EP2414684B1 - Geared compressor rotor for cold gas applications - Google Patents

Geared compressor rotor for cold gas applications Download PDF

Info

Publication number
EP2414684B1
EP2414684B1 EP10716500A EP10716500A EP2414684B1 EP 2414684 B1 EP2414684 B1 EP 2414684B1 EP 10716500 A EP10716500 A EP 10716500A EP 10716500 A EP10716500 A EP 10716500A EP 2414684 B1 EP2414684 B1 EP 2414684B1
Authority
EP
European Patent Office
Prior art keywords
rotor
compressor rotor
segment
bearing
geared compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10716500A
Other languages
German (de)
French (fr)
Other versions
EP2414684A1 (en
Inventor
Volker Hütten
Andreas Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2414684A1 publication Critical patent/EP2414684A1/en
Application granted granted Critical
Publication of EP2414684B1 publication Critical patent/EP2414684B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/163Combinations of two or more pumps ; Producing two or more separate gas flows driven by a common gearing arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/102Shaft sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/266Rotors specially for elastic fluids mounting compressor rotors on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/506Hardness

Definitions

  • the invention relates to a transmission compressor rotor for cold gas applications with a pinion shaft having a toothed segment with a toothing, at least one impeller with an impeller hub and a sealing segment arranged between the toothed segment and the impeller hub, which carries a seal.
  • Turbo compressors are used in many ways in industry and power generation.
  • gear compressors are used for air separation, in which oxygen and nitrogen are separated from ambient air.
  • an air compressor sucks in the filtered air and compresses it to the required pressure. Thereafter, the air is cooled and decomposed into the main components, ie nitrogen and oxygen and a small proportion of noble gas.
  • Compressor units then compress oxygen and nitrogen, for example, to feed them into a conduit system for further use.
  • a labyrinth seal in particular a multi-chamber seal, is usually arranged for gas separation and for maintaining the process-side pressure between a bearing and an impeller causing the compression of the rotor.
  • the impeller of the turbocompressor is exposed to very low temperatures of below -30 ° C.
  • Other gas separation processes can reach temperatures below -150 ° C.
  • a brittle fracture behavior at such low temperatures too avoid cold-hard materials for the production of the impeller. If low temperatures are realized in a gear compressor, not only the wheels but also the rotor shaft within the sealing areas up to the bearing points are to be protected from brittle fracture due to the low operating temperature.
  • the impeller or impellers and rotor shaft in the sealing area are typically made from a high alloy cold-strength steel in cold gas applications. For reasons of manufacturability and mountability pinion shaft and wheels are made separately. So that the pinion shaft, or the rotor shaft in the toothing region, meets high mechanical requirements, it is known to produce the pinion shaft from a different material than the impeller or its hub.
  • a gear compressor rotor of the aforementioned type form the seal segment and the impeller hub, in particular the entire impeller, a common, integrally connected region of a first material and the toothed segment is formed of a second material.
  • a large portion of the rotor is made of the first material, which is adapted in its properties to the operating conditions of the impeller. The risk of cold embrittlement can be avoided with this design.
  • the junction between the Both materials are moved very far inwards into the operating temperature range.
  • the toothed segment is in the operating temperature range and can be made of a conventional toothing material. This leads to very small transmission dimensions and thus at low cost and also low mechanical losses.
  • the turbocompressor is expediently a transmission compressor.
  • the gear segment may be part of a transmission that mechanically connects the gear compressor rotor to a drive, such as an electric motor.
  • the sealing segment may carry a part or a half of a seal, in particular a labyrinth seal for sealing an environment of the compressor area or impeller against a bearing of the rotor, in particular an oil bearing bearing.
  • the impeller is expediently part of an overhang stage of the turbocompressor and is expediently mounted on the fly. As a result, the impeller must be sealed only on one side with respect to a rotor bearing, so that the sealing effort is kept low.
  • the gear compressor rotor when the first material is a cold-tough material, which is cold-toughened than the second material.
  • the impeller is thus particularly well protected against brittle fracture behavior, whereas the inner portion of the rotor shaft can be designed according to the requirements placed on it.
  • the first material is in particular a cold-tough material, such as e.g. defined in the standard EN 10.269.
  • the second material is harder or higher strength than the first material.
  • the second material may be case hardened, nitrided or highly tempered steel, which accommodates the high mechanical requirements of a gear transmission.
  • a rotor bearing is arranged in the region of the second material.
  • the rotor bearing may be a radial bearing, which is designed in particular as a hydrodynamic sliding bearing.
  • Such a bearing can be supplied with warm lubricating oil at the temperature of for example 45 ° C, whereby a high heat input from the rotor bearing takes place on the rotor.
  • This heat input of the toothed area can be protected from the second material against a strong cooling. Due to the arrangement of the rotor bearing in the region of the second material also unnecessary greater heating of the first material and thus of the axially outer part of the rotor is avoided.
  • the shaft bearing is advantageously arranged between the sealing segment and the toothed segment. Due to the bearing of the rotor outside of the teeth, a stable flying bearing of the rotor can be achieved.
  • the two material areas are suitably rotatably connected to each other.
  • This non-rotatable connection can be achieved by a cohesive connection, such as a weld, a frictional connection, such as a clutch, or a positive connection.
  • this connection is formed by a spur gear, so that the two material areas engage one another positively. The risk of imbalance due to a welded joint or a slippage of the two areas against each other by an insufficiently strong frictional connection can be avoided.
  • the rotationally fixed connection is advantageously arranged between the sealing segment and a rotor bearing, for example the radial bearing.
  • Hirth connection Particularly suitable as a rotationally fixed connection between the two rotor regions or material regions of the rotor is a Hirth connection. Due to the Hirth spline of the herding compound a solid, self-centering and detachable connection is achieved by simple means. The teeth of the Hirth toothing are in the sense of a non-positive Clutch static and surface to each other and are radially aligned, whereby the centering is achieved. With the help of the Hirth connection, a very compact connection between the rotor areas can be achieved. For traction axial tension is necessary, which in turn limits the power transmission from one area to another.
  • FIG. 1 shows a section of a gear compressor rotor 2, the axially outer region 4 of which comprises an impeller 6 with an impeller hub 8 and a sealing segment 10 with a seal 12 in the form of a labyrinth seal.
  • the impeller 6 is cantilevered and is part of an overhang stage of the transmission compressor.
  • the gear compressor rotor 2 can be designed both with one and with two wheels.
  • Fig. 1 be regarded as a half representation with a mirror plane in the toothed area.
  • the pinion shaft 16 ends with the lying behind the toothing second and not shown storage area.
  • the gear compressor rotor 2 is part of a turbo transmission compressor with a gear that connects a drive, such as a steam turbine or an electric motor, for power transmission with the impeller 6 by a toothing 14.
  • the toothing 14 of the rotor 2 is made on a pinion shaft 16, which can be divided into a toothed segment 18 and into a bearing region 20, which in turn form an inner region 22 of the rotor.
  • the pinion shaft 16 carries a rotor bearing 24 in the form of a radial bearing, namely a hydrodynamic sliding bearing.
  • connection 26 is designed as a Hirth connection, wherein a screw 28 presses the two areas 4, 22 of the gear compressor rotor 2 axially against each other, so that high forces and torques can be transmitted from one to the other area 4, 22 by the Hirth connection.
  • the two areas 4, 22 are made of different materials.
  • the impeller hub 8 and the sealing segment 10 in the outer region 4 are made of a cold-tough material, such as the cold-tough steel X8Ni9.
  • the impeller hub 8 and the sealing segment 10 are made as an integral part, for example as a forging.
  • a weld between the impeller hub 8 and the seal segment 10 has been omitted to avoid the risk of imbalance due to uneven stress distribution.
  • the inner portion 22 and the pinion shaft 16 may be made of a case-hardened steel, for example 18CrNiMo7-6.
  • a high-strength tempering steel for example 56NiCrMoV7, is also advantageous. Both the case-hardened steel and the high-strength tempering steel are particularly hard and resistant to abrasion, so that the toothing 14 has a long service life. However, these steels are only partially cold-resistant, so there is a risk of brittle fracture at very low working temperatures.
  • the cold-tough steel of the outer region 4 is particularly suitable, so that the rotor shaft 2 for operation at particularly cold temperatures, for example below -30 ° C or below -120 ° C, for example, for air separation, is particularly suitable.
  • the rotor bearing 24 is supplied with warm lubricating oil, so that the hydrodynamic sliding bearing of the rotor 2 is ensured. With the warm lubricating oil heat is transferred to the inner portion 22 of the rotor 2, so that it never cools in intended operation in a temperature range, which carries the risk of brittle fracture behavior of the pinion shaft 16. Due to the arrangement of the connection 26 very far inside in the operating temperature range of the rotor 2, the outer portions 4 of the first and cold-tough material is very long, so that a large part of the rotor 2 is suitable for the low operating temperatures. Despite this large cold-tough area remains the separation of the rotor 2 in the two different areas 4, 22, the possibility of producing the toothed segment 16 of a suitable toothing material. As a result, the transmission can be designed to be particularly compact and wear-resistant.

Description

Die Erfindung betrifft einen Getriebeverdichterrotor für Kaltgasanwendungen mit einer Ritzelwelle mit einem Verzahnungssegment mit einer Verzahnung, zumindest einem Laufrad mit einer Laufradnabe und einem zwischen dem Verzahnungssegment und der Laufradnabe angeordneten Dichtungssegment, das eine Dichtung trägt.The invention relates to a transmission compressor rotor for cold gas applications with a pinion shaft having a toothed segment with a toothing, at least one impeller with an impeller hub and a sealing segment arranged between the toothed segment and the impeller hub, which carries a seal.

Turboverdichter werden in der Industrie und in der Energieerzeugung in vielfältiger Weise eingesetzt. So werden beispielsweise Getriebeverdichter zur Luftzerlegung verwendet, bei der Sauerstoff und Stickstoff aus Umgebungsluft voneinander getrennt werden. Hierzu saugt ein Luftverdichter die gefilterte Luft an und komprimiert sie auf den erforderlichen Druck. Danach wird die Luft gekühlt und in die Hauptkomponenten zerlegt, also in Stickstoff und Sauerstoff sowie einen kleinen Anteil von Edelgas. Verdichtereinheiten komprimieren Sauerstoff und Stickstoff anschließend, um sie beispielsweise in ein Leitungssystem zur weiteren Verwendung einzuspeisen.Turbo compressors are used in many ways in industry and power generation. For example, gear compressors are used for air separation, in which oxygen and nitrogen are separated from ambient air. For this purpose, an air compressor sucks in the filtered air and compresses it to the required pressure. Thereafter, the air is cooled and decomposed into the main components, ie nitrogen and oxygen and a small proportion of noble gas. Compressor units then compress oxygen and nitrogen, for example, to feed them into a conduit system for further use.

Bei der Verdichtung von Sauerstoff müssen Schmieröl für die Lager des Verdichterrotors und das Fördermedium Sauerstoff wegen Explosionsgefahr sorgsam voneinander getrennt werden. Daher ist zur Gastrennung und zur Aufrechterhaltung des prozessseitigen Drucks zwischen einem Lager und einem die Verdichtung bewirkenden Laufrad des Rotors üblicherweise eine Labyrinthdichtung angeordnet, insbesondere eine Mehrkammerdichtung.When compressing oxygen, lubricating oil for the bearings of the compressor rotor and the pumped medium oxygen must be carefully separated from each other due to the risk of explosion. Therefore, a labyrinth seal, in particular a multi-chamber seal, is usually arranged for gas separation and for maintaining the process-side pressure between a bearing and an impeller causing the compression of the rotor.

Durch das Kühlen und anschließende Zerlegen der Luft ist das Laufrad des Turboverdichters sehr tiefen Temperaturen von unterhalb -30°C ausgesetzt. Bei anderen Gastrennungsprozessen können Temperaturen unter -150°C erreicht werden. Um ein Sprödbruchverhalten bei solchen tiefen Temperaturen zu vermeiden, sind für die Herstellung des Laufrads kaltzähe Werkstoffe zu verwenden. Werden tiefe Temperaturen in einem Getriebeverdichter realisiert, so sind nicht nur die Laufräder sondern auch die Rotorwelle innerhalb der Dichtungsbereiche bis zu den Lagerstellen vor Sprödbruch infolge der geringen Betriebstemperatur zu schützen.By cooling and then disassembling the air, the impeller of the turbocompressor is exposed to very low temperatures of below -30 ° C. Other gas separation processes can reach temperatures below -150 ° C. To a brittle fracture behavior at such low temperatures too avoid cold-hard materials for the production of the impeller. If low temperatures are realized in a gear compressor, not only the wheels but also the rotor shaft within the sealing areas up to the bearing points are to be protected from brittle fracture due to the low operating temperature.

Das Laufrad bzw. die Laufräder und die Rotorwelle im Dichtungsbereich werden bei Kaltgasanwendungen üblicherweise aus einem hoch legierten kaltzähen Stahl gefertigt. Aus Gründen der Herstellbarkeit und Montierbarkeit sind Ritzelwelle und Laufräder getrennt ausgeführt. Damit die Ritzelwelle, bzw. die Rotorwelle im Verzahnungsbereich, hohen mechanischen Anforderungen genügt, ist es bekannt, die Ritzelwelle aus einem anderen Werkstoff herzustellen als das Laufrad bzw. dessen Nabe.The impeller or impellers and rotor shaft in the sealing area are typically made from a high alloy cold-strength steel in cold gas applications. For reasons of manufacturability and mountability pinion shaft and wheels are made separately. So that the pinion shaft, or the rotor shaft in the toothing region, meets high mechanical requirements, it is known to produce the pinion shaft from a different material than the impeller or its hub.

Aus der US 1 808 792 A , der US 3 874 824 A , der US 1 853 973 A und der US 5 482 437 A sind bereits Verdichter der eingangs definierten Art bekannt, die eine eingeschränkte Eignung für den Betrieb bei tiefen Temperaturen aufweisen.From the US 1 808 792 A , of the US Pat. No. 3,874,824 , of the US 1 853 973 A and the US 5,482,437 A are already known compressors of the type defined, which have a limited suitability for operation at low temperatures.

Es ist eine Aufgabe der vorliegenden Erfindung, einen Getriebeverdichterrotor für einen Turboverdichter anzugeben, der bei Tieftemperaturanwendungen über eine hohe Festigkeit verfügt.It is an object of the present invention to provide a transmission compressor rotor for a turbocompressor having high strength in low temperature applications.

Diese Aufgabe wird durch einen Getriebeverdichterrotor der eingangs genannten Art gelöst, bei dem erfindungsgemäß das Dichtungssegment und die Laufradnabe, insbesondere das gesamte Laufrad, einen gemeinsamen, einstückig zusammenhängenden Bereich aus einem ersten Werkstoff bilden und das Verzahnungssegment aus einem zweiten Werkstoff gebildet ist. Hierdurch ist ein großer Bereich des Rotors aus dem ersten Werkstoff gefertigt, der in seinen Eigenschaften an die Betriebsbedingungen des Laufrads angepasst ist. Die Gefahr der Kaltversprödung kann mit diesem Design vermieden werden. Außerdem ist die Verbindungsstelle zwischen den beiden Werkstoffen sehr weit nach innen in den betriebswarmen Bereich verlegt. Das Verzahnungssegment liegt in dem betriebswarmen Bereich und kann aus einem konventionellen Verzahnungswerkstoff ausgeführt werden. Dies führt zu sehr kleinen Getriebeabmessungen und somit zu geringen Kosten und auch geringen mechanischen Verlusten.This object is achieved by a gear compressor rotor of the aforementioned type, according to the invention form the seal segment and the impeller hub, in particular the entire impeller, a common, integrally connected region of a first material and the toothed segment is formed of a second material. As a result, a large portion of the rotor is made of the first material, which is adapted in its properties to the operating conditions of the impeller. The risk of cold embrittlement can be avoided with this design. Moreover, the junction between the Both materials are moved very far inwards into the operating temperature range. The toothed segment is in the operating temperature range and can be made of a conventional toothing material. This leads to very small transmission dimensions and thus at low cost and also low mechanical losses.

Der Turboverdichter ist zweckmäßigerweise ein Getriebeverdichter. Das Verzahnungssegment kann Teil eines Getriebes sein, das den Getriebeverdichterrotor mit einem Antrieb, beispielsweise einem Elektromotor, mechanisch verbindet. Das Dichtungssegment kann einen Teil oder eine Hälfte einer Dichtung tragen, insbesondere einer Labyrinthdichtung zur Abdichtung einer Umgebung des Verdichterbereichs bzw. Laufrads gegen ein Lager des Rotors, insbesondere ein Öl führendes Lager.The turbocompressor is expediently a transmission compressor. The gear segment may be part of a transmission that mechanically connects the gear compressor rotor to a drive, such as an electric motor. The sealing segment may carry a part or a half of a seal, in particular a labyrinth seal for sealing an environment of the compressor area or impeller against a bearing of the rotor, in particular an oil bearing bearing.

Das Laufrad ist zweckmäßigerweise Teil einer Überhangstufe des Turboverdichters und ist zweckmäßigerweise fliegend gelagert. Das Laufrad muss hierdurch nur an einer Seite gegenüber einem Rotorlager abgedichtet werden, sodass der Dichtungsaufwand gering gehalten ist.The impeller is expediently part of an overhang stage of the turbocompressor and is expediently mounted on the fly. As a result, the impeller must be sealed only on one side with respect to a rotor bearing, so that the sealing effort is kept low.

Besonders geeignet für die Anwendung im Tieftemperaturbereich von -30°C und tiefer ist der Getriebeverdichterrotor, wenn der erste Werkstoff ein kaltzäher Werkstoff ist, der kaltzäher ist als der zweite Werkstoff. Das Laufrad ist hierdurch besonders gut gegen ein Sprödbruchverhalten geschützt, wohingegen der innere Bereich der Rotorwelle entsprechend den an ihn gestellten Anforderungen ausgeführt sein kann. Der erste Werkstoff ist insbesondere ein kaltzäher Werkstoff, wie z.B. in der Norm EN 10.269 definiert.Particularly suitable for use in the low-temperature range of -30 ° C and lower is the gear compressor rotor, when the first material is a cold-tough material, which is cold-toughened than the second material. The impeller is thus particularly well protected against brittle fracture behavior, whereas the inner portion of the rotor shaft can be designed according to the requirements placed on it. The first material is in particular a cold-tough material, such as e.g. defined in the standard EN 10.269.

Vorteilhafterweise ist der zweite Werkstoff härter bzw. höherfester als der erste Werkstoff. Der zweite Werkstoff kann ein einsatzgehärteter, nitrierter oder hoch vergüteter Stahl sein, wodurch den hohen mechanischen Anforderungen an ein Zahnradgetriebe Rechnung getragen ist.Advantageously, the second material is harder or higher strength than the first material. The second material may be case hardened, nitrided or highly tempered steel, which accommodates the high mechanical requirements of a gear transmission.

In einer weiteren vorteilhaften Ausführungsform der Erfindung ist im Bereich des zweiten Werkstoffs ein Rotorlager angeordnet. Durch einen Wärmeeintrag des Rotorlagers kann der zweite Werkstoff vor zu starker Abkühlung geschützt werden. Das Rotorlager kann ein Radiallager sein, das insbesondere als hydrodynamisches Gleitlager ausgeführt ist. Ein solches Lager kann mit warmem Schmieröl mit der Temperatur von beispielsweise 45° C versorgt werden, wodurch ein hoher Wärmeeintrag vom Rotorlager auf den Rotor erfolgt. Durch diesen Wärmeeintrag kann der Verzahnungsbereich aus dem zweiten Werkstoff gegen eine starke Abkühlung geschützt werden. Durch die Anordnung des Rotorlagers im Bereich des zweiten Werkstoffs wird außerdem eine unnötige größere Erwärmung des ersten Werkstoffs und damit des axial äußeren Teils des Rotors vermieden.In a further advantageous embodiment of the invention, a rotor bearing is arranged in the region of the second material. By a heat input of the rotor bearing, the second material can be protected from excessive cooling. The rotor bearing may be a radial bearing, which is designed in particular as a hydrodynamic sliding bearing. Such a bearing can be supplied with warm lubricating oil at the temperature of for example 45 ° C, whereby a high heat input from the rotor bearing takes place on the rotor. By this heat input of the toothed area can be protected from the second material against a strong cooling. Due to the arrangement of the rotor bearing in the region of the second material also unnecessary greater heating of the first material and thus of the axially outer part of the rotor is avoided.

Das Wellenlager ist vorteilhafter Weise zwischen dem Dichtungssegment und dem Verzahnungssegment angeordnet. Durch die Lagerung des Rotors außerhalb der Verzahnung kann eine stabile fliegende Lagerung des Rotors erreicht werden.The shaft bearing is advantageously arranged between the sealing segment and the toothed segment. Due to the bearing of the rotor outside of the teeth, a stable flying bearing of the rotor can be achieved.

Die beiden Werkstoffbereiche sind zweckmäßigerweise drehfest miteinander verbunden. Diese drehfeste Verbindung kann durch eine stoffschlüssige Verbindung, wie beispielsweise eine Verschweißung, eine reibschlüssige Verbindung, wie beispielsweise eine Kupplung, oder eine formschlüssige Verbindung erreicht werden. Vorteilhafterweise ist diese Verbindung durch eine Stirnverzahnung gebildet, sodass die beiden Werkstoffbereiche formschlüssig ineinander greifen. Die Gefahr einer Unwucht durch eine Schweißverbindung oder eines Rutschens der beiden Bereiche gegeneinander durch eine nicht ausreichend feste reibschlüssige Verbindung kann vermieden werden. Die drehfeste Verbindung ist vorteilhafter Weise zwischen dem Dichtungssegment und einem Rotorlager angeordnet, beispielsweise dem Radiallager.The two material areas are suitably rotatably connected to each other. This non-rotatable connection can be achieved by a cohesive connection, such as a weld, a frictional connection, such as a clutch, or a positive connection. Advantageously, this connection is formed by a spur gear, so that the two material areas engage one another positively. The risk of imbalance due to a welded joint or a slippage of the two areas against each other by an insufficiently strong frictional connection can be avoided. The rotationally fixed connection is advantageously arranged between the sealing segment and a rotor bearing, for example the radial bearing.

Besonders geeignet als drehfeste Verbindung zwischen den beiden Rotorbereichen bzw. Werkstoffbereichen des Rotors ist eine Hirthverbindung. Durch die Hirthverzahnung der Hirtverbindung wird eine feste, selbst zentrierende und lösbare Verbindung mit einfachen Mitteln erreicht. Die Zähne der Hirthverzahnung liegen im Sinne einer kraftschlüssigen Kupplung statisch und flächig aneinander und sind radial ausgerichtet, wodurch die Zentrierung erreicht wird. Mit Hilfe der Hirthverbindung kann eine sehr klein bauende Verbindung zwischen den Rotorbereichen erreicht werden. Zum Kraftschluss ist eine axiale Verspannung notwendig, die wiederum die Kraftübertragung von einem Bereich zum anderen begrenzt.Particularly suitable as a rotationally fixed connection between the two rotor regions or material regions of the rotor is a Hirth connection. Due to the Hirth spline of the herding compound a solid, self-centering and detachable connection is achieved by simple means. The teeth of the Hirth toothing are in the sense of a non-positive Clutch static and surface to each other and are radially aligned, whereby the centering is achieved. With the help of the Hirth connection, a very compact connection between the rotor areas can be achieved. For traction axial tension is necessary, which in turn limits the power transmission from one area to another.

Die Erfindung wird anhand eines Ausführungsbeispiels näher erläutert, das in einer Zeichnung dargestellt ist. Deren einzige Figur zeigt einen Abschnitt eines Getriebeverdichterrotors 2, dessen axial äußerer Bereich 4 ein Laufrad 6 mit einer Laufradnabe 8 und ein Dichtungssegment 10 mit einer Dichtung 12 in Form einer Labyrinthdichtung umfasst. Das Laufrad 6 ist fliegend gelagert und ist Teil einer Überhangstufe des Getriebeverdichters.The invention will be explained in more detail with reference to an embodiment which is shown in a drawing. The sole FIGURE shows a section of a gear compressor rotor 2, the axially outer region 4 of which comprises an impeller 6 with an impeller hub 8 and a sealing segment 10 with a seal 12 in the form of a labyrinth seal. The impeller 6 is cantilevered and is part of an overhang stage of the transmission compressor.

Der Getriebeverdichterrotor 2 kann sowohl mit einem als auch mit zwei Laufrädern & ausgeführt sein. Bei einem Design mit zwei Laufrädern kann Fig. 1 als halbe Darstellung mit einer Spiegelebene im Verzahnungsbereich angesehen werden. Bei einer Ausführung mit nur einem Laufrad endet die Ritzelwelle 16 mit dem hinter der Verzahnung liegenden zweiten und nicht dargestellten Lagerbereich.The gear compressor rotor 2 can be designed both with one and with two wheels. In a design with two wheels can Fig. 1 be regarded as a half representation with a mirror plane in the toothed area. In an embodiment with only one impeller, the pinion shaft 16 ends with the lying behind the toothing second and not shown storage area.

Der Getriebeverdichterrotor 2 ist Bestandteil eines Turbogetriebeverdichters mit einem Getriebe, das durch eine Verzahnung 14 einen Antrieb, beispielsweise eine Dampfturbine oder einen Elektromotor, zur Kraftübertragung mit dem Laufrad 6 verbindet. Die Verzahnung 14 des Rotors 2 ist an einer Ritzelwelle 16 gefertigt, die in ein Verzahnungssegment 18 und in einen Lagerbereich 20 eingeteilt werden kann, die wiederum einem inneren Bereich 22 des Rotors bilden. Im Lagerbereich 20 trägt die Ritzelwelle 16 ein Rotorlager 24 in Form eines Radiallagers, und zwar eines hydrodynamischen Gleitlagers.The gear compressor rotor 2 is part of a turbo transmission compressor with a gear that connects a drive, such as a steam turbine or an electric motor, for power transmission with the impeller 6 by a toothing 14. The toothing 14 of the rotor 2 is made on a pinion shaft 16, which can be divided into a toothed segment 18 and into a bearing region 20, which in turn form an inner region 22 of the rotor. In the bearing area 20, the pinion shaft 16 carries a rotor bearing 24 in the form of a radial bearing, namely a hydrodynamic sliding bearing.

Die beiden Bereiche 4, 22 sind durch eine formschlüssige Verbindung 26 miteinander verbunden, die durch einen Pfeil angedeutet ist. In der Verbindung 26 sind die Ritzelwelle 16 und das Laufrad 6 formschlüssig und drehfest miteinander verbunden. Die Verbindung 26 ist als Hirthverbindung ausgeführt, wobei eine Verschraubung 28 die beiden Bereiche 4, 22 des Getriebeverdichterrotors 2 axial gegeneinander presst, sodass durch die Hirthverbindung hohe Kräfte und Drehmomente von einem auf den anderen Bereich 4, 22 übertragen werden können.The two areas 4, 22 are interconnected by a positive connection 26, which is indicated by an arrow. In the connection 26, the pinion shaft 16 and the impeller 6 are positively and rotatably connected to each other. The connection 26 is designed as a Hirth connection, wherein a screw 28 presses the two areas 4, 22 of the gear compressor rotor 2 axially against each other, so that high forces and torques can be transmitted from one to the other area 4, 22 by the Hirth connection.

Die beiden Bereiche 4, 22 sind aus unterschiedlichen Werkstoffen hergestellt. Die Laufradnabe 8 und das Dichtungssegment 10 im äußeren Bereich 4 sind aus einem kaltzähen Werkstoff hergestellt, beispielsweise dem kaltzähen Stahl X8Ni9. Hierbei sind die Laufradnabe 8 und das Dichtungssegment 10 als ein einstückiges Teil hergestellt, beispielsweise als ein Schmiedestück. Auch auf eine Verschweißung zwischen der Laufradnabe 8 und dem Dichtungssegment 10 wurde verzichtet, um die Gefahr einer Unwucht aufgrund ungleichmäßiger Spannungsverteilung zu vermeiden.The two areas 4, 22 are made of different materials. The impeller hub 8 and the sealing segment 10 in the outer region 4 are made of a cold-tough material, such as the cold-tough steel X8Ni9. Here, the impeller hub 8 and the sealing segment 10 are made as an integral part, for example as a forging. Also, a weld between the impeller hub 8 and the seal segment 10 has been omitted to avoid the risk of imbalance due to uneven stress distribution.

Der innere Bereich 22 bzw. die Ritzelwelle 16 kann aus einem einsatzgehärteten Stahl, beispielsweise 18CrNiMo7-6 hergestellt sein. Auch ein hochfester Vergütungsstahl, beispielsweise 56NiCrMoV7, ist vorteilhaft. Sowohl der einsatzgehärtete Stahl als auch der hochfeste Vergütungsstahl sind besonders hart und abriebfest, so dass die Verzahnung 14 eine hohe Lebensdauer hat. Diese Stähle sind jedoch nur bedingt kaltzäh, sodass bei sehr tiefen Arbeitstemperaturen die Gefahr eines Sprödbruchs besteht. Gegen einen Sprödbruch ist der kaltzähe Stahl des äußeren Bereichs 4 besonders geeignet, sodass die Rotorwelle 2 für einen Betrieb bei besonders kalten Temperaturen, beispielsweise unter -30°C oder unter -120°C, z.B. zur Lufttrennung, besonders geeignet ist.The inner portion 22 and the pinion shaft 16 may be made of a case-hardened steel, for example 18CrNiMo7-6. A high-strength tempering steel, for example 56NiCrMoV7, is also advantageous. Both the case-hardened steel and the high-strength tempering steel are particularly hard and resistant to abrasion, so that the toothing 14 has a long service life. However, these steels are only partially cold-resistant, so there is a risk of brittle fracture at very low working temperatures. Against a brittle fracture, the cold-tough steel of the outer region 4 is particularly suitable, so that the rotor shaft 2 for operation at particularly cold temperatures, for example below -30 ° C or below -120 ° C, for example, for air separation, is particularly suitable.

Während des Betriebs wird das Rotorlager 24 mit warmem Schmieröl versorgt, sodass die hydrodynamische Gleitlagerung des Rotors 2 gewährleistet ist. Mit dem warmen Schmieröl wird Wärme auf den inneren Bereich 22 des Rotors 2 übertragen, sodass dieser bei vorgesehenem Betrieb nie in einen Temperaturbereich abkühlt, der die Gefahr eines Sprödbruchverhaltens der Ritzelwelle 16 birgt. Durch die Anordnung der Verbindung 26 sehr weit innen in dem betriebswarmen Bereich des Rotors 2 ist der äußere Bereiche 4 aus dem ersten und kaltzähen Werkstoff sehr lang, so dass ein großer Teil des Rotors 2 für die tiefen Betriebstemperaturen geeignet ist. Trotz dieses großen kaltzähen Bereichs verbleibt durch die Trennung des Rotors 2 in die beiden verschiedenen Bereiche 4, 22 die Möglichkeit, das Verzahnungssegment 16 aus einem geeigneten Verzahnungswerkstoff herzustellen. Hierdurch kann das Getriebe besonders klein bauend und verschleißarm ausgeführt werden.During operation, the rotor bearing 24 is supplied with warm lubricating oil, so that the hydrodynamic sliding bearing of the rotor 2 is ensured. With the warm lubricating oil heat is transferred to the inner portion 22 of the rotor 2, so that it never cools in intended operation in a temperature range, which carries the risk of brittle fracture behavior of the pinion shaft 16. Due to the arrangement of the connection 26 very far inside in the operating temperature range of the rotor 2, the outer portions 4 of the first and cold-tough material is very long, so that a large part of the rotor 2 is suitable for the low operating temperatures. Despite this large cold-tough area remains the separation of the rotor 2 in the two different areas 4, 22, the possibility of producing the toothed segment 16 of a suitable toothing material. As a result, the transmission can be designed to be particularly compact and wear-resistant.

Claims (7)

  1. Geared compressor rotor (2) for cold gas applications having a pinion shaft (16) with a toothing segment (18) with a toothing (14), at least one impeller wheel (6) with an impeller wheel hub (8) and a sealing segment (10) which is arranged between the toothing segment (18) and the impeller wheel hub (8) and bears a gasket (12),
    wherein the impeller wheel hub (8) and the sealing segment (10) form a common, continuously coherent region (4) composed of a material,
    characterized in that the impeller wheel hub (8) and the sealing segment (10) are formed from a first material, and the toothing segment (18) is formed from a second material, and
    in that the first material is tougher at subzero temperatures than the second material.
  2. Geared compressor rotor (2) according to claim 1,
    characterized in that the impeller wheel (6) is mounted in a cantilevered fashion.
  3. Geared compressor rotor (2) according to one of the preceding claims,
    characterized in that the second material is harder than the first material.
  4. Geared compressor rotor (2) according to one of the preceding claims,
    characterized in that a rotor bearing (24) is arranged in the region (22) of the second material.
  5. Geared compressor rotor (2) according to one of the preceding claims,
    characterized in that a rotor bearing (24) is arranged between the sealing segment (10) and the toothing segment (18).
  6. Geared compressor rotor (2) according to one of the preceding claims,
    characterized in that a rotationally fixed connection (26) of the two material regions (4, 22) is arranged between the sealing segment (10) and a rotor bearing (24).
  7. Geared compressor rotor (2) according to one of the preceding claims,
    characterized in that a rotationally fixed connection (26) between the two material regions (4, 22) is an Hirth coupling.
EP10716500A 2009-04-01 2010-03-26 Geared compressor rotor for cold gas applications Active EP2414684B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009015862A DE102009015862A1 (en) 2009-04-01 2009-04-01 Gear compressor rotor for cold gas applications
PCT/EP2010/054004 WO2010112423A1 (en) 2009-04-01 2010-03-26 Geared compressor rotor for cold gas applications

Publications (2)

Publication Number Publication Date
EP2414684A1 EP2414684A1 (en) 2012-02-08
EP2414684B1 true EP2414684B1 (en) 2013-01-23

Family

ID=42271952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10716500A Active EP2414684B1 (en) 2009-04-01 2010-03-26 Geared compressor rotor for cold gas applications

Country Status (6)

Country Link
US (1) US9500201B2 (en)
EP (1) EP2414684B1 (en)
CN (1) CN102388225B (en)
DE (1) DE102009015862A1 (en)
ES (1) ES2401312T3 (en)
WO (1) WO2010112423A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748326A (en) * 2012-07-20 2012-10-24 湖北省风机厂有限公司 Automatic locking device for impeller with high-speed rotor
US9371835B2 (en) * 2013-07-19 2016-06-21 Praxair Technology, Inc. Coupling for directly driven compressor
DE102012223830A1 (en) 2012-12-19 2014-06-26 Siemens Aktiengesellschaft Sealing a compressor rotor
ITCO20130022A1 (en) 2013-06-10 2014-12-11 Nuovo Pignone Srl METHOD TO CONNECT A IMPELLER TO A TREE, CONNECTION CONFIGURATION AND ROTARY MACHINE.
WO2015146765A1 (en) * 2014-03-26 2015-10-01 株式会社Ihi Impeller fastening structure and turbo compressor
EP3299630A1 (en) 2016-09-27 2018-03-28 Siemens Aktiengesellschaft Compressor assembly
EP3617519A1 (en) 2018-08-27 2020-03-04 Siemens Aktiengesellschaft Radially compressor rotor, radial compressor, gear-driven compressor
EP3705725A1 (en) 2019-03-05 2020-09-09 Siemens Aktiengesellschaft Assembly with transmission resistance
JP2022129728A (en) 2021-02-25 2022-09-06 三菱重工コンプレッサ株式会社 Rotating machine
EP4163500A1 (en) 2021-10-11 2023-04-12 Siemens Energy Global GmbH & Co. KG Air compression assembly for air separation
EP4163501A1 (en) 2021-10-11 2023-04-12 Siemens Energy Global GmbH & Co. KG Air compression assembly for air separation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1808792A (en) 1926-12-28 1931-06-09 C S Engineering Co Lubricating device
US1853973A (en) 1927-12-08 1932-04-12 Gen Electric Centrifugal compressor or blower
US3874824A (en) * 1973-10-01 1975-04-01 Avco Corp Turbomachine rotor assembly
DE4220127C1 (en) 1992-06-17 1993-09-16 Mannesmann Ag, 40213 Duesseldorf, De
US5456818A (en) 1993-11-03 1995-10-10 Ingersoll-Rand Company Method for preventing fretting and galling in a polygon coupling
DE19612818C2 (en) * 1996-03-30 1998-04-09 Schloemann Siemag Ag Process for cooling warm-rolled steel profiles
DE10050371A1 (en) * 2000-10-11 2002-05-02 Siemens Ag Device with a ferromagnetic and mechanically resilient component in the cryogenic temperature range
GB2410982A (en) * 2004-02-14 2005-08-17 Richard Julius Gozdawa Turbomachinery electric generator arrangement with component cooling
KR100861968B1 (en) * 2004-10-19 2008-10-07 가부시키가이샤 고마쓰 세이사쿠쇼 Turbo machine, compressor impeller used for turbo machine, and method of manufacturing turbo machine

Also Published As

Publication number Publication date
EP2414684A1 (en) 2012-02-08
US20120039722A1 (en) 2012-02-16
CN102388225B (en) 2014-09-10
ES2401312T3 (en) 2013-04-18
CN102388225A (en) 2012-03-21
WO2010112423A1 (en) 2010-10-07
US9500201B2 (en) 2016-11-22
DE102009015862A1 (en) 2010-10-07

Similar Documents

Publication Publication Date Title
EP2414684B1 (en) Geared compressor rotor for cold gas applications
WO2019020289A1 (en) Turbomachine, in particular for a fuel cell system
DE102008058507A1 (en) Charging device i.e. exhaust gas turbocharger, for motor vehicle, has turbine/compressor wheel fixed on shaft with retaining element, where retaining element is designed as split pin, screw, pin or ring e.g. rotary shaft seal
DE10141667A1 (en) Device for rotating two components against each other
EP3001071B1 (en) Oil borehole planet web
EP1688589A1 (en) Turbomachine shaft seal arrangement
DE102012013048A1 (en) Fluid-flow machine for supplying compressed air to fuel cell of fuel cell arrangement of passenger car, has compressor fluidly connected with branch line at branching point that is arranged at downstream of compressor wheel
DE102005059208A1 (en) vacuum housing
EP3805529A1 (en) Method for operating a turbomachine with carbon dioxide
EP2980427A1 (en) Slide bearing assembly
DE10003018B4 (en) Turbo compressor
DE19513380A1 (en) Sealing, storage and drive of the rotors of a dry-running screw rotor compressor
EP0653566B1 (en) Gear driven compressor for the compression of oxygen
EP2348221A1 (en) Centrifugal pump assembly
EP2954236B1 (en) Arrangement having a seal
DE102014209624A1 (en) Turbomachinery electrical machine unit
DE102007055790A1 (en) Supply unit for wet-running clutch of gear with pump drive, has hydraulic fluid or coolant and lubricant, and clutch is arranged around external drive shaft conducted as hollow shaft
DE102008050401A1 (en) Bearing arrangement, particularly bearing of rotor for turbocharger, has relatively stationary bearing surface and relatively movable bearing surface that is separated from relatively stationary bearing surface
DE102018219995A1 (en) Side channel compressor for a fuel cell system for conveying and / or compressing a gaseous medium
WO2018134019A1 (en) Motor-pump unit for a waste heat recovery system
DE102017209553A1 (en) Gear pump for a waste heat recovery system
DE102011075278A1 (en) pump unit
DE102010029548A1 (en) Drive arrangement for vehicle, particularly industrial truck, has drive sprocket in gear housing, where drive sprocket is rotatably arranged at drive shaft
DE102016214762A1 (en) External gear unit
DE102011006291A1 (en) Press Association for a bearing arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 595130

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002223

Country of ref document: DE

Effective date: 20130321

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2401312

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130418

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20130123

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130523

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131129

26N No opposition filed

Effective date: 20131024

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130402

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130326

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002223

Country of ref document: DE

Effective date: 20131024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100326

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130326

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180312

Year of fee payment: 9

Ref country code: NO

Payment date: 20180314

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180206

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180614

Year of fee payment: 9

Ref country code: ES

Payment date: 20180625

Year of fee payment: 9

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 595130

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190326

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190326

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190326

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010002223

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AG, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230321

Year of fee payment: 14

Ref country code: DE

Payment date: 20220617

Year of fee payment: 14