EP2424830A2 - Process for the alkoxylation of alcohols - Google Patents
Process for the alkoxylation of alcoholsInfo
- Publication number
- EP2424830A2 EP2424830A2 EP10770413A EP10770413A EP2424830A2 EP 2424830 A2 EP2424830 A2 EP 2424830A2 EP 10770413 A EP10770413 A EP 10770413A EP 10770413 A EP10770413 A EP 10770413A EP 2424830 A2 EP2424830 A2 EP 2424830A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- formula
- catalyst
- alcohol
- mixture
- alkylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/002—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
- C08G65/005—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
- C08G65/007—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/02—Preparation of ethers from oxiranes
- C07C41/03—Preparation of ethers from oxiranes by reaction of oxirane rings with hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2603—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
- C08G65/2606—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
- C08G65/2609—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2639—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing elements other than oxygen, nitrogen or sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2642—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
- C08G65/2645—Metals or compounds thereof, e.g. salts
- C08G65/2654—Aluminium or boron; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2650/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G2650/28—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
- C08G2650/46—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen
- C08G2650/48—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen containing fluorine, e.g. perfluropolyethers
Definitions
- the present invention is directed to processes for the alkoxylation of alcohols using alkylene epoxides in the presence of boron based catalysts.
- Alcohol alkoxylate containing materials have been used in a wide variety of industrial applications, for example as nonionic surfactants. They are typically prepared by the reaction of an alcohol with an alkylene epoxide such as ethylene oxide (i.e. oxirane) or propylene oxide (i.e. 2- methyoxirane) in the presence of one or more catalysts.
- alkylene epoxide such as ethylene oxide (i.e. oxirane) or propylene oxide (i.e. 2- methyoxirane) in the presence of one or more catalysts.
- Fluorinated alkylalkoxylat.es which are prepared by the reaction of an alcohol incorporating a fluorinated alkyl group with an alkylene epoxide are an important class of materials. Fluorinated alkylalkoxylat.es are especially useful in several industrial applications, including use as nonionic surfactants in the manufacture of PVC films, electrochemical cells, and various photographic coatings.
- Known catalyst systems and processes for the alkoxylation of fluorinated alcohols include using Lewis acids such as boron trifluoride or silicon tetrafluoride, alone in combination with metal hydrides, fluorides, alkyls or alkoxides. Such acidic materials also catalyze side reactions such as dimerization of alkylene epoxides to form dioxanes during the alkylalkoxylation. For this reason many processes use strongly basic catalysts to alkoxylate alcohols. However, some alcohols are not stable to strong base. For instance, in the presence of strong base some hydrofluorocarbons are prone to elimination of HF and the formation of fluohnated olefins. Halohydrins, XCR2CR2OH, are well known to form epoxides in the presence of base and are used for this purpose synthetically to convert olefins to epoxides.
- Lewis acids such as boron trifluoride or silicon tetrafluoride,
- One aspect of the present invention is a process comprising: contacting one or more alcohols of the formula R 1 OH with one or more 1 ,2 alkylene epoxides of the formula Q(O), wherein Q is a linear alkylene group of the formula C y H 2y where y is an integer from 2 to 10, and R 1 is a linear, branched, cyclic, or aromatic hydrocarbyl group, optionally substituted, having from 1 to 30 carbon atoms; at a temperature from about 6O 0 C to about 200 0 C and a pressure from ambient atmospheric pressure to about 1035 KPa; in the presence of a catalyst at a molar ratio of alcohol to catalyst of from about 200 to 15, wherein the catalyst is MB(OR 1 ) X (X) 4-X or B(OR 1 ) 3 / MX where R 1 is a linear, branched, cyclic, or aromatic hydrocarbyl group, optionally substituted, having from 1 to 30 carbon atoms, M is Na + , K
- hydrocarbyl means a straight chain, branched or cyclic arrangement of carbon atoms connected by single, double, triple, or aromatic carbon to carbon bonds and/or by ether linkages, and substituted accordingly with hydrogen atoms.
- Such hydrocarbyl groups may be aliphatic and/or aromatic.
- hydrocarbyl groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, cyclopropyl, cyclobutyl, cyclopentyl, methylcyclopentyl, cyclohexyl, methylcyclohexyl, benzyl, phenyl, o-tolyl, m-tolyl, p-tolyl, xylyl, vinyl, allyl, butenyl, cyclohexenyl, cyclooctenyl, cyclooctadienyl, and butynyl.
- Optional or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
- the phrase "optionally substituted” means that moiety may or may not be substituted and that the description includes both unsubstituted moieties and unsubstituted moieties.
- a group or moiety when referred to herein as being “substituted” it means that the group or moiety contains one or more substituent groups that are inert under the process conditions to which the compound containing these groups is subjected (e.g., an inert functional group, see below).
- the substituent groups can be attached pendant to the original moiety or may replace one or more atoms of the moiety.
- the substituent groups also do not substantially detrimentally interfere with the process described herein. Included in the meaning of "substituted” are chains or rings containing one or more heteroatoms, such as nitrogen, oxygen and/or sulfur. In a substituted hydrocarbyl, all of the hydrogens may be substituted, as in trifluoromethyl.
- inert functional group is meant a group other than hydrocarbyl or substituted hydrocarbyl that is inert under the process conditions to which the compound containing the group is subjected.
- the functional groups also do not substantially interfere with any process described herein that the compound in which they are present may take part in.
- Examples of functional groups include halo (fluoro, chloro, bromo and iodo), and ether.
- alkyl is meant a monovalent hydrocarbyl group containing only single bonds.
- alkylene is meant a divalent hydrocarbyl group containing only single bonds.
- fluohnated is meant that at least one hydrogen that is bonded directly to a carbon has been replaced with a fluorine.
- fluoroalkyl is meant an alkyl group that is partially or totally fluorinated.
- Described herein is a process for the preparation of alkyl alkoxylates, especially fluoroalkyl alkoxylates via epoxidation, using a boron-based catalyst.
- the catalyst can be used with a large variety of alcohols.
- the process comprises: contacting one or more alcohols of the formula R 1 OH with one or more 1 ,2 alkylene epoxides of the formula Q(O), wherein Q is a linear alkylene group of the formula C y H 2y where y is an integer from 2 to 10, and R 1 is a linear, branched, cyclic, or aromatic hydrocarbyl group, optionally substituted, having from 1 to 30 carbon atoms; at a temperature from about 60 0 C to about 200 0 C and a pressure from ambient atmospheric pressure to about 1035 KPa; in the presence of a catalyst at a molar ratio of alcohol to catalyst of from about 200 to 15, wherein the catalyst is MB(OR 1 ) X (X) 4-X or B(OR 1 ) 3 / MX where M is Na + , K + , Li + , R 2 R 3 R 4 R 5 N + , or R 2 R 3 R 4 R 5 P + and R 2 , R 3 , R 4 , and R
- R 1 can be an alkyl group with from 1 to 30 carbon atoms, or an aromatic group such as phenyl.
- R 1 can be optionally substituted with functionalities such as but not limited to ether, amide, ester, halogen, sulfur, nitrile, with the proviso that the functional group does not interfere with the alkoxylation reaction. It can also be partially fluorinated or a linear fluoroalkyl group of the type CyF 2Y+ ICH 2 CH 2 where y is an integer from 2 to 20.
- R 1 can be a mixture of one or more alkyl groups, such as a mixture of fluoroalkyl groups.
- a mixture of alcohols of the formula R 1 OH can be contacted with the 1 ,2-alkylene epoxides in the process, to produce a corresponding mixture of alkyl alkoxylates, which can be a telomehc mixture.
- the 1 ,2 alkylene epoxide of the formula Q(O) can be ethylene oxide, propylene oxide, 1 ,2-butylene oxide, 2,3-butylene oxide, and styrene oxide, or a mixture thereof, and typically can be ethylene oxide or propylene oxide.
- Catalysts suitable for the processes disclosed herein include MB(OR 1 MX) 4 -X or B(OR 1 ) 3 / MX.
- B(OR 1 ) 3 / MX is meant that a two component catalyst which is a mixture of B(OR 1 )3 and MX. The two components can be added separately, in any order, or simultaneously to the reaction mixture. It is believed that the B(OR 1 ) 3 / MX catalyst forms a composition of the formula MB(OR 1 ⁇ X in situ, which serves as the catalytic species.
- R 1 is as defined above.
- MB(OR 1 ) X (X) 4-X x can be 1 to 3 but is typically 3.
- M is a cation of the alkali metals Na + , K + , Li + or a cation of the type R 2 R 3 R 4 R 5 N + or R 2 R 3 R 4 R 5 P + where R 2 , R 3 , R 4 , and R 5 independently are hydrocarbyl groups of 1 to 20 carbon atoms, and are the same or different. Typically, R 2 , R 3 , R 4 , and R 5 independently are alkyl groups of from 1 to 4 carbons, such as butyl, and can be the same or different. In one embodiment, M is R 2 R 3 R 4 R 5 N + . X is fluoride, bromide, or iodide, but is typically I.
- the catalysts can be obtained commercially or prepared by any method known in the art, such as the methods disclosed herein below.
- the process includes contacting an alcohol with an alkylene oxide in the presence of a catalyst.
- the alcohol and catalyst can be added to the alkylene oxide either simultaneously or in any order.
- the catalyst is either added to, or generated in, the neat alcohol, which also serves as a solvent for the reaction.
- One or more co-solvents may be additionally used, provided that the solvent or solvents are substantially inert to all reagents and products.
- the catalyst and alcohol reaction mixture is then treated with the alkylene oxide at elevated temperature until the desired conversion is achieved.
- the catalyst is used in an amount relative to the alcohol of from about 0.1 mole % to about 11 mole %, typically about 0.5% to about 8%, more typically about 1 mole % to about 6%.
- the alkylene oxide is typically fed to the catalyst/alcohol solution as a liquid or vapor after the addition of the catalyst and alcohol.
- the amount of alkylene oxide added to the reaction mixture is not critical other than providing the minimum amount necessary to provide the desired number of alkyloxy units in the final product.
- the amount of alkylene oxide used is variable, and is determined by the physical properties desired in the alkoxylated alcohol product. Thus, in some cases the average number of alkoxy groups per starting alcohol may need to be relatively low, e.g., 2 to 6, while for other cases a significantly higher number may be required such as from 8 to 30 or more.
- the alkylene oxide can be added to the reaction before heating or after the reactor and alcohol/catalyst solution has reached the desired reaction temperature.
- the alkylene oxide can be added at once, batchwise, or by continuous feed.
- the process is typically performed under inert atmosphere, such as nitrogen or another inert gas, for safety reasons owing to the flammability of many alkylene oxides. It is typical to run the process under anhydrous conditions since water will usually be alkoxylated, thereby producing contaminants. Water may also inhibit or poison some catalysts.
- inert atmosphere such as nitrogen or another inert gas
- the reaction temperature is variable and can range from about 60 0 C to about 180 0 C, and preferably is from about 80 0 C to 140 0 C.
- the desired temperature is primarily determined by the reaction times that can be tolerated, lower temperatures giving longer reaction times, and higher temperatures giving shorter reaction times.
- the reaction is run at the pressure generated during the reaction, typically about 0 to about 200 psig, or about 0 to about 100 psig.
- the alkyl alkoxylates produced by the processes disclosed herein can have any desired number of alkyloxy units, allowing the tailoring of properties for the desired end use.
- the alkyloxy units will typically be present at about 10% to about 90% by weight of the alkyl alkoxylate composition; more typically about 20% to about 70%.
- a mixture of alcohols of the formula R 1 -OH can be used, to produce a corresponding mixture of alkyl alkoxylates.
- the process can form a telomeric mixture of alkyl alkoxylates.
- a telomeric mixture is a plurality of telomers whose polymerization degrees m are different from each other.
- a telomer is formed when a compound (C) is added to a second compound (AB) so that a mixture is formed of polymers of low polymerization degree represented by the formula: A(C) m B, in the range of 1 to 20.
- the processes disclosed herein can produce a telomeric mixture of alkyl alkoxylates of the formula R 1 O(QO) m H, having different values of m.
- the processes disclosed herein are particularly suitable for the production of telomers with an average degree of polymerization of 1 -20, more typically 2-8.
- the process can optionally further comprise the recovery or isolation of one or more of the alkyl alkoxylates produced. This can be done by any method known in the art, such as distillation, decantation, recrystallization, or extraction.
- a compound comprising MB(OR 7 ) X (X) 4-X wherein R 7 is a linear, branched, cyclic, acyclic, or aromatic hydrocarbyl group, optionally substituted, having from 2 to 20 carbon atoms; X is fluoride, bromide, or iodide; M is a cation of the alkali metals Na + , K + , Li + or a cation of the type R 2 R 3 R 4 R 5 N + or R 2 R 3 R 4 R 5 P + where R 2 , R 3 , R 4 , and R 5 independently are hydrocarbyl groups of 1 to 20 carbon atoms; and x is 1 to 4.
- the compounds can be used as catalysts, particularly in alkoxylation reactions.
- R 7 can be an alkyl group with from 1 to 30 carbon atoms, or an aromatic group such as phenyl. It can be optionally substituted with functionalities such as but not limited to ether, amide, ester, halogen, sulfur, nitrile, with the proviso that the functional group does not interfere with the alkoxylation reaction. It can also be partially fluohnated or a linear fluoroalkyl group of the type CyF 2Y+ ICH 2 CH 2 where y is an integer from 2 to 20, especially when x is 4. R 7 can be a mixture of groups, such as a mixture of fluoroalkyl groups. When x is 4, R 7 can be a fluorinated alkyl, either partially or totally fluorinated. In the formula MB(OR 7 ) X (X) 4-X x can be 1 to 3 but is typically 3.
- M is a cation of the alkali metals Na + , K + , Li + or a cation of the type R 2 R 3 R 4 R 5 N + or R 2 R 3 R 4 R 5 P + where R 2 , R 3 , R 4 , and R 5 independently are hydrocarbyl groups of 1 to 20 carbon atoms. Typically, R 2 , R 3 , R 4 , and R 5 independently are alkyl groups of from 1 to 4 carbons, such as butyl, and can be the same or different. In one embodiment, M is R 2 R 3 R 4 R 5 N + .
- X is fluoride, bromide, or iodide, but is typically iodide.
- the tetraalkoxy borates B(OR) 4 " can be prepared by a variety of methods. For instance, a two-step process starting from B(OH) 3 is described by Malkowsky in European Journal of Inorganic Chemistry 2006, page 1690. The compounds can also be prepared by an alcohol exchange using, for instance, B(OMe) 4 " or other tetraalkoxides. Additionally, NaBO 2 or other anionic borates can react with alcohols with water removal to yield the tetraalkoxides as shown:
- the compounds MB(OR) X (X) 4-X where x is from 1 to 3 can be prepared by combination of the neutral borate esters B(OR)3 with M + X " .
- the B(OR) 3 can be formed in a first step followed by the addition of MX in a second step.
- MB(OR) X (X) 4-X can be generated in a single step by combination of MX and either B(OH) 3 or B 2 O 3 in the alcohol ROH and then optionally removing water.
- B(OR) 3 can be prepared by reaction of B(OH) 3 or B 2 O 3 and HOR with elimination of water. Alternatively, they can be prepared from a boron halide such as BCI 3 and an alcohol with the formation of HCI. The HCI generated is removed with a base.
- the B(OR) 3 compounds can be prepared independently or generated in the same reactor in which the alkoxylation is to be performed. Water removal is optional but is typically performed to avoid the formation of poly(alkylene glycols), which are formed by the alkoxylation of water. If the presence of poly(alkylene glycols) in the alcohol alkoxylate product is unacceptable, then water should be removed prior to performing the alkoxylation reaction.
- L means liter
- mol means mole
- ml_ means milliliter
- % means percent
- ca means approximately
- g means gram
- h means hour
- EO means ethylene oxide.
- HOCH 2 CH 2 OCF 2 CFHOCF 2 CF 2 CF 3 (9.35 g, 28.5 mmol) were combined and heated at 70 0 C to give a pale yellow liquid. After 3 h the mixture was cooled to room temperature and the evolved methanol was removed under vacuum. The product was then heated at 100 0 C under vacuum for 2 h. The product was washed several times with ether and dried.
- Ethoxylations were performed in a stainless steel reactor. In some cases a glass liner was used.
- the reactor was charged with the alcohol, a magnetic stir bar, catalyst components (MB(OR) 4 or B(OR) 3 and MX), sealed, and then connected to a gas manifold. When the catalyst was of the form B(ORi) 3 / MX, both components were added together.
- the reactor was evacuated and then a premeasured amount of EO, in a ratio of EO/alcohol of 4 to 10, was condensed into the reactor at 0-5 0 C. When the EO transfer was complete the system was backfilled with ca. 1 psig nitrogen and the feed valves closed.
- the reactor was placed in a block heater and brought to reaction temperature and stirred magnetically. Reaction progress was followed by monitoring the pressure. At the higher catalyst concentrations (ca. 6 mole %) gas uptake was normally complete within 3-6 hours. Lower catalyst concentrations required longer times and were typically allowed to proceed overnight to ensure complete ethylene oxide consumption.
- EO# is the average number of ethylene oxide units inserted, e.g., the average number of n in the formula RO(CH 2 CH 2 O) n H.
- the value for n for a given ethoxylation reaction is generally determined by the alcohol conversion and the ratio of ethylene oxide to alcohol.
- a reactor was charged with CeFi 3 CH 2 CH 2 OH (12 molar equivalents) and boric oxide (B 2 O 3 , 1 molar equivalent, corresponding to 2 molar equivalents of boron). The mixture was heated to 80 0 C while stirring and sparging with a stream of nitrogen. The nitrogen stream was vented to an ice-cooled trap where water was observed to collect. After 3 h the boric oxide dissolved, and water collection ceased, giving a clear, colorless solution. Karl-Fischer titration analysis of an aliquot showed 100 ppm water content.
- a reactor was charged with boric oxide (B 2 O 3 , 1 molar equivalent), sodium iodide (1 molar equivalent), and C 6 Fi 3 CH 2 CH 2 OH (17 molar equivalents). The mixture was heated at 80 0 C with stirring and sparging with nitrogen. After 30 min Karl- Fischer titration analysis showed 3000 ppm water content. Heating and nitrogen purging was continued for another 60 min, whereupon titration showed the water content had dropped to 12 ppm. To the resulting mixture was added 7.2 molar equivalents of ethylene oxide. The reactor was heated to 120 0 C and held at that temperature until EO consumption was complete. The reactor was cooled and the product analyzed by GC, which showed a mixture of ethoxylates with average ethoxylate number of approximately 6 and 2 % unreacted C 6 Fi 3 CH 2 CH 2 OH.
- a reactor was charged with a solution of B(OCH 2 CH 2 C 6 F 13 ) 3 (4.1 mol %) in HOCH 2 CH 2 C 6 Fi 3 .
- Ethylene oxide 25 molar equivalents was added and the reactor heated to 125 0 C for 18 hours. After cooling to room temperature and removing unreacted ethylene oxide the solution was analyzed by gas chromatography which showed only unreacted alcohol and no detectable amount of ethoxylate product.
- a reactor was charged with a solution of B(OCH 2 CH 2 C 6 F 13 ) S (9.5 mol %) in HOCH 2 CH 2 C 6 Fi 3 .
- Ethylene oxide 25 molar equivalents was added and the reactor heated to 125 0 C for 18 hours. After cooling to room temperature and removing unreacted ethylene oxide the solution was analyzed by gas chromatography which showed >95 % unreacted alcohol and trace amounts of ethoxylate product.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/432,814 US8058480B2 (en) | 2009-04-30 | 2009-04-30 | Process for the alkoxylation of alcohols |
PCT/US2010/033147 WO2010127230A2 (en) | 2009-04-30 | 2010-04-30 | Process for the alkoxylation of alcohols |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2424830A2 true EP2424830A2 (en) | 2012-03-07 |
EP2424830A4 EP2424830A4 (en) | 2014-09-17 |
EP2424830B1 EP2424830B1 (en) | 2016-04-13 |
Family
ID=43030890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10770413.2A Not-in-force EP2424830B1 (en) | 2009-04-30 | 2010-04-30 | Process for the alkoxylation of alcohols |
Country Status (7)
Country | Link |
---|---|
US (1) | US8058480B2 (en) |
EP (1) | EP2424830B1 (en) |
JP (1) | JP5683570B2 (en) |
CN (1) | CN102459140B (en) |
AU (1) | AU2010242869B2 (en) |
CA (1) | CA2760544C (en) |
WO (1) | WO2010127230A2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8946486B2 (en) | 2007-12-03 | 2015-02-03 | Tyco Fire & Security Gmbh | Method of forming alkoxylated fluoroalcohols |
US20120255651A1 (en) | 2011-04-07 | 2012-10-11 | E.I. Du Pont De Nemours And Company | Fluoroalkylalkoxylates |
US20120259143A1 (en) | 2011-04-07 | 2012-10-11 | E.I. Du Pont De Nemours And Company | Fluoroalkylalkoxylates |
JP6239642B2 (en) * | 2012-12-11 | 2017-11-29 | ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. | (Per) Fluoropolyether alcohol alkoxylation method |
CN106536466A (en) | 2014-07-28 | 2017-03-22 | 默克专利股份有限公司 | Fluorinated tensides |
EP3487907B1 (en) | 2016-07-20 | 2020-05-13 | Solvay Specialty Polymers Italy S.p.A. | Method for manufacturing polyalkoxylated polymers |
JP7289539B2 (en) | 2017-05-19 | 2023-06-12 | エトナ-テック, リミテッド | Method for making functionalized fluorinated monomers, fluorinated monomers, and compositions for making same |
GB2628420A (en) * | 2023-03-24 | 2024-09-25 | Sumitomo Chemical Co | Compound |
GB2628617A (en) * | 2023-03-30 | 2024-10-02 | Sumitomo Chemical Co | Compound |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07207017A (en) * | 1994-01-19 | 1995-08-08 | Teijin Ltd | Production of aromatic polycarbonate |
WO1995035272A1 (en) * | 1994-06-21 | 1995-12-28 | E.I. Du Pont De Nemours And Company | Fluoroalkylethoxylate compositions having enhanced water solubility |
EP0949218A1 (en) * | 1996-11-28 | 1999-10-13 | Asahi Glass Company Ltd. | Cement admixture, concrete, and process for producing fluorooxyalylene compounds |
US20010053866A1 (en) * | 1998-10-07 | 2001-12-20 | Uwe Denninger | Process for the preparation of polyether polyols |
WO2003000750A1 (en) * | 2001-06-20 | 2003-01-03 | Colorado State University Research Foundation | Polymerization processes using a highly active catalyst |
US20090143621A1 (en) * | 2007-12-03 | 2009-06-04 | Thomas Joseph Martin | Method of Forming Alkoxylated Fluoroalcohols |
US20100280279A1 (en) * | 2009-04-30 | 2010-11-04 | E. I. Du Pont De Nemours And Company | Alkyl alkoxylates containing unique end groups |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3007970A (en) | 1958-12-29 | 1961-11-07 | Ethyl Corp | Preparation of sodium hydrocarbon boron compounds |
US2976307A (en) | 1959-11-17 | 1961-03-21 | Koppers Co Inc | Ampholytic metal esters and the method of their preparation |
DE2918047A1 (en) * | 1979-05-04 | 1980-12-11 | Huels Chemische Werke Ag | BIODEGRADABLE AND LOW-FOAMING SURFACES, METHOD FOR THEIR PRODUCTION AND THEIR USE IN CLEANING AGENTS |
US5026923A (en) * | 1989-08-31 | 1991-06-25 | Shell Oil Company | Alkoxylation process catalyzed by borate salts of the rare earth elements |
US5608116A (en) | 1994-06-21 | 1997-03-04 | E. I. Du Pont De Nemours And Company | Process for the alkoxylation of fluorinated alcohols |
DE19528783A1 (en) | 1995-08-04 | 1997-02-06 | Inst Neuwertwirtschaft Gmbh | Sorbent for oxygen and process for its production and regeneration |
GB9705766D0 (en) | 1997-03-20 | 1997-05-07 | Pilkington Plc | Boroxine compositions |
US6352798B1 (en) | 1997-12-08 | 2002-03-05 | Brookhaven Science Associates, Llc | Phenyl boron-based compounds as anion receptors for non-aqueous battery electrolytes |
US6593500B2 (en) * | 2001-01-19 | 2003-07-15 | Rhodia, Inc. | Process for alkoxylation with a boron-containing catalyst |
US20050004404A1 (en) | 2003-07-03 | 2005-01-06 | Basf Akiengesellschaft | Process for the alkoxylation of monools in the presence of metallo-organic framework materials |
US6992224B2 (en) | 2004-05-12 | 2006-01-31 | Honeywell International Inc. | Manufacture of fluorinated alcohols |
US20060069220A1 (en) * | 2004-09-28 | 2006-03-30 | Meurs Jan Hermen H | Process for preparing an alkoxylated alcohol or phenol |
US20090057608A1 (en) * | 2007-06-27 | 2009-03-05 | Michiel Barend Eleveld | Alkoxylate composition and a process for preparing the same |
-
2009
- 2009-04-30 US US12/432,814 patent/US8058480B2/en active Active
-
2010
- 2010-04-30 CN CN201080029577.5A patent/CN102459140B/en not_active Expired - Fee Related
- 2010-04-30 JP JP2012508769A patent/JP5683570B2/en not_active Expired - Fee Related
- 2010-04-30 AU AU2010242869A patent/AU2010242869B2/en not_active Ceased
- 2010-04-30 EP EP10770413.2A patent/EP2424830B1/en not_active Not-in-force
- 2010-04-30 CA CA2760544A patent/CA2760544C/en not_active Expired - Fee Related
- 2010-04-30 WO PCT/US2010/033147 patent/WO2010127230A2/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07207017A (en) * | 1994-01-19 | 1995-08-08 | Teijin Ltd | Production of aromatic polycarbonate |
WO1995035272A1 (en) * | 1994-06-21 | 1995-12-28 | E.I. Du Pont De Nemours And Company | Fluoroalkylethoxylate compositions having enhanced water solubility |
EP0949218A1 (en) * | 1996-11-28 | 1999-10-13 | Asahi Glass Company Ltd. | Cement admixture, concrete, and process for producing fluorooxyalylene compounds |
US20010053866A1 (en) * | 1998-10-07 | 2001-12-20 | Uwe Denninger | Process for the preparation of polyether polyols |
WO2003000750A1 (en) * | 2001-06-20 | 2003-01-03 | Colorado State University Research Foundation | Polymerization processes using a highly active catalyst |
US20090143621A1 (en) * | 2007-12-03 | 2009-06-04 | Thomas Joseph Martin | Method of Forming Alkoxylated Fluoroalcohols |
US20100280279A1 (en) * | 2009-04-30 | 2010-11-04 | E. I. Du Pont De Nemours And Company | Alkyl alkoxylates containing unique end groups |
Non-Patent Citations (1)
Title |
---|
See also references of WO2010127230A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2010127230A3 (en) | 2011-03-10 |
EP2424830B1 (en) | 2016-04-13 |
CA2760544C (en) | 2017-07-11 |
AU2010242869B2 (en) | 2016-06-16 |
CA2760544A1 (en) | 2010-11-04 |
US8058480B2 (en) | 2011-11-15 |
JP2012525439A (en) | 2012-10-22 |
CN102459140A (en) | 2012-05-16 |
CN102459140B (en) | 2014-07-23 |
US20100280278A1 (en) | 2010-11-04 |
JP5683570B2 (en) | 2015-03-11 |
WO2010127230A2 (en) | 2010-11-04 |
EP2424830A4 (en) | 2014-09-17 |
AU2010242869A1 (en) | 2011-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8067329B2 (en) | Boron-based catalysts | |
AU2010242869B2 (en) | Process for the alkoxylation of alcohols | |
US9334213B2 (en) | Process for the alkoxylation of (per) fluoropolyether alcohols | |
EP3681931B1 (en) | Process of manufacturing surfactants and lubricants | |
EP3681926A1 (en) | Process of manufacturing surfactants and lubricants | |
KR20150040285A (en) | Method for producing carbonate compound and method for producing aromatic polycarbonate | |
US8058481B2 (en) | Alkyl alkoxylates containing unique end groups | |
JP4541827B2 (en) | Method for producing alkylene oxide adduct | |
JP4944544B2 (en) | Method for producing alkylene oxide adduct | |
JP2013100265A (en) | Method of producing epoxy adduct | |
EP3487907B1 (en) | Method for manufacturing polyalkoxylated polymers | |
JP2005298463A (en) | Ring-opening polymerization method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111026 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20140814 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B01J 31/26 20060101ALI20140808BHEP Ipc: C07C 41/03 20060101AFI20140808BHEP Ipc: C08G 65/26 20060101ALI20140808BHEP Ipc: C08G 65/00 20060101ALI20140808BHEP Ipc: B01J 31/14 20060101ALI20140808BHEP Ipc: C07F 19/00 20060101ALI20140808BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151027 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 789954 Country of ref document: AT Kind code of ref document: T Effective date: 20160415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010032276 Country of ref document: DE |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: THE CHEMOURS COMPANY FC, LLC |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 789954 Country of ref document: AT Kind code of ref document: T Effective date: 20160413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160713 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160816 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160714 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010032276 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
26N | No opposition filed |
Effective date: 20170116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: THE CHEMOURS COMPANY FC, LLC; US Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: E. I. DU PONT DE NEMOURS AND COMPANY Effective date: 20190509 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602010032276 Country of ref document: DE Representative=s name: MARKS & CLERK (LUXEMBOURG) LLP, LU Ref country code: DE Ref legal event code: R081 Ref document number: 602010032276 Country of ref document: DE Owner name: THE CHEMOURS COMPANY FC, LLC, WILMINGTON, US Free format text: FORMER OWNER: E.I. DU PONT DE NEMOURS AND COMPANY, WILMINGTON, DEL., US |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200323 Year of fee payment: 11 Ref country code: NL Payment date: 20200319 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200319 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200319 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200318 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602010032276 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20210501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |