Lösung enthaltend wenigstens eine Vorläuferverbindung des wenigstens ein Metalloxids erhalten wird, beispielsweise 5 bis 120 0C, bevorzugt 10 bis 60 0C.Step (A) of the process according to the invention is generally carried out at a temperature at which a suitable solution containing at least one precursor compound of the at least one metal oxide is obtained, for example 5 to 120 ° C., preferably 10 to 60 ° C.
Schritt (A) des erfindungsgemäßen Verfahrens kann in allen dem Fachmann bekann- ten Reaktoren durchgeführt werden, beispielsweise Rührreaktoren. Schritt (A) kann erfindungsgemäß kontinuierlich oder diskontinuierlich durchgeführt werden.Step (A) of the process according to the invention can be carried out in all reactors known to the person skilled in the art, for example stirred reactors. Step (A) can be carried out according to the invention continuously or batchwise.
Nach Schritt (A) des erfindungsgemäßen Verfahrens wird eine Lösung erhalten, die wenigstens eine Vorläuferverbindung des wenigstens einen Metalloxids in einem Lö- sungsmittel enthält. Neben diesen Komponenten kann die in Schritt (A) erhaltene Lösung weitere Additive enthalten, beispielsweise zur Verbesserung des gewählten Abscheidevorgangs auf das Substrat (Schritt B).After step (A) of the process according to the invention, a solution is obtained which contains at least one precursor compound of the at least one metal oxide in a solvent. In addition to these components, the solution obtained in step (A) may contain further additives, for example for improving the selected deposition process on the substrate (step B).
Die in Schritt (A) des erfindungsgemäßen Verfahrens hergestellte Lösung kann des Weiteren auch weitere Metallkationen enthalten, die zur Dotierung des halbleitenden Metalloxids dienen. In einer besonders bevorzugten Ausführungsform sind diese Metallkationen ausgewählt aus der Gruppe bestehend aus Al3+, In3+, Sn4+, Ga3+ und Mischungen davon. Diese Metallkationen können separat in die Lösung eingebracht werden, oder schon in den erfindungsgemäßen Vorläuferverbindungen vorliegen.The solution prepared in step (A) of the process according to the invention may furthermore also contain further metal cations which serve for doping the semiconductive metal oxide. In a particularly preferred embodiment, these metal cations are selected from the group consisting of Al 3+ , In 3+ , Sn 4+ , Ga 3+ and mixtures thereof. These metal cations can be introduced separately into the solution, or already present in the precursor compounds according to the invention.
Die genannten Dotierungs-Metallkationen können zur Herstellung der Lösung in Schritt (A) in Form von Metalloxiden, Metallhydroxiden, Metallalkoholaten oder in Form löslicher Komplexe zugesetzt werden. Die genannten Dotierungsmittel können der Lösung in Schritt (A) des erfindungsgemäßen Verfahrens im Allgemeinen in einer Menge von 0,02 bis 10 mol-% bezogen auf Zn, zugegeben werden, bevorzugt von 0,1 bis 5 mol-% bezogen auf Zn.The said doping metal cations can be added to produce the solution in step (A) in the form of metal oxides, metal hydroxides, metal alcoholates or in the form of soluble complexes. The dopants mentioned may be added to the solution in step (A) of the process according to the invention generally in an amount of from 0.02 to 10 mol%, based on Zn, preferably from 0.1 to 5 mol%, based on Zn.
Die vorliegende Erfindung betrifft daher auch das erfindungsgemäße Verfahren wobei das halbleitende Metalloxid mit Metallkationen ausgewählt aus der Gruppe bestehend aus Al3+, In3+, Sn4+, Ga3+ und Mischungen davon dotiert ist.The present invention therefore also relates to the process according to the invention wherein the semiconductive metal oxide is doped with metal cations selected from the group consisting of Al 3+ , In 3+ , Sn 4+ , Ga 3+ and mixtures thereof.
Schritt (B):Step (B):
Schritt (B) des erfindungsgemäßen Verfahrens umfasst das Aufbringen der Lösung aus Schritt (A) auf das Substrat. Im Allgemeinen kann Schritt (B) gemäß allen dem Fachmann bekannten Methoden durchgeführt werden, die dazu geeignet sind, die aus Schritt (A) erhaltene Lösung auf das Substrat aufzubringen, beispielsweise Spin-coating, Spray-coating, Dip-coating, Drop-casting oder Bedrucken, wie z. B. Ink-jet Printing, Flexo-druck oder Gravüre Prin- ting.Step (B) of the method of the invention comprises applying the solution of step (A) to the substrate. In general, step (B) can be carried out according to all methods known to those skilled in the art, which are suitable for applying the solution obtained from step (A) to the substrate, for example spin-coating, spray-coating, dip-coating, drop-casting or printing, such as. For example, ink-jet printing, flexo printing or gravure printing.
Daher betrifft die vorliegende Erfindung in einer bevorzugten Ausführungsform das erfindungsgemäße Verfahren, wobei das Aufbringen der Lösung aus Schritt (A) in Schritt (B) durch Spin-coating, Spray-coating, Dip-coating, Drop-casting und/oder Be- drucken erfolgt.Therefore, in a preferred embodiment, the present invention relates to the process according to the invention, wherein the application of the solution from step (A) in step (B) by spin coating, spray coating, dip coating, drop casting and / or printing he follows.
Besonders bevorzugt wird die Lösung aus Schritt (A) in Schritt (B) des erfindungsgemäßen Verfahrens durch Spin-coating oder Ink-jet Printing aufgebracht. Diese Verfahren sind dem Fachmann an sich bekannt.The solution from step (A) in step (B) of the process according to the invention is particularly preferably applied by spin-coating or ink-jet printing. These methods are known per se to the person skilled in the art.
Die vorliegende Erfindung betrifft daher auch das erfindungsgemäße Verfahren wobei das Aufbringen der Lösung aus Schritt (A) in Schritt (B) durch Spin-coating erfolgt.The present invention therefore also relates to the process according to the invention wherein the application of the solution from step (A) in step (B) is effected by spin-coating.
Schritt (C)Step (C)
Schritt (C) des erfindungsgemäßen Verfahrens umfasst das thermische Behandeln des Substrats aus Schritt (B) bei einer Temperatur von 20 bis 2000C, um die wenigstens eine Vorläuferverbindung in das wenigstens eine halbleitende Metalloxid zu überführen.Step (C) of the process of the invention comprises subjecting the substrate of step (B) to thermal treatment at a temperature of from 20 to 200 ° C to convert the at least one precursor compound into the at least one semiconductive metal oxide.
Im Allgemeinen kann Schritt (C) in allen dem Fachmann bekannten Vorrichtungen zum Erhitzen von Substraten durchgeführt werden, beispielsweise einer Heizplatte, einem Ofen, einem Trockenschrank, einer Heizpistole, einem Bandcalcinierer oder einem Klimaschrank.In general, step (C) can be carried out in all devices known to those skilled in the art for heating substrates, for example a hot plate, an oven, a drying oven, a heat gun, a belt calciner or a climate cabinet.
Wird Schritt (C) des erfindungsgemäßen Verfahrens bei einer relativ niedrigen Temperatur von beispielsweise 20 bis 50 0C durchgeführt, so erfolgt die Zersetzung zu dem wenigstens einen halbleitenden Metalloxid bevorzugt mittels katalytischer Aktivierung, beispielsweise durch Beströmen mit einem Reaktivgas oder durch Bestrahlung. Auch bei höheren Temperaturen kann eine katalytische Aktivierung erfolgen, ist aber nicht bevorzugt.If step (C) of the process according to the invention is carried out at a relatively low temperature of, for example, 20 to 50 ° C., the decomposition to the at least one semiconductive metal oxide is preferably effected by catalytic activation, for example by flowing with a reactive gas or by irradiation. Even at higher temperatures, catalytic activation can occur but is not preferred.
In Schritt (C) wird die wenigstens eine Vorläuferverbindung des halbleitenden Metalloxids, welche mit der Lösung aus Schritt (A) in Schritt (B) auf das Substrat aufgebracht worden ist, in das entsprechende Metalloxid, insbesondere Zinkoxid, überführt. Erfindungsgemäß ist dabei von Vorteil, dass die eingesetzten Metalloxid- Vorläuferverbindungen schon bei einer Temperatur unterhalb 200 0C, bevorzugt unterhalb 150 0C, besonders bevorzugt unterhalb 130 0C, insbesondere unterhalb 100 0C, in das entsprechende Metalloxid überführt werden können, so dass beispielsweise Kunststoff Substrate verwendet werden können, die sich während der Herstellung des halbleitenden Metalloxids nicht verformen bzw. thermisch abgebaut werden. Ein weiterer Vorteil ist, dass aufgrund der eingesetzten Vorläuferverbindungen beim thermischen Behandeln in Schritt (C) des erfindungsgemäßen Verfahrens lediglich flüchtige Nebenprodukte entstehen, die somit gasförmig entweichen, und nicht als störende Verunreinigungen in der gebildeten Schicht verbleiben.In step (C), the at least one precursor compound of the semiconductive metal oxide, which has been applied to the substrate with the solution of step (A) in step (B), is converted into the corresponding metal oxide, in particular zinc oxide. According to the invention, it is advantageous that the metal oxide precursor compounds used can be converted into the corresponding metal oxide even at a temperature below 200 ° C., preferably below 150 ° C., particularly preferably below 130 ° C., in particular below 100 ° C., so that For example, plastic substrates can be used which do not deform during the production of the semiconductive metal oxide or are thermally degraded. Another advantage is that due to the precursor compounds used during thermal treatment in step (C) of the process according to the invention only volatile by-products are formed, which thus escape in gaseous form, and do not remain as interfering impurities in the layer formed.
Die erfindungsgemäß eingesetzten Vorläuferverbindungen werden im Allgemeinen in Schritt (C) in das entsprechende Metalloxid, insbesondere Zinkoxid, und leicht flüchtige Verbindungen, oder Mischungen davon, überführt. Insbesondere bleiben nach dem thermischen Behandeln gemäß Schritt (C) in der gebildeten Metalloxidschicht keine Nebenprodukte der Vorläuferverbindungen, beispielsweise Gegenionen, wie Haloge- nid-Anionen, Nitrat-Anionen, Kationen wie Na+, K+, oder Neutralliganden, zurück. Ein weiterer Vorteil der erfindungsgemäß eingesetzten Vorläuferverbindungen ist, dass sie in Schritt (C) des erfindungsgemäßen Verfahrens im Allgemeinen ohne Zugabe weite- rer Additive in das entsprechende Metalloxid umgesetzt werden können, da sie den für die Überführung in die entsprechenden Oxide notwendigen Sauerstoff bereits in der Ligandensphäre aufweisen. Da keine weiteren Additive zugegeben werden müssen, verbleiben in der gebildeten Schicht auch keine Nebenprodukte dieser Additive. Von Vorteil ist ebenfalls, dass Schritte (A), (B) und (C) des Herstellungsverfahrens unter Umgebungsbedingungen (Luftsauerstoff etc.) durchgeführt werden können.The precursor compounds used according to the invention are generally converted in step (C) into the corresponding metal oxide, in particular zinc oxide, and volatile compounds, or mixtures thereof. In particular, after the thermal treatment according to step (C), no by-products of the precursor compounds, for example counterions, such as halide anions, nitrate anions, cations such as Na + , K + , or neutral ligands, remain behind in the metal oxide layer formed. A further advantage of the precursor compounds used in accordance with the invention is that they can generally be converted into the corresponding metal oxide in step (C) of the process according to the invention without the addition of further additives since they already contain the oxygen necessary for conversion into the corresponding oxides Have ligand sphere. Since no further additives have to be added, no by-products of these additives remain in the layer formed. Another advantage is that steps (A), (B) and (C) of the manufacturing process under ambient conditions (atmospheric oxygen, etc.) can be performed.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines Halbleiterbauteiles, z. B. eines Dünnschichttransistors TFTs, umfassend wenigstens die Schritte (A), (B) und (C), wie oben beschrieben.Another object of the present invention is a method for producing a semiconductor device, for. A thin-film transistor TFT comprising at least steps (A), (B) and (C) as described above.
Die erfindungsgemäßen Vorläuferverbindungen bzw. die daraus erhältlichen Metalloxide werden dabei als Halbleiterschicht eines TFTs verwendet. Die Lösung der Vorläuferverbindung (Herstellung wie in Schritt (A) beschrieben) kann dabei wie in (B) und (C) beschrieben zur Halbleiterkomponente des TFTs verarbeitet werden.The precursor compounds according to the invention or the metal oxides obtainable therefrom are used as the semiconductor layer of a TFT. The solution of the precursor compound (preparation as described in step (A)) can be processed as described in (B) and (C) to the semiconductor component of the TFT.
Bezüglich der TFT-Architekturen, wie bottom-gate, top-gate, top-contact, bottom- contact etc. liegen keine Einschränkungen vor. Dielektrika können alle möglichen organischen, anorganischen oder organisch-anorganischen Hybridmaterialien sein. Gate-, Source- und Drain-Kontaktmaterialien sind leitfähige Materialien, z. B. AI, Au, Ag, Ti/Au, Cr/Au, ITO, Si, PEDOT/PSS etc. Als Substrate eignen sich insbesondere auch polymere und flexible Materialien mit niedriger Zersetzungstemperatur, sowie andere temperaturlabile Substrate, ohne darauf beschränkt zu sein. Substrat, Gate-, Source- und Drain-Kontaktmaterialien sowie Dielektrika unterliegen keinen primären Einschränkungen und können entsprechend der chemischen/physikalischen Kompatibilität, des Verarbeitungsprozesses sowie der gewünschten Anwendung gewählt werden.With regard to the TFT architectures, such as bottom gate, top gate, top contact, bottom contact, etc., there are no restrictions. Dielectrics can be any of a variety of organic, inorganic or organic-inorganic hybrid materials. Gate, source and drain contact materials are conductive materials, e.g. B. Al, Au, Ag, Ti / Au, Cr / Au, ITO, Si, PEDOT / PSS, etc. Suitable substrates are in particular polymeric and flexible materials with low decomposition temperature, and others temperature-labile substrates, without being limited thereto. Substrate, gate, source and drain contact materials as well as dielectrics are not subject to any primary limitations and may be selected according to chemical / physical compatibility, processing process and desired application.
Die vorliegende Erfindung betrifft auch ein Substrat, welches mit wenigstens einem halbleitenden Metalloxid beschichtet ist, erhältlich durch das erfindungsgemäße Verfahren. Die Einzelheiten und bevorzugten Ausführungsformen bezüglich der Substrate, der Metalloxide, der Vorläuferverbindung etc. sind oben bereits genannt.The present invention also relates to a substrate which is coated with at least one semiconducting metal oxide, obtainable by the process according to the invention. The details and preferred embodiments relating to the substrates, the metal oxides, the precursor compound, etc. are already mentioned above.
Aufgrund des erfindungsgemäßen Herstellungsverfahrens, insbesondere aufgrund der Verwendung der speziellen Vorläuferverbindungen für das halbleitende Metalloxid, insbesondere Zinkoxid, weisen die erfindungsgemäß beschichteten Substrate hervorragende Eigenschaften bezüglich ihrer elektronischen Eigenschaften auf.Due to the preparation process according to the invention, in particular due to the use of the specific precursor compounds for the semiconducting metal oxide, in particular zinc oxide, the substrates coated according to the invention have outstanding properties with regard to their electronic properties.
Beispielsweise weist ein durch das erfindungsgemäße Verfahren hergestellter TFT, bevorzugt ein ZnO-TFT, Mobilitäten von 10"4 bis 100 cm2/V*s, bevorzugt 10"2 bis 50 cm2/V*s, besonders bevorzugt 0,1 bis 10 cm2Λ/*s, beispielsweise 0,5 cm2Λ/*s auf, und/oder ein Ein/Aus Verhältnis von 100 bis 109, bevorzugt 103 bis 108, besonders be- vorzugt 105 bis 108, beispielsweise 107 auf, bei einer Threshold-Spannung von 0 bis 50 V, bevorzugt 0 bis 25 V, beispielsweise 19 V.For example, a TFT produced by the process according to the invention, preferably a ZnO TFT, has mobilities of 10 -4 to 100 cm 2 / V * s, preferably 10 -2 to 50 cm 2 / V * s, particularly preferably 0.1 to 10 cm 2 Λ / * s, for example 0.5 cm 2 Λ / * s, and / or an on / off ratio of 100 to 10 9 , preferably 10 3 to 10 8 , particularly preferably 10 5 to 10 8 , for example 10 7 , at a threshold voltage of 0 to 50 V, preferably 0 to 25 V, for example 19 V.
Daher betrifft die vorliegende Erfindung auch die Verwendung eines erfindungsgemäßen Substrates in elektronischen Bauteilen, beispielsweise TFTs, insbesondere deren Anwendungen in CMOS-Schaltungen und anderen elektronischen Schaltungen, RFID tags, Displays etc. Daher betrifft die vorliegende Erfindung die Verwendung des erfindungsgemäßen Substrates in elektronischen Bauteilen, wobei das elektronische Bauteil ein TFT, RFID tag oder ein Display ist.The present invention therefore also relates to the use of a substrate according to the invention in electronic components, for example TFTs, in particular their applications in CMOS circuits and other electronic circuits, RFID tags, displays, etc. Therefore, the present invention relates to the use of the substrate according to the invention in electronic components, wherein the electronic component is a TFT, RFID tag or a display.
Durch die Prozessierbarkeit aus Lösung bei plastikverträglichen Temperaturen ist die Bauteilherstellung auf flexiblen, biegbaren Substraten möglich.Due to the processability from solution at plastic-compatible temperatures, component production on flexible, bendable substrates is possible.
Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung von elektrisch neutralem [(OH)x(NH3)yZn]z mit x, y und z unabhängig voneinander 0,01 bis 10, bevor- zugt ganze Zahlen von 1 bis 6, durch Umsetzung von Zinkoxid und/oder Zinkhydroxid mit Ammoniak.The present invention also relates to a process for the preparation of electrically neutral [(OH) x (NH 3 ) y Zn] z with x, y and z independently 0.01 to 10, preferably integers from 1 to 6, by Reaction of zinc oxide and / or zinc hydroxide with ammonia.
In einer besonders bevorzugten Ausführungsform bedeuten x=2 und y=2 oder y=4 und z=1 , so dass erfind u ngsgemäß besonders bevorzugt [(O H )2(NH3)2Zn] bzw. [(OH)2(NHa)4Zn] hergestellt wird. Das durch das erfindungsgemäße Verfahren hergestellte elektrisch neutrale [(OH)x(NH3)yZn]z mit x, y und z unabhängig voneinander 0,01 bis 10 zeichnet sich dadurch aus, dass es keine Verunreinigungen, z. B. Fremdionen wie Na+, K+, NO3 " etc., die aus den für die Herstellung verwendeten Reaktanden stammen, enthält, äußerst kostengünstige Reaktanden verwendet werden können und keine Aufreinigungsschritte notwendig sind. Das erhaltene Produkt weist bevorzugt direkt nach der Herstellung ohne weitere Reinigungsschritte eine besonders hohe Reinheit, beispielsweise von >99 %, bevorzugt von >99,5 %, besonders bevorzugt von >99,9 %, auf. Erfindungsgemäß können aus dieser besonders reinen Ausgangsverbindung halbleitende Zink- oxid-Schichten erhalten werden, die ebenfalls eine besonders hohe Reinheit aufweisen. Diese hohe Reinheit wirkt sich positiv beispielsweise auf die halbleitenden Eigenschaften der Schichten aus.In a particularly preferred embodiment, x = 2 and y = 2 or y = 4 and z = 1, so that according to the invention particularly preferably [(OH) 2 (NH 3 ) 2 Zn] or [(OH) 2 (NHa ) 4 Zn] is produced. The electrically neutral [(OH) x (NH 3 ) y Zn] z produced by the process according to the invention with x, y and z independently of one another 0.01 to 10 is characterized in that there are no impurities, eg. B. foreign ions such as Na + , K + , NO 3 ", etc., which originate from the reactants used for the preparation, contains extremely inexpensive reactants can be used and no purification steps are necessary.The product obtained preferably has directly after the preparation without Further purification steps give a particularly high purity, for example of> 99%, preferably of> 99.5%, particularly preferably of> 99.9%. According to the invention, it is possible to obtain from this particularly pure starting compound semiconducting zinc oxide layers which likewise have a particularly high purity, which has a positive effect, for example, on the semiconducting properties of the layers.
Bevorzugt wird in diesem Verfahren in einem ersten Schritt festes Zinkoxid oder Zink- hydroxid oder Mischungen davon in einem geeigneten Reaktor vorgelegt. Dieses feste Zinkoxid und/oder Zinkhydroxid wird bzw. werden dann bevorzugt mit einer Lösung von Ammoniak (NH3) in einem geeigneten Lösungsmittel behandelt.In this process, in a first step, solid zinc oxide or zinc hydroxide or mixtures thereof are preferably initially charged in a suitable reactor. This solid zinc oxide and / or zinc hydroxide is then preferably treated with a solution of ammonia (NH 3 ) in a suitable solvent.
Das Lösungsmittel ist bevorzugt ein wässriges Lösungsmittel, beispielsweise eine al- koholische, wässrige Lösung oder Wasser, besonders bevorzugt Wasser. Ammoniak liegt in dieser bevorzugt wässrigen Lösung in einer Konzentration von 1 bis 18 mol/l, bevorzugt 2 bis 15 mol/l, besonders bevorzugt 3 bis 12 mol/l, jeweils bezogen auf die Gesamtlösung, vor. Es wird so viel der Ammoniaklösung zu dem festen Zinkoxid gegeben, dass eine Reaktionsmischung erhalten wird, in der Zinkoxid im Allgemeinen mit einer Konzentration von 0,01 bis 2 mol/L, bevorzugt 0,1 bis 1 mol/L, besonders bevorzugt 0,1 bis 0,5 mol/L, vorliegt. Wahlweise kann man auch direkt in flüssigem Ammoniak arbeiten.The solvent is preferably an aqueous solvent, for example an alcoholic, aqueous solution or water, more preferably water. Ammonia is present in this preferably aqueous solution in a concentration of 1 to 18 mol / l, preferably 2 to 15 mol / l, particularly preferably 3 to 12 mol / l, in each case based on the total solution. The amount of ammonia solution added to the solid zinc oxide is sufficient to obtain a reaction mixture in which zinc oxide is generally used at a concentration of 0.01 to 2 mol / L, preferably 0.1 to 1 mol / L, particularly preferably 0, 1 to 0.5 mol / L, is present. Optionally, you can also work directly in liquid ammonia.
Die so erhaltene Reaktionsmischung wird dann bei einer Temperatur von im Allgemei- nen 10 bis 120 0C, bevorzugt 10 bis 60 0C, besonders bevorzugt 20 bis 30 0C gerührt. Im Allgemeinen wird die Suspension so lang gerührt, bis ein vollständiger Umsatz erhalten wird, beispielsweise 2 bis 72 h, bevorzugt 2 bis 24 h. Nach vollständiger Reaktion liegt eine Lösung des gewünschten Produktes in dem Lösungsmittel, insbesondere Wasser, vor. Zur Abtrennung etwaig vorhandener Schwebstoffe kann die erhaltene Lösung gegebenenfalls gereinigt werden, beispielsweise durch Filtration. Das gewünschte Produkt wird somit in besonders hoher Reinheit in, bevorzugt wässriger, Lösung erhalten.The reaction mixture thus obtained is then stirred at a temperature of generally 10 to 120 ° C., preferably 10 to 60 ° C., particularly preferably 20 to 30 ° C. In general, the suspension is stirred until a complete conversion is obtained, for example 2 to 72 hours, preferably 2 to 24 hours. After complete reaction there is a solution of the desired product in the solvent, in particular water. To remove any suspended matter that may be present, the resulting solution may optionally be purified, for example by filtration. The desired product is thus obtained in a particularly high purity in, preferably aqueous, solution.
Das Verfahren zeichnet sich dadurch aus, dass die gewünschte Verbindung in nur ei- nem Schritt, ohne Reinigung des Produktes, aus besonders günstigen Reaktanden, in einer besonders hohen Reinheit erhalten wird. Daher wird das so erhaltene elektrisch neutrale [(OH)x(NH3)yZn]z mit x, y und z unabhängig voneinander 0,01 bis 10, insbesondere bevorzugt in dem erfindungsgemäßen Verfahren zur Herstellung einer Schicht enthaltend wenigstens ein halbleitendes Metalloxid auf einem Substrat, verwendet.The process is characterized in that the desired compound is obtained in a particularly high purity in only one step, without purification of the product, from particularly favorable reactants. Therefore, the thus obtained becomes electrically neutral [(OH) x (NH 3 ) y Zn] z with x, y and z independently 0.01 to 10, particularly preferably in the inventive method for producing a layer containing at least one semiconductive metal oxide on a substrate used.
BeispieleExamples
Beispiel 1 : Herstellung von Zn(OH)2(NH3)4 Example 1: Preparation of Zn (OH) 2 (NH 3 ) 4
In einem 500 ml Vier-Halskolben werden 6,10 g ZnO (Pharma-Qualität, Umicore) vorgelegt. 500 ml einer 6,6 mol/L NH3/H2O-Lösung werden hinzu gegeben. Die Suspension wird über Nacht bei Raumtemperatur bei 300 rpm gerührt. Man erhält eine klare Lösung mit wenigen Schwebestoffen, welche über eine Glasfritte abgetrennt werden, so dass man eine klare Lösung des genannten Komplexes erhält. Elementaranalyse der Lösung ergibt einen Zn-Gehalt von 1 ,0 g/100 g Lösung.In a 500 ml four-necked flask, 6.10 g of ZnO (pharmaceutical grade, Umicore) are submitted. 500 ml of a 6.6 mol / L NH 3 / H 2 O solution are added. The suspension is stirred overnight at room temperature at 300 rpm. This gives a clear solution with a few suspended solids, which are separated on a glass frit, so as to obtain a clear solution of said complex. Elemental analysis of the solution gives a Zn content of 1.0 g / 100 g of solution.
Beispiel 2: Herstellung eines TFTs mit ZnO als HalbleitermatrialExample 2 Production of a TFT with ZnO as Semiconductor Material
Ein gereinigtes Sidotiert-Substrat mit Siθ2-Dielektrikumsschicht (200 nm) wird mit der wässrigen Lösung aus Beispiel 1 überflutet und diese bei 3000 Umdrehungen/min 30 s aufgeschleudert (gespincoated). Anschließend wird die Probe 20 min bei 150 0C erhitzt. Source/Drain-Kontakte (Kanalbreite /-länge Verhältnis: 20) werden durch thermisches Aufdampfen von Aluminium erzeugt. Repräsentative Ausgangskurven (AK) und Transferkurven (TK) eines entsprechenden Transistors sind in den Figuren 1 und 2 abgebildet. Dabei gilt VD: Spannung zwischen Source und Drain, VG: Spannung zwischen Source und gate, ID: Strom zwischen Source und Drain.A purified Si dot i ert substrate having SiO 2 -Dielektrikumsschicht (200 nm) is flooded with the aqueous solution of Example 1, and these spin-coated at 3000 revolutions / min for 30 s (gespincoated). Subsequently, the sample is heated at 150 ° C. for 20 minutes. Source / drain contacts (channel width / length ratio: 20) are produced by thermal vapor deposition of aluminum. Representative output curves (AK) and transfer curves (TK) of a corresponding transistor are shown in FIGS. 1 and 2. In this case VD applies: voltage between source and drain, VG: voltage between source and gate, ID: current between source and drain.
Die folgenden durchschnittl. Parameter werden bestimmt:The following avg. Parameters are determined:
Mobilität μ: 0,5 cm2/(V*s)Mobility μ: 0.5 cm 2 / (V * s)
An/Aus-Verhältnis: 107,On / Off ratio: 10 7 ,
Vτ Threshold-Spannung 19 V. V τ Threshold voltage 19 V.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung einer Schicht enthaltend wenigstens ein halbleitendes Metalloxid auf einem Substrat, umfassend mindestens die Schritte:A process for producing a layer comprising at least one semiconductive metal oxide on a substrate, comprising at least the steps:
(A) Herstellen einer Lösung enthaltend wenigstens eine Vorläuferverbindung des wenigstens einen Metalloxids ausgewählt aus der Gruppe bestehend aus Carboxylaten von Mono-, Di- oder Polycarbonsäuren mit wenigstens drei Kohlenstoffatomen oder Derivaten von Mono-, Di- oder Polycarbonsäuren, Alkoholaten, Hydroxiden, Semicarbaziden, Carbaminaten, Hydro- xamaten, Isocyanaten, Amidinen, Amidrazonen, Harnstoffderivaten, Hydroxylaminen, Oximen, Urethanen, Ammoniak, Aminen, Phosphinen, Ammonium-Verbindungen, Aziden des entsprechenden Metalls und Mi- schungen davon, in wenigstens einem Lösungsmittel,(A) preparing a solution containing at least one precursor compound of the at least one metal oxide selected from the group consisting of carboxylates of mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids, alcoholates, hydroxides, semicarbazides, Carbamates, hydroxamates, isocyanates, amidines, amidrazones, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, phosphines, ammonium compounds, azides of the corresponding metal and mixtures thereof, in at least one solvent,
(B) Aufbringen der Lösung aus Schritt (A) auf das Substrat und(B) applying the solution of step (A) to the substrate and
(C) thermisches Behandeln des Substrates aus Schritt (B) bei einer Temperatur von 20 bis 2000C, um die wenigstens eine Vorläuferverbindung in wenigstens ein halbleitendes Metalloxid zu überführen,(C) thermally treating the substrate of step (B) at a temperature of 20 to 200 ° C to convert the at least one precursor compound into at least one semiconductive metal oxide,
wobei, falls in Schritt (A) elektrisch neutrales [(OH)x(NH3)yZn]z mit x, y und z unabhängig voneinander 0,01 bis 10, als Vorläuferverbindung eingesetzt wird, dieses durch Umsetzung von Zinkoxid und/oder Zinkhydroxid mit Ammoniak erhalten wird.if, in step (A), electrically neutral [(OH) x (NH 3 ) y Zn] z with x, y and z independently of one another is used as precursor compound, this by reaction of zinc oxide and / or Zinc hydroxide is obtained with ammonia.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das wenigstens eine halbleitende Metalloxid Zinkoxid ZnO ist.2. The method according to claim 1, characterized in that the at least one semiconducting metal oxide is zinc oxide ZnO.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Substrat mechanisch flexibel ist und wenigstens einen Kunststoff umfasst.3. The method according to claim 1 or 2, characterized in that the substrate is mechanically flexible and comprises at least one plastic.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das halbleitende Metalloxid mit Metallkationen ausgewählt aus der Gruppe bestehend aus Al3+, In3+, Sn4+, Ga3+ und Mischungen davon dotiert ist.4. The method according to any one of claims 1 to 3, characterized in that the semiconductive metal oxide is doped with metal cations selected from the group consisting of Al 3+ , In 3+ , Sn 4+ , Ga 3+ and mixtures thereof.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Aufbringen der Lösung aus Schritt (A) in Schritt (B) durch Spin-coating, Spray- coating, Dip-coating , Drop-casting und/oder Bedrucken erfolgt.5. The method according to any one of claims 1 to 4, characterized in that the application of the solution from step (A) in step (B) by spin coating, spray coating, dip coating, drop casting and / or printing takes place ,
6. Substrat, welches mit wenigstens einem halbleitenden Metalloxid beschichtet ist, erhältlich durch das Verfahren gemäß einem der Ansprüche 1 bis 5. A substrate coated with at least one semiconductive metal oxide obtainable by the process according to any one of claims 1 to 5.
7. Verwendung eines Substrates gemäß Anspruch 6 in elektronischen Bauteilen.7. Use of a substrate according to claim 6 in electronic components.
8. Verwendung nach Anspruch 7, dadurch gekennzeichnet, dass das elektronische Bauteil ein TFT, RFID tag oder ein Display ist.8. Use according to claim 7, characterized in that the electronic component is a TFT, RFID tag or a display.
9. Verfahren zur Herstellung eines Halbleiterbauteiles, umfassend wenigstens die Schritte (A), (B) und (C) gemäß Anspruch 1.9. A method for producing a semiconductor device, comprising at least steps (A), (B) and (C) according to claim 1.
10. Verfahren zur Herstellung von elektrisch neutralem [(OH)x(NH3)yZn]z mit x, y und z unabhängig voneinander 0,01 bis 10, durch Umsetzung von Zinkoxid und/oder Zinkhydroxid mit Ammoniak. 10. A process for the preparation of electrically neutral [(OH) x (NH 3 ) y Zn] z with x, y and z independently 0.01 to 10, by reaction of zinc oxide and / or zinc hydroxide with ammonia.
EP10715825A 2009-04-28 2010-04-26 Method for producing semiconductive layers Withdrawn EP2425038A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10715825A EP2425038A2 (en) 2009-04-28 2010-04-26 Method for producing semiconductive layers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09158896 2009-04-28
PCT/EP2010/055499 WO2010125011A2 (en) 2009-04-28 2010-04-26 Method for producing semiconductive layers
EP10715825A EP2425038A2 (en) 2009-04-28 2010-04-26 Method for producing semiconductive layers

Publications (1)

Publication Number Publication Date
EP2425038A2 true EP2425038A2 (en) 2012-03-07

Family

ID=42813161

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10715825A Withdrawn EP2425038A2 (en) 2009-04-28 2010-04-26 Method for producing semiconductive layers

Country Status (7)

Country Link
US (1) US8877657B2 (en)
EP (1) EP2425038A2 (en)
JP (1) JP2012525493A (en)
KR (1) KR20120005536A (en)
CN (1) CN102803559A (en)
TW (1) TWI516635B (en)
WO (1) WO2010125011A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612406A (en) * 2009-11-20 2012-07-25 巴斯夫欧洲公司 Multilayer catalyst for producing carboxylic acids and/or carboxylic acid anhydrides with vanadium antimonate in at least one catalyst layer, and method for producing phthalic acid anhydride with a low hot-spot temperature
EP2513971A1 (en) 2009-12-18 2012-10-24 Basf Se Metal oxide field effect transistors on a mechanically flexible polymer substrate having a dielectric that can be processed from solution at low temperatures
US20110230668A1 (en) * 2010-03-19 2011-09-22 Basf Se Catalyst for gas phase oxidations based on low-sulfur and low-calcium titanium dioxide
TW201206896A (en) 2010-04-13 2012-02-16 Basf Se Process for controlling a gas phase oxidation reactor for preparation of phthalic anhydride
JP2013525250A (en) 2010-04-28 2013-06-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for preparing zinc complexes in solution
US8865000B2 (en) 2010-06-11 2014-10-21 Basf Se Utilization of the naturally occurring magnetic constituents of ores
US8859459B2 (en) 2010-06-30 2014-10-14 Basf Se Multilayer catalyst for preparing phthalic anhydride and process for preparing phthalic anhydride
US9212157B2 (en) 2010-07-30 2015-12-15 Basf Se Catalyst for the oxidation of o-xylene and/or naphthalene to phthalic anhydride
DE102012206234A1 (en) * 2012-04-17 2013-10-17 Evonik Industries Ag Formulations containing ammoniacal hydroxo-zinc compounds
CN103236402B (en) * 2013-04-27 2016-02-03 京东方科技集团股份有限公司 Thin-film transistor and preparation method thereof, array base palte and display unit
US20160359060A1 (en) * 2014-01-31 2016-12-08 Merck Patent Gmbh Preparation of semiconductor films
JP2017506000A (en) * 2014-01-31 2017-02-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Method for manufacturing a UV photodetector
US9515272B2 (en) 2014-11-12 2016-12-06 Rohm And Haas Electronic Materials Llc Display device manufacture using a sacrificial layer interposed between a carrier and a display device substrate
EP3380644B1 (en) * 2015-11-24 2019-08-21 Basf Se Process for the generation of thin inorganic films
KR102215837B1 (en) 2018-03-19 2021-02-16 가부시키가이샤 리코 Coating liquid for forming oxide, method for producing oxide film, and method for producing field-effect transistor
EP3666782A1 (en) * 2018-12-11 2020-06-17 Umicore Ag & Co. Kg Lithium alkyl aluminates, use of a lithium alkyl aluminate as a transfer reagent, method for transferring at least one remainder r, e(x)q-prp compounds and their use, substrate and method for producing lithium alkyl aluminates

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020041928A1 (en) * 1997-03-26 2002-04-11 Leonid V. Budaragin Method for coating substrate with metal oxide coating
JP3327811B2 (en) * 1997-05-13 2002-09-24 キヤノン株式会社 Method for producing zinc oxide thin film, photovoltaic element and semiconductor element substrate using the same
US7604839B2 (en) * 2000-07-31 2009-10-20 Los Alamos National Security, Llc Polymer-assisted deposition of films
US6514414B1 (en) * 2000-09-08 2003-02-04 Clariant Finance (Bvi) Limited Process for separation and removal of iron ions from basic zinc solution
JP2004149367A (en) * 2002-10-31 2004-05-27 Japan Science & Technology Agency Aqueous solution for producing zinc oxide particle or film, and method for producing zinc oxide particle or film
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US20070287221A1 (en) * 2006-06-12 2007-12-13 Xerox Corporation Fabrication process for crystalline zinc oxide semiconductor layer
US7906415B2 (en) * 2006-07-28 2011-03-15 Xerox Corporation Device having zinc oxide semiconductor and indium/zinc electrode
TWI312580B (en) * 2006-09-04 2009-07-21 Taiwan Tft Lcd Associatio A thin film transistor, manufacturing method of a active layer thereof and liquid crystal display
US7652339B2 (en) * 2007-04-06 2010-01-26 Xerox Corporation Ambipolar transistor design
US20080286907A1 (en) 2007-05-16 2008-11-20 Xerox Corporation Semiconductor layer for thin film transistors
DE102007043920A1 (en) 2007-07-17 2009-01-22 Merck Patent Gmbh Functional material for printed electronic components
WO2009013291A2 (en) 2007-07-25 2009-01-29 Basf Se Field effect elements
WO2009016107A1 (en) 2007-07-30 2009-02-05 Basf Se Method for depositing a semiconducting layer from a liquid
TWI439461B (en) 2008-02-05 2014-06-01 Basf Se Perylene semiconductors and methods of preparation and use thereof
EP2240528B1 (en) 2008-02-05 2017-04-12 Basf Se Semiconductor materials prepared from rylene-( -acceptor) copolymers
WO2009144205A1 (en) 2008-05-30 2009-12-03 Basf Se Rylene-based semiconductor materials and methods of preparation and use thereof
TWI471328B (en) 2008-07-02 2015-02-01 Basf Se High performance solution processable seminconductor based on dithieno [2,3-d:2',3'-d']benzo[1,2-b:4,5-b'] dithiophene
EP2297223B1 (en) 2008-07-02 2013-11-13 Basf Se High performance solution processable semiconducting polymers based on alternat-ing donor acceptor copolymers
JP5735418B2 (en) 2008-07-02 2015-06-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Poly (5,5'-bis (thiophen-2-yl) -benzo [2,1-b; 3,4-b '] dithiophene) and method for its use as a high performance solution capable of processing semiconductor polymers
US20110136973A1 (en) 2008-08-11 2011-06-09 Basf Se Polybenzothiophene polymers and process for their preparation
JP5064480B2 (en) * 2008-12-26 2012-10-31 花王株式会社 Cellulose fiber suspension and process for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010125011A2 *

Also Published As

Publication number Publication date
US8877657B2 (en) 2014-11-04
JP2012525493A (en) 2012-10-22
US20120043537A1 (en) 2012-02-23
TWI516635B (en) 2016-01-11
WO2010125011A3 (en) 2011-03-31
KR20120005536A (en) 2012-01-16
WO2010125011A2 (en) 2010-11-04
CN102803559A (en) 2012-11-28
TW201043730A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
WO2010125011A2 (en) Method for producing semiconductive layers
WO2010146053A1 (en) Thermolabile precursor compounds for improving the interparticulate contact points and for filling the interspaces in semiconductive metal oxide particle layers
EP2638183B1 (en) Process for preparing coatings containing indium oxide
EP2513120B1 (en) Method of preparation of indiumchlorodialkoxides
EP2513971A1 (en) Metal oxide field effect transistors on a mechanically flexible polymer substrate having a dielectric that can be processed from solution at low temperatures
EP2595998B1 (en) Indium oxoalkoxides for producing coatings containing indium oxide
EP2347033B1 (en) Formulations containing a mixture of zno cubanes and method for producing semiconducting zno layers using said formulations
KR101884955B1 (en) Indium oxoalkoxides for producing coatings containing indium oxide
WO2011073005A2 (en) Method for producing layers containing indium oxide, layers containing indium oxide produced according to said method and the use thereof
US8691168B2 (en) Process for preparing a zinc complex in solution
WO2014206599A1 (en) Formulations for producing indium oxide-containing layers, methods for producing said layers and the use thereof
EP3013838B1 (en) Method for producing indium alkoxide compounds, indium alkoxide compounds producible according to said method and the use thereof
WO2013156274A1 (en) Formulations comprising ammoniacal hydroxo-zinc compounds
EP3041847B1 (en) Precursors for the production of thin oxide layers and the use thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111128

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171103