EP2419543B1 - Powder for a wire cored with sulfur, cored wire and method for manufacturing a cored wire using same - Google Patents

Powder for a wire cored with sulfur, cored wire and method for manufacturing a cored wire using same Download PDF

Info

Publication number
EP2419543B1
EP2419543B1 EP10723666.3A EP10723666A EP2419543B1 EP 2419543 B1 EP2419543 B1 EP 2419543B1 EP 10723666 A EP10723666 A EP 10723666A EP 2419543 B1 EP2419543 B1 EP 2419543B1
Authority
EP
European Patent Office
Prior art keywords
population
wire
powder
cored wire
cored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10723666.3A
Other languages
German (de)
French (fr)
Other versions
EP2419543A1 (en
Inventor
André Poulalion
Sébastien GERARDIN
Vincent Moreschi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Affival SA
Original Assignee
Affival SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Affival SA filed Critical Affival SA
Priority to SI201031608T priority Critical patent/SI2419543T1/en
Priority to PL10723666T priority patent/PL2419543T3/en
Publication of EP2419543A1 publication Critical patent/EP2419543A1/en
Application granted granted Critical
Publication of EP2419543B1 publication Critical patent/EP2419543B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires

Definitions

  • the invention relates to the field of metallurgy, and more specifically to cored wires by means of which sulfur additions are made in baths of liquid metal, especially steel and metal alloys.
  • the wire filled with sulfur powder is injected into the liquid steel to improve the machinability of the final steel by promoting the formation of brittle chips that evacuate more quickly during machining parts. Sulfur also reduces the wear of cutting tools due to the lubrication effect provided by the non-metallic inclusions that contain it, and improves the surface condition of these tools.
  • the document JP52101621 describes such a method.
  • the addition by cored wire provides a satisfactory accuracy on the amount of sulfur added, especially if it must be relatively small compared to the total mass of liquid metal concerned.
  • Such a cored wire is composed of a metal envelope containing a compacted sulfur-based powder.
  • the manufacture of this wire can typically start with a gravity flow of powdered sulfur on a moving metal strip.
  • the band must have a composition compatible with that of the metal to be additivé. It is made of steel when the sulfur has to be added to a bath of liquid steel.
  • the strip is then welded or folded back on itself by mechanical profiling by means of a roller device, to obtain a cored wire which is then calibrated to the desired diameter.
  • Other processes for preparing cored wire are known, some of which involve extrusion and cold rolling techniques.
  • the invention applies primarily to son manufactured by mechanical profiling, but it is not a priori excluded to use the powder according to the invention will be described to manufacture filled son by other methods.
  • the production of the cored wire involves several types of mechanical stresses, including shear stresses.
  • the sulfur powder undergoes various deformations during the manufacture of the wire, and this according to its intrinsic mechanical characteristics. By applying these constraints, the powder is densified cold at various gradients.
  • the origin and processes of sulfur extraction are very diverse (extraction in the native state, from minerals, petroleum products, etc.). Sulfur exists under different crystallized allotropic varieties, including orthorhombic ⁇ and monoclinic ⁇ sulfur.
  • the sulfur that makes up the cored wire used in metallurgy, in particular for steel and ferrous alloys conventionally has a purity greater than 95%, generally greater than 98%, or even 99.5%.
  • a wire filled with sulfur powder conventionally has an outer diameter of 5 to 25 mm and an envelope thickness of 0.1 to 2 mm.
  • the sulfur powder contained in the cored wire is the result of several grinding operations. This results in a particle size distribution specific to the industrial process for obtaining powders.
  • Each commercial cored wire therefore has a linear density which is a function of the manufacturing process and the initial physical characteristics of the powders.
  • the object of the invention is to provide a sulfur-cored wire manufacturing method for optimizing the linear density of the cored wire.
  • the subject of the invention is a powder for cored wire according to claim 1.
  • the powder has one or more of the characteristics corresponding to claims 2 to 4.
  • the invention also relates to a cored wire according to claim 5.
  • the cored wire has the characteristics corresponding to claim 6.
  • the invention also relates to a method according to claim 7.
  • the method has the features corresponding to claim 8.
  • the invention is based on a particular constitution of the powder, in that it has a precise particle size distribution, resulting or that can result from a mixture in determined proportions of two defined and differentiated particle size populations , although it is not strictly excluded that they may sometimes have some recovery.
  • the advantage of the invention is to introduce a maximum of powder mass within this flux-cored wire, with constant section. This makes it possible to reduce the intergranular porosity of the final compact mixture.
  • a granular assembly may be characterized by its ability to rearrange due to flow or vibration. This set rearranges more or less well, depending on the physical characteristics of the particles and the particle bed: the particle size, the true density of the powder material, the morphology of the particles, the compressibility of the granular set, the particle size distribution.
  • the quality of the granular stack after flow and / or vibration influences the filling level of the cored wire.
  • the granular rearrangement is more or less random. It depends mainly on the morphology, size and surface appearance of the particles.
  • the innovation provided by the invention consists of optimizing and improving this stack in order to obtain the best level of filling possible while maintaining the final mechanical characteristics of the wire. It is also necessary to take into account the intrinsic properties of the filling material, which make it that it will react in a particular way to the stresses to which it will be subjected during the manufacture of the wire, in particular during the closing and welding steps or profiling of the envelope. For this reason in particular, the problem of optimizing the linear density of the final cored wire can not have a single solution, valid whatever the filling material. This optimization must be fine-tuned according to the exact nature of the material.
  • the compressibility of a granular medium is related to the flow properties, because it is representative of the intergranular forces and therefore, indirectly of the cohesion of the medium.
  • the density in the packed state resulting from this granular assembly is of the order of 1.0 to 1.70 g / cm 3 .
  • the morphology of the sulfur particles can be spherical as well as rounded, of the needle, fiber or polyhedron type.
  • the compaction rate within this cored wire is usually of the order of 75 to 80%, whereas in the invention a compaction rate of at least 85% is achieved.
  • a fill level increase of 10 to 70% of the linear density is typically obtained with respect to a wire of the same diameter using the same shell and manufactured under the same conditions using of any one of these populations.
  • the compaction rate of these son filled with sulfur after the manufacture of the wire is, according to the invention, greater than or equal to 85% to achieve an optimal linear density.
  • the experimental protocol applied in the laboratory is initially to mix populations with a given particle size distribution in precise mass proportions. Then, the physical characteristics of the different mixtures, such as grain size distribution and density, are measured. These data make it possible to set up a behavioral and phenomenological modeling of the system.
  • the models obtained indicate associations of ideal mass and particle size proportions.
  • a granular selection is then made upstream in order to distribute the granulometric classes artfully.
  • the optimal particle size distribution is ultimately composed of an association of several size classes.
  • the optimum mixture is composed of 65 to 75% by weight of the population 1, homogeneously mixed with 25 to 35% by weight of the population 2.
  • a mixture is considered optimal when it has the properties of flow and the highest compacities.
  • the compaction rate of the powders within the cored wire is determined by the physical characterization of several representative samples by the mercury intrusion porosimetry technique. This destructive analysis makes it possible to measure the pore size distribution of the intra- and intergranular open porosity. In parallel, the theoretical density of a powder material is measured by helium pycnometry. This thus makes it possible to evaluate the degree of compaction and to evaluate the degree of porosity of the granular assembly within the cored wire.
  • the cored wire is technically characterized in particular by its linear density, depending on its degree of filling. This degree of filling is a result of the density of the pulverulent or granular population that composes it.
  • the traditional steel-filled sulfur-filled wire with an outer diameter of between 13 and 14 mm, has a linear density in the range [180 g / m - 205 g / m].
  • the usual particle size distribution of the powder it contains is in the range [0 ⁇ m - 5000 ⁇ m].
  • Reference Example 1 Manufacture of a Standard and Known Sulfur Powder Coated Wire with an External Diameter of 13.1 mm and a Strap of 0.39 mm Thickness
  • the linear density developed within the cored wire made from this population A only, whose d10 is too high to comply with the invention, is 189 g / m with a compaction rate of 78%.
  • Example 2 corresponding to the invention: manufacture of a cored wire of sulfur powder with an external diameter of 13.1 mm with a 0.39 mm thick strip
  • this powder alone, whose d90 is too low for it to conform to the invention, does not make it possible to obtain cored wire of regular linear density under normal manufacturing conditions.
  • a yarn with a linear density of 237 g / m and a compaction ratio of 88% is obtained.
  • the linear density is 25% greater than that of a similar wire of the same external diameter 13.1 mm and a strip thickness of 0.39 mm manufactured under the same conditions from the only population A, although this population A was mixed with the population B which, taken separately, would not lead to satisfactory results because of its poor flowability.
  • Example 3 corresponding to the invention: manufacture of a cored wire of sulfur powder with an external diameter of 13.1 mm with a 0.39 mm thick strip
  • this population E makes it possible to obtain a cored wire having a linear density equal to 225 g / m, 24% higher than that obtained with the population D alone and a compaction ratio equal to 86%.
  • the mixture of the population D with the population B in the given proportions made it possible to obtain a cored wire of 13.1 mm with a strip of 0.39 mm manufactured under the same conditions, better characteristics than this one. that the only use of the population D would have allowed.
  • Reference Example 4 manufacture of a cored wire of sulfur powder with an external diameter of 9.2 mm and a strip thickness of 0.20 mm
  • Example 5 manufacture of a cored wire of sulfur powder with an external diameter of 9.2 mm and a strip thickness of 0.20 mm
  • a mixture consisting of 70% by weight of the population A and 30% by weight of the population B is made according to the population C described in Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Powder Metallurgy (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

L'invention concerne le domaine de la métallurgie, et plus précisément les fils fourrés au moyen desquels on réalise des additions de soufre dans les bains de métal liquide, notamment d'acier et d'alliages métalliques.The invention relates to the field of metallurgy, and more specifically to cored wires by means of which sulfur additions are made in baths of liquid metal, especially steel and metal alloys.

Le fil fourré de poudre de soufre est injecté dans l'acier liquide pour améliorer l'usinabilité de l'acier final en favorisant la formation de copeaux cassants qui s'évacuent plus rapidement lors de l'usinage des pièces. Le soufre réduit, par ailleurs, l'usure des outils de coupe par l'effet de lubrification procuré par les inclusions non-métalliques qui le contiennent, et améliore l'état de surface de ces outils. Le document JP52101621 décrit un tel procédé. L'addition par fil fourré permet d'obtenir une précision satisfaisante sur la quantité de soufre ajoutée, notamment si celle-ci doit être relativement faible par rapport à la masse totale de métal liquide concernée.The wire filled with sulfur powder is injected into the liquid steel to improve the machinability of the final steel by promoting the formation of brittle chips that evacuate more quickly during machining parts. Sulfur also reduces the wear of cutting tools due to the lubrication effect provided by the non-metallic inclusions that contain it, and improves the surface condition of these tools. The document JP52101621 describes such a method. The addition by cored wire provides a satisfactory accuracy on the amount of sulfur added, especially if it must be relatively small compared to the total mass of liquid metal concerned.

Un tel fil fourré est composé d'une enveloppe métallique renfermant une poudre à base de soufre compactée. La fabrication de ce fil, comme pour les fils fourrés renfermant d'autres types d'additifs tels que du silico-calcium, peut commencer classiquement par un écoulement gravitaire de soufre pulvérulent sur une bande métallique en défilement. La bande doit avoir une composition compatible avec celle du métal devant être additivé. Elle est en acier lorsque le soufre doit être ajouté à un bain d'acier liquide. La bande est ensuite soudée ou repliée sur elle-même par profilage mécanique au moyen d'un dispositif à galets, pour obtenir un fil fourré qui est ensuite calibré au diamètre voulu. D'autres procédés de préparation de fil fourré sont connus, dont certains font appel à des techniques d'extrusion et de laminage à froid.Such a cored wire is composed of a metal envelope containing a compacted sulfur-based powder. The manufacture of this wire, as for flux-cored son containing other types of additives such as silico-calcium, can typically start with a gravity flow of powdered sulfur on a moving metal strip. The band must have a composition compatible with that of the metal to be additivé. It is made of steel when the sulfur has to be added to a bath of liquid steel. The strip is then welded or folded back on itself by mechanical profiling by means of a roller device, to obtain a cored wire which is then calibrated to the desired diameter. Other processes for preparing cored wire are known, some of which involve extrusion and cold rolling techniques.

L'invention s'applique prioritairement aux fils fabriqués par profilage mécanique, mais il n'est pas a priori exclu d'utiliser la poudre selon l'invention qui va être décrite pour fabriquer des fils fourrés par d'autres méthodes.The invention applies primarily to son manufactured by mechanical profiling, but it is not a priori excluded to use the powder according to the invention will be described to manufacture filled son by other methods.

La fabrication du fil fourré fait intervenir plusieurs types de contraintes mécaniques, notamment des contraintes de cisaillement. La poudre de soufre subit des déformations diverses lors de la fabrication du fil, et ce en fonction de ses caractéristiques mécaniques intrinsèques. Par l'application de ces contraintes, la poudre se densifie à froid à divers gradients.The production of the cored wire involves several types of mechanical stresses, including shear stresses. The sulfur powder undergoes various deformations during the manufacture of the wire, and this according to its intrinsic mechanical characteristics. By applying these constraints, the powder is densified cold at various gradients.

L'origine et les procédés d'extraction du soufre sont très divers (extraction à l'état natif, à partir de minéraux, de produits pétroliers, etc.). Le soufre existe sous différentes variétés allotropiques cristallisées, notamment les soufres orthorhombique α et monoclinique β. Le soufre qui compose le fil fourré utilisé en métallurgie, notamment pour l'acier et les alliages ferreux, a classiquement une pureté supérieure à 95%, généralement supérieure à 98%, voire à 99,5%. Un fil fourré de poudre de soufre a classiquement un diamètre externe de 5 à 25mm et une épaisseur d'enveloppe de 0,1 à 2mm.The origin and processes of sulfur extraction are very diverse (extraction in the native state, from minerals, petroleum products, etc.). Sulfur exists under different crystallized allotropic varieties, including orthorhombic α and monoclinic β sulfur. The sulfur that makes up the cored wire used in metallurgy, in particular for steel and ferrous alloys, conventionally has a purity greater than 95%, generally greater than 98%, or even 99.5%. A wire filled with sulfur powder conventionally has an outer diameter of 5 to 25 mm and an envelope thickness of 0.1 to 2 mm.

La poudre de soufre contenue dans le fil fourré est issue de plusieurs opérations de broyage. Il en résulte une répartition granulométrique propre au procédé industriel d'obtention des poudres.The sulfur powder contained in the cored wire is the result of several grinding operations. This results in a particle size distribution specific to the industrial process for obtaining powders.

Pour l'utilisateur, il est intéressant que la masse linéique du soufre contenu dans le fil fourré soit la plus élevée possible. En effet, l'augmentation de la masse linéique du fil fourré apporte à l'utilisateur plusieurs avantages technico-économiques :

  • une économie substantielle sur les coûts de fabrication du fil fourré, donc sur son prix d'achat ;
  • une économie sur les frais de logistique lors du transport du fil fourré ;
  • une économie sur l'espace de stockage des bobines de fil fourré ;
  • une meilleure diffusion du matériau contenu dans le fil fourré au sein du métal liquide grâce la présence de fines particules ;
  • une limitation de l'ajout de gaz injecté à l'intérieur des bains des métaux liquides pour réaliser l'agitation du bain favorisant la dilution des additifs ;
  • une absence d'agent de liantage et/ou de lubrification du matériau d'origine.
For the user, it is interesting that the linear density of the sulfur contained in the cored wire is as high as possible. Indeed, the increase in the linear density of the cored wire brings to the user several technical and economic advantages:
  • a substantial saving on the costs of manufacturing the cored wire, therefore on its purchase price;
  • a saving on logistics costs when transporting the cored wire;
  • saving on the storage space of the cored wire coils;
  • a better diffusion of the material contained in the flux-cored wire within the liquid metal by virtue of the presence of fine particles;
  • a limitation of the addition of gas injected inside the baths of the liquid metals to effect agitation of the bath promoting the dilution of the additives;
  • an absence of binding agent and / or lubrication of the original material.

A ce jour, à la connaissance du demandeur, l'optimisation du remplissage du fil fourré n'a pas fait l'objet de travaux spécifiques. Chaque fil fourré du commerce présente donc une masse linéique qui est fonction du procédé de fabrication et des caractéristiques physiques initiales des poudres.To date, to the knowledge of the applicant, the optimization of the filling of the cored wire has not been the subject of specific work. Each commercial cored wire therefore has a linear density which is a function of the manufacturing process and the initial physical characteristics of the powders.

Le but de l'invention est de proposer un procédé de fabrication de fil fourré au soufre permettant une optimisation de la masse linéique du fil fourré.The object of the invention is to provide a sulfur-cored wire manufacturing method for optimizing the linear density of the cored wire.

A cet effet, l'invention a pour objet une poudre pour fil fourré selon la revendication 1.For this purpose, the subject of the invention is a powder for cored wire according to claim 1.

Selon des modes particuliers, la poudre présente l'une ou plusieurs des caractéristiques correspondant aux revendications 2 à 4.According to particular embodiments, the powder has one or more of the characteristics corresponding to claims 2 to 4.

L'invention a également pour objet un fil fourré selon la revendication 5.The invention also relates to a cored wire according to claim 5.

Selon un mode particulier, le fil fourré présente les caractéristiques correspondant à la revendication 6.According to one particular embodiment, the cored wire has the characteristics corresponding to claim 6.

L'invention a également pour objet un procédé selon la revendication 7.The invention also relates to a method according to claim 7.

Selon un mode particulier, le procédé présente les caractéristiques correspondant à la revendication 8.In a particular embodiment, the method has the features corresponding to claim 8.

Comme on l'aura compris, l'invention repose sur une constitution particulière de la poudre, en ce que celle-ci possède une répartition granulométrique précise, résultant ou pouvant résulter d'un mélange dans des proportions déterminées de deux populations granulométriques définies et différenciées, même s'il n'est pas strictement exclu qu'elles puissent parfois présenter un certain recouvrement.As will be understood, the invention is based on a particular constitution of the powder, in that it has a precise particle size distribution, resulting or that can result from a mixture in determined proportions of two defined and differentiated particle size populations , although it is not strictly excluded that they may sometimes have some recovery.

L'intérêt de l'invention est d'introduire un maximum de masse de poudre au sein de ce fil fourré, à section constante. Cela permet de réduire la porosité intergranulaire du mélange compact final.The advantage of the invention is to introduce a maximum of powder mass within this flux-cored wire, with constant section. This makes it possible to reduce the intergranular porosity of the final compact mixture.

Un ensemble granulaire peut être caractérisé par son aptitude aux réarrangements suite à un écoulement ou une vibration. Cet ensemble se réarrange plus ou moins bien et ce, en fonction des caractéristiques physiques des particules et du lit de particules : la taille de particule, la densité vraie du matériau pulvérulent, la morphologie des particules, la compressibilité de l'ensemble granulaire, la répartition en taille des particules.A granular assembly may be characterized by its ability to rearrange due to flow or vibration. This set rearranges more or less well, depending on the physical characteristics of the particles and the particle bed: the particle size, the true density of the powder material, the morphology of the particles, the compressibility of the granular set, the particle size distribution.

La qualité de l'empilement granulaire après un écoulement et/ou une vibration influence le niveau de remplissage du fil fourré. Le réarrangement granulaire est plus ou moins aléatoire. Il dépend principalement de la morphologie, de la taille et de l'aspect de surface des particules. L'innovation apportée par l'invention consiste en l'optimisation et l'amélioration de cet empilement afin d'obtenir le meilleur niveau de remplissage possible tout en conservant les caractéristiques mécaniques finales du fil. Il faut également tenir compte des propriétés intrinsèques du matériau de remplissage, qui font que celui-ci réagira de façon particulière aux contraintes auxquelles il sera soumis lors de la fabrication du fil, notamment lors des étapes de fermeture et de soudage ou profilage de l'enveloppe. Pour cette raison notamment, le problème de l'optimisation de la masse linéique du fil fourré final ne peut avoir une solution unique, valable quel que soit le matériau de remplissage. Cette optimisation doit être finement ajustée en fonction de la nature exacte du matériau.The quality of the granular stack after flow and / or vibration influences the filling level of the cored wire. The granular rearrangement is more or less random. It depends mainly on the morphology, size and surface appearance of the particles. The innovation provided by the invention consists of optimizing and improving this stack in order to obtain the best level of filling possible while maintaining the final mechanical characteristics of the wire. It is also necessary to take into account the intrinsic properties of the filling material, which make it that it will react in a particular way to the stresses to which it will be subjected during the manufacture of the wire, in particular during the closing and welding steps or profiling of the envelope. For this reason in particular, the problem of optimizing the linear density of the final cored wire can not have a single solution, valid whatever the filling material. This optimization must be fine-tuned according to the exact nature of the material.

Par une succession d'expériences et de différentes analyses des résultats obtenus, les inventeurs ont déterminé ce qu'ils pensent être la meilleure répartition granulométrique pour un remplissage optimal du fil fourré par des particules de soufre. Cette répartition granulométrique développe un empilement dense, tout en procurant un écoulement aisé du lit de poudre pendant le dépôt de la poudre sur la bande métallique lors de la fabrication du fil. La coulabilité de cet ensemble granulaire est caractérisée par l'indice d'Hausner et l'indice de compressibilité.By a succession of experiments and different analyzes of the results obtained, the inventors have determined what they think is the best particle size distribution for optimal filling of the flux-cored wire with sulfur particles. This particle size distribution develops a dense stack, while providing an easy flow of the powder bed during the deposition of the powder on the metal strip during the manufacture of the wire. The flowability of this granular set is characterized by the Hausner index and the compressibility index.

La compressibilité d'un milieu granulaire est liée aux propriétés d'écoulement, car elle est représentative des forces intergranulaires et donc, indirectement de la cohésion du milieu. Plus les forces inter-particulaires sont importantes, plus le milieu aura la possibilité de se comprimer à condition que les chocs appliqués soient suffisamment énergétiques.The compressibility of a granular medium is related to the flow properties, because it is representative of the intergranular forces and therefore, indirectly of the cohesion of the medium. The higher the inter-particle forces, the more the medium will be able to compress if the shocks applied are sufficiently energetic.

L'indice de compressibilité est déterminé par le rapport des densités aérée et tassée : Compressibilité = ρ tassée ρ aérée / ρ tassée

Figure imgb0001
où :

  • ρtassée est la masse volumique apparente tassée,
  • ρaérée est la masse volumique apparente non tassée,
The compressibility index is determined by the ratio of the densities aerated and packed: Compressibility = ρ packed - ρ airy / ρ packed
Figure imgb0001
or :
  • ρ packed is the bulk density packed,
  • ρ aerated is the uncapped bulk density,

L'indice d'Hausner IH, toujours supérieur à 1, augmente quand la vitesse d'écoulement diminue, donc quand les frictions inter-particulaires s'amplifient. Il est sensible à la morphologie, l'aspect, la taille, la densité de la poudre et à l'humidité résiduelle. Il est défini par : I H = ρ tassée / ρ aérée

Figure imgb0002
The Hausner I H index, always greater than 1, increases when the flow velocity decreases, so when inter-particle friction increases. It is sensitive to the morphology, appearance, size, density of the powder and residual moisture. It is defined by: I H = ρ packed / ρ airy
Figure imgb0002

Lors d'un réarrangement granulaire aléatoire il en résulte après l'écoulement gravitaire une réduction de la porosité inter-granulaire.During a random granular rearrangement, a reduction in intergranular porosity results after gravity flow.

Les populations granulométriques composant le mélange résultant de l'invention sont définies comme indiqué ci-après :

  • 1 µm ≤ d10 ≤ 340 µm ;
  • 200 µm ≤ d50 ≤ 2000 µm ;
  • 500 µm ≤ d90 ≤ 2900 µm.
The particle size populations composing the resulting mixture of the invention are defined as indicated below:
  • 1 μm ≤ d10 ≤ 340 μm;
  • 200 μm ≤ d50 ≤ 2000 μm;
  • 500 μm ≤ d90 ≤ 2900 μm.

Une variante préférentielle de ce mélange est définie par :

  • 20 µm ≤ d10 ≤ 300 µm ;
  • 800 µm ≤ d50 ≤ 1900 µm ;
  • 2000 µm ≤ d90 ≤ 2700 µm.
A preferred variant of this mixture is defined by:
  • 20 μm ≤ d10 ≤ 300 μm;
  • 800 μm ≤ d50 ≤ 1900 μm;
  • 2000 μm ≤ d90 ≤ 2700 μm.

La masse volumique à l'état tassé résultant de cet ensemble granulaire est de l'ordre de 1,0 à 1,70 g/cm3. La morphologie des particules de soufre peut aussi bien être sphérique qu'arrondie, de type aiguille, fibre ou polyèdre. Le taux de compaction au sein de ce fil fourré est habituellement de l'ordre de 75 à 80%, alors que dans l'invention on atteint un taux de compaction d'au moins 85%.The density in the packed state resulting from this granular assembly is of the order of 1.0 to 1.70 g / cm 3 . The morphology of the sulfur particles can be spherical as well as rounded, of the needle, fiber or polyhedron type. The compaction rate within this cored wire is usually of the order of 75 to 80%, whereas in the invention a compaction rate of at least 85% is achieved.

Préférentiellement, cette poudre est obtenue par une association optimisée de plusieurs populations granulométriques distinctes de particules de soufre de pureté d'au moins 95%, de préférence supérieure à 98%, dont les tailles sont comprises dans l'intervalle [0 - 5000 µm], appliquée au fil fourré. Cette association est un mélange homogène de diverses proportions massiques précises, de chaque population, obtenu de façon classique à l'aide d'un dispositif de brassage granulaire à cuve tournante. Les répartitions granulométriques des populations de l'invention sont définies par les indices d10, d50, d90.

  • l'indice d10 définit le diamètre équivalent pour lequel la valeur de la distribution cumulée est de 10% en masse ;
  • l'indice d50 définit le diamètre équivalent pour lequel la valeur de la distribution cumulée est de 50% en masse ;
  • l'indice d90 définit le diamètre équivalent pour lequel la valeur de la distribution cumulée est de 90% en masse.
Preferably, this powder is obtained by an optimized combination of several distinct particle size populations of sulfur particles of purity of at least 95%, preferably greater than 98%, whose sizes are in the range [0 - 5000 μm] applied to the cored wire. This combination is a homogeneous mixture of various precise mass proportions of each population, obtained conventionally using a rotating bowl granular stirring device. The particle size distributions of the populations of the invention are defined by the indices d10, d50, d90.
  • the index d10 defines the equivalent diameter for which the value of the cumulative distribution is 10% by mass;
  • the index d50 defines the equivalent diameter for which the value of the cumulative distribution is 50% by mass;
  • the index d90 defines the equivalent diameter for which the value of the cumulative distribution is 90% by mass.

A partir de mélanges de ces populations granulométriques, on obtient typiquement une hausse du niveau de remplissage variant de 10 à 70 % de la masse linéique par rapport à un fil de même diamètre utilisant la même enveloppe et fabriqué dans les mêmes conditions à l'aide d'une seule quelconque de ces populations. Le taux de compaction de ces fils fourrés au soufre après la fabrication du fil est, selon l'invention, supérieur ou égal à 85% pour parvenir à une masse linéique optimale.From mixtures of these particle size populations, a fill level increase of 10 to 70% of the linear density is typically obtained with respect to a wire of the same diameter using the same shell and manufactured under the same conditions using of any one of these populations. The compaction rate of these son filled with sulfur after the manufacture of the wire is, according to the invention, greater than or equal to 85% to achieve an optimal linear density.

Les populations granulométriques dont les inventeurs ont déterminé qu'elles correspondent à une version préférée de l'invention, dans laquelle deux populations 1 et 2 sont utilisées, sont décrites de la manière suivante :

  • Population 1 :
    • 350 µm ≤ d10 ≤ 1400 µm
    • 650 µm ≤ d50 ≤ 2200 µm
    • 1000 µm ≤ d90 ≤ 3000 µm
  • Population 2:
    • 1 µm ≤ d10 ≤ 250 µm
    • 50 µm ≤ d50 ≤ 500 µm
    • 100 µm ≤ d90 ≤ 800 µm
The particle size populations invented by the inventors according to a preferred version of the invention, in which two populations 1 and 2 are used, are described as follows:
  • Population 1:
    • 350 μm ≤ d10 ≤ 1400 μm
    • 650 μm ≤ d50 ≤ 2200 μm
    • 1000 μm ≤ d90 ≤ 3000 μm
  • Population 2:
    • 1 μm ≤ d10 ≤ 250 μm
    • 50 μm ≤ d50 ≤ 500 μm
    • 100 μm ≤ d90 ≤ 800 μm

Le protocole expérimental appliqué en laboratoire est dans un premier temps de mélanger des populations à répartition granulométrique donnée dans des proportions massiques précises. Ensuite, les caractéristiques physiques des différents mélanges, telles que la répartition en taille de grains et la densité, sont mesurées. Ces données permettent ainsi de mettre en place une modélisation comportementale et phénoménologique du système.The experimental protocol applied in the laboratory is initially to mix populations with a given particle size distribution in precise mass proportions. Then, the physical characteristics of the different mixtures, such as grain size distribution and density, are measured. These data make it possible to set up a behavioral and phenomenological modeling of the system.

Les modèles obtenus indiquent des associations de proportions massiques et granulométriques idéales. Une sélection granulaire est alors réalisée en amont afin de répartir astucieusement les classes granulométriques. La répartition granulométrique optimale est finalement composée d'une association de plusieurs classes de taille.The models obtained indicate associations of ideal mass and particle size proportions. A granular selection is then made upstream in order to distribute the granulometric classes artfully. The optimal particle size distribution is ultimately composed of an association of several size classes.

Ces mélanges testés sur le procédé industriel de fabrication du fil fourré permettent de confirmer la phase de modélisation de l'expérience en laboratoire. Par exemple, le mélange optimum est composé de 65 à 75% en masse de la population 1, mélangé de façon homogène avec 25 à 35 % en masse de la population 2. Un mélange est considéré comme optimal lorsqu'il présente les facultés d'écoulement et les compacités les plus élevés.These mixtures tested on the industrial process for manufacturing flux cored wire confirm the modeling phase of the experiment in the laboratory. For example, the optimum mixture is composed of 65 to 75% by weight of the population 1, homogeneously mixed with 25 to 35% by weight of the population 2. A mixture is considered optimal when it has the properties of flow and the highest compacities.

Ces mélanges sont créés à l'aide d'un mélangeur à cuve tournante d'un type classique du commerce. Les parois internes du mélangeur sont composées d'augets fixés judicieusement afin de limiter l'hétérogénéité granulaire. Ils permettent ainsi aux matériaux d'être brassés délicatement sans modification sensible de la taille des particules du lit de poudre. L'homogénéité du mélange est assurée pour un temps de brassage de 1 à 10 minutes.These mixtures are created using a standard commercial type rotating bowl mixer. The internal walls of the mixer are composed of buckets judiciously fixed to limit the granular heterogeneity. They allow the materials to be brewed delicately without modification sensitive particle size of the powder bed. The homogeneity of the mixture is ensured for a brewing time of 1 to 10 minutes.

Le taux de compaction des poudres au sein du fil fourré est déterminé par la caractérisation physique de plusieurs échantillons représentatifs par la technique de porosimétrie à intrusion de mercure. Cette analyse destructive permet de mesurer la répartition en taille de pores de la porosité ouverte intra et intergranulaire. En parallèle, la densité théorique d'un matériau pulvérulent est mesurée par pycnométrie à hélium. Cela permet ainsi d'évaluer le taux de compaction et d'évaluer le taux de porosité de l'ensemble granulaire au sein du fil fourré.The compaction rate of the powders within the cored wire is determined by the physical characterization of several representative samples by the mercury intrusion porosimetry technique. This destructive analysis makes it possible to measure the pore size distribution of the intra- and intergranular open porosity. In parallel, the theoretical density of a powder material is measured by helium pycnometry. This thus makes it possible to evaluate the degree of compaction and to evaluate the degree of porosity of the granular assembly within the cored wire.

Le fil fourré est caractérisé techniquement notamment par sa masse linéique, dépendant de son degré de remplissage. Ce degré de remplissage est une résultante de la densité de la population pulvérulente ou granulaire qui le compose. Le fil fourré au soufre traditionnel à enveloppe d'acier, de diamètre externe compris entre 13 et 14 mm, possède une masse linéique comprise dans l'intervalle [180 g/m - 205 g/m]. La répartition granulométrique usuelle de la poudre qu'il contient est comprise dans l'intervalle [0 µm - 5000 µm].The cored wire is technically characterized in particular by its linear density, depending on its degree of filling. This degree of filling is a result of the density of the pulverulent or granular population that composes it. The traditional steel-filled sulfur-filled wire, with an outer diameter of between 13 and 14 mm, has a linear density in the range [180 g / m - 205 g / m]. The usual particle size distribution of the powder it contains is in the range [0 μm - 5000 μm].

On va à présent décrire des exemples de fils fourrés au soufre de référence connus et de fils fourrés au soufre selon l'invention, qui mettront en évidence les avantages de l'invention. Ces fils ont été fabriqués par le procédé privilégié dans l'invention de dépôt de la poudre sur une bande métallique, soudage ou repliage de ladite bande sur elle-même pour former le fil et profilage du fil pour l'amener à son diamètre nominal.Examples of known reference sulfur-filled son and sulfur-filled son according to the invention will now be described which will demonstrate the advantages of the invention. These yarns were manufactured by the method preferred in the invention of depositing the powder on a metal strip, welding or folding said strip on itself to form the wire and profiling the wire to bring it to its nominal diameter.

Exemple 1 de référence : fabrication d'un fil fourré de poudre de soufre standard et connu d'un diamètre externe de 13,1 mm avec un feuillard d'épaisseur 0,39 mmReference Example 1: Manufacture of a Standard and Known Sulfur Powder Coated Wire with an External Diameter of 13.1 mm and a Strap of 0.39 mm Thickness

Pour une population A dont la répartition granulométrique et les caractéristiques sont données ci-après : Tableau n°1 : Répartition granulométrique de la population A selon la norme ASTM E11-01 Classe de taille (mm) Pourcentage < 0,045 0,2 0,045 - 0,075 0,2 0,075 - 0,100 0,2 0,100 - 0,150 0,3 0,150 - 0,200 0,2 0,200 - 0,250 0,2 0,250 - 0,300 0,1 0,300 - 0,425 0,5 0,425 - 0,500 0,1 0,500 - 0,630 1,3 0,630 - 0,800 3,4 0,800 - 1,000 4,3 1,000 - 1,250 10,0 1,250 - 1,400 8,6 1,400 - 1,600 0,1 1,600 - 2,000 34,9 2,000 - 2,360 28,6 2,360 - 2,800 6,3 2,800 - 3,350 0,5

  • Pureté de la population : S = 99,95% ;
  • Masse volumique pycnométrique : 2,02 g/cm3
  • Masse volumique tassée : 1,18 g/cm3 ;
  • Masse volumique aérée : 1,09 g/cm3 ;
  • Indice de compressibilité : 7,62% ;
  • Indice d'Hausner : 1,08 ;
  • d10 compris entre 0,800 et 1,000 mm ;
  • d50 compris entre 1,600 et 2,000 mm ;
  • d90 compris entre 2,000 et 2,360 mm.
For a population A whose particle size distribution and characteristics are given below: Table 1: Particle size distribution of population A according to ASTM E11-01 Size class (mm) Percentage <0.045 0.2 0.045 - 0.075 0.2 0.075 - 0.100 0.2 0.100 - 0.150 0.3 0.150 - 0.200 0.2 0.200 - 0.250 0.2 0.250 - 0.300 0.1 0.300 - 0.425 0.5 0.425 - 0.500 0.1 0.500 - 0.630 1.3 0.630 - 0.800 3.4 0.800 - 1,000 4.3 1,000 - 1,250 10.0 1,250 - 1,400 8.6 1,400 - 1,600 0.1 1,600 - 2,000 34.9 2,000 - 2,360 28.6 2,360 - 2,800 6.3 2,800 - 3,350 0.5
  • Purity of the population: S = 99.95%;
  • Pyknometric density: 2.02 g / cm 3
  • Packed density: 1.18 g / cm 3 ;
  • Aerated density: 1.09 g / cm 3 ;
  • Compressibility index: 7.62%;
  • Hausner index: 1.08;
  • d10 between 0.800 and 1.000 mm;
  • d50 between 1,600 and 2,000 mm;
  • d90 between 2,000 and 2,360 mm.

La masse linéique développée au sein du fil fourré fabriqué à partir de cette seule population A, dont le d10 est trop élevé pour qu'elle soit conforme à l'invention, est de 189 g/m avec un taux de compaction de 78%.The linear density developed within the cored wire made from this population A only, whose d10 is too high to comply with the invention, is 189 g / m with a compaction rate of 78%.

Exemple 2, correspondant à l'invention : fabrication d'un fil fourré de poudre de soufre d'un diamètre externe de 13,1 mm avec un feuillard d'épaisseur 0,39 mmExample 2, corresponding to the invention: manufacture of a cored wire of sulfur powder with an external diameter of 13.1 mm with a 0.39 mm thick strip

Une autre population B de poudre est utilisée, dont la répartition granulométrique et les caractéristiques sont données ci-après: Tableau n°2 : Répartition granulométrique de la population B selon la norme ASTM E11-01. Classe de taille (mm) Pourcentage < 0,045 3,8 0,045 - 0,075 7,8 0,075 - 0,100 9,9 0,100 - 0,150 12,9 0,150 - 0,200 14,7 0,200 - 0,250 12,9 0,250 - 0,300 10,9 0,300 - 0,425 23,1 0,425 - 0,500 3,6 0,500 - 0,630 0,3 0,630 - 0,800 0,1 0,800 - 1,000 0,1 1,000 - 1,250 0,1 1,250 - 1,400 0,0 1,400 - 1,600 0,0 1,600 - 2,000 0,0 2,000 - 2,360 0,0 2,360 - 2,800 0,0 2,800 - 3,350 0,0

  • Pureté de la population : S = 99,95% ;
  • Masse volumique pycnométrique : 2,02 g/cm3 ;
  • Masse volumique tassée : 1,13 g/cm3 ;
  • Masse volumique aérée : 0.90 g/cm3 ;
  • Indice de compressibilité : 20,35% ;
  • Indice d'Hausner : 1,25 ;
  • d10 compris entre 0,045 et 0,075 mm ;
  • d50 compris entre 0,200 et 0,250 mm ;
  • d90 compris entre 0,300 et 0,425 mm.
Another population B of powder is used, whose grain size distribution and characteristics are given below: Table 2: Particle size distribution of population B according to ASTM E11-01. Size class (mm) Percentage <0.045 3.8 0.045 - 0.075 7.8 0.075 - 0.100 9.9 0.100 - 0.150 12.9 0.150 - 0.200 14.7 0.200 - 0.250 12.9 0.250 - 0.300 10.9 0.300 - 0.425 23.1 0.425 - 0.500 3.6 0.500 - 0.630 0.3 0.630 - 0.800 0.1 0.800 - 1,000 0.1 1,000 - 1,250 0.1 1,250 - 1,400 0.0 1,400 - 1,600 0.0 1,600 - 2,000 0.0 2,000 - 2,360 0.0 2,360 - 2,800 0.0 2,800 - 3,350 0.0
  • Purity of the population: S = 99.95%;
  • Pyknometric density: 2.02 g / cm 3 ;
  • Packed density: 1.13 g / cm 3 ;
  • Aerated density: 0.90 g / cm 3 ;
  • Compressibility index: 20.35%;
  • Hausner index: 1.25;
  • d10 between 0.045 and 0.075 mm;
  • d50 between 0.200 and 0.250 mm;
  • d90 between 0.300 and 0.425 mm.

Les indices d'écoulement de cette poudre étant médiocres (indice de compressibilité et indice d'Hausner élevés), cette poudre seule, dont le d90 est trop bas pour qu'elle soit conforme à l'invention, ne permet pas d'obtenir un fil fourré de masse linéique régulière dans des conditions de fabrication normales.As the flow indices of this powder are mediocre (high compressibility index and Hausner index), this powder alone, whose d90 is too low for it to conform to the invention, does not make it possible to obtain cored wire of regular linear density under normal manufacturing conditions.

Pour un mélange formant une population C constituée de 70% en masse du lot A et 30% en masse du lot B, dont la répartition granulométrique et les caractéristiques sont données ci-après : Tableau n°3 : Répartition granulométrique de la population C selon la norme ASTM E11-01 Classe de taille (mm) Pourcentage < 0,045 0,0 0,045 - 0,075 2,5 0,075 - 0,100 2,9 0,100 - 0,150 4,8 0,150 - 0,200 5,2 0,200 - 0,250 4,2 0,250 - 0,300 3,6 0,300 - 0,425 7,5 0,425 - 0,500 2,2 0,500 - 0,630 2,3 0,630 - 0,800 3,3 0,800 - 1,000 3,2 1,000 - 1,250 8,0 1,250 - 1,400 1,2 1,400 - 1,600 2,9 1,600 - 2,000 23,2 2,000 - 2,360 18,4 2,360 - 2,800 4,4 2,800 - 3,350 0,2

  • Masse volumique pycnométrique : 2,02 g/cm3 ;
  • Masse volumique tassée : 1,47 g/cm3 ;
  • Masse volumique aérée : 1,25 g/cm3 ;
  • Indice de compressibilité : 14,96% ;
  • Indice d'Hausner : 1,17 ;
  • d10 compris entre 0,100 et 0,150 mm ;
  • d50 compris entre 1,250 et 1,400 mm ;
  • d90 compris entre 2,000 et 2,360 mm.
For a mixture forming a population C consisting of 70% by mass of batch A and 30% by mass of batch B, the particle size distribution and characteristics of which are given below: Table n ° 3: Granulometric distribution of the population C according to the standard ASTM E11-01 Size class (mm) Percentage <0.045 0.0 0.045 - 0.075 2.5 0.075 - 0.100 2.9 0.100 - 0.150 4.8 0.150 - 0.200 5.2 0.200 - 0.250 4.2 0.250 - 0.300 3.6 0.300 - 0.425 7.5 0.425 - 0.500 2.2 0.500 - 0.630 2.3 0.630 - 0.800 3.3 0.800 - 1,000 3.2 1,000 - 1,250 8.0 1,250 - 1,400 1.2 1,400 - 1,600 2.9 1,600 - 2,000 23.2 2,000 - 2,360 18.4 2,360 - 2,800 4.4 2,800 - 3,350 0.2
  • Pyknometric density: 2.02 g / cm 3 ;
  • Packed density: 1.47 g / cm 3 ;
  • Aerated density: 1.25 g / cm 3 ;
  • Compressibility index: 14.96%;
  • Hausner index: 1.17;
  • d10 between 0.100 and 0.150 mm;
  • d50 between 1.250 and 1.400 mm;
  • d90 between 2,000 and 2,360 mm.

On obtient un fil avec une masse linéique de 237 g/m et un taux de compaction de 88%. La masse linéique est supérieure de 25% à celle d'un fil similaire de même diamètre externe 13,1 mm et une épaisseur de feuillard de 0,39 mm fabriqué dans les mêmes conditions à partir de la seule population A, bien que cette population A ait été mélangée à la population B qui, prise séparément, n'aurait pas conduit à des résultats satisfaisants du fait de sa mauvaise coulabilité.A yarn with a linear density of 237 g / m and a compaction ratio of 88% is obtained. The linear density is 25% greater than that of a similar wire of the same external diameter 13.1 mm and a strip thickness of 0.39 mm manufactured under the same conditions from the only population A, although this population A was mixed with the population B which, taken separately, would not lead to satisfactory results because of its poor flowability.

Exemple 3, correspondant à l'invention : fabrication d'un fil fourré de poudre de soufre de diamètre externe de 13,1 mm avec un feuillard d'épaisseur 0,39 mmExample 3, corresponding to the invention: manufacture of a cored wire of sulfur powder with an external diameter of 13.1 mm with a 0.39 mm thick strip

Une poudre de soufre constitue une population D et présente la répartition granulométrique et les caractéristiques suivantes : Tableau n°4 : Répartition granulométrique de la population D selon la norme ASTM E11-01 Classe de taille (mm) Pourcentage < 0,045 0,1 0,045 - 0,075 0,2 0,075 - 0,100 0,2 0,100 - 0,150 0,2 0,150 - 0,200 0,2 0,200 - 0,250 0,2 0,250 - 0,300 0,2 0,300 - 0,425 0,9 0,425 - 0,500 0,9 0,500 - 0,630 2,3 0,630 - 0,800 4,3 0,800 - 1,000 6,6 1,000 - 1,250 12,1 1,250 - 1,400 7,2 1,400 - 1,600 0,5 1,600 - 2,000 31,6 2,000 - 2,360 20,1 2,360 - 2,800 11,9 2,800 - 3,350 0,2

  • Pureté de la population : S = 99,95% ;
  • Masse volumique pycnométrique : 2,02 g/cm3 ;
  • Masse volumique tassée : 1,14 g/cm3 ;
  • Masse volumique aérée : 1,03 g/cm3 ;
  • Indice de compressibilité : 9,64% ;
  • Indice d'Hausner : 1,10
  • d10 compris entre 0,800 et 1,000 mm ;
  • d50 compris entre 1,600 et 2,000 mm ;
  • d90 compris entre 2,360 et 2,800 mm.
A sulfur powder constitutes a population D and has the particle size distribution and the following characteristics: Table n ° 4: Granulometric distribution of the population D according to the standard ASTM E11-01 Size class (mm) Percentage <0.045 0.1 0.045 - 0.075 0.2 0.075 - 0.100 0.2 0.100 - 0.150 0.2 0.150 - 0.200 0.2 0.200 - 0.250 0.2 0.250 - 0.300 0.2 0.300 - 0.425 0.9 0.425 - 0.500 0.9 0.500 - 0.630 2.3 0.630 - 0.800 4.3 0.800 - 1,000 6.6 1,000 - 1,250 12.1 1,250 - 1,400 7.2 1,400 - 1,600 0.5 1,600 - 2,000 31.6 2,000 - 2,360 20.1 2,360 - 2,800 11.9 2,800 - 3,350 0.2
  • Purity of the population: S = 99.95%;
  • Pyknometric density: 2.02 g / cm 3 ;
  • Packed density: 1.14 g / cm 3 ;
  • Aerated density: 1.03 g / cm 3 ;
  • Compressibility index: 9.64%;
  • Hausner Index: 1.10
  • d10 between 0.800 and 1.000 mm;
  • d50 between 1,600 and 2,000 mm;
  • d90 between 2,360 and 2,800 mm.

L'utilisation de cette population D seule, dont le d10 est plus élevé que ce qu'exige l'invention, permet d'obtenir un fil fourré de diamètre externe 13,1 mm avec un feuillard de 0,39 mm dont la masse linéique est de 181 g/m avec un taux de compaction de 76%.The use of this D population alone, whose d10 is higher than that required by the invention, makes it possible to obtain a cored wire of external diameter 13.1 mm with a strip of 0.39 mm whose linear density is 181 g / m with a compaction rate of 76%.

On réalise un mélange formant une population E constituée de 60% en masse de la population D et de 40% en masse de la population B, et qui présente la répartition granulométrique et les caractéristiques suivantes : Tableau n°5 : Répartition granulométrique de la population E selon la norme ASTM E11-01 Classe de taille (mm) Pourcentage < 0,045 3,8 0,045 - 0,075 5,5 0,075 - 0,100 3,5 0,100 - 0,150 5,3 0,150 - 0,200 4,7 0,200 - 0,250 3,6 0,250 - 0,300 3,4 0,300 - 0,425 5,8 0,425 - 0,500 0,4 0,500 - 0,630 1,3 0,630 - 0,800 0,7 0,800 - 1,000 2,5 1,000 - 1,250 2,8 1,250 - 1,400 2,6 1,400 - 1,600 0,2 1,600 - 2,000 17,7 2,000 - 2,360 24,9 2,360 - 2,800 11,0 2,800 - 3,350 0,1

  • Masse volumique pycnométrique : 2,02 g/cm3 ;
  • Masse volumique tassée : 1,43 g/cm3 ;
  • Masse volumique aérée : 1,16 g/cm3 ;
  • Indice de compressibilité : 18,80% ;
  • Indice d'Hausner : 1,23
  • d10 compris entre 0,075 et 0,100 mm ;
  • d50 compris entre 1,600 et 2,000 mm ;
  • d90 compris entre 2,360 et 2,800 mm
A mixture forming a population E consisting of 60% by weight of the population D and 40% by weight of the population B is produced, and which has the particle size distribution and the following characteristics: Table n ° 5: Granulometric distribution of the population E according to the standard ASTM E11-01 Size class (mm) Percentage <0.045 3.8 0.045 - 0.075 5.5 0.075 - 0.100 3.5 0.100 - 0.150 5.3 0.150 - 0.200 4.7 0.200 - 0.250 3.6 0.250 - 0.300 3.4 0.300 - 0.425 5.8 0.425 - 0.500 0.4 0.500 - 0.630 1.3 0.630 - 0.800 0.7 0.800 - 1,000 2.5 1,000 - 1,250 2.8 1,250 - 1,400 2.6 1,400 - 1,600 0.2 1,600 - 2,000 17.7 2,000 - 2,360 24.9 2,360 - 2,800 11.0 2,800 - 3,350 0.1
  • Pyknometric density: 2.02 g / cm 3 ;
  • Packed density: 1.43 g / cm 3 ;
  • Aerated density: 1.16 g / cm 3 ;
  • Compressibility index: 18.80%;
  • Hausner Index: 1.23
  • d10 between 0.075 and 0.100 mm;
  • d50 between 1,600 and 2,000 mm;
  • d90 between 2,360 and 2,800 mm

L'utilisation de cette population E permet d'obtenir un fil fourré de masse linéique égale à 225 g/m, supérieure de 24% à celle obtenue avec la population D seule et un taux de compaction égal à 86%. Là encore, le mélange de la population D à la population B dans les proportions données a permis d'obtenir un fil fourré de 13,1 mm avec un feuillard de 0,39 mm fabriqué dans les mêmes conditions, de bien meilleures caractéristiques que ce que la seule utilisation de la population D aurait permis.The use of this population E makes it possible to obtain a cored wire having a linear density equal to 225 g / m, 24% higher than that obtained with the population D alone and a compaction ratio equal to 86%. Here again, the mixture of the population D with the population B in the given proportions made it possible to obtain a cored wire of 13.1 mm with a strip of 0.39 mm manufactured under the same conditions, better characteristics than this one. that the only use of the population D would have allowed.

On notera cependant que la compacité et la masse linéique de ce fil fourré sont un peu inférieures à celles du fil de l'exemple 2. Cela est attribuable au fait que le d90 de la population E est plus élevé que celui de la population C, et ne tombe pas forcément dans la gamme préférée de l'invention.It should be noted, however, that the compactness and the linear density of this cored wire are slightly inferior to those of the wire of Example 2. This is attributable to the fact that the d90 of the population E is higher than that of the population C, and does not necessarily fall within the preferred range of the invention.

Exemple 4 de référence : fabrication d'un fil fourré de poudre de soufre d'un diamètre externe de 9,2 mm avec une épaisseur de feuillard de 0,20 mmReference Example 4: manufacture of a cored wire of sulfur powder with an external diameter of 9.2 mm and a strip thickness of 0.20 mm

Une poudre de soufre constitue une population F dont la répartition granulométrique et les caractéristiques sont les suivantes : Tableau n°6 : Répartition granulométrique de la population F selon la norme ASTM E11-01 Classe de taille (mm) Pourcentage < 0,045 0,0 0,045 - 0,075 0,0 0,075 - 0,100 0,0 0,100 - 0,150 0,1 0,150 - 0,200 0,1 0,200 - 0,250 0,7 0,250 - 0,300 1,4 0,300 - 0,425 3,8 0,425 - 0,500 3,0 0,500 - 0,630 6,2 0,630 - 0,800 10,1 0,800 - 1,000 13,0 1,000 - 1,250 20,5 1,250 - 1,400 10,0 1,400 - 1,600 9,4 1,600 - 2,000 20,7 > 2,000 1,0

  • Pureté de la population : S = 99,95% ;
  • Masse volumique pycnométrique : 2,02 g/cm3 ;
  • Masse volumique tassée : 1,14 g/cm3 ;
  • Masse volumique aérée : 1,01 g/cm3 ;
  • Indice de compressibilité : 11,40%
  • Indice d'Hausner : 1,13 ;
  • d10 compris entre 0,500 et 0,630 mm ;
  • d50 compris entre 1,000 et 1,250 mm ;
  • d90 compris entre 1,600 et 2,000 mm.
A sulfur powder constitutes a population F whose particle size distribution and characteristics are as follows: Table 6: Granulometric distribution of the F population according to ASTM E11-01 Size class (mm) Percentage <0.045 0.0 0.045 - 0.075 0.0 0.075 - 0.100 0.0 0.100 - 0.150 0.1 0.150 - 0.200 0.1 0.200 - 0.250 0.7 0.250 - 0.300 1.4 0.300 - 0.425 3.8 0.425 - 0.500 3.0 0.500 - 0.630 6.2 0.630 - 0.800 10.1 0.800 - 1,000 13.0 1,000 - 1,250 20.5 1,250 - 1,400 10.0 1,400 - 1,600 9.4 1,600 - 2,000 20.7 > 2,000 1.0
  • Purity of the population: S = 99.95%;
  • Pyknometric density: 2.02 g / cm 3 ;
  • Packed density: 1.14 g / cm 3 ;
  • Aerated density: 1.01 g / cm 3 ;
  • Compressibility index: 11.40%
  • Hausner's index: 1.13;
  • d10 between 0.500 and 0.630 mm;
  • d50 between 1,000 and 1,250 mm;
  • d90 between 1,600 and 2,000 mm.

L'utilisation de cette population F seule, dont le d10 est plus élevé que ce qu'exige l'invention, permet d'obtenir un fil fourré de diamètre 9,2 mm avec une épaisseur de feuillard de 0,20 mm dont la masse linéique est de 82 g/m avec un taux de compaction de 75%.The use of this population F alone, whose d10 is higher than that required by the invention, makes it possible to obtain a cored wire 9.2 mm in diameter with a strip thickness of 0.20 mm whose mass linear is 82 g / m with a compaction rate of 75%.

Exemple 5 selon l'invention : fabrication d'un fil fourré de poudre de soufre d'un diamètre externe de 9,2 mm avec une épaisseur de feuillard de 0,20 mmExample 5 according to the invention: manufacture of a cored wire of sulfur powder with an external diameter of 9.2 mm and a strip thickness of 0.20 mm

On réalise un mélange constitué de 70 % en masse de la population A et de 30 % en masse de la population B, conformément à la population C décrite dans l'exemple 2.A mixture consisting of 70% by weight of the population A and 30% by weight of the population B is made according to the population C described in Example 2.

L'utilisation de cette population C pour fabriquer un fil fourré de diamètre externe de 9,2 mm avec une épaisseur de feuillard de 0,20 mm comme dans l'exemple de référence 4 et dans les mêmes conditions, permet d'obtenir un fil présentant une masse linéique égale à 109 g/m, supérieure de 29% à celle de l'exemple de référence 4 réalisé à partir de la seule population F, et un taux de compaction de 89%.The use of this population C to manufacture a cored wire of external diameter of 9.2 mm with a strip thickness of 0.20 mm as in Reference Example 4 and under the same conditions, makes it possible to obtain a wire having a linear density of 109 g / m, which is 29% higher than that of reference example 4 made from the only population F, and a compaction rate of 89%.

Claims (8)

  1. Powder which is for a flux-cored wire intended to become alloyed with a molten metal bath and which is formed by particles composed with at least 95% of sulphur, characterised in that its granulometric population is defined by:
    - 1 µm ≤ d10 ≤ 340 µm;
    - 200 µm ≤ d50 ≤ 2000 µm;
    - 500 µm ≤ d90 ≤ 2900 µm;
    d10, d50 and d90 being the equivalent diameters of the particles for which the values of the cumulative distributions are 10, 50 and 90% by mass, respectively.
  2. Powder according to claim 1, characterised in that its granulometric population is defined by:
    - 20 µm ≤ d10 ≤ 300 µm;
    - 800 µm ≤ d50 ≤ 1900 µm;
    - 2000 µm ≤ d90 ≤ 2700 µm.
  3. Powder according to claim 1 or claim 2, characterised in that it results from the homogeneous admixture of two granulometric populations 1 and 2, granulometric population 1 constituting between 50 and 90% by mass of the admixture and population 2 constituting between 10 and 50% by mass of the admixture, the populations being defined by:
    Population 1:
    - 350 µm ≤ d10 ≤ 1400 µm ;
    - 650 µm ≤ d50 ≤ 2200 µm ;
    - 1000 µm ≤ d90 ≤ 3000 µm ;
    Population 2:
    - 1 µm ≤ d10 ≤ 250 µm ;
    - 50 µm ≤ d50 ≤ 500 µm;
    - 100 µm ≤ d90 ≤ 800 µm.
  4. Powder according to claim 3, characterised in that population 1 constitutes from 65 to 75% by mass of the admixture and population 2 constitutes from 25 to 35% by mass of the admixture.
  5. Sulphur-based flux-cored wire intended for alloying with a metal bath, characterised in that it contains a powder according to any one of claims 1 to 4.
  6. Sulphur-based flux-cored wire according to claim 5, characterised in that the compaction rate of said powder within the wire is greater than or equal to 85%.
  7. Method for producing a sulphur-based flux-cored wire for alloying with molten metal baths, characterised in that it comprises the following steps of:
    - preparing a powder according to any one of claims 1 to 4;
    - dispensing the powder by gravitational force onto a metal strip;
    - welding or mechanically folding the strip on itself in order to form the wire and profiling the wire to the selected diameter.
  8. Method according to claim 7, characterised in that the powder compaction rate of the obtained wire is greater than or equal to 85%.
EP10723666.3A 2009-04-16 2010-04-13 Powder for a wire cored with sulfur, cored wire and method for manufacturing a cored wire using same Active EP2419543B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201031608T SI2419543T1 (en) 2009-04-16 2010-04-13 Powder for a wire cored with sulfur, cored wire and method for manufacturing a cored wire using same
PL10723666T PL2419543T3 (en) 2009-04-16 2010-04-13 Powder for a wire cored with sulfur, cored wire and method for manufacturing a cored wire using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0952481A FR2944530B1 (en) 2009-04-16 2009-04-16 SULFUR-FROTH WIRE POWDER, O-RIB WIRE, AND METHOD FOR PRODUCING O-ROUND WIRE USING SAME
PCT/FR2010/050712 WO2010119223A1 (en) 2009-04-16 2010-04-13 Powder for a wire cored with sulfur, cored wire and method for manufacturing a cored wire using same

Publications (2)

Publication Number Publication Date
EP2419543A1 EP2419543A1 (en) 2012-02-22
EP2419543B1 true EP2419543B1 (en) 2017-10-04

Family

ID=40941786

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10723666.3A Active EP2419543B1 (en) 2009-04-16 2010-04-13 Powder for a wire cored with sulfur, cored wire and method for manufacturing a cored wire using same

Country Status (13)

Country Link
US (1) US8221519B2 (en)
EP (1) EP2419543B1 (en)
JP (1) JP5722876B2 (en)
KR (1) KR101289714B1 (en)
BR (1) BRPI1006715B1 (en)
CA (1) CA2758693C (en)
ES (1) ES2646793T3 (en)
FR (1) FR2944530B1 (en)
PL (1) PL2419543T3 (en)
RU (1) RU2489497C2 (en)
SI (1) SI2419543T1 (en)
UA (1) UA107192C2 (en)
WO (1) WO2010119223A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944530B1 (en) 2009-04-16 2011-06-17 Affival SULFUR-FROTH WIRE POWDER, O-RIB WIRE, AND METHOD FOR PRODUCING O-ROUND WIRE USING SAME
JP5410466B2 (en) * 2011-03-01 2014-02-05 株式会社神戸製鋼所 Stainless steel flux cored wire
CN103614512A (en) * 2013-11-30 2014-03-05 河北钢铁股份有限公司 Method for smelting sulfur-containing steel in vacuum induction furnace for sulfur alloying

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101621A (en) * 1976-02-24 1977-08-25 Hitachi Cable Ltd Linear sulfur additive for free cutting metal
JPS55117590A (en) * 1979-03-01 1980-09-09 Mitsubishi Metal Corp Tube wire welding rod
US5071332A (en) * 1986-03-21 1991-12-10 Petroleo Brasileiro S.A. Sulphur granulator
JPH03134111A (en) * 1989-10-19 1991-06-07 Nippon Steel Corp Filling wire for treating molten metal treatable at a constant depth
JPH06114513A (en) * 1992-10-05 1994-04-26 Nippon Steel Weld Prod & Eng Co Ltd Wire containing metallic additive for continuous casting
JPH0740016A (en) * 1993-06-15 1995-02-10 Nippon Steel Weld Prod & Eng Co Ltd Production of sulfur packed wire
RU2127323C1 (en) * 1997-12-29 1999-03-10 Акционерное общество открытого типа "Череповецкий сталепрокатный завод" Method of steel alloying with sulfur
JP2002363691A (en) * 2001-06-07 2002-12-18 Yoshimura Gijutsu Jimusho:Kk Sulfur-containing free cutting steel, method for producing the free cutting steel and method for machining the free cutting steel
FR2871477B1 (en) * 2004-06-10 2006-09-29 Affival Sa Sa WIRE FOURRE
US20080314201A1 (en) * 2007-05-17 2008-12-25 Marzec Gregory P Enhanced Alloy Recovery In Molten Steel Baths Utilizing Cored Wires Doped With Dispersants
FR2944530B1 (en) 2009-04-16 2011-06-17 Affival SULFUR-FROTH WIRE POWDER, O-RIB WIRE, AND METHOD FOR PRODUCING O-ROUND WIRE USING SAME

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2010119223A1 (en) 2010-10-21
ES2646793T3 (en) 2017-12-18
KR20120022900A (en) 2012-03-12
PL2419543T3 (en) 2018-03-30
UA107192C2 (en) 2014-12-10
SI2419543T1 (en) 2018-01-31
CA2758693A1 (en) 2010-10-21
RU2011146333A (en) 2013-05-27
US8221519B2 (en) 2012-07-17
JP2012524166A (en) 2012-10-11
JP5722876B2 (en) 2015-05-27
FR2944530A1 (en) 2010-10-22
EP2419543A1 (en) 2012-02-22
KR101289714B1 (en) 2013-07-26
BRPI1006715B1 (en) 2018-02-27
US20100263485A1 (en) 2010-10-21
RU2489497C2 (en) 2013-08-10
BRPI1006715A2 (en) 2016-02-10
FR2944530B1 (en) 2011-06-17
CA2758693C (en) 2014-02-11

Similar Documents

Publication Publication Date Title
EP3475379B1 (en) Sintered abrasive particle comprising oxides present in bauxite
CA2571810C (en) Mixture of molten alumina-zirconia grains
EP2419543B1 (en) Powder for a wire cored with sulfur, cored wire and method for manufacturing a cored wire using same
FR2544711A1 (en) CUTTING PLATE FOR WORKING THROUGH CHIP REMOVAL AND METHOD OF MANUFACTURING THE SAME
LU84034A1 (en) CEMENTED CARBIDE BODY PREFERENTIALLY ENRICHED WITH A BINDER AND THEIR MANUFACTURING METHOD
FR2512430A1 (en) DIAMOND AGGLOMER FOR TOOL AND PROCESS FOR PRODUCING THE AGGLOMERE
EP1948838B1 (en) Multi-metal powder and a sintered compact produced therefrom
FR2927272A1 (en) ABRASIVE GRAIN POWDER.
CH660753A5 (en) COOLING PROCESS WITH OVERFUSION OF A LIQUID CAST.
EP1773732A2 (en) Abrasive grit with high alumina content grain in particular for application in applied and sintered abrasives for example in scarfing grinders for slabs of steel alloys
WO2011004352A1 (en) Suspension of abrasive grains
WO2021239294A1 (en) Ceramic-metal composite wear part
WO2010103484A2 (en) Molten alumina/zirconia grain mixture
CA2004294C (en) Mild steel for bar turning and process
WO2020229325A1 (en) Austenitic stainless steel powder composition without nickel and part made by sintering by means of said powder
FR3011197A1 (en) WEAR RESISTANT COATING
WO2008152328A1 (en) Novel additive comprising lead and/or a lead alloy for treating baths of liquid steel
CA3076445A1 (en) Casting slurry
EP2255020B1 (en) Flux-cored wire including molybdenum trioxide
FR2506335A1 (en) Metal-metal nitride composite - produced by igniting alloy powder in nitrogen-contg. atmos.
BE471686A (en)
BE387372A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: C21C 7/00 20060101AFI20170412BHEP

Ipc: C22B 9/10 20060101ALN20170412BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170529

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 934097

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010045724

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ARNOLD AND SIEDSMA AG, CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2646793

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171218

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171004

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 934097

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171004

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010045724

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

26N No opposition filed

Effective date: 20180705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20190321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20190425

Year of fee payment: 10

Ref country code: ES

Payment date: 20190517

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190424

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100413

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171004

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010045724

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200413

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200413

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200414

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230417

Year of fee payment: 14

Ref country code: CH

Payment date: 20230502

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230323

Year of fee payment: 14

Ref country code: SE

Payment date: 20230424

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240321

Year of fee payment: 15

Ref country code: FR

Payment date: 20240313

Year of fee payment: 15