EP2413816A1 - Ceramic cutting template - Google Patents
Ceramic cutting templateInfo
- Publication number
- EP2413816A1 EP2413816A1 EP10713617A EP10713617A EP2413816A1 EP 2413816 A1 EP2413816 A1 EP 2413816A1 EP 10713617 A EP10713617 A EP 10713617A EP 10713617 A EP10713617 A EP 10713617A EP 2413816 A1 EP2413816 A1 EP 2413816A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cutting template
- zirconia
- oxides
- volume
- matrix material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/14—Surgical saws ; Accessories therefor
- A61B17/15—Guides therefor
- A61B17/154—Guides therefor for preparing bone for knee prosthesis
- A61B17/155—Cutting femur
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1764—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the knee
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/12—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L31/121—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
- A61L31/124—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of other specific inorganic materials not covered by A61L31/122 or A61L31/123
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
- C04B35/117—Composites
- C04B35/119—Composites with zirconium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6263—Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3241—Chromium oxides, chromates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3241—Chromium oxides, chromates, or oxide-forming salts thereof
- C04B2235/3243—Chromates or chromites, e.g. aluminum chromate, lanthanum strontium chromite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
- C04B2235/3246—Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3296—Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3839—Refractory metal carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3839—Refractory metal carbides
- C04B2235/3843—Titanium carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3856—Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3886—Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5292—Flakes, platelets or plates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6023—Gel casting
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/728—Silicon content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/765—Tetragonal symmetry
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/767—Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/785—Submicron sized grains, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
- C04B2235/945—Products containing grooves, cuts, recesses or protusions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- the present invention is a cutting template or a saw block, preferably a cutting template or a saw block for use in medical technology.
- a so-called incision template or saw block is fixed on the femur.
- This cutting template three cuts are normally made to adapt the femoral surface to the geometry of the femoral component.
- a guide in the cutting template (3 or 4 cuts in 1 template).
- the cut is performed with an oscillating saw blade.
- the saw blades and the cutting templates are today basically made of biocompatible metal alloys.
- the guide rails in the saw block have a width of 1, 2 - 1, 5 mm. Due to the oscillation of the saw blade and the friction occurring between saw blade and guide rail, high metal abrasion occurs on the side of the guide rail. This abrasion does not or can only be removed from the wound inadequately intraoperatively. Thus, this abrasion can turn into the cause of infections and, above all, lead to allergic reactions of the patient. For this reason, it is essential to reduce this abrasion in principle, but in particular if an implant reaction is to be avoided by the use of a ceramic femoral component in the potential allergic person.
- the object underlying the present invention was to eliminate the disadvantages of the cutting templates / saw blocks of the prior art, and in particular:
- the inventive task was surprisingly by a
- Cutting template / a saw block ceramic hereinafter, the terms sintered body or sintered body are used for the inventive cutting template / saw block according to the invention
- the features of the independent claims Preferred embodiments can be found in the subclaims. It was surprisingly found that the
- the invention provides as matrix a mixed crystal of aluminum oxide / chromium oxide.
- the invention provides that the zirconium matrix embedded in the matrix dioxide and the mixed oxide forming the mixed crystal together with the aluminum oxide in a certain molar ratio to one another. This measure makes it possible to achieve the required hardness values even with higher zirconium dioxide contents, which may be required to obtain a particularly good fracture toughness. On the other hand, at low
- the zirconia and chromium oxide containing the stabilizing oxides should be present in a certain molar ratio, inevitably results in certain ratios for the other components, since e.g. with decreasing proportion of zirconium dioxide, the proportions of the stabilizing oxides, based on the sintered molded body decrease, while on the other hand, the proportion of alumina increases. Based on the aluminum oxide of the sintered body, the chromium oxide is in a weight of 0.004 to
- chromium oxide and the stabilizing oxides containing zirconia are in the indicated molar ratio.
- the cerium oxide has been found to be most preferred.
- the proportion of the matrix material on Sinterform body is at least 70 vol .-% - and is made of an aluminum oxide / chromium oxide mixed crystal with a chromium oxide content of 0.01 to 2.32 wt .-%, based on alumina, with from 2 to 30% by volume of zirconia incorporated into the matrix, and the zirconia contains from 0.27 to 2.85 mole percent yttria, based on the mixture of zirconia and yttria, and the zirconia does not exceed 2 micrometers average grain size predominantly in the tetragonal modification.
- An amount of 0.27 to 2.85 mol% of yttria, based on the mixture of zirconia and yttrium oxide, corresponds to 0.5 to 5.4 wt%.
- yttria-containing zirconia and chromium oxide is a molar ratio of 370: 1 to 34: 1 before.
- the matrix material consisting of an aluminum oxide / chromium oxide mixed crystal and a further mixed crystal of the formula Cr x -x SrAli2 Oi9, wherein x has a value from 0.0007 to 0.045.
- the toughening effect of the zirconia incorporated in the mixed-crystal matrix is increased, while the addition of chromium can counteract a decrease in the hardness values caused by the zirconium dioxide content.
- strontium oxide platelets form in the structure, which he general formula SrAli 2- ⁇ Cr x Oi 9 correspond.
- the additionally formed by the addition of strontium oxide mixed crystal of the formula SrAli 2- ⁇ Cr x Oi9 has the additional effect that it gives the sintered body even at a higher temperature, a further improved toughness.
- the wear resistance of these sintered bodies under the influence of elevated temperature is therefore also improved.
- the cerium oxide has been found to be particularly suitable. Platelets also form if the matrix does not contain Cr 2 ⁇ 3 .
- the wear resistance of the sintered shaped bodies can still by the incorporation of 2 to 25 VoI .-% of one or more carbides, nitrides or carbonitrides of the metals of the 4th and 5th subgroup of the Periodic Table of the Elements (PSE) - based on the Matrix material - to be improved in these.
- the proportion of these hard materials is 6 to 15 vol .-%.
- titanium nitride, titanium carbide and titanium carbonitride are suitable.
- the molar ratio of the zirconium containing the stabilizing oxides is umdioxids to chromium oxide as a function of the zirconia present in the sintered shaped bodies according to the invention are adjusted so that at low zirconia shares also small quantities of chromium oxide are present.
- an adjustment of the molar ratio zirconium dioxide: chromium oxide has proven to be in the range of
- the adjustment of a particle size of the zirconium dioxide not exceeding 2 ⁇ m is required.
- a maximum amount of max. 5% by volume are preferably less than 2% by volume, very particularly preferably less than 1% by volume, so that preferably more than 90% by volume are present in the tetragonal modification.
- the sintered molded body contains only in an unavoidable manner entrained impurities other than the components specified in the claims, which according to a further preferred embodiment of the invention is not more than 0.5 vol .-%
- the sintered molded body consists only of the alumina-chromium oxide mixed crystal or containing the stabilizing oxides in the presence of strontium oxide and chromium oxide, in this solid solution and the mixed crystal of the formula SrAli 2- ⁇ Cr x Oi9 and from and embedded in the matrix of said mixed crystals zirconium koniumdioxid. Other phases, such.
- the zirconia is present in an amount of not more than 30% by volume. Preferably, the zirconia is also not present in an amount of less than 15% by volume. If there are between 15 and 30% by volume of zirconium dioxide, the molar ratio between the zirconium dioxide and chromium oxide containing the stabilizing oxides is very particularly preferably between 40: 1 and 25: 1.
- the proportion of zirconium dioxide present in tetragonal modification is more than 95% by volume, with only up to 5% by volume being present in total in the cubic and / or monoclinic modification.
- Very particular preference is given to maintaining a particle size of the incorporated zirconium dioxide in the range of 0.2 to 1, 5 microns.
- an average grain size of the alumina / chromium oxide mixed crystal in the range of 0.8 to 1, 5 microns has been found to be particularly suitable. If, in addition, carbides, nitrides and carbonitrides of the metals of the 4th and 5th subgroups of the PSE are used, they are used in a particle size of 0.8 to 3 ⁇ m.
- the grains of the mixed crystal of the formula SrAli 2- ⁇ Cr x Oi 9 have a length / thickness ratio in the range from 5: 1 to 15: 1. Its maximum length is 12 ⁇ m, its maximum thickness 1.5 ⁇ m. It has surprisingly been found that corresponding platelets can be produced in the microstructure not only with strontium oxide but also with certain other oxides. The prerequisite for platelet formation is the formation of a hexagonal crystal structure of the "in situ" platelets to be formed. If the material system Al 2 ⁇ 3-Cr 2 ⁇ 3 -ZrO 2 -Y 2 ⁇ 3 (CeO 2 ) is used as the matrix, the following platelets can be formed "in situ" using a wide variety of oxides.
- the corresponding Al kal-Aln-x Cr x 0i 7 form - in alloying of alkaline earth metal oxides
- the corresponding ErdalkaliAli 2-x Cr x Oi9 -Platelets form, on alloying of CdO, PbO, HgO the corresponding (Cd, Pb or HgAli 2-x Cr x Oi9) -Platelets and alloying of the corresponding rare earth oxides, rare Erdaln -x Cr x Oi8 -Platelets.
- La 2 ⁇ 3 may also form the compound La 0 , 9Aln, 7 6- ⁇ Cr x Oi9. Platelets also form when the matrix does not contain Cr 2 ⁇ 3 .
- the platelets forming then, without the presence of strontium oxide, correspond to the general ones
- the matrix material in a preferred Ausgestal- contains tung an aluminum oxide / chromium oxide mixed crystal and an additional mixed crystal according to one of the general formulas Me 1 AI n -x Cr x 0i 7, Me 2 AI i 2-x Cr x 0 1 9, Me 2 Ali 2-x Cr x Oi 9 or Me 3 Al n -x Cr x 0i8 where Me 1 is an alkali metal, Me 2 is an alkaline earth metal, Me 2 is cadmium, lead or mercury and Me 3 is a rare earth metal.
- added to the matrix material can be mixed crystal La 0 , 9Aln, 7 6- ⁇ Cr x Oi9. x can assume values of 0.0007 to 0.045.
- the inventively provided "in situ" Plateletverstärkung also occurs when the matrix does not contain Cr 2 ⁇ 3. This is provided according to the invention in particular when a drop in the hardness values does not disturb.
- Cr 2 ⁇ 3 forming platelets then correspond to the general formulas Me 1 Ah 1O17, Me 2 Ali 2 Oi 9 , Me 2 Ali 2 Oi 9 or Me 3 Ali 2 Oi 8 .
- the same preferred embodiments can be provided, as with the sintered shaped bodies containing Cr 2 Os in the matrix material.
- the sintered molded body with Cr 2 ⁇ 3 in the matrix material further above statements in an analogous manner to the sintered body without
- the Vickers hardness of the sintered shaped bodies according to the invention is greater than 1750 [HVo. ⁇ ], but is preferably more than 1,800 [HVo.s].
- the microstructure of the sintered body according to the invention is free of microcracks and has a degree of porosity of not more than 1.0%.
- the sintered body may further include whiskers, but not silicon carbide.
- the sintered shaped body preferably contains none of the substances frequently used as grain growth inhibitors, such as. B. magnesium oxide.
- mixed crystal used in the claims and in the description is not to be understood as meaning a single crystal, rather it means a solid solution of chromium oxide in aluminum oxide or strontium aluminate.
- the stabilizer oxides dissolve in the ZrO 2 lattice and stabilize its tetragonal modification.
- high-purity raw materials ie alumina and zirconium dioxide with a purity of more than 99%.
- the degree of impurities is still much lower.
- SiO 2 contents of more than 0.5% by volume, based on the finished sintered body are undesirable. Excluded from this rule is the inevitable presence of hafnium oxide in a small amount of up to 2% by weight within the zirconium dioxide.
- the sintered shaped body according to the invention is produced by pressure-free sintering or hot pressing of a mixture of aluminum oxide / zirconium dioxide / chromium oxide and stabilizing oxides or a mixture of these components is used which additionally contains strontium oxide or alternatively an alkali oxide instead of strontium oxide.
- an alkaline earth oxide, CdO, PbO, HgO, a rare earth oxide or La2 ⁇ 3 and / or one or more nitrides, carbides and carbonitrides of the 4th and 5th subgroup of the PSE are added.
- yttrium oxide and chromium oxide can also be in the form of yttrium chromium oxide (YCrOs), while the addition of strontium oxide can preferably be carried out in the form of strontium salts, in particular as strontium carbonate (SrCOs).
- strontium salts in particular as strontium carbonate (SrCOs).
- Mercury, rare earth oxides or the lanthanum oxide may preferably be added in the form of their salts, in particular as carbonates. But also the addition of ternary compounds that decompose and rearrange during sintering is possible.
- Various ceramic mixtures were prepared by mixed grinding. To the milled mixtures was added a temporary binder and the mixtures were then spray dried. Subsequently, green bodies were pressed from the spray-dried mixtures and these were sintered under standard conditions, for example either sintered or presintered without pressure and subjected to a gas pressure sintering process under argon.
- pressureless sintering includes both sintering under atmospheric conditions, as well as under inert gas or in a vacuum.
- the molded body is first pre-sintered without pressure to 90 to 95% theoretical density and then by hot isostatic pressing or gas recompressed inside the pressure. The theoretical density can thereby be increased to a value of more than 99.5%.
- the dispersion and grinding can have a special influence on the properties of the ceramic according to the invention.
- the grinding process and the grinding unit itself can affect the result.
- the solids content of the millbase used may additionally contribute to the dispersion.
- the metal abrasion is reduced by up to 90% compared to the previous cutting templates or saw blocks made of metal.
- the service life of the cutting template or the saw block according to the invention in use is significantly prolonged, since only slight wear of the cutting template occurs. This reduces the costs.
- the risk of allergies or the allergic reactions of patients and the risk of infections are reduced.
- the cutting template is used in medical technology, in particular in operations for processing a bone, preferably in a knee-TEP implantation.
- the advantages of the ceramic cutting template according to the invention or of the ceramic from which it is made are: >
- the cutting template has an extremely low abrasion.
- the material is biocompatible.
- the cutting template according to the invention is labeled with a laser, it is very clearly visible and readable and can thus reduce incorrect handling when using the cutting template.
- the cutting template has good tribological properties.
- FIG. 1 to 4 show a cutting template 1 of ceramic according to the invention in different views.
- FIG. 5 shows images of the shape and intraoperative use of a conventional metal cutting template.
- a cutting template 1 according to the invention is shown, which is also referred to as a saw block.
- Such a cutting template 1 serves to guide a surgical saw blade during the implantation of an artificial knee joint.
- the cutting template consists of a base body 2, which is provided with slot-like recesses 3 for the implementation and precise guidance of a plate-shaped saw blade, wherein the slot-like recesses 3 has opposing guide surfaces 4. At these guide surfaces 4, the saw blade (see Figure 5) is applied during the sawing process. In the base body 2 through holes 5 are introduced, which serve for screwing the cutting template 1 on the femur.
- sintered body / sintered body denote a ceramic in the form of or for use as a cutting template or saw block.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Surgery (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Medical Informatics (AREA)
- Dentistry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Biomedical Technology (AREA)
- Transplantation (AREA)
- Physical Education & Sports Medicine (AREA)
- Composite Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Vascular Medicine (AREA)
- Epidemiology (AREA)
- Surgical Instruments (AREA)
Abstract
The invention relates to a cutting template or a cutting block, preferably to a cutting template or a cutting block for use in medical technology.
Description
Schnittschablone aus Keramik Cutting template made of ceramic
Gegenstand der vorliegenden Erfindung ist eine Schnittschablone bzw. ein Sägeblock, vorzugsweise eine Schnittschablone bzw. ein Sägeblock zum Einsatz in der Medizintechnik.The present invention is a cutting template or a saw block, preferably a cutting template or a saw block for use in medical technology.
Bei jeder Knie-TEP-Implantation wird eine so genannte Schnittschablone oder Sägeblock auf dem Femur fixiert. Mit dieser Schnittschablone werden im Normalfall drei Schnitte zur Anpassung der Femuroberfläche an die Geometrie der Fe- murkomponente durchgeführt. Für jeden Schnitt befindet sich in der Schnittschablone eine Führung (3 bzw. 4 Schnittführungen in 1 Schablone). In dieser Führung wird der Schnitt mit einem oszillierenden Sägeblatt durchgeführt. Die Sägeblätter sowie die Schnittschablonen sind heute grundsätzlich aus biokompatiblen Metalllegierungen gefertigt.For each knee TEP implantation, a so-called incision template or saw block is fixed on the femur. With this cutting template, three cuts are normally made to adapt the femoral surface to the geometry of the femoral component. For each cut there is a guide in the cutting template (3 or 4 cuts in 1 template). In this guide, the cut is performed with an oscillating saw blade. The saw blades and the cutting templates are today basically made of biocompatible metal alloys.
Die Führungsschienen im Sägeblock haben je nach Hersteller eine Breite von 1 ,2 - 1 ,5 mm. Bedingt durch das Oszillieren des Sägeblatts und die auftretende Reibung zwischen Sägeblatt und Führungsschiene tritt ein hoher Metallabrieb auf Seiten der Führungsschiene auf. Dieser Abrieb wird nicht bzw. kann nur un- zureichend intraoperativ aus der Wunde entfernt werden. Somit kann dieser Abrieb wiederum zur Ursache von Infektionen werden und vor allem zu allergischen Reaktionen des Patienten führen. Aus diesem Grund gilt es, diesen Abrieb grundsätzlich zu reduzieren, insbesondere jedoch, wenn durch den Einsatz einer keramischen Femurkomponente beim potentiellen Allergiker eine Implantatreak- tion vermieden werden soll.Depending on the manufacturer, the guide rails in the saw block have a width of 1, 2 - 1, 5 mm. Due to the oscillation of the saw blade and the friction occurring between saw blade and guide rail, high metal abrasion occurs on the side of the guide rail. This abrasion does not or can only be removed from the wound inadequately intraoperatively. Thus, this abrasion can turn into the cause of infections and, above all, lead to allergic reactions of the patient. For this reason, it is essential to reduce this abrasion in principle, but in particular if an implant reaction is to be avoided by the use of a ceramic femoral component in the potential allergic person.
Nach heutigem Kenntnisstand entsteht der überwiegende Teil des Metallabriebs durch den Verschleiß der Führungsschienen in der Schnittschablone. Nach ca. 20 - 40-maliger Verwendung einer Schnittschablone im Rahmen von Knie-TEP- Implantationen weisen die Führungsschienen um ca. 0,5 - 1 ,5 mm vergrößerteAccording to current knowledge, the majority of the metal abrasion caused by the wear of the guide rails in the cutting template. After approx. 20 - 40 times the use of a cutting template in the context of knee TEP implantations, the guide rails are enlarged by approx. 0.5-1.5 mm
Führungsspalte auf. Infolgedessen nimmt die Führungsgenauigkeit der Schnitt-
schablone erheblich ab. Die Folgen für den Chirurgen sind entsprechend, eine präzise Schnittführung des Sägeblattes ist nicht mehr möglich, Ausrichtung und Ebenheit der Schnittflächen des Femurs weisen zunehmend Abweichungen auf. Dies führt zu größeren Spalten zwischen Schnittflächen und Femurkomponente. Diese Spalte müssen intraoperativ durch ein größeres als sonst übliches Volumen an Knochenzement aufgefüllt werden, was einen negativen Einfluss auf die Standzeit des Systems haben kann.Guide column on. As a result, the guidance accuracy of the cut significantly. The consequences for the surgeon are corresponding, a precise cutting of the saw blade is no longer possible, alignment and flatness of the cut surfaces of the femur are increasingly deviating. This leads to larger gaps between cut surfaces and femoral component. These gaps must be filled intraoperatively by a larger than usual volume of bone cement, which can have a negative impact on the lifetime of the system.
Die der vorliegenden Erfindung zugrunde liegende Aufgabe bestand darin, die Nachteile der Schnittschablonen / der Sägeblöcke des Standes der Technik zu beseitigen und insbesondere:The object underlying the present invention was to eliminate the disadvantages of the cutting templates / saw blocks of the prior art, and in particular:
> den Metallabrieb zu reduzieren, wobei eine Reduzierung des Metallabriebs um bis zu 90% gegenüber den bisherigen Metalllösungen ange- strebt werden soll;> to reduce metal abrasion, whereby a reduction of metal abrasion by up to 90% compared to the previous metal solutions should be sought;
> die Standzeit einer Schnittschablone zu verlängern und damit Kosten einzusparen;> extend the service life of a cutting template and thus save costs;
> das Allergierisiko sowie das Risiko von Infektionen zu reduzieren.> to reduce the risk of allergies and the risk of infections.
Die erfindungsgemäße Aufgaben wurde überraschenderweise durch eineThe inventive task was surprisingly by a
Schnittschablone / einen Sägeblock aus Keramik (im Folgenden werden für die erfindungsgemäße Schnittschablone / den erfindungsgemäßen Sägeblock auch die Begriffe Sinterformkörper oder Sinterkörper verwendet) mit den Merkmalen der unabhängigen Ansprüche gelöst. Vorzugsweise Ausgestaltungen finden sich in den Unteransprüchen. Es wurde überraschenderweise festgestellt, dass dieCutting template / a Sägeblock ceramic (hereinafter, the terms sintered body or sintered body are used for the inventive cutting template / saw block according to the invention) with the features of the independent claims. Preferred embodiments can be found in the subclaims. It was surprisingly found that the
Lösung der anstehenden Aufgaben Sinterform körper mit einer ganz speziellen Zusammensetzung erfordert. Neben der Umwandlungsverstärkung, die durch die Einlagerung eines stabilisierende Oxide enthaltenden Zirkoniumdioxids in einer Keramikmatrix erzielt wird, sieht die Erfindung gemäß einer ersten Ausfüh- rungsform als Matrix einen Mischkristall aus Aluminiumoxid/Chromoxid vor. DesSolving the pending tasks requires sintered body with a very special composition. In addition to the conversion gain achieved by the incorporation of a stabilizing oxide-containing zirconium dioxide in a ceramic matrix, according to a first embodiment the invention provides as matrix a mixed crystal of aluminum oxide / chromium oxide. Of
Weiteren sieht die Erfindung vor, dass das in die Matrix eingelagerte Zirkonium-
dioxid und das zusammen mit dem Aluminiumoxid den Mischkristall bildende Chromoxid in einem bestimmten molaren Verhältnis zueinander stehen. Diese Maßnahme ermöglicht, dass auch bei höheren Zirkoniumdioxidanteilen, die zum Erhalt einer besonders guten Bruchzähigkeit erforderlich sein können, die erfor- derlichen Härtewerte erzielt werden können. Andererseits können bei niedrigenFurthermore, the invention provides that the zirconium matrix embedded in the matrix dioxide and the mixed oxide forming the mixed crystal together with the aluminum oxide in a certain molar ratio to one another. This measure makes it possible to achieve the required hardness values even with higher zirconium dioxide contents, which may be required to obtain a particularly good fracture toughness. On the other hand, at low
Zirkoniumdioxidanteilen auch relativ geringe Chromoxidgehalte vorliegen, womit einer Versprödung des Werkstoffes entgegengewirkt wird.Zirconium dioxide shares also relatively low levels of chromium oxide are present, whereby an embrittlement of the material is counteracted.
Die Angabe, dass das die stabilisierenden Oxide enthaltende Zirkoniumdioxid und Chromoxid in einem bestimmten molaren Verhältnis vorliegen sollen, ergibt zwangsläufig auch bestimmte Verhältnisse für die übrigen Komponenten, da z.B. mit sinkendem Anteil an Zirkoniumdioxid auch die Anteile der stabilisierenden Oxide, bezogen auf den Sinterformkörper, abnehmen, während andererseits der Anteil des Aluminiumoxids ansteigt. Bezogen auf das Aluminiumoxid des Sinter- formkörpers liegt das Chromoxid in einer Gewichtsmenge von 0,004 bisThe statement that the zirconia and chromium oxide containing the stabilizing oxides should be present in a certain molar ratio, inevitably results in certain ratios for the other components, since e.g. with decreasing proportion of zirconium dioxide, the proportions of the stabilizing oxides, based on the sintered molded body decrease, while on the other hand, the proportion of alumina increases. Based on the aluminum oxide of the sintered body, the chromium oxide is in a weight of 0.004 to
6,57 Gew.-% vor, wobei jedoch nicht außer acht gelassen werden darf, dass Chromoxid und das die stabilisierenden Oxide enthaltende Zirkoniumdioxid in dem angegebenen molaren Verhältnis stehen. Von den stabilisierenden Oxiden hat sich das Ceroxid als ganz besonders bevorzugt erwiesen.6.57 wt .-%, but it must not be forgotten that chromium oxide and the stabilizing oxides containing zirconia are in the indicated molar ratio. Of the stabilizing oxides, the cerium oxide has been found to be most preferred.
Entsprechend einer weiteren vorteilhaften Ausführungsform beträgt der Anteil des Matrixwerkstoffes am Sinterform körper mindestens 70 Vol.-% - und ist aus einem Aluminiumoxid-/Chromoxid-Mischkristall mit einem Chromoxidanteil von 0,01 bis 2,32 Gew.-%, bezogen auf Aluminiumoxid, gebildet, wobei 2 bis 30 Vol.-% Zirkoniumdioxid in die Matrix eingelagert sind, und das Zirkoniumdioxid 0,27 bis 2,85 Mol% Yttriumoxid, bezogen auf die Mischung aus Zirkoniumdioxid und Yttriumoxid, enthält und das Zirkoniumdioxid in einer 2 μm nicht überschreitenden durchschnittlichen Korngröße überwiegend in der tetragonalen Modifikation vorliegt. Eine Menge von 0,27 bis 2,85 Mol% Yttriumoxid, bezogen auf die Mischung aus Zirkoniumdioxid und Yttriumoxid entspricht 0,5 bis 5,4 Gew.-%According to a further advantageous embodiment, the proportion of the matrix material on Sinterform body is at least 70 vol .-% - and is made of an aluminum oxide / chromium oxide mixed crystal with a chromium oxide content of 0.01 to 2.32 wt .-%, based on alumina, with from 2 to 30% by volume of zirconia incorporated into the matrix, and the zirconia contains from 0.27 to 2.85 mole percent yttria, based on the mixture of zirconia and yttria, and the zirconia does not exceed 2 micrometers average grain size predominantly in the tetragonal modification. An amount of 0.27 to 2.85 mol% of yttria, based on the mixture of zirconia and yttrium oxide, corresponds to 0.5 to 5.4 wt%.
Yttriumoxid, bezogen auf Zirkoniumdioxid. Bei einem solchen Sinterform körper
- A -Yttrium oxide, based on zirconium dioxide. In such a sintered body - A -
liegt zwischen dem das Yttriumoxid enthaltenden Zirkoniumdioxid und Chrom- oxid ein molares Verhältnis von 370 : 1 bis 34 : 1 vor.Between the yttria-containing zirconia and chromium oxide is a molar ratio of 370: 1 to 34: 1 before.
Gemäß einer weiteren besonders bevorzugten Ausführungsform der Erfindung besteht der Matrixwerkstoff aus einem Aluminiumoxid-/Chromoxid-Mischkristall und aus einem weiteren Mischkristall der Formel SrAli2-xCrxOi9, wobei x einen Wert von 0,0007 bis 0,045 hat. Auch bei dieser Ausführungsform, die im übrigen der ersten Ausführungsform entspricht, geht von dem in die Mischkristall-Matrix eingelagerten Zirkoniumdioxid eine zähigkeitssteigernde Wirkung aus, während der Chromzusatz einem durch den Zirkoniumdioxidanteil hervorgerufenen Abfall der Härtewerte entgegenwirken kann. Überraschenderweise wurde festgestellt, dass sich bei Anwesenheit von Strontiumoxid Platelets im Gefüge bilden, die er allgemeinen Formel SrAli2-χCrxOi9 entsprechen. Der durch den Zusatz von Strontiumoxid zusätzlich gebildete Mischkristall der Formel SrAli2-χCrxOi9 hat den zusätzlichen Effekt, dass er dem Sinterform körper auch bei höherer Temperatur eine weiter verbesserte Zähigkeit verleiht. Die Verschleißfestigkeit dieser Sinterformkörper unter Einfluss erhöhter Temperatur ist daher ebenfalls verbessert. Auch bei dieser Ausführungsform hat sich das Ceroxid als besonders geeignet gezeigt. Platelets bilden sich auch dann, wenn die Matrix kein Cr2θ3 ent- hält.According to a further particularly preferred embodiment of the invention, the matrix material consisting of an aluminum oxide / chromium oxide mixed crystal and a further mixed crystal of the formula Cr x -x SrAli2 Oi9, wherein x has a value from 0.0007 to 0.045. In this embodiment as well, which otherwise corresponds to the first embodiment, the toughening effect of the zirconia incorporated in the mixed-crystal matrix is increased, while the addition of chromium can counteract a decrease in the hardness values caused by the zirconium dioxide content. Surprisingly, it was found that in the presence of strontium oxide platelets form in the structure, which he general formula SrAli 2- χCr x Oi 9 correspond. The additionally formed by the addition of strontium oxide mixed crystal of the formula SrAli 2- χCr x Oi9 has the additional effect that it gives the sintered body even at a higher temperature, a further improved toughness. The wear resistance of these sintered bodies under the influence of elevated temperature is therefore also improved. Also in this embodiment, the cerium oxide has been found to be particularly suitable. Platelets also form if the matrix does not contain Cr 2 θ 3 .
Gemäß einer weiteren Ausführungsform kann die Verschleißfestigkeit der Sinterformkörper noch durch die Einlagerung von 2 bis 25 VoI .-% eines oder mehrerer Karbide, Nitride oder Karbonitride der Metalle der 4. und 5. Nebengruppe des periodischen Systems der Elemente (PSE) - bezogen auf den Matrixwerkstoff - in diesen verbessert werden. Vorzugsweise liegt der Anteil dieser Hartstoffe bei 6 bis 15 Vol.-%. Insbesondere sind Titannitrid, Titankarbid und Titan karbonitrid geeignet.According to a further embodiment, the wear resistance of the sintered shaped bodies can still by the incorporation of 2 to 25 VoI .-% of one or more carbides, nitrides or carbonitrides of the metals of the 4th and 5th subgroup of the Periodic Table of the Elements (PSE) - based on the Matrix material - to be improved in these. Preferably, the proportion of these hard materials is 6 to 15 vol .-%. In particular, titanium nitride, titanium carbide and titanium carbonitride are suitable.
Gemäß einer besonders bevorzugten weiteren Ausführungsform der Erfindung wird das molare Verhältnis des die stabilisierenden Oxide enthaltenden Zirkoni-
umdioxids zu Chromoxid in Abhängigkeit des in den erfindungsgemäßen Sinter- formkörpern vorliegenden Zirkoniumdioxidanteils so eingestellt, dass bei niedrigen Zirkoniumdioxidanteilen auch geringe Chromoxidmengen vorliegen. Ganz besonders hat sich dabei eine Einstellung des molaren Verhältnisses Zirkonium- dioxid : Chromoxid erwiesen, die im Bereich vonAccording to a particularly preferred further embodiment of the invention, the molar ratio of the zirconium containing the stabilizing oxides is umdioxids to chromium oxide as a function of the zirconia present in the sintered shaped bodies according to the invention are adjusted so that at low zirconia shares also small quantities of chromium oxide are present. In particular, an adjustment of the molar ratio zirconium dioxide: chromium oxide has proven to be in the range of
2 - 5 Vol.-% Zirkoniumdioxid 1.000 : 1 bis 100 : 12 to 5% by volume of zirconia 1,000: 1 to 100: 1
> 5 - 15 Vol. -% Zirkoniumdioxid 200 : 1 bis 40 : 1> 5 - 15% by volume zirconium dioxide 200: 1 to 40: 1
> 15 - 30 Vol.-% Zirkoniumdioxid 100 : 1 bis 20 : 1> 15-30% by volume zirconia 100: 1 to 20: 1
> 30 - 40 Vol.-% Zirkoniumdioxid 40 : 1 bis 20 : 1> 30-40 vol% zirconia 40: 1 to 20: 1
beträgt.is.
Um sicherzustellen, dass das Zirkoniumdioxid überwiegend in der tetragonalen Modifikation vorliegt, ist erfindungsgemäß die Einstellung einer 2 μm nicht überschreitenden Korngröße des Zirkoniumdioxids erforderlich. Außer den bis zu einer Menge von 5 Vol.-% zugelassenen Anteilen von Zirkoniumdioxid in kubischer Modifikation sind auch noch geringe Mengen der monoklinen Modifikation zugelassen, diese sollen aber ebenfalls eine Menge von max. 5 Vol.-% nicht über- schreiten und liegen vorzugsweise bei weniger als 2 Vol.-%, ganz besonders bevorzugt sogar bei weniger als 1 Vol.-%, so dass vorzugsweise mehr als 90 Vol.-% in der tetragonalen Modifikation vorliegen.To ensure that the zirconium dioxide is present predominantly in the tetragonal modification, according to the invention the adjustment of a particle size of the zirconium dioxide not exceeding 2 μm is required. In addition to the admissible amounts of zirconium dioxide in cubic modification up to an amount of 5% by volume, even small quantities of the monoclinic modification are permitted, but these should also have a maximum amount of max. 5% by volume and are preferably less than 2% by volume, very particularly preferably less than 1% by volume, so that preferably more than 90% by volume are present in the tetragonal modification.
Da der Sinterformkörper außer den in den Patentansprüchen angegebenen Komponenten lediglich noch in unvermeidbarer Weise eingeschleppte Verunreinigungen enthält, die gemäß einer weiteren vorzugsweisen Ausführungsform der Erfindung nicht mehr als 0,5 Vol.-% betragen, besteht der Sinterformkörper lediglich aus dem Aluminiumoxid-Chromoxid-Mischkristall oder, bei Anwesenheit von Strontiumoxid und Chromoxid, aus diesem Mischkristall und dem Mischkris- tall der Formel SrAli2-χCrxOi9 sowie aus dem die stabilisierenden Oxide enthaltenden und in die Matrix aus den genannten Mischkristallen eingelagertem Zir-
koniumdioxid. Weitere Phasen, wie z. B. Korngrenzphasen, die beim gemeinsamen Einsatz von Aluminiumoxid und Magnesiumoxid gebildet werden oder weitere kristalline Phasen, wie sie bei den aus dem Stand der Technik bekannten Zusätzen von Stoffen, wie YNbO4 oder YTaO4. entstehen und die einen nicht ausreichend hohen Erweichungspunkt aufweisen, liegen im Sinterform körper nach der Erfindung nicht vor. Auch die aus dem Stand der Technik bekannten Oxide von Mn, Cu, Fe, die ebenfalls zur Ausbildung weiterer Phasen führen, bewirken einen erniedrigten Erweichungspunkt und haben eine geringe Kantenfestigkeit zur Folge. Der Einsatz dieser Werkstoffe ist daher bei der Erfindung aus- geschlossen.Since the sintered molded article contains only in an unavoidable manner entrained impurities other than the components specified in the claims, which according to a further preferred embodiment of the invention is not more than 0.5 vol .-%, the sintered molded body consists only of the alumina-chromium oxide mixed crystal or containing the stabilizing oxides in the presence of strontium oxide and chromium oxide, in this solid solution and the mixed crystal of the formula SrAli 2- χCr x Oi9 and from and embedded in the matrix of said mixed crystals zirconium koniumdioxid. Other phases, such. As grain boundary phases formed in the combined use of alumina and magnesium oxide or other crystalline phases, as in the known from the prior art additives of substances such as YNbO 4 or YTaO. 4 arise and have a not sufficiently high softening point, are not available in the sintered body according to the invention. Also known from the prior art oxides of Mn, Cu, Fe, which also lead to the formation of further phases, cause a reduced softening point and have a low edge strength result. The use of these materials is therefore excluded in the invention.
Vorzugsweise liegt das Zirkoniumdioxid in einer Menge von nicht mehr als 30 Vol.-% vor. Vorzugsweise liegt das Zirkoniumdioxid auch nicht in einer Menge von weniger als 15 Vol.-% vor. Liegen zwischen 15 und 30 Vol.-% Zirkoniumdi- oxid vor, liegt das molare Verhältnis zwischen dem die stabilisierenden Oxide enthaltenden Zirkoniumdioxid und Chromoxid ganz besonders bevorzugt zwischen 40 : 1 und 25 : 1.Preferably, the zirconia is present in an amount of not more than 30% by volume. Preferably, the zirconia is also not present in an amount of less than 15% by volume. If there are between 15 and 30% by volume of zirconium dioxide, the molar ratio between the zirconium dioxide and chromium oxide containing the stabilizing oxides is very particularly preferably between 40: 1 and 25: 1.
Gemäß einer weiteren ganz besonders bevorzugten Ausführungsform liegt der Anteil des in tetragonaler Modifikation vorliegenden Zirkoniumdioxids bei mehr als 95 Vol.-%, wobei lediglich bis zu 5 Vol.-% insgesamt in der kubischen und/oder monoklinen Modifikation vorliegen. Ganz besonders bevorzugt ist die Einhaltung einer Korngröße des eingelagerten Zirkoniumdioxids im Bereich von 0,2 bis 1 ,5 μm. Demgegenüber hat sich eine durchschnittliche Korngröße des Aluminiumoxid-/Chromoxid-Mischkristalls im Bereich von 0,8 bis 1 ,5 μm als besonders geeignet erwiesen. Kommen zusätzlich noch Karbide, Nitride und Kar- bonitride der Metalle der 4. und 5. Nebengruppe des PSE zum Einsatz, werden diese in einer Korngröße von 0,8 bis 3 μm eingesetzt. Die Körner des Mischkristalls der Formel SrAli2-χCrxOi9 weisen ein Längen/Dickenverhältnis im Bereich von 5 : 1 bis 15 : 1 auf. Ihre Maximallänge beträgt dabei 12 μm, ihre Maximaldicke 1 ,5 μm.
Überraschenderweise wurde festgestellt, dass nicht nur mit Strontiumoxid, sondern auch mit bestimmten anderen Oxiden entsprechende Platelets im Gefüge erzeugt werden können. Voraussetzung für die Plateletbildung ist die Ausbildung einer hexagonalen Kristallstruktur der "in situ" zu bildenden Platelets. Verwendet man als Matrix das Stoffsystem Al2θ3-Cr2θ3-Zrθ2-Y2θ3 (CeO2), so können mit den unterschiedlichsten Oxiden die folgenden Platelets "in situ" gebildet werden. Bei Zulegierung von Alkalioxiden bilden sich die entsprechenden Al- kal-Aln-xCrx0i7 -, bei Zulegierung von Erdalkalioxiden bilden sich die entspre- chenden ErdalkaliAli2-xCrxOi9 -Platelets, bei Zulegierung von CdO, PbO, HgO die entsprechenden (Cd, Pb oder HgAli2-xCrxOi9)-Platelets und bei Zulegierung von Seltenerdoxiden die entsprechenden SeltenerdAln-xCrxOi8 -Platelets. La2θ3 kann außerdem die Verbindung La0,9Aln,76-χCrxOi9 bilden. Platelets bilden sich aber auch dann, wenn die Matrix kein Cr2θ3 enthält. Die sich dann, ohne Anwe- senheit von Strontiumoxid, bildenden Platelets entsprechen den allgemeinenAccording to a further very particularly preferred embodiment, the proportion of zirconium dioxide present in tetragonal modification is more than 95% by volume, with only up to 5% by volume being present in total in the cubic and / or monoclinic modification. Very particular preference is given to maintaining a particle size of the incorporated zirconium dioxide in the range of 0.2 to 1, 5 microns. In contrast, an average grain size of the alumina / chromium oxide mixed crystal in the range of 0.8 to 1, 5 microns has been found to be particularly suitable. If, in addition, carbides, nitrides and carbonitrides of the metals of the 4th and 5th subgroups of the PSE are used, they are used in a particle size of 0.8 to 3 μm. The grains of the mixed crystal of the formula SrAli 2- χCr x Oi 9 have a length / thickness ratio in the range from 5: 1 to 15: 1. Its maximum length is 12 μm, its maximum thickness 1.5 μm. It has surprisingly been found that corresponding platelets can be produced in the microstructure not only with strontium oxide but also with certain other oxides. The prerequisite for platelet formation is the formation of a hexagonal crystal structure of the "in situ" platelets to be formed. If the material system Al 2 θ3-Cr 2 θ 3 -ZrO 2 -Y 2 θ 3 (CeO 2 ) is used as the matrix, the following platelets can be formed "in situ" using a wide variety of oxides. On alloying of alkali metal oxides, the corresponding Al kal-Aln-x Cr x 0i 7 form - in alloying of alkaline earth metal oxides, the corresponding ErdalkaliAli 2-x Cr x Oi9 -Platelets form, on alloying of CdO, PbO, HgO the corresponding (Cd, Pb or HgAli 2-x Cr x Oi9) -Platelets and alloying of the corresponding rare earth oxides, rare Erdaln -x Cr x Oi8 -Platelets. La 2 θ3 may also form the compound La 0 , 9Aln, 7 6-χCr x Oi9. Platelets also form when the matrix does not contain Cr 2 θ 3 . The platelets forming then, without the presence of strontium oxide, correspond to the general ones
Formeln: AlkaliAlnOu, ErdalkaliAI12Oi9, (Cd, Pb oder HgAIi2Oi9) bzw. Selten- erdAli2Oi8.Formulas: AlkaliAlnOu, alkaline earthAl 12 Oi 9 , (Cd, Pb or HgAli 2 Oi 9 ) or rare earth Al 2 Oi 8 .
Erfindungsgemäß enthält der Matrixwerkstoff in einer vorzugsweisen Ausgestal- tung einen Aluminiumoxid-/Chromoxid-Mischkristall und einen weiteren Mischkristall gemäß einer der allgemeinen Formeln Me1AI n-xCrx0i7, Me2AI i2-xCrx019, Me2Ali2-xCrxOi9 oder Me3AI n-xCrx0i8 wobei Me1 für ein Alkalimetall, Me2 für ein Erdalkalimetall, Me2 für Cadmium, Blei oder Quecksilber und Me3 für ein Seltenerdmetall steht. Ebenfalls dem Matrixwerkstoff zugesetzt werden kann als Mischkristall La0,9Aln,76-χCrxOi9. x kann dabei Werte von 0,0007 bis 0,045 annehmen.According to the invention the matrix material in a preferred Ausgestal- contains tung an aluminum oxide / chromium oxide mixed crystal and an additional mixed crystal according to one of the general formulas Me 1 AI n -x Cr x 0i 7, Me 2 AI i 2-x Cr x 0 1 9, Me 2 Ali 2-x Cr x Oi 9 or Me 3 Al n -x Cr x 0i8 where Me 1 is an alkali metal, Me 2 is an alkaline earth metal, Me 2 is cadmium, lead or mercury and Me 3 is a rare earth metal. Likewise added to the matrix material can be mixed crystal La 0 , 9Aln, 7 6-χCr x Oi9. x can assume values of 0.0007 to 0.045.
Die erfindungsgemäß vorgesehene "in situ" - Plateletverstärkung tritt auch ein, wenn die Matrix kein Cr2θ3 enthält. Dies wird erfindungsgemäß insbesondere dann vorgesehen, wenn ein Abfall der Härtewerte nicht stört. Die sich ohneThe inventively provided "in situ" Plateletverstärkung also occurs when the matrix does not contain Cr 2 θ3. This is provided according to the invention in particular when a drop in the hardness values does not disturb. The ones without
Cr2θ3 bildenden Platelets entsprechen dann den allgemeinen Formeln
Me1Ah 1O17, Me2AIi2Oi9, Me2AIi2Oi9 bzw. Me3AIi2Oi8. Auch mit diesen Sinter- formkörpern lassen sich die gleichen vorzugsweisen Ausführungsformen bereitstellen, wie mit den Sinterformkörpern, die Cr2Os im Matrixwerkstoff enthalten. Insoweit treffen die für die Sinterformkörper mit Cr2θ3 im Matrixwerkstoff weiter oben gemachten Ausführungen in analoger Weise auf die Sinterform körper ohneCr 2 θ 3 forming platelets then correspond to the general formulas Me 1 Ah 1O17, Me 2 Ali 2 Oi 9 , Me 2 Ali 2 Oi 9 or Me 3 Ali 2 Oi 8 . Even with these sintered shaped bodies, the same preferred embodiments can be provided, as with the sintered shaped bodies containing Cr 2 Os in the matrix material. In that regard, made for the sintered molded body with Cr 2 θ 3 in the matrix material further above statements in an analogous manner to the sintered body without
Cr2θ3 im Matrixwerkstoff zu.Cr 2 θ3 in the matrix material too.
Die Vickershärte der erfindungsgemäßen Sinterformkörper ist größer als 1.750 [HVo.δ], liegt aber vorzugsweise bei mehr als 1.800 [HVo.s].The Vickers hardness of the sintered shaped bodies according to the invention is greater than 1750 [HVo.δ], but is preferably more than 1,800 [HVo.s].
Die Mikrostruktur der erfindungsgemäßen Sinterform körper ist frei von Mikroris- sen und weist einen Porositätsgrad von nicht mehr als 1 ,0 % auf. Der Sinterformkörper kann ferner noch Whisker, jedoch nicht aus Siliziumkarbid, enthalten.The microstructure of the sintered body according to the invention is free of microcracks and has a degree of porosity of not more than 1.0%. The sintered body may further include whiskers, but not silicon carbide.
Der Sinterformkörper enthält vorzugsweise keine der vielfach als Kornwachstumshemmer verwendeten Substanzen, wie z. B. Magnesiumoxid.The sintered shaped body preferably contains none of the substances frequently used as grain growth inhibitors, such as. B. magnesium oxide.
Der in Ansprüchen und Beschreibung verwendete Begriff „Mischkristall" ist nicht im Sinne von Einkristall zu verstehen, vielmehr ist damit eine feste Lösung von Chromoxid in Aluminiumoxid bzw. Strontiumaluminat gemeint. Der erfindungsgemäße Sinterformkörper bzw. die Schnittschablone ist polykristallin.The term "mixed crystal" used in the claims and in the description is not to be understood as meaning a single crystal, rather it means a solid solution of chromium oxide in aluminum oxide or strontium aluminate.
Beim Sintern lösen sich die Stabilsatoroxide im ZrO2 - Gitter und stabilisieren dessen tetragonale Modifikation. Zur Herstellung der Sinterformkörper und zur Erzielung einer von weiteren unerwünschten Phasen freien Gefügestruktur werden vorzugsweise hochreine Rohstoffe eingesetzt, d. h. Aluminiumoxid und Zirkoniumdioxid mit einer Reinheit von mehr als 99 %. Vorzugsweise ist der Grad der Verunreinigungen noch wesentlich geringer. Insbesondere sind SiO2-Anteile von mehr als 0,5 Vol.-%, bezogen auf den fertigen Sinterform körper, uner- wünscht. Ausgenommen von dieser Regelung ist das unvermeidbare Vorliegen
von Hafniumoxid in geringer Menge von bis zu 2 Gew.-% innerhalb des Zirkoni- umdioxids.During sintering, the stabilizer oxides dissolve in the ZrO 2 lattice and stabilize its tetragonal modification. To produce the sintered shaped bodies and to obtain a structure free of further undesirable phases, it is preferred to use high-purity raw materials, ie alumina and zirconium dioxide with a purity of more than 99%. Preferably, the degree of impurities is still much lower. In particular, SiO 2 contents of more than 0.5% by volume, based on the finished sintered body, are undesirable. Excluded from this rule is the inevitable presence of hafnium oxide in a small amount of up to 2% by weight within the zirconium dioxide.
Die Herstellung des erfindungsgemäßen Sinterformkörpers erfolgt durch druck- loses Sintern oder Heißpressen einer Mischung aus Aluminium- oxid/Zirkoniumdioxid/Chromoxid und stabilisierenden Oxiden bzw. kommt eine Mischung dieser Komponenten zum Einsatz, der zusätzlich noch Strontiumoxid, bzw. anstelle des Strontiumoxids noch ein Alkalioxid, ein Erdalkalioxid, CdO, PbO, HgO, ein Seltenerdoxid oder La2θ3 und/oder eins oder mehrere Nitride, Karbide und Karbonitride der 4. und 5. Nebengruppe des PSE zugefügt sind.The sintered shaped body according to the invention is produced by pressure-free sintering or hot pressing of a mixture of aluminum oxide / zirconium dioxide / chromium oxide and stabilizing oxides or a mixture of these components is used which additionally contains strontium oxide or alternatively an alkali oxide instead of strontium oxide. an alkaline earth oxide, CdO, PbO, HgO, a rare earth oxide or La2θ3 and / or one or more nitrides, carbides and carbonitrides of the 4th and 5th subgroup of the PSE are added.
Beispielhafte Versätze sind in Tabelle 1 angegeben. Die Zugabe von Yttriumoxid und Chromoxid kann auch in Form von Yttriumchromoxid (YCrOs) erfolgen, während die Strontiumoxidzugabe vorzugsweise in Form von Strontiumsalzen, insbesondere als Strontiumcarbonat (SrCOs) vorgenommen werden kann. Die an- stelle des Strontiumoxids einsetzbaren Alkali-, Erdalkali-, Cadmium-, Blei-,Exemplary offsets are given in Table 1. The addition of yttrium oxide and chromium oxide can also be in the form of yttrium chromium oxide (YCrOs), while the addition of strontium oxide can preferably be carried out in the form of strontium salts, in particular as strontium carbonate (SrCOs). The place of the strontium oxide usable alkali, alkaline earth, cadmium, lead,
Quecksilber-, Seltenerdoxide oder das Lanthanoxid können vorzugsweise in Form ihrer Salze, insbesondere als Carbonate zugegeben werden. Aber auch die Zugabe von ternären Verbindungen, die sich während des Sinterns zersetzen und umlagern, ist möglich. Verschiedene keramische Mischungen wurden durch Mischmahlung hergestellt. Den gemahlenen Mischungen wurde ein temporäres Bindemittel zugegeben und die Mischungen anschließend sprühgetrocknet. Anschließend wurden aus den sprühgetrockneten Mischungen Grünkörper gepresst und diese unter Standardbedingungen gesintert, beispielsweise entweder drucklos gesintert oder vorgesintert und unter Argon einem Gas- drucksinterprozess unterworfen.Mercury, rare earth oxides or the lanthanum oxide may preferably be added in the form of their salts, in particular as carbonates. But also the addition of ternary compounds that decompose and rearrange during sintering is possible. Various ceramic mixtures were prepared by mixed grinding. To the milled mixtures was added a temporary binder and the mixtures were then spray dried. Subsequently, green bodies were pressed from the spray-dried mixtures and these were sintered under standard conditions, for example either sintered or presintered without pressure and subjected to a gas pressure sintering process under argon.
Der Begriff druckloses Sintern umfasst dabei sowohl ein Sintern unter atmosphärischen Bedingungen, als auch unter Schutzgas oder im Vakuum. Vorzugsweise wird der geformte Körper zunächst auf 90 bis 95 % theoretischer Dichte drucklos vorgesintert und anschließend durch heißisostatisches Pressen oder Gas-
drucksintern nachverdichtet. Die theoretische Dichte kann dadurch bis auf einen Wert von mehr als 99,5 % gesteigert werden.The term pressureless sintering includes both sintering under atmospheric conditions, as well as under inert gas or in a vacuum. Preferably, the molded body is first pre-sintered without pressure to 90 to 95% theoretical density and then by hot isostatic pressing or gas recompressed inside the pressure. The theoretical density can thereby be increased to a value of more than 99.5%.
Eine alternative Art zur Herstellung der Grünkörper wird direkt aus der Suspen- sion erreicht. Dazu wird die Mischung mit einem Feststoffgehalt von überAn alternative way of producing the green bodies is achieved directly from the suspension. For this purpose, the mixture with a solids content of over
50 Vol.-% in einer wässrigen Suspension gemahlen. Der pH-Wert der Mischung ist dabei auf 4 - 4,5 einzustellen. Nach der Mahlung wird Harnstoff und eine Menge des Enzyms Urease hinzugefügt, die geeignet ist, den Harnstoff abzubauen, bevor diese Suspension in eine Form abgegossen wird. Durch die en- zymkatalysierte Harnstoffzersetzung verschiebt sich der pH-Wert der Suspension nach 9, wobei die Suspension koaguliert. Der so hergestellte Grünkörper wird nach der Entformung getrocknet und gesintert. Der Sinterprozess kann drucklos erfolgen, aber auch das Vorsintern, gefolgt von anschließender heißisostatischer Nachverdichtung, ist möglich. Weitere Einzelheiten zu diesem Verfahren (DCC- Verfahren) sind in der WO 94/02429 und in der WO 94/24064 offenbart, auf die ausdrücklich Bezug genommen wird.50 vol .-% ground in an aqueous suspension. The pH of the mixture should be adjusted to 4 - 4.5. After grinding, urea and an amount of the enzyme urease, which is capable of breaking down the urea, are added before this suspension is poured into a mold. Enzyme-catalyzed urea decomposition shifts the pH of the suspension to 9, with the suspension coagulating. The green body thus produced is dried after demolding and sintered. The sintering process can take place without pressure, but pre-sintering, followed by subsequent hot isostatic re-compaction, is also possible. Further details of this process (DCC process) are disclosed in WO 94/02429 and in WO 94/24064, to which reference is expressly made.
Bei der Herstellung der Keramiken auf Basis der genannten Mehrkomponentensysteme kann eine Reihe von Faktoren eine wesentliche Bedeutung erlangen. Insbesondere bei der Aufbereitung der Pulvergemische kann die Dispergierung und Mahlung besonderen Einfluss auf die Eigenschaften der erfindungsgemäßen Keramik nehmen. Dabei können sich das Mahlverfahren und das Mahlaggregat selbst auf das Ergebnis auswirken. Auch der Feststoffgehalt der eingesetzten Mahlsuspension kann zusätzlich mit zur Dispergierung beitragen.In the production of the ceramics based on the mentioned multicomponent systems, a number of factors can acquire a significant importance. In particular, in the preparation of the powder mixtures, the dispersion and grinding can have a special influence on the properties of the ceramic according to the invention. The grinding process and the grinding unit itself can affect the result. The solids content of the millbase used may additionally contribute to the dispersion.
In den nachfolgenden Beispielen werden die Einflussparameter und deren Wirkung auf die mechanischen Eigenschaften näher dargestellt. Für die einzelnen Versuche ist die folgende Feststoffkombination verwendet worden:
AI2O3 73,11 Gew %In the following examples, the influence parameters and their effect on the mechanical properties are described in more detail. For the individual experiments, the following solid combination has been used: Al 2 O 3 73.11% by weight
ZrO2 23,57 Gew.%ZrO 2 23.57% by weight
La2O3 2,48 Gew %La 2 O 3 2.48% by weight
YCrO3 0,84 Gew %YCrO 3 0.84% by weight
Für die Versuche V1 - V4 ist ein 60 Gew.-%iger Schlicker eingesetzt worden. Im Versuch V5 wurde der Feststoffgehalt auf 55 Gew.-% reduziert. Zur Durchführung des Versuchs V1 wurde eine Schwingmühle eingesetzt. Die Versuche V2 und V3 sind auf einer Labor-Attritormühle durchgeführt worden; bei V2 wurde 1 h gemahlen, die Mahldauer bei V3 lag bei 2 h. Im Versuch V4 ist eine Menge von 30 kg in einer Durchlaufatthtormühle behandelt worden. Der Versuch V5 ist im Labor-Attritor bei einer Mahldauer von 2 h durchgeführt worden.For the experiments V1-V4, a 60% by weight slip was used. In experiment V5, the solids content was reduced to 55% by weight. To carry out Experiment V1, a vibratory mill was used. Experiments V2 and V3 were carried out on a laboratory attritor mill; at V2 was milled for 1 h, the grinding time at V3 was 2 h. In Run V4, an amount of 30 kg was treated in a through-feed mill. The experiment V5 was carried out in the laboratory attritor with a grinding time of 2 h.
Nachfolgend sind die Ergebnisse aus den Festigkeitsuntersuchungen für die einzelnen Versuche dargestellt:The results of the strength tests for the individual experiments are shown below:
Tabelle 1 Table 1
La2O3; **Er2O3; ***BaO; ****Dy2O3 La 2 O 3 ; ** He 2 O 3 ; *** BaO; **** Dy 2 O 3
Mit der erfindungsgemäßen Lehre ist der Metallabrieb um bis zu 90% gegenüber den bisherigen Schnittschablonen bzw. Sägeblöcken aus Metall reduziert. Die Standzeit der Schnittschablone bzw. des erfindungsgemäßen Sägeblocks im Einsatz ist deutlich verlängert, da nur geringer Verschleiß der Schnittschablone auftritt. Dies reduziert die Kosten. Außerdem sind das Allergierisiko bzw. die allergischen Reaktionen von Patienten sowie das Risiko von Infektionen reduziert.With the teaching of the invention, the metal abrasion is reduced by up to 90% compared to the previous cutting templates or saw blocks made of metal. The service life of the cutting template or the saw block according to the invention in use is significantly prolonged, since only slight wear of the cutting template occurs. This reduces the costs. In addition, the risk of allergies or the allergic reactions of patients and the risk of infections are reduced.
Bevorzugt wird die Schnittschablone in der Medizintechnik, insbesondere bei Operationen zur Bearbeitung eines Knochens verwendet, In bevorzugter Weise bei einer Knie-TEP-Implantation.Preferably, the cutting template is used in medical technology, in particular in operations for processing a bone, preferably in a knee-TEP implantation.
Die Vorteile der erfindungsgemäßen keramischen Schnittschablone bzw. die der Keramik, aus der sie hergestellt ist, sind:
> Die Schnittschablone weist einen extrem geringen Abrieb auf.The advantages of the ceramic cutting template according to the invention or of the ceramic from which it is made are: > The cutting template has an extremely low abrasion.
> Das Material ist biokompatibel.> The material is biocompatible.
> Wenn die erfindungsgemäße Schnittschablone mit einem Laser beschriftet wird, ist diese sehr gut sichtbar und lesbar und kann somit Fehlhandhabungen beim Einsatz der Schnittschablone reduzieren.> If the cutting template according to the invention is labeled with a laser, it is very clearly visible and readable and can thus reduce incorrect handling when using the cutting template.
> Die Schnittschablone besitzt gute tribologische Eigenschaften.> The cutting template has good tribological properties.
Die Figuren 1 bis 4 zeigen eine erfindungsgemäße Schnittschablone 1 aus Keramik in verschiedenen Ansichten. Figur 5 zeigt Bilder zur Gestalt und zur intra- operativen Verwendung einer konventionellen Schnittschablone aus Metall.Figures 1 to 4 show a cutting template 1 of ceramic according to the invention in different views. FIG. 5 shows images of the shape and intraoperative use of a conventional metal cutting template.
In den Figuren 1 bis 4 ist eine erfindungsgemäße Schnittschablone 1 gezeigt, die auch als Sägeblock bezeichnet wird. Eine derartige Schnittschablone 1 dient zur Führung eines chirurgischen Sägeblatts bei der Implantation eines künstlichen Kniegelenks.In the figures 1 to 4 a cutting template 1 according to the invention is shown, which is also referred to as a saw block. Such a cutting template 1 serves to guide a surgical saw blade during the implantation of an artificial knee joint.
Die Schnittschablone besteht aus einem Grundkörper 2, welcher mit schlitzartigen Ausnehmungen 3 zur Durchführung und passgenauen Führung eines plat- tenförmigen Sägeblatts versehen ist, wobei die schlitzartigen Ausnehmungen 3 einander gegenüberliegende Führungsflächen 4 aufweist. An diesen Führungsflächen 4 liegt das Sägeblatt (siehe Figur 5) beim Sägevorgang an. In den Grundkörper 2 sind Durchgangsbohrungen 5 eingebracht, die zur Verschrau- bung der Schnittschablone 1 auf dem Femur dienen.The cutting template consists of a base body 2, which is provided with slot-like recesses 3 for the implementation and precise guidance of a plate-shaped saw blade, wherein the slot-like recesses 3 has opposing guide surfaces 4. At these guide surfaces 4, the saw blade (see Figure 5) is applied during the sawing process. In the base body 2 through holes 5 are introduced, which serve for screwing the cutting template 1 on the femur.
Im Rahmen der vorliegenden Erfindung bezeichnen die Begriffe Sinterformkör- per / Sinterkörper eine Keramik in Form von bzw. zur Verwendung als Schnittschablone bzw. Sägeblock.
In the context of the present invention, the terms sintered body / sintered body denote a ceramic in the form of or for use as a cutting template or saw block.
Claims
1. Schnittschablone aus: a) 60 bis 98 Vol.-% eines Matrixwerkstoffes, gebildet aus einem Alumini- umoxid-/Chromoxid-Mischkristall, b) 2 bis 40 Vol.-% in den Matrixwerkstoff eingelagertem Zirkoniumdioxid, das c) als stabilisierende Oxide mehr als 10 bis 15 Mol% eines oder mehrerer der Oxide von Cer, Praseodym und Terbium bezogen auf die Mischung aus Zirkoniumdioxid und stabilisierenden Oxiden, enthält, wobei d) die Zugabemenge der stabilisierenden Oxide so gewählt ist, dass das1. Cutting template of: a) 60 to 98 vol .-% of a matrix material, formed from an aluminum oxide / chromium oxide mixed crystal, b) 2 to 40 vol .-% embedded in the matrix material zirconia, the c) as stabilizing oxides more than 10 to 15 mol% of one or more of the oxides of cerium, praseodymium and terbium with respect to the mixture of zirconia and stabilizing oxides, wherein d) the amount of stabilizing oxides added is such that the
Zirkoniumdioxid überwiegend in der tetragonalen Modifikation vorliegt und e) das molare Verhältnis zwischen dem die stabilisierenden Oxide enthaltenden Zirkoniumdioxid und Chromoxid 1.000 : 1 bis 20: 1 beträgt, f) sich die Anteile aller Komponenten zu 100 Vol.-% des Sinterformkörpers ergänzen.Z) the zirconium dioxide is present predominantly in the tetragonal modification and e) the molar ratio between the zirconium dioxide and chromium oxide containing the stabilizing oxides is from 1000: 1 to 20: 1, f) the proportions of all components supplement to 100% by volume of the sintered compact.
2. Schnittschablone aus: a) mindestens 70 Vol.-% eines Matrixwerkstoffes, gebildet aus einem AIu- miniumoxid-/Chromoxid-Mischkristall mit einem Chromoxidanteil von 0,01 bis 2,32 Gew.-%, bezogen auf Aluminiumoxid, b) 2 bis 30 Vol.-% in den Matrixwerkstoff eingelagertem Zirkoniumdioxid, das c) 0,27 bis 2,85 Mol% Yttriumoxid, bezogen auf die Mischung aus Zirkoniumdioxid und Yttriumoxid, enthält, wobei die Zugabemenge des Yttriumoxids so gewählt ist, dass das Zirkoniumdioxid überwiegend in der tetra- gonalen Modifikation vorliegt und d) das molare Verhältnis zwischen dem die stabilisierenden Oxide enthaltenden Zirkoniumdioxid und Chromoxid 1.000 : 1 bis 20 : 1 beträgt und e) sich die Anteile aller Komponenten zu 100 Vol.-% der Schnittschablone ergänzen.2. Cutting template of: a) at least 70% by volume of a matrix material formed from an aluminum oxide / chromium oxide mixed crystal having a chromium oxide content of 0.01 to 2.32% by weight, based on aluminum oxide, b) 2 up to 30% by volume of zirconia incorporated in the matrix material, containing c) from 0.27 to 2.85 mole% yttria, based on the mixture of zirconia and yttria, the amount of yttria added being such that the zirconia is predominantly is present in the tetra- gonal modification and d) the molar ratio between the zirconia and chromium oxide containing the stabilizing oxides is from 1000: 1 to 20: 1, and e) the proportions of all the components add up to 100% by volume of the cutting template.
3. Schnittschablone nach Anspruch 2, wobei das molare Verhältnis zwischen dem die stabilisierenden Oxide enthaltenden Zirkoniumdioxid und Chromoxid 370 : 1 bis 34 : 1 beträgt.3. A cutting template according to claim 2, wherein the molar ratio between the stabilizing oxides containing zirconia and chromium oxide is 370: 1 to 34: 1.
4. Schnittschablone aus: a1 ) 60 bis 98 Vol.-% eines Matrixwerkstoffes, wobei dieser bis zu a2)67,1 bis 99,2 Vol.-% eines Aluminiumoxid-/Chromoxid-Mischkristalls a3) bis zu 0,8 bis 32,9 Vol.-% eines weiteren Mischkristalls enthält, der aus mindestens einem Mischkristall gemäß einer der allgemeinen Formeln SrAI 12-XCrxO ig, Lao,9Aln,76-χCrxOi9, Me1AI n-xCrxOi7, Me2AI i2-xCrx0i9,4. Cutting template of: a1) 60 to 98 vol .-% of a matrix material, this up to a2) 67.1 to 99.2 vol .-% of an alumina / chromium oxide mixed crystal a3) up to 0.8 to 32 , 9 Vol .-% of a further mixed crystal, which consists of at least one mixed crystal according to one of the general formulas SrAl 12-XCr x O ig, Lao, 9Aln, 76-χCr x Oi9, Me 1 Al n -x Cr x Oi 7 , Me 2 Al i 2-x Cr x 0i 9 ,
Me2Ali2-xCrxOi9 und/oder Me3Aln-xCrxOi8 ausgewählt ist, wobei Me1 für ein Alkalimetall, Me2 für ein Erdalkalimetall, Me2 für Cadmium, Blei o- der Quecksilber und Me3 für ein Seltenerdmetall steht und x einem Wert von 0,0007 bis 0,045 entspricht und b) der Matrixwerkstoff 2 bis 40 Vol.-% in den Matrixwerkstoff eingelagertes tetragonal stabilisiertes Zirkoniumdioxid enthält und c) sich die Anteile der Komponenten zu 100 Vol.-% der Schnittschablone ergänzen.Me 2 Ali 2-x Cr x Oi 9 and / or Me 3 Aln -x Cr x Oi 8 where Me 1 is an alkali metal, Me 2 is an alkaline earth metal, Me 2 is cadmium, lead or mercury and Me 3 represents a rare earth metal and x corresponds to a value of 0.0007 to 0.045 and b) the matrix material contains 2 to 40% by volume of tetragonal stabilized zirconium dioxide embedded in the matrix material and c) the proportions of the components amount to 100% by volume Complete the cutting template.
5. Schnittschablone gemäß Anspruch 4, dadurch gekennzeichnet, dass als5. cutting template according to claim 4, characterized in that as
Stabilisierungsmittel für das Zirkoniumoxid 2 bis 15 Mol% eines oder mehrerer der Oxide von Cer, Praseodym und Terbium und/oder 0,2 bis 3,5 Mol% Yttriumoxid, bezogen auf die Mischung aus Zirkoniumdioxid und stabilisierenden Oxiden eingesetzt wird, wobei die Zugabemenge der stabilisierenden Oxide so gewählt ist, dass das Zirkoniumdioxid überwiegend in der tetragonalen Modifikation vorliegt und der Anteil an kubischer Modifikation, bezogen auf Zirkoniumdioxid, bei 0 bis 5 Vol.-% liegt.Stabilizing agent for the zirconium oxide is used 2 to 15 mol% of one or more of the oxides of cerium, praseodymium and terbium and / or 0.2 to 3.5 mol% yttrium oxide, based on the mixture of zirconium dioxide and stabilizing oxides, wherein the addition amount of stabilizing oxides is chosen so that the zirconium dioxide is present predominantly in the tetragonal modification and the proportion of cubic modification, based on zirconia, is 0 to 5% by volume.
6. Schnittschablone gemäß Anspruch 4 oder 5, dadurch gekennzeichnet, dass das molare Verhältnis zwischen dem die stabilisierenden Oxide enthaltenden Zirkoniumdioxid und Chromoxid 1.000 : 1 bis 20 : 1 beträgt.6. Cutting template according to claim 4 or 5, characterized in that the molar ratio between the stabilizing oxides containing zirconia and chromium oxide is from 1000: 1 to 20: 1.
7. Schnittschablone gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Zirkoniumdioxid eine 2 μm nicht ü- berschreitende Korngröße aufweist.7. Cutting template according to one or more of claims 1 to 6, characterized in that the zirconium dioxide has a 2 microns not exceeding grain size.
8. Schnittschablone gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Matrixwerkstoff außerdem noch 2 bis 25 Vol.-%; eines oder mehrere der Karbide, Nitride und Carbonitride der Metalle der vierten und fünften Nebengruppe des PSE - bezogen auf8. Cutting template according to one or more of claims 1 to 7, characterized in that the matrix material also still 2 to 25 vol .-%; one or more of the carbides, nitrides and carbonitrides of the fourth and fifth subgroups of the PSE - based on
Matrixwerkstoff - enthält.Matrix material - contains.
9. Schnittschablone aus: a) 60 bis 85 Vol.-% eines Matrixwerkstoffes, gebildet aus einem Alumini- umoxid-/Chromoxid-Mischkristall sowie aus 2 bis 25 Vol.-% eines oder mehrerer der Karbide, Nitride und Carbonitride der Metalle der vierten und fünften Nebengruppe des PSE - bezogen auf Matrixwerkstoff -, b) mehr als 15 bis 40 Vol.-% in den Matrixwerkstoff eingelagertem Zirkoniumdioxid, das c) als stabilisierende Oxide mehr als 10 bis 15 Mol% eines oder mehrerer der Oxide von Cer, Praseodym und Terbium und/oder 0,2 bis 3,5 Mol% Yttriumoxid, bezogen auf die Mischung aus Zirkoniumdioxid und stabilisierenden Oxiden enthält, wobei d) die Zugabemenge der stabilisierenden Oxide so gewählt ist, dass das Zirkoniumdioxid überwiegend in der tetragonalen Modifikation vorliegt und e) das molare Verhältnis zwischen dem die stabilisierenden Oxide enthaltenden Zirkoniumdioxid und Chromoxid 100 : 1 bis 20 : 1 beträgt, f) sich die Anteile aller Komponenten zu 100 Vol.-% des Sinterform kör- pers ergänzen, g) das Zirkoniumdioxid eine 2 μm nicht überschreitende Korngröße aufweist.9. Cutting template of: a) 60 to 85% by volume of a matrix material formed from an aluminum oxide / chromium oxide mixed crystal and from 2 to 25% by volume of one or more of the carbides, nitrides and carbonitrides of the metals of the fourth b) more than 15 to 40% by volume of zirconium dioxide embedded in the matrix material, c) as stabilizing oxides more than 10 to 15% by mole of one or more of the oxides of cerium, praseodymium and terbium and / or 0.2 to 3.5 mol% of yttria, based on the mixture of zirconia and stabilizing oxides, wherein d) the addition amount of the stabilizing oxides is selected so that the zirconia is predominantly in the tetragonal modification and e) the molar ratio between the zirconia and chromium oxide containing the stabilizing oxides is 100: 1 to 20: 1, f) the proportions of all components complement 100% by volume of the sintered body, g) the zirconium dioxide is 2 μm does not exceed grain size.
10. Schnittschablone nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das molare Verhältnis des die stabilisierenden Oxide ent- haltenden Zirkoniumdioxids zu Chromoxid im Bereich von10. Cutting template according to one of claims 1 to 9, characterized in that the molar ratio of the stabilizing oxides containing zirconium dioxide to chromium oxide in the range of
2 - 5 Vol.-% Zirkoniumdioxid 1 .000 : 1 bis 100 : 12 to 5% by volume zirconia 1, 000: 1 to 100: 1
> 5 - 15 Vol. -% Zirkoniumdioxid 200 : 1 bis 40 : 1> 5 - 15% by volume zirconium dioxide 200: 1 to 40: 1
> 15 - 30 Vol.-% Zirkoniumdioxid 100 : 1 bis 20 : 1> 15-30% by volume zirconia 100: 1 to 20: 1
> 30 - 40 Vol.-% Zirkoniumdioxid 40 : 1 bis 20 : 1> 30-40 vol% zirconia 40: 1 to 20: 1
liegt.lies.
1 1 . Schnittschablone nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass nicht mehr als 30 Vol.-% Zirkoniumdioxid enthalten sind.1 1. Cutting template according to one or more of claims 1 to 10, characterized in that no more than 30 vol .-% zirconia are included.
12. Schnittschablone nach einem oder mehreren der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass das Zirkoniumdioxid zu mindestens12. Cutting template according to one or more of claims 1 to 1 1, characterized in that the zirconium dioxide to at least
95 Vol.-% die tetragonale Modifikation aufweist.95 vol .-% has the tetragonal modification.
13. Schnittschablone nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Zirkoniumdioxid insgesamt zu 0 bis 5 Vol.-% in der kubischen und/oder monoklinen Modifikation vorliegt. 13. Cutting template according to one or more of claims 1 to 12, characterized in that the zirconium dioxide is present in total to 0 to 5 vol .-% in the cubic and / or monoclinic modification.
14. Schnittschablone nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die durchschnittliche Korngröße des AIu- miniumoxid-/Chromoxid-Mischkhstalls von 0,6 bis 1 ,5 μm beträgt.14. Cutting template according to one or more of claims 1 to 13, characterized in that the average grain size of the AIuminium oxide / chromium oxide Mischkhstalls from 0.6 to 1, 5 microns.
15. Schnittschablone nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Körngröße des Zirkoniumdioxids zwischen 0,2 und 1 ,5 μm liegt.15. Cutting template according to one or more of claims 1 to 14, characterized in that the grain size of the zirconium dioxide is between 0.2 and 1, 5 microns.
16. Schnittschablone nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass nicht mehr als 0,5 Vol.-% unvermeidbare16. Cutting template according to one or more of claims 1 to 14, characterized in that not more than 0.5 vol .-% unavoidable
Verunreinigungen, bezogen auf den Sinterformkörper enthalten sind.Impurities, based on the sintered body are included.
17. Schnittschablone nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Härte nach Vickers [ Hv 0,5 ] > 1 .800 ist.17. Cutting template according to one or more of claims 1 to 14, characterized in that the hardness according to Vickers [Hv 0.5]> 1 .800.
18. Schnittschablone mit einem Matrixwerkstoff, dadurch gekennzeichnet, dass der Matrixwerkstoff mindestens eines der Platelets gemäß einer der allgemeinen Formeln SrAli2-xCrxOi9, Lao,9Aln,76-χCrxOi9, Me1AInOi7, Me2Ah2Oi9, Me2Ah2Oi9 und/oder Me3Ah2Oi8 enthält, wobei Me1 für ein18, the cutting template with a matrix material, characterized in that the matrix material of at least one of the platelets by any of general formulas SrAli2 -x Cr x Oi9, Lao, 9Aln, 76-χCr x Oi9, Me 1 AInOi 7, Me 2 Ah 2 Oi 9 , Me 2 Ah 2 Oi 9 and / or Me 3 Ah 2 Oi 8 , where Me 1 for a
Alkalimetall, Me2 für ein Erdalkalimetall, Me2 für Cadmium, Blei oder Quecksilber und Me3 für ein Seltenerdmetall steht und der Matrixwerkstoff tetragonal stabilisiertes Zirkoniumdioxid enthält.Alkali metal, Me 2 for an alkaline earth metal, Me 2 for cadmium, lead or mercury and Me 3 for a rare earth metal and the matrix material contains tetragonal stabilized zirconia.
19. Verfahren zur Herstellung einer Schnittschablone gemäß einem oder mehreren der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass eine Mischung, die Aluminiumoxid, Zirkoniumdioxid, Chromoxid, tetragonales Zirkoniumoxid stabilisierende Oxide und mindestens ein Oxid ausgewählt aus Strontiumoxid, Alkalioxiden, Erdalkalioxiden, CdO, PbO, HgO, Seltenerdoxiden und/oder La2Os enthält, gemahlen, der gemahlenen Mischung ein temporäres Bindemittel zugegeben, diese Mischung sprühge- trocknet wird, aus dieser Mischung Grünkörper gepresst werden und diese unter Standardbedingungen gesintert werden.19. A method for producing a cutting template according to one or more of claims 1 to 18, characterized in that a mixture, the alumina, zirconia, chromium oxide, tetragonal zirconia stabilizing oxides and at least one oxide selected from strontium oxide, alkali oxides, alkaline earth oxides, CdO, PbO , HgO, rare earth oxides and / or La 2 Os contains, ground, added to the ground mixture a temporary binder, this mixture sprayed is dried, are pressed from this mixture green body and these are sintered under standard conditions.
20. Verfahren gemäß Anspruch 19, dadurch gekennzeichnet, dass der Grün- körper auf eine Dichte von 90 - 95 % drucklos vorgesintert wird und anschließend einer heißisostatischen Nachverdichtung unterzogen wird.20. The method according to claim 19, characterized in that the green body is pre-sintered to a density of 90-95% without pressure and then subjected to a hot isostatic recompression.
20. Verfahren zur Herstellung einer Schnittschablone gemäß einem oder mehreren der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass eine Mischung, die Aluminiumoxid, Chromoxid, tetragonales Zirkoniumoxid, gegebenenfalls stabilisierende Oxide und mindestens ein Oxid ausgewählt aus Strontiumoxid, Alkalioxiden, Erdalkalioxiden, CdO, PbO, HgO, Seltenerdoxiden und/oder La2θ3 enthält, in wässriger Suspension mit einem Feststoffgehalt von mehr als 50 Vol.-% bei Einhaltung eines pH- Wertes von 4 bis 4,5 gemahlen wird, anschließend mit Harnstoff und20. A method for producing a cutting template according to one or more of claims 1 to 18, characterized in that a mixture comprising alumina, chromium oxide, tetragonal zirconia, optionally stabilizing oxides and at least one oxide selected from strontium oxide, alkali oxides, alkaline earth oxides, CdO, PbO , HgO, rare earth oxides and / or La 2 θ 3 , is milled in aqueous suspension having a solids content of more than 50 vol .-% while maintaining a pH of 4 to 4.5, then with urea and
Urease versetzt wird, in eine Form abgegossen wird und nach einer sich anschließenden Koagulation entformt und gesintert bzw. vorgesintert und heißisostatisch nachverdichtet wird.Urease is added, poured into a mold and removed after a subsequent coagulation and sintered or pre-sintered and hot isostatically recompressed.
21 Verwendung der Schnittschablone nach einem der Ansprüche 1 bis 18 in der Medizintechnik, insbesondere bei Operationen zur Bearbeitung eines Knochens.21 Use of the cutting template according to one of claims 1 to 18 in medical technology, in particular in operations for processing a bone.
22 Verwendung der Schnittschablone nach einem der Ansprüche 1 bis 18 bei einer Knie-TEP-Implantation. 22 Use of the cutting template according to one of claims 1 to 18 in a knee TEP implantation.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009002088 | 2009-04-01 | ||
DE102009002085 | 2009-04-01 | ||
PCT/EP2010/054423 WO2010112588A1 (en) | 2009-04-01 | 2010-04-01 | Ceramic cutting template |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2413816A1 true EP2413816A1 (en) | 2012-02-08 |
Family
ID=42622500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10713617A Withdrawn EP2413816A1 (en) | 2009-04-01 | 2010-04-01 | Ceramic cutting template |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120123421A1 (en) |
EP (1) | EP2413816A1 (en) |
JP (1) | JP5762397B2 (en) |
KR (1) | KR20120022853A (en) |
CN (1) | CN102448385A (en) |
DE (1) | DE102010003605A1 (en) |
WO (1) | WO2010112588A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8927446B2 (en) * | 2009-06-30 | 2015-01-06 | Aktiebolaget Skf | Zirconia-alumina ceramic materials |
WO2012045826A1 (en) * | 2010-10-06 | 2012-04-12 | Ceramtec Gmbh | Ceramic cutting template |
US9421018B2 (en) | 2011-11-21 | 2016-08-23 | Smith & Nephew, Inc. | Methods of designing molds for machining cost reduction |
US20160022879A1 (en) * | 2014-07-24 | 2016-01-28 | Jared Ruben Hillel FORAN | Hypoallergenic orthopedic surgical instruments and methods |
AU2016231338A1 (en) * | 2015-03-06 | 2017-10-19 | Ceramtec Gmbh | Cutting block made of plastic with a saw blade guide made of ceramics |
MX2018004479A (en) * | 2015-10-14 | 2019-07-10 | Mighty Oak Medical Inc | Patient-matched apparatus and methods for performing surgical procedures. |
JP7555121B2 (en) | 2021-06-11 | 2024-09-24 | 明央 有海 | Bone cutting guide |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6069103A (en) * | 1996-07-11 | 2000-05-30 | Saint-Gobain/Norton Industrial Ceramics Corporation | LTD resistant, high strength zirconia ceramic |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5830816A (en) * | 1990-08-06 | 1998-11-03 | Cerasiv Gmbh Innovatives Keramik-Engineering | Sintered molding |
WO1992002470A1 (en) * | 1990-08-06 | 1992-02-20 | Stora Feldmühle Aktiengesellschaft | Sintered moulding and its use |
WO1993016647A1 (en) * | 1992-02-20 | 1993-09-02 | Synvasive Technology, Inc. | Surgical cutting block and method of use |
ES2088677T3 (en) | 1992-07-28 | 1996-08-16 | Ludwig J Gauckler | PROCEDURE FOR THE MANUFACTURE OF RAW CERAMIC BODIES. |
CH685493A5 (en) * | 1993-04-08 | 1995-07-31 | Thomas Graule Prof Dr Ludwig G | Process for the preparation of ceramic green bodies by double layer compression. |
JP2001521874A (en) * | 1997-10-31 | 2001-11-13 | セラムテック アクチエンゲゼルシャフト イノヴェイティヴ セラミック エンジニアリング | Platelet reinforced sintered compact |
DE102007020471A1 (en) * | 2007-04-27 | 2008-11-06 | Ceramtec Ag Innovative Ceramic Engineering | Sintered molding |
WO2010112589A2 (en) * | 2009-04-01 | 2010-10-07 | Ceramtec Ag | Ceramic cutting template |
-
2010
- 2010-04-01 JP JP2012502695A patent/JP5762397B2/en not_active Expired - Fee Related
- 2010-04-01 DE DE102010003605A patent/DE102010003605A1/en not_active Withdrawn
- 2010-04-01 KR KR1020117025970A patent/KR20120022853A/en not_active Application Discontinuation
- 2010-04-01 WO PCT/EP2010/054423 patent/WO2010112588A1/en active Application Filing
- 2010-04-01 CN CN2010800239489A patent/CN102448385A/en active Pending
- 2010-04-01 EP EP10713617A patent/EP2413816A1/en not_active Withdrawn
- 2010-04-01 US US13/260,930 patent/US20120123421A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6069103A (en) * | 1996-07-11 | 2000-05-30 | Saint-Gobain/Norton Industrial Ceramics Corporation | LTD resistant, high strength zirconia ceramic |
Non-Patent Citations (1)
Title |
---|
See also references of WO2010112588A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN102448385A (en) | 2012-05-09 |
DE102010003605A1 (en) | 2010-12-02 |
JP2012522711A (en) | 2012-09-27 |
WO2010112588A1 (en) | 2010-10-07 |
JP5762397B2 (en) | 2015-08-12 |
KR20120022853A (en) | 2012-03-12 |
US20120123421A1 (en) | 2012-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19850366B4 (en) | Platelet reinforced sintered body, its use and process for its preparation | |
EP2624764B1 (en) | Ceramic cutting template | |
DE3610041C2 (en) | Zirconia based ceramic with alumina, spinel, mullite or spinel and mullite and with improved hydrothermal and thermal stability | |
DE69022045T2 (en) | CERAMICS WITH HIGH TOUGHNESS, STRENGTH AND HARDNESS. | |
WO2010112588A1 (en) | Ceramic cutting template | |
EP1435346B1 (en) | Milling ceramic made from metaloxide powders having a bimodal particle size distribution | |
EP1206223B1 (en) | Method for producing a dental prosthesis | |
EP1800646A1 (en) | Method for producing dentures | |
DE102005059864B4 (en) | Orthopedic Shaver | |
DE3027401C2 (en) | ||
EP0163143B1 (en) | High strength, temperature resistant, shaped zirconia article and manufacturing process | |
EP0542815B1 (en) | Sintered moulding and its use | |
EP2349114A2 (en) | Intervertebral disc endoprosthesis | |
EP0571866B1 (en) | Sintered composite abrasive grain, method of preparation and use thereof | |
EP2157065B1 (en) | Method for producing a polycrystalline transparent ceramic | |
DE3853349T2 (en) | Sintered alumina body of high strength and process for its manufacture. | |
EP2413986A2 (en) | Ceramic cutting template | |
DE3840573A1 (en) | WHISKER-REINFORCED CERAMICS | |
DE69102892T2 (en) | Sintered material based on silicon nitride and method for producing the same. | |
EP3230233B1 (en) | Alpha/beta-sialon having improved sintering activity and high edge strength | |
DE4116008A1 (en) | Sintered moulding used as cutting tool | |
EP4249451A1 (en) | Ceramic sintered body made from a sialon material, its raw material mixture and its production | |
DE4024877A1 (en) | Sintered body having aluminium oxide matrix - with chromium oxide, zirconium and/or hafnium di:oxide of predominantly tetragonal structure and yttrium oxide as structure stabiliser | |
EP3145894A1 (en) | Bioceramic component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111102 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20140321 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20171103 |