EP2422390A1 - Electrochemical cell having lithium titanate - Google Patents

Electrochemical cell having lithium titanate

Info

Publication number
EP2422390A1
EP2422390A1 EP10712014A EP10712014A EP2422390A1 EP 2422390 A1 EP2422390 A1 EP 2422390A1 EP 10712014 A EP10712014 A EP 10712014A EP 10712014 A EP10712014 A EP 10712014A EP 2422390 A1 EP2422390 A1 EP 2422390A1
Authority
EP
European Patent Office
Prior art keywords
electrochemical cell
separator
cell according
electrode
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10712014A
Other languages
German (de)
French (fr)
Inventor
Andreas Gutsch
Tim Schaeffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Li Tec Battery GmbH
Original Assignee
Li Tec Battery GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Tec Battery GmbH filed Critical Li Tec Battery GmbH
Publication of EP2422390A1 publication Critical patent/EP2422390A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0411Methods of deposition of the material by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrochemical cell whose negative electrode comprises a lithium titanate.
  • the cell can preferably be used for driving a vehicle with electric motor, preferably with hybrid drive.
  • Electrochemical cells that are used for driving a vehicle with electric motor or hybrid drive are already known.
  • Commercially available types consist for example of a positive electrode based on lithium mixed oxides such as lithium cobalt oxide, lithium manganese oxide or lithium iron phosphate, and a negative electrode based on carbon. If several cells are connected in series and / or connected in parallel in the form of an accumulator, their capacity can be high enough to drive, for example, a vehicle with hybrid drive.
  • the negative electrode consists of a lithium-containing material, for example lithium titanate.
  • Lithium manganate is then preferably used as the positive electrode.
  • Such cells have high intrinsic safety, which is particularly important when used to drive an electric motor in a vehicle. They are not prone to smoke, fire or explosion in case of short circuit, over discharge, overcharging or mechanical destruction. In addition, they exhibit high fast charging capability, sufficient capacity even after high discharge / charge cycles and are still effective over a wide temperature range. Typical of Manufacturers specified characteristics for a cell to show a working voltage of 2 V to 2.5 V over a temperature operating range of -50 0 C to 75 0 C. The capacity of such cells may be at more than 90% of the initial capacity after 2000 charge cycles.
  • a high resistance of the cells with the least possible drop in capacity is important in vehicles with hybrid drive, because the cells in hybrid operation are exposed to constant charges and discharges.
  • the object of the present invention was to provide an electrochemical cell having a sufficient capacity even after a large number of charge / discharge cycles.
  • negative electrode means the electrode that emits electrons when connected to the load, for example, an electric motor, so that the negative electrode is the anode.
  • positive electrode means the electrode that receives electrons when connected to the load, such as the electric motor, for example, and the positive electrode is the cathode.
  • the negative electrode becomes the cathode and the positive electrode becomes the anode.
  • the lithium titanate used for the negative electrode has a spinel structure and has the chemical composition Li 4 Ti 5 Oi 2 .
  • Methods for producing this spinel or spinel structures are known from the prior art, for example from US 2004/0197657.
  • lithium titanate spinel it is also possible to set lithium / titanium ratios which deviate from the ratio in Li 4 Ti 5 O 12 .
  • Such spinel structures are disclosed in US 2008/0226987.
  • the negative electrode contains carbon in addition to lithium titanate.
  • the conductivity of the electrode can be further increased.
  • the carbon may be present as a coating on the electrode, preferably as a carbon layer with a thickness of a few microns.
  • the carbon coating has a diamond-like structure, it is also called “hard carbon coating". Such a layer provides effective protection against external influences, such as mechanical or chemical influences.
  • the carbon coating can also be made with a carbon fiber web.
  • Such carbon is also often referred to as "soft carbon”.
  • the carbon may also be in amorphous form on the negative electrode.
  • hard carbon soft carbon
  • amorphous carbon is known in the art, as well as methods for producing such carbon modifications and the use in the production of - A -
  • Electrodes Further and likewise known embodiments of the carbon are carbon in the form of "nanocarbon tubes", “nano buds” or “foam”.
  • the positive electrode contains a mixed oxide other than lithium titanate.
  • the mixed oxide contains one or more elements selected from nickel, manganese and cobalt.
  • the mixed oxide containing nickel, cobalt and manganese is preferably present mixed with lithium manganate.
  • the lithium manganate preferably has the formula LiMn 2 O 4 .
  • Such electrode material is known from the prior art.
  • These oxides used for the positive electrode are commercially available or can be prepared by known methods.
  • the negative electrode or the positive electrode or the negative electrode and the positive electrode comprise an electrode carrier.
  • the oxides listed above are applied.
  • the application can be unilateral or bilateral, preferably in the form of coatings.
  • the electrode carrier comprises a foil of copper or a foil of an alloy with copper. In a further embodiment, the electrode carrier comprises a foil made of aluminum.
  • the electrode carrier may also be in the form of a net or tissue.
  • nets or fabrics made of metal preferably made of metal, are suitable Aluminum or copper or a copper alloy, or mesh or fabric made of plastics.
  • the electrode carrier of both the positive and the negative electrode made of aluminum, preferably a foil made of aluminum.
  • At least one of the electrodes preferably both electrodes, contains no carrier foil.
  • at least one of the electrodes, preferably both electrodes contains aluminum chips or copper chips or chips of a copper alloy for increasing the conductivity.
  • an embodiment of the electrodes is possible in which the carrier film is replaced by conductivity additives such as graphite or electrically conductive plastics, such as polyparaphenylene, polythiophene, polypyrrole, poly (para-phenylene-vinylene), polyaniline.
  • conductivity additives such as graphite or electrically conductive plastics, such as polyparaphenylene, polythiophene, polypyrrole, poly (para-phenylene-vinylene), polyaniline.
  • the oxides preferably contain a suitable binder. It is preferred that the
  • Binder comprises a fluorinated polymer, preferably a
  • Suitable products are, for example, among the
  • the electrodes comprise polyvinylidene fluoride.
  • the oxides can be pasted, for example, with the binder, and the resulting paste applied to the electrode carrier.
  • Corresponding methods are known in the art. To prevent uncontrolled lithium-ion transmission between the two electrodes, they are separated by a separator. However, the separator must still allow the required lithium-ion transport through the separator.
  • the separator comprises a non-woven of electrically non-conductive fibers, wherein the non-woven is coated on at least one side with an inorganic material.
  • EP 1 017 476 describes such a separator and a method for its production.
  • the separator is preferably coated with an ion-conducting inorganic material.
  • a separator which preferably consists of an at least partially permeable carrier, which is not or only poorly electron-conducting, wherein the carrier is coated on at least one side with an inorganic material , wherein as at least partially permeable carrier preferably an organic material is used, which is preferably configured as a non-woven fabric, wherein the organic material is preferably a polymer, and more preferably a polyethylene glycol terephthalate (PET), a polyolefin (PO) or a polyetherimide (PEI ), wherein the organic material is coated with an inorganic ion-conductive material, which is preferably in a temperature range of -40 0 C to 200 0 C ion-conducting, wherein the inorganic, ion-conductive material preferably at least one compound from the group of Oxi de, phosphates, sulphates, titanates, silicates, aluminosilicates
  • a separator with PET as carrier material is commercially available under the name Separion ® . It can be prepared by methods as disclosed in EP 1 017476.
  • nonwoven web means that the polymers are in the form of nonwoven fibers (nonwoven fabric) Such webs are known in the art and / or may be prepared by known methods, for example, U.S. Pat a spunbonding process or a meltblowing process as for example in DE 195 01 271 A1.
  • the separator consists of a polyethylene glycol terephthalate, a polyolefin, a polyetherimide, a polyamide, a polyacrylonitrile, a polycarbonate, a polysulfone, a polyethersulfone, a polyvinylidene fluoride, a polystyrene, or mixtures thereof.
  • the separator consists of a polyolefin or of a mixture of polyolefins.
  • separator which consists of a mixture of polyethylene and polypropylene.
  • separators Preferably, such separators have a layer thickness of 3 to 14 .mu.m.
  • the polymers are preferably in the form of fiber webs.
  • mixture or “mixture” of the polymers means that the polymers are preferably in the form of their nonwovens, which are bonded together in layers. Such nonwovens or nonwoven composites are disclosed, for example, in EP 1 852 926.
  • this consists of an inorganic material.
  • the inorganic material used are oxides of magnesium, calcium, aluminum, silicon and titanium, as well as silicates and zeolites, borates and phosphates.
  • Such materials for separators as well as methods for producing the separators are disclosed in EP 1 783 852.
  • the separator consists of magnesium oxide.
  • magnesium oxide by calcium oxide, barium oxide, barium carbonate, lithium, sodium, potassium, magnesium, calcium, barium phosphate or by lithium, sodium, potassium borate, or mixtures thereof Compounds, to be replaced.
  • the separators of this embodiment preferably have a layer thickness of 4 to 25 ⁇ m.
  • the separator is applied to at least one of the electrodes.
  • Methods of applying the separator to an electrode are known in the art.
  • the application can preferably be carried out by gluing or by co-extrusion of electrode material with separator material.
  • the positive or the negative electrode or the positive and the negative electrode are mounted directly on the separator.
  • the ability of the separator for ionic conduction can be further improved if a nonaqueous electrolyte is added to it, ie it is soaked with this electrolyte.
  • the nonaqueous electrolyte comprises an organic solvent and lithium ions.
  • the organic solvent is selected from ethylene carbonate, propylene carbonate, diethyl carbonate, dipropyl carbonate, 1, 2-dimethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1, 3-dioxolane, sulfolane, acetonitrile, or phosphoric acid esters, or mixtures of these solvents.
  • the lithium ions present in the electrolyte have one or more counterions selected from AsF 6 " , PF 6 “ , PF 3 (C 2 F 5 ) 3 “ , PF 3 (CF 3 ) 3 “ , BF 4 “ , BF 2 (CFs) 2 -, BF 3 (CF 3 ) “ , IB (COOCOO) 2 “ ], CF 3 SO 3 “ , C 4 F 9 SO 3 “ , [(CF 3 SO 2 ) 2 N] " , [C 2 F 5 SO 2 ) 2 N] ⁇ [(CN) 2 N] “ , CIO 4 " .
  • the electrodes are in the form of an electrode stack which has at least one separator, preferably the separator described above.
  • the production of a stack of alternately stacked and fixed separators and electrodes for an electrochemical cell is known for example from DE 10 2005 042 916 A1.
  • the stack may also be in the form of a winding, as known for example from EP 0 949 699.
  • the electrochemical cell has at least one current conductor which is connected to the electrodes or the electrode stack.
  • the electrochemical cell can be connected, for example, to an electric motor to provide it with electric current.
  • An embodiment of the electrochemical cell having at least 2 electrochemical cells according to the invention can also be referred to as an accumulator.
  • the electrodes which are separated by the separator or the electrode stack are in a housing which is suitable for the battery or accumulator operation, for example in an aluminum housing.
  • Another object of the invention is also the use of the electrochemical cell according to the invention for supplying an electric motor with electric current.
  • the electrochemical cell is used in a hybrid drive vehicle.
  • the electrochemical cell as well as the electrodes used in it can be made by methods known in the art. Such methods are described, for example, in "Handbook of Batteries, Third Edition, McGraw-Hill, Editors: D. Linden, TB Reddy, 35.7.1".
  • the electrochemical cell of the present invention may also be manufactured by a method in which the separator is applied directly to at least one of the electrodes, ie, the negative electrode and / or the positive electrode. Coextrusion then forms a laminate composite. Such methods are disclosed, for example, in EP 1 783 852.
  • the present invention also relates to a method for producing the electrochemical cell according to the invention, characterized in that the separator is applied to at least one electrode and the composite formed is coextruded.
  • the separator which contains the inorganic material preferably in the form of a paste or dispersion, is coextruded with at least one electrode.
  • the result is a laminate composite comprising an electrode and the separator or a laminate composite comprising the two electrodes and the separator between them.
  • the present invention also relates to a process for producing the electrochemical cell according to the invention, characterized in that the coextrusion is a paste extrusion.
  • the resulting composite can be dried or sintered by the usual methods.
  • the separately prepared electrodes and the separator or their Eduktgemische for the preparation are then fed continuously and separately to a processor unit, wherein the negative electrode are laminated with the separator and the positive electrode to a cell assembly.
  • the processor unit preferably comprises or consists of laminating rollers.
  • the invention also relates to a method for producing the electrochemical cell according to the invention, characterized in that the separator and the negative and the positive electrode are fed separately from one another to a process unit and laminated there together.
  • An electrochemical cell was constructed whose positive electrode contained nickel / cobalt / manganese mixed oxide and lithium manganese oxide.
  • the negative electrode contained lithium titanate with carbon as a conductive additive.
  • the separator used was Separion®. The electrodes were applied directly to the separator.
  • Figure 1 shows the dependence of the capacity of the electrochemical cell on the number of charge / discharge cycles.
  • the capacity was 6.5 Ah at the beginning of the measurement.
  • the charging and discharging currents were 19.5 A (3C).
  • the measurement was carried out up to a number of cycles of about 9,000.
  • the capacity reached at the end of the cycle was over 4.5 Ah.
  • Figure 2 shows the dependence of the capacity on the number of discharge / charge pulses.
  • the pulse duration for the discharge was 8 s at a discharge current of 56 A (8.55 C)
  • the pulse duration for the charge was 3 s with a charging current of approximately 146 A (22.7 C). More than 1,000,000 pulses were achieved.

Abstract

The invention relates to an electrochemical cell, comprising a negative electrode comprising a lithium titanate; a positive electrode; and a separator separating the negative from the positive electrode. The cell can be preferably used for driving a vehicle having an electric motor, preferably having a hybrid drive system.

Description

Elektrochemische Zelle mit Lithiumtitanat Electrochemical cell with lithium titanate
Die vorliegende Erfindung betrifft eine elektrochemische Zelle, deren negative Elektrode ein Lithiumtitanat umfasst. Die Zelle kann vorzugsweise für den Antrieb eines Fahrzeugs mit Elektromotor, vorzugsweise mit Hybridantrieb, eingesetzt werden.The present invention relates to an electrochemical cell whose negative electrode comprises a lithium titanate. The cell can preferably be used for driving a vehicle with electric motor, preferably with hybrid drive.
Elektrochemische Zellen, die für den Antrieb eines Fahrzeugs mit Elektromotor bzw. mit Hybridantrieb eingesetzt werden, sind bereits bekannt. Handelsübliche Typen bestehen beispielsweise aus einer positiven Elektrode auf Basis von Lithiummischoxiden wie Lithiumkobaltoxid, Lithiummanganoxid oder Lithiumeisenphosphat, und einer negativen Elektrode auf Basis Kohlenstoff. Werden mehrere Zellen in geeigneter Weise in Form eines Akkumulators hintereinandergeschaltet und/oder parallel geschaltet, so kann ihre Kapazität hoch genug sein, um damit beispielsweise ein Fahrzeug mit Hybridantrieb anzutreiben.Electrochemical cells that are used for driving a vehicle with electric motor or hybrid drive are already known. Commercially available types consist for example of a positive electrode based on lithium mixed oxides such as lithium cobalt oxide, lithium manganese oxide or lithium iron phosphate, and a negative electrode based on carbon. If several cells are connected in series and / or connected in parallel in the form of an accumulator, their capacity can be high enough to drive, for example, a vehicle with hybrid drive.
Es sind auch handelsübliche elektrochemische Zellen bekannt, in denen die negative Elektrode aus einem Lithium-haltigen Material besteht, beispielsweise aus Lithiumtitantat. Als positive Elektrode wird dann vorzugsweise Lithiummanganat verwendet. Derartige Zellen besitzen eine hohe Eigensicherheit, die bei Verwendung zum Antrieb eines Elektromotors in einem Fahrzeug besonders wichtig ist. Sie neigen bei Kurzschluss, Tiefentladen, Überladen oder mechanischer Zerstörung weder zur Bildung von Rauch noch zu Feuer oder gar Explosion. Außerdem zeigen sie eine hohe Schnellladefähigkeit, eine ausreichende Kapazität auch nach hohen Entlade-/Ladezyklen und sind über einen breiten Temperaturbereich hinweg noch effektiv. Typische von Herstellern angegebene Kenndaten für eine Zelle zeigen eine Arbeitsspannung von 2 V bis 2,5 V über einen Temperatur-Arbeitsbereich von -50 0C bis 75 0C. Die Kapazität derartiger Zellen kann nach 2.000 Ladezyklen bei über 90 % der ursprünglichen Kapazität liegen.Commercially available electrochemical cells are also known, in which the negative electrode consists of a lithium-containing material, for example lithium titanate. Lithium manganate is then preferably used as the positive electrode. Such cells have high intrinsic safety, which is particularly important when used to drive an electric motor in a vehicle. They are not prone to smoke, fire or explosion in case of short circuit, over discharge, overcharging or mechanical destruction. In addition, they exhibit high fast charging capability, sufficient capacity even after high discharge / charge cycles and are still effective over a wide temperature range. Typical of Manufacturers specified characteristics for a cell to show a working voltage of 2 V to 2.5 V over a temperature operating range of -50 0 C to 75 0 C. The capacity of such cells may be at more than 90% of the initial capacity after 2000 charge cycles.
Eine hohe Beständigkeit der Zellen mit möglichst geringem Kapazitätsabfall ist bei Fahrzeugen mit Hybridantrieb wichtig, weil die Zellen im Hybridbetrieb ständigen Ladungen und Entladungen ausgesetzt sind.A high resistance of the cells with the least possible drop in capacity is important in vehicles with hybrid drive, because the cells in hybrid operation are exposed to constant charges and discharges.
Aufgabe der vorliegenden Erfindung war es, eine elektrochemische Zelle zur Verfügung zu stellen, die eine ausreichende Kapazität auch nach einer hohen Anzahl von Lade-/Entladezyklen aufweist.The object of the present invention was to provide an electrochemical cell having a sufficient capacity even after a large number of charge / discharge cycles.
Diese Aufgabe konnte mit einer elektrochemischen Zelle, umfassend eine negative Elektrode umfassend ein Lithiumtitanat; eine positive Elektrode; und einen Separator, der die negative von der positiven Elektrode trennt; gelöst werden.This object has been achieved with an electrochemical cell comprising a negative electrode comprising a lithium titanate; a positive electrode; and a separator separating the negative from the positive electrode; be solved.
Der Begriff „negative Elektrode" bedeutet die Elektrode, die beim Anschluss an den Verbraucher, also beispielsweise einen Elektromotor, Elektronen abgibt. Die negative Elektrode ist demzufolge die Anode.The term "negative electrode" means the electrode that emits electrons when connected to the load, for example, an electric motor, so that the negative electrode is the anode.
Der Begriff „positive Elektrode" bedeutet die Elektrode, die beim Anschluss an den Verbraucher, also beispielsweise den Elektromotor, Elektronen aufnimmt. Die positive Elektrode ist demzufolge die Kathode.The term "positive electrode" means the electrode that receives electrons when connected to the load, such as the electric motor, for example, and the positive electrode is the cathode.
Wird die Zelle geladen, so wird die negative Elektrode zur Kathode und die positive Elektrode zur Anode.When the cell is charged, the negative electrode becomes the cathode and the positive electrode becomes the anode.
Vorzugsweise weist das für die negative Elektrode verwendete Lithiumtitanat eine Spinell-Struktur auf und besitzt die chemische Zusammensetzung Li4Ti5Oi2. Verfahren zur Herstellung dieses Spinells bzw. derartiger Spinell-Strukturen sind aus dem Stand der Technik bekannt, beispielsweise aus US 2004/0197657.Preferably, the lithium titanate used for the negative electrode has a spinel structure and has the chemical composition Li 4 Ti 5 Oi 2 . Methods for producing this spinel or spinel structures are known from the prior art, for example from US 2004/0197657.
Im Lithiumtitanat-Spinell können auch Lithium/Titan-Verhältnisse eingestellt werden, die vom Verhältnis in Li4Ti5O12 abweichen. Derartige Spinell-Strukturen werden in US 2008/0226987 offenbart.In the lithium titanate spinel, it is also possible to set lithium / titanium ratios which deviate from the ratio in Li 4 Ti 5 O 12 . Such spinel structures are disclosed in US 2008/0226987.
Die Verwendung eines Lithiumtitanats mit Spinell-Struktur verbessert auch die Schnellladefähigkeit der elektrochemischen Zelle.The use of a spinel-structured lithium titanate also improves the fast charging capability of the electrochemical cell.
In einer bevorzugten Ausführungsform enthält die negative Elektrode neben Lithiumtitanat Kohlenstoff. Damit kann die Leitfähigkeit der Elektrode weiter erhöht werden.In a preferred embodiment, the negative electrode contains carbon in addition to lithium titanate. Thus, the conductivity of the electrode can be further increased.
Der Kohlenstoff kann dabei als Beschichtung auf der Elektrode vorliegen, vorzugsweise als eine Kohlenstoffschicht mit einer Dicke von wenigen Micron.The carbon may be present as a coating on the electrode, preferably as a carbon layer with a thickness of a few microns.
Besitzt die Kohlenstoffbeschichtung eine Diamant-ähnliche Struktur, so wird sie auch als "hard carbon coating" bezeichnet. Eine derartige Schicht bietet einen wirksamen Schutz gegen äußere Einflüsse, wie beispielsweise mechanische oder chemische Einflüsse.If the carbon coating has a diamond-like structure, it is also called "hard carbon coating". Such a layer provides effective protection against external influences, such as mechanical or chemical influences.
Die Beschichtung mit Kohlenstoff kann jedoch auch mit einem Vlies aus Kohlenstofffasern hergestellt werden. Derartiger Kohlenstoff wird auch häufig als "soft carbon" bezeichnet.However, the carbon coating can also be made with a carbon fiber web. Such carbon is also often referred to as "soft carbon".
Der Kohlenstoff kann auf der negativen Elektrode auch in amorpher Form vorliegen.The carbon may also be in amorphous form on the negative electrode.
Die Begriffe „hard carbon", „soft carbon" und „amorpher Kohlenstoff sind dem Fachmann bekannt, desgleichen Verfahren zur Herstellung derartiger Kohlenstoff-Modifikationen sowie die Verwendung bei der Herstellung von - A -The terms "hard carbon", "soft carbon" and "amorphous carbon are known in the art, as well as methods for producing such carbon modifications and the use in the production of - A -
Elektroden. Weitere und ebenfalls bekannte Ausführungsformen des Kohlenstoffs sind Kohlenstoff in Form von „nanocarbon tubes", „nano buds" oder „Schaum".Electrodes. Further and likewise known embodiments of the carbon are carbon in the form of "nanocarbon tubes", "nano buds" or "foam".
In einer Ausführungsform der elektrochemischen Zelle der vorliegenden Erfindung enthält die positive Elektrode ein Mischoxid, das verschieden von Lithiumtitanat ist.In one embodiment of the electrochemical cell of the present invention, the positive electrode contains a mixed oxide other than lithium titanate.
Vorzugsweise enthält das Mischoxid ein oder mehrere Elemente ausgewählt aus Nickel, Mangan und Kobalt.Preferably, the mixed oxide contains one or more elements selected from nickel, manganese and cobalt.
Vorzugsweise liegt das Mischoxid enthaltend Nickel, Kobalt und Mangan im Gemisch mit Lithiummanganat vor. Das Lithiummanganat besitzt vorzugsweise die Formel LiMn2O4.The mixed oxide containing nickel, cobalt and manganese is preferably present mixed with lithium manganate. The lithium manganate preferably has the formula LiMn 2 O 4 .
Derartiges Elektrodenmateria! ist aus dem Stand der Technik bekannt. Diese für die positive Elektrode verwendeten Oxide sind kommerziell erhältlich oder können nach bekannten Verfahren hergestellt werden.Such electrode material! is known from the prior art. These oxides used for the positive electrode are commercially available or can be prepared by known methods.
Es ist weiter bevorzugt, dass die negative Elektrode oder die positive Elektrode oder die negative Elektrode und die positive Elektrode einen Elektrodenträger umfassen. Auf dem Elektrodenträger sind die oben aufgeführten Oxide aufgebracht. Die Aufbringung kann einseitig oder beidseitig erfolgen, vorzugsweise in Form von Beschichtungen.It is further preferable that the negative electrode or the positive electrode or the negative electrode and the positive electrode comprise an electrode carrier. On the electrode carrier, the oxides listed above are applied. The application can be unilateral or bilateral, preferably in the form of coatings.
In einer Ausführungsform umfasst der Elektrodenträger eine Folie aus Kupfer oder eine Folie einer Legierung mit Kupfer. In einer weiteren Ausführungsform umfasst der Elektrodenträger eine Folie aus Aluminium.In one embodiment, the electrode carrier comprises a foil of copper or a foil of an alloy with copper. In a further embodiment, the electrode carrier comprises a foil made of aluminum.
Der Elektrodenträger kann auch in Form eines Netzes oder Gewebes vorliegen. Geeignet sind vorzugsweise Netze oder Gewebe aus Metall, vorzugsweise aus Aluminium oder Kupfer oder einer Kupferlegierung, oder Netze oder Gewebe aus Kunststoffen.The electrode carrier may also be in the form of a net or tissue. Preferably, nets or fabrics made of metal, preferably made of metal, are suitable Aluminum or copper or a copper alloy, or mesh or fabric made of plastics.
In einer bevorzugten Ausführungsform bestehen der Elektrodenträger sowohl der positiven wie auch der negativen Elektrode aus Aluminium, vorzugsweise einer Folie aus Aluminium.In a preferred embodiment, the electrode carrier of both the positive and the negative electrode made of aluminum, preferably a foil made of aluminum.
In einer besonders bevorzugten Ausführungsform enthält mindestens eine der Elektroden, vorzugsweise beide Elektroden, keine Trägerfolie. Vorzugsweise enthält dann mindestens eine der Elektrode, vorzugsweise beide Elektroden, zur Erhöhung der Leitfähigkeit Aluminiumspäne oder Kupferspäne oder Späne einer Kupferlegierung.In a particularly preferred embodiment, at least one of the electrodes, preferably both electrodes, contains no carrier foil. Preferably, at least one of the electrodes, preferably both electrodes, contains aluminum chips or copper chips or chips of a copper alloy for increasing the conductivity.
Auch ist eine Ausführungsform der Elektroden möglich, bei der die Trägerfolie ersetzt ist durch Leitfähigkeitszusätze wie Graphit oder elektrisch leitende Kunststoffe, wie Polyparaphenylen, Polythiophen, Polypyrrol, Poly(para- phenylen-vinylen), Polyanilin.Also, an embodiment of the electrodes is possible in which the carrier film is replaced by conductivity additives such as graphite or electrically conductive plastics, such as polyparaphenylene, polythiophene, polypyrrole, poly (para-phenylene-vinylene), polyaniline.
Zur Verbesserung der Adhäsion der Oxide auf dem Elektrodenträger enthalten die Oxide vorzugsweise ein geeignetes Bindemittel. Bevorzugt ist, dass dasTo improve the adhesion of the oxides on the electrode carrier, the oxides preferably contain a suitable binder. It is preferred that the
Bindemittel ein fluoriertes Polymer umfasst, vorzugsweise einBinder comprises a fluorinated polymer, preferably a
Polyvinylidenfluorid. Geeignete Produkte sind beispielsweise unter denPolyvinylidene fluoride. Suitable products are, for example, among the
Handelsnamen Kynar® oder Dyneon® erhältlich,Trade names Kynar® or Dyneon® available,
Demgemäß umfassen die Elektroden in einer bevorzugten Ausführungsform Polyvinylidenfluorid.Accordingly, in a preferred embodiment, the electrodes comprise polyvinylidene fluoride.
Zur Herstellung der Elektroden können die Oxide beispielsweise mit dem Bindemittel angeteigt und die erhaltene Paste auf den Elektrodenträger aufgebracht werden. Entsprechende Verfahren sind im Stand der Technik bekannt. Damit es zu keiner unkontrollierten Lithium-Ionen-Übertragung zwischen den beiden Elektroden kommt, werden diese über einen Separator voneinander getrennt. Der Separator muss aber den erforderlichen Lithium-Ionen-Transport durch den Separator hindurch noch ermöglichen.To produce the electrodes, the oxides can be pasted, for example, with the binder, and the resulting paste applied to the electrode carrier. Corresponding methods are known in the art. To prevent uncontrolled lithium-ion transmission between the two electrodes, they are separated by a separator. However, the separator must still allow the required lithium-ion transport through the separator.
Vorzugsweise umfasst der Separator ein Vlies aus elektrisch nichtleitenden Fasern, wobei das Vlies auf mindestens einer Seite mit einem anorganischen Material beschichtet ist. EP 1 017 476 beschreibt einen derartigen Separator und ein Verfahren zu dessen Herstellung.Preferably, the separator comprises a non-woven of electrically non-conductive fibers, wherein the non-woven is coated on at least one side with an inorganic material. EP 1 017 476 describes such a separator and a method for its production.
Der Separator ist vorzugsweise mit einem ionenleitenden anorganischen Material beschichtet.The separator is preferably coated with an ion-conducting inorganic material.
Als Separator, der die positive Elektrode von der negativen Elektrode trennt, wird vorzugsweise ein Separator verwendet, der bevorzugt aus einem wenigstens teilweise stoffdurchlässigen Träger besteht, welcher nicht oder nur schlecht elektronenleitend ist, wobei der Träger auf mindestens einer Seite mit einem anorganischen Material beschichtet ist, wobei als wenigstens teilweise stoffdurchlässiger Träger vorzugsweise ein organisches Material verwendet wird, welches vorzugsweise als nicht-verwebtes Vlies ausgestaltet ist, wobei das organische Material vorzugsweise ein Polymer und besonders bevorzugt ein Polyethylenglykolterephthalat (PET), ein Polyolefin (PO) oder ein Polyetherimid (PEI) umfasst, wobei das organische Material mit einem anorganischen ionenleitenden Material beschichtet ist, welches vorzugsweise in einem Temperaturbereich von -40 0C bis 200 0C ionenleitend ist, wobei das anorganische, ionenleitende Material bevorzugt wenigstens eine Verbindung aus der Gruppe der Oxide, Phosphate, Sulphate, Titanate, Silikate, Aluminosilikate wenigstens eines der Elemente Zirkon, Aluminium, Lithium ist, insbesondere Zirkonoxid ist, und wobei das anorganische Material bevorzugt Partikel mit einem Größendurchmesser unter 100 nm aufweist. Geeignete Polyolefine sind vorzugsweise Polyethylen, Polypropylen oder Polymethylpenten. Besonders bevorzugt ist Polypropylen.As a separator which separates the positive electrode from the negative electrode, a separator is preferably used, which preferably consists of an at least partially permeable carrier, which is not or only poorly electron-conducting, wherein the carrier is coated on at least one side with an inorganic material , wherein as at least partially permeable carrier preferably an organic material is used, which is preferably configured as a non-woven fabric, wherein the organic material is preferably a polymer, and more preferably a polyethylene glycol terephthalate (PET), a polyolefin (PO) or a polyetherimide (PEI ), wherein the organic material is coated with an inorganic ion-conductive material, which is preferably in a temperature range of -40 0 C to 200 0 C ion-conducting, wherein the inorganic, ion-conductive material preferably at least one compound from the group of Oxi de, phosphates, sulphates, titanates, silicates, aluminosilicates at least one of the elements zirconium, aluminum, lithium is, in particular zirconium oxide, and wherein the inorganic material preferably has particles with a size diameter below 100 nm. Suitable polyolefins are preferably polyethylene, polypropylene or polymethylpentene. Particularly preferred is polypropylene.
Der Einsatz von Polyamiden, Polyacrylnitrilen, Polycarbonaten, Polysulfonen, Polyethersulfonen, Polyvinylidenfluoriden, Polystyrolen als organisches Trägermaterial ist gleichfalls denkbar.The use of polyamides, polyacrylonitriles, polycarbonates, polysulfones, polyethersulfones, polyvinylidene fluorides, polystyrenes as organic carrier material is also conceivable.
Es können auch Mischungen der Polymeren verwendet werden.It is also possible to use mixtures of the polymers.
Ein Separator mit PET als Trägermaterial ist im Handel erhältlich unter der Bezeichnung Separion®. Er kann nach Methoden hergestellt werden, wie sie in der EP 1 017476 offenbart sind.A separator with PET as carrier material is commercially available under the name Separion ® . It can be prepared by methods as disclosed in EP 1 017476.
Der Begriff „nicht verwebtes Vlies" bedeutet, dass die Polymeren in Form von Fasern in nicht gewebter Form vorliegen (non-woven fabric). Derartige Vliese sind aus dem Stand der Technik bekannt und/oder können nach den bekannten Verfahren hergestellt werden, beispielsweise durch einen Spinnvliesprozess oder ein Schmelzblasverfahren wie beispielweise in DE 195 01 271 A1 referiert.The term "nonwoven web" means that the polymers are in the form of nonwoven fibers (nonwoven fabric) Such webs are known in the art and / or may be prepared by known methods, for example, U.S. Pat a spunbonding process or a meltblowing process as for example in DE 195 01 271 A1.
In einer weiteren Ausführungsform besteht der Separator aus einem Polyethylenglykolterephthalat, einem Polyolefin, einem Polyetherimid, einem Polyamid, einem Polyacrylnitril, einem Polycarbonat, einem Polysulfon, einem Polyethersulfon, einem Polyvinylidenfluorid, einem Polystyrol, oder Mischungen davon.In a further embodiment, the separator consists of a polyethylene glycol terephthalate, a polyolefin, a polyetherimide, a polyamide, a polyacrylonitrile, a polycarbonate, a polysulfone, a polyethersulfone, a polyvinylidene fluoride, a polystyrene, or mixtures thereof.
Vorzugsweise besteht der Separator aus einem Polyolefin oder aus einem Gemisch von Polyolefinen.Preferably, the separator consists of a polyolefin or of a mixture of polyolefins.
Besonders bevorzugt in dieser Ausführungsform ist dann ein Separator, der aus einem Gemisch von Polyethylen und Polypropylen besteht. Vorzugsweise weisen solche Separatoren eine Schichtdicke von 3 bis 14 μm auf.Particularly preferred in this embodiment is then a separator which consists of a mixture of polyethylene and polypropylene. Preferably, such separators have a layer thickness of 3 to 14 .mu.m.
Die Polymeren liegen vorzugsweise in Form von Faservliesen vor.The polymers are preferably in the form of fiber webs.
Der Begriff „Mischung" oder „Gemisch" der Polymeren bedeutet, dass die Polymeren vorzugsweise in Form ihrer Vliese vorliegen, die miteinander schichtweise verbunden sind. Derartige Vliese bzw. Vliesverbunde werden beispielsweise in EP 1 852 926 offenbart.The term "mixture" or "mixture" of the polymers means that the polymers are preferably in the form of their nonwovens, which are bonded together in layers. Such nonwovens or nonwoven composites are disclosed, for example, in EP 1 852 926.
In einer weiteren Ausführungsform des Separators besteht dieser aus einem anorganischen Material.In a further embodiment of the separator, this consists of an inorganic material.
Vorzugsweise werden als anorganisches Material Oxide des Magnesiums, Calciums, Aluminiums, Siliziums und Titans eingesetzt, sowie Silikate und Zeolithe, Borate und Phosphate. Derartige Materialien für Separatoren sowie Verfahren zur Herstellung der Separatoren werden in EP 1 783 852 offenbart.Preferably, the inorganic material used are oxides of magnesium, calcium, aluminum, silicon and titanium, as well as silicates and zeolites, borates and phosphates. Such materials for separators as well as methods for producing the separators are disclosed in EP 1 783 852.
In einer bevorzugten Ausführungsform dieser Ausführungsform eines Separators besteht der Separator aus Magnesiumoxid.In a preferred embodiment of this embodiment of a separator, the separator consists of magnesium oxide.
In einer weiteren Ausführungsform können 50 bis 80 Gew.-% des Magnesiumoxids durch Calciumoxid, Bariumoxid, Bariumcarbonat, Lithium-, Natrium-, Kalium-, Magnesium-, Calcium-, Bariumphosphat oder durch Lithium-, Natrium-, Kaliumborat, oder Mischungen dieser Verbindungen, ersetzt sein.In a further embodiment, 50 to 80 wt .-% of the magnesium oxide by calcium oxide, barium oxide, barium carbonate, lithium, sodium, potassium, magnesium, calcium, barium phosphate or by lithium, sodium, potassium borate, or mixtures thereof Compounds, to be replaced.
Vorzugsweise weisen die Separatoren dieser Ausführungsform eine Schichtdicke von 4 bis 25 μm auf.The separators of this embodiment preferably have a layer thickness of 4 to 25 μm.
In einer besonders bevorzugten Ausführungsform der erfindungsgemäßen elektrochemischen Zelle ist der Separator auf mindestens einer der Elektroden aufgebracht. Verfahren zum Aufbringen des Separators auf eine Elektrode sind aus dem Stand der Technik bekannt. Das Aufbringen kann vorzugsweise durch Aufkleben oder durch gemeinsame Extrusion von Elektroden material mit Separatormaterial erfolgen. In einer weiteren besonders bevorzugten Ausführungsform sind die positive oder die negative Elektrode oder die positive und die negative Elektrode direkt auf dem Separator angebracht.In a particularly preferred embodiment of the electrochemical cell according to the invention, the separator is applied to at least one of the electrodes. Methods of applying the separator to an electrode are known in the art. The application can preferably be carried out by gluing or by co-extrusion of electrode material with separator material. In a further particularly preferred embodiment, the positive or the negative electrode or the positive and the negative electrode are mounted directly on the separator.
Die Fähigkeit des Separators zur lonenleitung kann weiter verbessert werden, wenn diesem ein nicht-wässriger Elektrolyt zugesetzt wird, er also mit diesem Elektrolyten getränkt wird. Vorzugsweise umfasst der nicht-wässrige Elektrolyt ein organisches Lösungsmittel und Lithium-Ionen.The ability of the separator for ionic conduction can be further improved if a nonaqueous electrolyte is added to it, ie it is soaked with this electrolyte. Preferably, the nonaqueous electrolyte comprises an organic solvent and lithium ions.
Vorzugsweise wird das organische Lösungsmittel ausgewählt aus Ethylencarbonat, Propylencarbonat, Diethylcarbonat, Dipropylcarbonat, 1 ,2-Dimethoxyethan, γ-Butyrolacton, Tetrahydrofuran, 2-Methyltetrahydrofuran, 1 ,3-Dioxolan, Sulfolan, Acetonitril, oder Phosphorsäureester, oder Mischungen dieser Lösungsmittel.Preferably, the organic solvent is selected from ethylene carbonate, propylene carbonate, diethyl carbonate, dipropyl carbonate, 1, 2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1, 3-dioxolane, sulfolane, acetonitrile, or phosphoric acid esters, or mixtures of these solvents.
Vorzugsweise weisen die Lithiumionen, die sich im Elektrolyt befinden, ein oder mehrere Gegenionen auf, ausgewählt aus AsF6 ", PF6 ", PF3(C2F5)3 ", PF3(CF3)3 ", BF4 ", BF2(CFs)2-, BF3(CF3)", IB(COOCOO)2 "], CF3SO3 ", C4F9SO3 ", [(CF3SO2)2N]", [C2F5SO2)2N]\ [(CN)2N]", CIO4 ".Preferably, the lithium ions present in the electrolyte have one or more counterions selected from AsF 6 " , PF 6 " , PF 3 (C 2 F 5 ) 3 " , PF 3 (CF 3 ) 3 " , BF 4 " , BF 2 (CFs) 2 -, BF 3 (CF 3 ) " , IB (COOCOO) 2 " ], CF 3 SO 3 " , C 4 F 9 SO 3 " , [(CF 3 SO 2 ) 2 N] " , [C 2 F 5 SO 2 ) 2 N] \ [(CN) 2 N] " , CIO 4 " .
In einer weiteren bevorzugten Ausführungsform liegen die Elektroden in Form eines Elektrodenstapels vor, der wenigstens einen Separator aufweist, vorzugsweise den oben beschriebenen Separator. Die Herstellung eines Stapels aus abwechselnd übereinander gestapelten und fixierten Separatoren und Elektroden für eine elektrochemischen Zelle ist beispielsweise aus der DE 10 2005 042 916 A1 bekannt. Der Stapel kann auch in Form einer Wicklung vorliegen, wie sie beispielsweise aus der EP 0 949 699 bekannt ist.In a further preferred embodiment, the electrodes are in the form of an electrode stack which has at least one separator, preferably the separator described above. The production of a stack of alternately stacked and fixed separators and electrodes for an electrochemical cell is known for example from DE 10 2005 042 916 A1. The stack may also be in the form of a winding, as known for example from EP 0 949 699.
Weiter weist die elektrochemischen Zelle wenigstens einen Stromableiter auf, der mit den Elektroden bzw. dem Elektrodenstapel verbunden ist.Furthermore, the electrochemical cell has at least one current conductor which is connected to the electrodes or the electrode stack.
Über diesen Stromableiter kann die elektrochemische Zelle beispielsweise an einen Elektromotor angeschlossen werden, um diesen mit elektrischem Strom zu versorgen. Eine Ausführungsform der elektrochemischen Zelle mit mindestens 2 erfindungsgemäßen elektrochemischen Zellen kann auch als Akkumulator bezeichnet werden.About this current collector, the electrochemical cell can be connected, for example, to an electric motor to provide it with electric current. An embodiment of the electrochemical cell having at least 2 electrochemical cells according to the invention can also be referred to as an accumulator.
Vorzugsweise befinden sich die Elektroden, die durch den Separator getrennt sind bzw. der Elektrodenstapel in einem Gehäuse, das für den Batterie- oder Akkumulatorbetrieb geeignet ist, beispielsweise in einem Aluminiumgehäuse.Preferably, the electrodes which are separated by the separator or the electrode stack are in a housing which is suitable for the battery or accumulator operation, for example in an aluminum housing.
Ein weiterer Gegenstand der Erfindung ist auch die Verwendung der erfindungsgemäßen elektrochemischen Zelle zur Versorgung eines Elektromotors mit elektrischem Strom.Another object of the invention is also the use of the electrochemical cell according to the invention for supplying an electric motor with electric current.
Vorzugsweise wird die elektrochemische Zelle in einem Fahrzeug mit Hybridantrieb verwendet.Preferably, the electrochemical cell is used in a hybrid drive vehicle.
Die elektrochemische Zelle sowie die in ihr verwendeten Elektroden können nach Verfahren hergestellt werden, die bekannt sind. Derartige Verfahren werden beispielweise beschrieben in „Handbook of Batteries, Third Edition, McGraw-Hill, Editors: D. Linden, T. B. Reddy, 35.7.1". Die elektrochemische Zelle der vorliegenden Erfindung kann auch nach einem Verfahren hergestellt werden, bei dem der Separator direkt auf mindestens eine der Elektroden, d.h. auf die negative Elektrode und/oder die positive Elektrode aufgetragen wird. Durch Coextrusion entsteht dann ein Laminatverbund. Derartige Verfahren werden beispielsweise in EP 1 783 852 offenbart.The electrochemical cell as well as the electrodes used in it can be made by methods known in the art. Such methods are described, for example, in "Handbook of Batteries, Third Edition, McGraw-Hill, Editors: D. Linden, TB Reddy, 35.7.1". The electrochemical cell of the present invention may also be manufactured by a method in which the separator is applied directly to at least one of the electrodes, ie, the negative electrode and / or the positive electrode. Coextrusion then forms a laminate composite. Such methods are disclosed, for example, in EP 1 783 852.
Demgemäß betrifft die vorliegende Erfindung auch ein Verfahren zur Herstellung der erfindungsgemäßen elektrochemischen Zelle, dadurch gekennzeichnet, dass der Separator auf mindestens eine Elektrode aufgetragen und der gebildete Verbund coextrudiert wird.Accordingly, the present invention also relates to a method for producing the electrochemical cell according to the invention, characterized in that the separator is applied to at least one electrode and the composite formed is coextruded.
In einer bevorzugten Ausführungsform wird dabei der Separator, der das anorganische Material vorzugsweise in Form einer Paste oder Dispersion enthält, mit mindestens einer Elektrode coextrudiert.In a preferred embodiment, the separator which contains the inorganic material, preferably in the form of a paste or dispersion, is coextruded with at least one electrode.
Es entsteht ein Laminatverbund umfassend eine Elektrode und den Separator bzw. ein Laminatverbund umfassend die beiden Elektroden und den dazwischen liegenden Separator.The result is a laminate composite comprising an electrode and the separator or a laminate composite comprising the two electrodes and the separator between them.
Demgemäß betrifft die vorliegende Erfindung auch ein Verfahren zur Herstellung der erfindungsgemäßen elektrochemischen Zelle, dadurch gekennzeichnet, dass die Coextrusion eine Pastenextrusion ist.Accordingly, the present invention also relates to a process for producing the electrochemical cell according to the invention, characterized in that the coextrusion is a paste extrusion.
Nach der Extrusion kann der entstandene Verbund nach den üblichen Verfahren getrocknet bzw. gesintert werden.After extrusion, the resulting composite can be dried or sintered by the usual methods.
Es ist aber auch möglich, die negative Elektrode und die positive Elektrode sowie den Separator getrennt voneinander herzustellen bzw. die Eduktgemische, aus denen die negative und die positive Elektrode sowie der Separator gefertigt werden, getrennt voneinander vorzulegen. Die getrennt voneinander hergestellten Elektroden und der Separator bzw. deren Eduktgemische für die Herstellung werden dann kontinuierlich und getrennt einer Prozessoreinheit zugeführt, wobei die negative Elektrode mit dem Separator und der positiven Elektrode zu einem Zellenverbund laminiert werden. Die Prozessoreinheit umfasst oder besteht vorzugsweise aus Kaschierwalzen.But it is also possible to produce the negative electrode and the positive electrode and the separator separately from each other or submit the reactant mixtures, from which the negative and the positive electrode and the separator are made separately from each other. The separately prepared electrodes and the separator or their Eduktgemische for the preparation are then fed continuously and separately to a processor unit, wherein the negative electrode are laminated with the separator and the positive electrode to a cell assembly. The processor unit preferably comprises or consists of laminating rollers.
Demgemäß betrifft die Erfindung auch ein Verfahren zur Herstellung der erfindungsgemäßen elektrochemischen Zelle, dadurch gekennzeichnet, dass der Separator und die negative und die positive Elektrode getrennt voneinander einer Prozesseinheit zugeführt und dort miteinander laminiert werden.Accordingly, the invention also relates to a method for producing the electrochemical cell according to the invention, characterized in that the separator and the negative and the positive electrode are fed separately from one another to a process unit and laminated there together.
Ein derartiges Verfahren ist aus der WO 01/82403 bekannt.Such a method is known from WO 01/82403.
BeispieleExamples
Es wurde eine elektrochemische Zelle konstruiert, deren positive Elektrode Nickel/Kobalt/Mangan-Mischoxid sowie Lithiummanganoxid enthielt. Die negative Elektrode enthielt Lithiumtitanat mit Kohlenstoff als Leitadditiv. Als Separator wurde Separion® verwendet. Die Elektroden wurden direkt auf dem Separator aufgebracht.An electrochemical cell was constructed whose positive electrode contained nickel / cobalt / manganese mixed oxide and lithium manganese oxide. The negative electrode contained lithium titanate with carbon as a conductive additive. The separator used was Separion®. The electrodes were applied directly to the separator.
Ladung und Entladung wurden wie folgt durchgeführt (CC Lade- bzw. Entladestrom; CV Lade- bzw. Entladespannung; C Lade- bzw. Entladestrom in Ampere ausgedrückt als Vielfaches der Kapazität):Charge and discharge were carried out as follows (CC charge or discharge current, CV charge or discharge voltage, C charge or discharge current in terms of ampere expressed as a multiple of the capacity):
Bei 25 0C:At 25 ° C:
Ladung: CC/CV 1C(4 A)/2,7 V Entladung: CC/CV 10C/2,55 V; entnehmbare Kapazität 4,25 Ah CC/CV 20C/2.4 V; entnehmbare Kapazität 4,0 Ah Bei einer Temperatur von - 30 0C betrug die Kapazitätsauslastung ca. 70 %.Charge: CC / CV 1C (4 A) / 2.7V Discharge: CC / CV 10C / 2.55V; removable capacity 4.25 Ah CC / CV 20C / 2.4 V; removable capacity 4,0 Ah At a temperature of - 30 0 C, the capacity utilization was about 70%.
Figur 1 zeigt die Abhängigkeit der Kapazität der elektrochemischen Zelle von der Anzahl der Lade-/Entlade-Zyklen. Die Kapazität lag zu Beginn der Messung bei 6,5 Ah. Der Lade- wie auch der Entladestrom betrugen 19,5 A (3C). Die Messung wurde bis zu einer Zyklenzahl von ca. 9.000 durchgeführt. Die am Ende des Zyklus erreichte Kapazität lag über 4,5 Ah.Figure 1 shows the dependence of the capacity of the electrochemical cell on the number of charge / discharge cycles. The capacity was 6.5 Ah at the beginning of the measurement. The charging and discharging currents were 19.5 A (3C). The measurement was carried out up to a number of cycles of about 9,000. The capacity reached at the end of the cycle was over 4.5 Ah.
Figur 2 zeigt die Abhängigkeit der Kapazität von der Anzahl der Entlade- /Lade-Pulse. Die Pulsdauer für die Entladung betrug 8 s bei einem Entladestrom von 56 A (8,55C), die Pulsdauer für die Ladung betrug 3 s bei einem Ladestrom von ca. 146 A (22,7C). Es konnten mehr als 1.000.000 Pulse erzielt werden. Figure 2 shows the dependence of the capacity on the number of discharge / charge pulses. The pulse duration for the discharge was 8 s at a discharge current of 56 A (8.55 C), the pulse duration for the charge was 3 s with a charging current of approximately 146 A (22.7 C). More than 1,000,000 pulses were achieved.

Claims

Patentansprüche claims
1. Elektrochemische Zelle, umfassend eine negative Elektrode umfassend ein Lithiumtitanat; eine positive Elektrode; einen Separator, der die negative von der positiven Elektrode trennt.An electrochemical cell comprising a negative electrode comprising a lithium titanate; a positive electrode; a separator separating the negative from the positive electrode.
2. Elektrochemische Zelle nach Anspruch 1 , wobei die negative Elektrode zusätzlich Kohlenstoff enthält.2. An electrochemical cell according to claim 1, wherein the negative electrode additionally contains carbon.
3. Elektrochemische Zelle nach Anspruch 1 oder 2, wobei die positive Elektrode ein Mischoxid enthält, das verschieden von Lithiumtitanat ist.The electrochemical cell according to claim 1 or 2, wherein the positive electrode contains a mixed oxide other than lithium titanate.
4. Elektrochemische Zelle nach Anspruch 3, wobei das Mischoxid ein oder mehrere Elemente ausgewählt aus Nickel, Mangan, Kobalt enthält.4. An electrochemical cell according to claim 3, wherein the mixed oxide contains one or more elements selected from nickel, manganese, cobalt.
5. Elektrochemische Zelle nach Anspruch 3, wobei das Mischoxid Nickel, Mangan und Kobalt und Lithiummanganat enthält.5. An electrochemical cell according to claim 3, wherein the mixed oxide contains nickel, manganese and cobalt and lithium manganate.
6. Elektrochemische Zelle nach einem der vorstehenden Ansprüche, wobei die Elektroden einen Elektrodenträger umfassen, auf den einseitig oder beidseitig entweder Lithiumtitanat oder Mischoxid aufgebracht ist.6. An electrochemical cell according to any one of the preceding claims, wherein the electrodes comprise an electrode carrier, is applied to the one or both sides either lithium titanate or mixed oxide.
7. Elektrochemische Zelle nach Anspruch 6, wobei der Elektrodenträger aus Aluminium besteht.7. An electrochemical cell according to claim 6, wherein the electrode carrier is made of aluminum.
8. Elektrochemische Zelle nach einem der Ansprüche 1 bis 5, wobei mindestens eine der beiden Elektroden keinen Elektrodenträger umfasst..8. An electrochemical cell according to any one of claims 1 to 5, wherein at least one of the two electrodes comprises no electrode carrier ..
9. Elektrochemische Zelle nach Anspruch 8, wobei die mindestens eine Elektrode Zusätze aus Aluminium- oder Kupferspänen, Graphit oder leitfähigen Kunststoffen umfasst. 9. The electrochemical cell of claim 8, wherein the at least one electrode comprises additives of aluminum or copper turnings, graphite or conductive plastics.
10. Elektrochemische Zelle nach einem der vorstehenden Ansprüche, wobei der Separator ausgewählt ist aus10. An electrochemical cell according to any one of the preceding claims, wherein the separator is selected from
(a) einem Separator, der bevorzugt aus einem zumindest teilweise stoffdurchlässigen Träger besteht, welcher nicht oder nur schlecht elektronenleitend ist, wobei der Träger auf mindestens einer Seite mit einem anorganischen Material beschichtet ist, wobei als zumindest teilweise stoffdurchlässiger Träger vorzugsweise ein organisches Material verwendet wird, welches vorzugsweise als nicht verwebtes Vlies ausgestaltet ist, wobei das organische Material vorzugsweise ein Polymer und besonders bevorzugt ein oder mehrere Polymere ausgewählt aus Polyethylenglykolterephthalat, Polyolefin oder Polyetherimid umfasst, wobei das organische Material mit einem anorganischen ionenleitenden Material beschichtet ist, welches vorzugsweise in einem Temperaturbereich von -40 0C bis 200 0C ionenleitend ist, wobei das anorganische, ionenleitende Material bevorzugt wenigstens eine Verbindung aus der Gruppe der Oxide, Phosphate, Sulfate, Titanate, Silikate, Aluminosilikate wenigstens eines der Elemente Zr, AI, Li ist, insbesondere Zirkonoxid ist, und wobei das anorganische Material bevorzugt Partikel mit einem größten Durchmesser unter 100 nm aufweist; oder(A) a separator, which preferably consists of an at least partially permeable carrier, which is not or only poorly electron-conducting, wherein the carrier is coated on at least one side with an inorganic material, wherein as at least partially permeable carrier preferably an organic material is used which is preferably configured as a nonwoven web, wherein the organic material preferably comprises a polymer, and more preferably one or more polymers selected from polyethylene glycol terephthalate, polyolefin or polyetherimide, wherein the organic material is coated with an inorganic ionically conductive material, preferably in a temperature range from -40 0 C to 200 0 C ion-conducting, wherein the inorganic, ion-conductive material preferably at least one compound selected from the group of oxides, phosphates, sulfates, titanates, silicates, aluminosilicates at least one of the elements Zr, Al, Li is, in particular zirconium oxide, and wherein the inorganic material preferably has particles with a largest diameter below 100 nm; or
(b) einem Separator, der aus einem Polyethylenglykolterephthalat, einem Polyolefin, einem Polyetherimid, einem Polyamid, einem Polyacrylnitril, einem Polycarbonat, einem Polysulfon, einem Polyethersulfon, einem Polyvinylidenfluorid, einem Polystyrol, oder Mischungen davon, besteht; oder(b) a separator composed of a polyethylene glycol terephthalate, a polyolefin, a polyetherimide, a polyamide, a polyacrylonitrile, a polycarbonate, a polysulfone, a polyethersulfone, a polyvinylidene fluoride, a polystyrene, or mixtures thereof; or
(c) einem Separator, der aus einem anorganischen Material besteht. (c) a separator made of an inorganic material.
11. Elektrochemische Zelle nach einem der vorstehenden Ansprüche, wobei der Separator auf mindestens einer der Elektroden aufgebracht ist.11. An electrochemical cell according to any one of the preceding claims, wherein the separator is applied to at least one of the electrodes.
12. Elektrochemische Zelle nach einem der vorstehenden Ansprüche, wobei der Separator einen nicht-wässrigen Elektrolyt enthaltend ein organisches Lösungsmittel und Lithium-Ionen umfasst.The electrochemical cell according to any one of the preceding claims, wherein the separator comprises a nonaqueous electrolyte containing an organic solvent and lithium ions.
13. Elektrochemische Zelle nach einem der vorstehenden Ansprüche, wobei die Elektroden in Form eines Elektrodenstapels vorliegen, der wenigstens einen Separator nach Anspruch 10 aufweist.13. An electrochemical cell according to any one of the preceding claims, wherein the electrodes are in the form of an electrode stack comprising at least one separator according to claim 10.
14. Verwendung einer elektrochemischen Zelle nach einem der vorstehenden Ansprüche zur Versorgung eines Elektromotors mit elektrischem Strom.14. Use of an electrochemical cell according to one of the preceding claims for supplying an electric motor with electric current.
15. Verwendung nach Anspruch 14 in einem Fahrzeug mit Hybridantrieb. 15. Use according to claim 14 in a vehicle with hybrid drive.
EP10712014A 2009-04-24 2010-03-29 Electrochemical cell having lithium titanate Withdrawn EP2422390A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009018804A DE102009018804A1 (en) 2009-04-24 2009-04-24 Electrochemical cell with lithium titanate
PCT/EP2010/001986 WO2010121696A1 (en) 2009-04-24 2010-03-29 Electrochemical cell having lithium titanate

Publications (1)

Publication Number Publication Date
EP2422390A1 true EP2422390A1 (en) 2012-02-29

Family

ID=42288657

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10712014A Withdrawn EP2422390A1 (en) 2009-04-24 2010-03-29 Electrochemical cell having lithium titanate

Country Status (8)

Country Link
US (1) US20120164493A1 (en)
EP (1) EP2422390A1 (en)
JP (1) JP2012524955A (en)
KR (1) KR20120028311A (en)
CN (1) CN102414882A (en)
BR (1) BRPI1013855A2 (en)
DE (1) DE102009018804A1 (en)
WO (1) WO2010121696A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422537B2 (en) * 2010-10-29 2014-02-19 株式会社日立製作所 Lithium ion secondary battery
CN103718339A (en) * 2011-08-08 2014-04-09 巴斯夫欧洲公司 Electrochemical cells
CN103378355B (en) * 2012-04-12 2016-03-23 中国科学院物理研究所 Alkali metal secondary battery and the preparation method of negative electrode active material, negative material, negative pole and negative electrode active material
US20140272526A1 (en) * 2013-03-14 2014-09-18 GM Global Technology Operations LLC Porous separator for a lithium ion battery and a method of making the same
US9997816B2 (en) 2014-01-02 2018-06-12 Johnson Controls Technology Company Micro-hybrid battery module for a vehicle
DE102017208794A1 (en) * 2017-05-24 2018-11-29 Robert Bosch Gmbh Hybrid supercapacitor for high temperature applications

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA94750B (en) * 1993-09-02 1994-09-29 Technology Finance Corp Electrochemical cell
US5492781A (en) 1994-01-18 1996-02-20 Pall Corporation Battery separators
WO1996030954A1 (en) * 1995-03-31 1996-10-03 Mitsubishi Paper Mills Limited Non-woven fabric for separator of non-aqueous electrolyte cell, and non-aqueous electrolyte cell using the same
US6379840B2 (en) 1998-03-18 2002-04-30 Ngk Insulators, Ltd. Lithium secondary battery
ATE317289T1 (en) 1998-06-03 2006-02-15 Degussa HYDROPHOBIC, PERMEABLE COMPOSITE MATERIAL, METHOD FOR THE PRODUCTION AND USE THEREOF
DE10020031C2 (en) 2000-04-22 2002-05-29 Franz W Winterberg Process for the production of rechargeable lithium polymer batteries
EP1282180A1 (en) 2001-07-31 2003-02-05 Xoliox SA Process for producing Li4Ti5O12 and electrode materials
DE10240032A1 (en) * 2002-08-27 2004-03-11 Creavis Gesellschaft Für Technologie Und Innovation Mbh Ion-conducting battery separator for lithium batteries, process for their production and their use
DE10308945B4 (en) 2003-02-28 2014-02-13 Dilo Trading Ag Separator dispersion Li-polymer batteries and process for their preparation
JP4554911B2 (en) * 2003-11-07 2010-09-29 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN100367561C (en) * 2004-03-30 2008-02-06 株式会社东芝 Nonaqueous electrolyte secondary battery
DE102005042916A1 (en) 2005-09-08 2007-03-22 Degussa Ag Stack of alternately stacked and fixed separators and electrodes for Li accumulators
JP2007109591A (en) * 2005-10-17 2007-04-26 Nippon Synthetic Chem Ind Co Ltd:The Lithium secondary battery
US7968231B2 (en) * 2005-12-23 2011-06-28 U Chicago Argonne, Llc Electrode materials and lithium battery systems
JP4963186B2 (en) * 2006-03-31 2012-06-27 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US7820327B2 (en) 2006-04-11 2010-10-26 Enerdel, Inc. Lithium titanate and lithium cells and batteries including the same
DE102006021273A1 (en) 2006-05-05 2007-11-08 Carl Freudenberg Kg Separator for placement in batteries and battery
JP2008130229A (en) * 2006-11-16 2008-06-05 National Institute Of Advanced Industrial & Technology Lithium secondary battery
JP4316604B2 (en) * 2006-12-08 2009-08-19 株式会社東芝 Power supply integrated semiconductor module and manufacturing method thereof
JP2008226807A (en) * 2007-02-14 2008-09-25 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery
JP2008285388A (en) * 2007-05-21 2008-11-27 Toyota Motor Corp Lithium ion conductivity improving material
JP2009146822A (en) * 2007-12-17 2009-07-02 Panasonic Corp Nonaqueous electrolyte secondary battery
JP5526488B2 (en) * 2008-03-26 2014-06-18 Tdk株式会社 Electrochemical devices
KR101055536B1 (en) * 2009-04-10 2011-08-08 주식회사 엘지화학 Separator comprising a porous coating layer, a method of manufacturing the same and an electrochemical device having the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010121696A1 *

Also Published As

Publication number Publication date
WO2010121696A1 (en) 2010-10-28
US20120164493A1 (en) 2012-06-28
BRPI1013855A2 (en) 2016-04-05
JP2012524955A (en) 2012-10-18
CN102414882A (en) 2012-04-11
KR20120028311A (en) 2012-03-22
WO2010121696A4 (en) 2011-01-06
WO2010121696A8 (en) 2011-09-29
DE102009018804A1 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
EP2564461B1 (en) Lithium-sulphur battery
WO2013135353A1 (en) Graphene-containing separator for lithium-ion batteries
EP2697844A1 (en) High voltage lithium ion battery
WO2011045028A1 (en) Cathodic electrode and electrochemical cell therefor
DE102019100860A1 (en) Separators for lithium-containing electrochemical cells and methods of making same
WO2011113515A1 (en) Cathodic electrode and electrochemical cell for dynamic uses
WO2013017217A1 (en) Lithium-ion battery
DE102010054610A1 (en) Electrochemical cell
DE102011109137A1 (en) Lithium-ion battery, useful for operating plug in hybrid vehicle, comprises a positive electrode, a negative electrode and a separator, where the positive and negative electrodes comprise an electrode material containing an active material
EP2422390A1 (en) Electrochemical cell having lithium titanate
WO2013135351A1 (en) Graphene in lithium-ion batteries
DE102013018235A1 (en) Electrochemical cell
WO2013020661A1 (en) Lithium ion battery and method for producing a lithium ion battery
DE102009021230A1 (en) Electrochemical cell with separator
DE102016217397A1 (en) Electrode stack with edge coating
DE102022109356A1 (en) LITHIUM ION-EXCHANNED ZEOLITE PARTICLES FOR ELECTROCHEMICAL CELLS AND PROCESS FOR THEIR MANUFACTURE
WO2011009620A1 (en) Lithium-ion-battery
DE102020111235A1 (en) Lithium ion battery and method of making a lithium ion battery
WO2012163485A1 (en) Electrochemical cell
DE102022105203B3 (en) Gel-supported high-performance solid-state bipolar battery
DE102023100818A1 (en) POROUS PRE-LITHIATION LAYER FOR ELECTROCHEMICAL CELL AND METHOD FOR FORMING THE SAME
DE102022120710A1 (en) HYDROXYALKYLCULOSE FIBER TYPE DISPERSANT FOR HYBRID CAPACITIVE ELECTRODES AND METHOD FOR PRODUCING THE SAME
WO2022022958A1 (en) Cathode active material, and lithium ion battery comprising said cathode active material
DE102020132661A1 (en) Cathode active material and lithium ion battery having the cathode active material
DE102023100348A1 (en) FUNCTIONAL HYBRID POWDER AS ADDITIVE FOR ELECTROCHEMICAL CELLS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHAEFFER, TIM

Inventor name: GUTSCH, ANDREAS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130925

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150811