EP2411340B1 - Procédé amélioré destiné à la fabrication d'une fibre optique dopée avec un lanthanide au moyen d'un nouveau co-dopant. fibre optique fabriquée avec et utilisation de la fibre - Google Patents

Procédé amélioré destiné à la fabrication d'une fibre optique dopée avec un lanthanide au moyen d'un nouveau co-dopant. fibre optique fabriquée avec et utilisation de la fibre Download PDF

Info

Publication number
EP2411340B1
EP2411340B1 EP10720035.4A EP10720035A EP2411340B1 EP 2411340 B1 EP2411340 B1 EP 2411340B1 EP 10720035 A EP10720035 A EP 10720035A EP 2411340 B1 EP2411340 B1 EP 2411340B1
Authority
EP
European Patent Office
Prior art keywords
range
core
mol
layer
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10720035.4A
Other languages
German (de)
English (en)
Other versions
EP2411340A2 (fr
Inventor
Ranjan Sen
Anirban Dhar
Mukul Chandra Paul
Himadri Sekhar Maiti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council of Scientific and Industrial Research CSIR
Department of Information Tech
Original Assignee
Council of Scientific and Industrial Research CSIR
Department of Information Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Council of Scientific and Industrial Research CSIR, Department of Information Tech filed Critical Council of Scientific and Industrial Research CSIR
Publication of EP2411340A2 publication Critical patent/EP2411340A2/fr
Application granted granted Critical
Publication of EP2411340B1 publication Critical patent/EP2411340B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01838Reactant delivery systems, e.g. reactant deposition burners for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the deposited glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/54Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with beryllium, magnesium or alkaline earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to an improved method for fabricating rare earth (RE) doped optical fiber using a new codopant.
  • RE Rare-earth
  • the RE elements doped into the core of such fibers act as the active medium.
  • Different REs like Er, Nd, Yb, Sm, Ho and Tm can be doped to get lasing and amplification covering a wide range of wavelengths.
  • Er doped fiber amplifier (EDFA) due to its high quantum efficiency and broad gain bandwidth shows tremendous application in communication field meeting up the huge bandwidth requirement in internet services and information technology.
  • RE-doped fiber lasers are replacing gas based or solid state lasers in most of the applications due to their compactness, excellent beam quality and easy handling capability.
  • Fiber laser devices are suitable for a variety of applications viz. material processing (cutting, grinding and engraving), range finding, medical and military applications.
  • material processing cutting, grinding and engraving
  • range finding range finding
  • medical and military applications
  • doped cladding layer with desired thickness is deposited within a high silica glass substrate tube to produce matched clad or depressed clad type structure followed by deposition of core layers of predetermined composition containing index-raising dopant like GeO 2 at a lower temperature to form unsintered porous soot.
  • Deposited soot layer is then immersed into an aqueous solution of the dopant precursor (typical concentration 0.1 M) up to 1 hour. Any soluble form of the dopant ion is suitable for preparation of the solution, although rare earth halides have been mostly used. After dipping, the tube is rinsed with acetone and remounted on lathe.
  • the core layer containing the RE is then dehydrated and sintered to produce a clear glassy layer.
  • Dehydration is carried out at a temperature of 600°C by using chlorine.
  • the level of OH - is reduced below 1 ppm using Cl 2 /O 2 ratio of 5:2 provided the drying time exceeds 30 min.
  • the tube is collapsed in the usual manner to get a solid glass rod called preform from which fiber is drawn using conventional method.
  • the segregation of AlCl 3 in the preform formation process is suppressed due to the presence of phosphorus and as a result the doping concentration of Al ions can be set to a high level (>3 wt%). It has been also claimed that the dopants concentration and component ratio of Er, Al and P ions having extremely accurate and homogeneous in the radial as well as in longitudinal directions.
  • Anhydrous AlCl 3 is preferred in order to omit the dehydration step.
  • the solution can also be used in the form of a mist in a soot-like core glass by which it becomes possible to control the doping concentration in high accuracy.
  • the distribution of the doping concentration along the radial direction of the core can be arbitrarily set by controlling the deposition temperature of soot like core glass.
  • the deposited particulate layer is presintered by backward pass with flow of GeCl 4 and/or corresponding dopant halides and is soaked into an alcoholic/aqueous solution of RE-salts containing codopants such as AlCl 3 in definite proportion followed by conventional steps to obtain the final preform.
  • the fiber was drawn from preform in a usual method maintaining suitable core-clad dimensions and geometry. Further reference is made to the documents US2002114607 , US2030213268 , and WO03063308 for the use of BaO in optical fibre preform manufacturing.
  • the main object of the present invention is to provide a new codopant for fabricating rare earth (RE) doped optical fiber which obviates the drawbacks of the hitherto known prior art as detailed above.
  • RE rare earth
  • Another object of the present invention is to provide a method where the core-clad interface problem associated with high level of Al doping is eliminated.
  • Yet another object of the present invention is to provide a method where the core-clad defect generation is eliminated without any base loss increase in the fibers.
  • Still another object of the present invention is to provide a method where the RE concentration uniformity along the preform/fiber length is maintained even for elimination of codopant such as Al used in the known techniques.
  • Yet another object of the present invention is to provide a method which produces relatively low optical loss in the 0.6-1.6 ⁇ m wavelength region.
  • the present invention provides an improved method for fabricating rare earth (RE) doped optical fiber using a new codopant according to claim 1 comprising the following steps:
  • the unsintered core layer deposition temperature is selected within the range of 1200-1300°C preferably in the range of 1250-1280°C.
  • the unsintered particulate layer comprises at least one of GeO 2 , P 2 O 5 or other glass forming oxides as refractive index modifiers.
  • the thickness of the porous layer ranges from 3 to 25 ⁇ m.
  • RE salt used is chloride, or nitrate.
  • the source of Barium Oxide is Barium salt selected from chloride or nitrate.
  • solution for Barium and RE salts are prepared using water as solvent.
  • soaking period is adjusted between 30 and 90 minute, preferably 45 minute.
  • the mixture of O 2 and He may be in the range of 3:1 to 6:1 during oxidation.
  • the ratio of Cl 2 :O 2 during dehydration ranges from 1.5:1 to 3:1.
  • the dehydration period lies between 45 and 90 minute, preferably 60 minute.
  • the porous core layer is sintered in presence of O 2 and He gas within temperature range of 1200°C to 1850°C.
  • the RE concentration in the fiber core is increased with increasing RE concentration in soaking solution.
  • the concentration of RE ion is controlled by adjusting the porosity of the deposited soot layer.
  • the core-clad interface is defect free even at high co-dopant concentration.
  • the resulting fiber exhibits relatively low optical loss in the 0.6-1.6 ⁇ m wavelength region compared to the fibers fabricated by conventional method.
  • compositions of the core and cladding glass can be adjusted to achieve Numerical Aperture (NA) of 0.15 to 0.25 and RE 3+ ion concentration in the range of 100 to 2000 ppm in the ultimate fiber.
  • NA Numerical Aperture
  • Still another embodiment of the invention provides a rare earth (RE) doped optical fiber prepared by the said process according to claim 1, comprising SiO 2 in the range of 88-90 mol%, GeO 2 in the range of 9-11 mol%, BaO 0.1-0.9 mol%, and rare earth metals selected from Er2O3 and Yb2O3 in the range of 0.01-0.06 mol%.
  • RE rare earth
  • the novelty of the present invention lies in obtaining optical fibers doped with various concentrations of RE in the preform/fiber core without formation of defect centers which degrades the optical properties of the fibers.
  • the Inventive step lies in identification of a new codopant Ba instead of commonly used codopant like Al or Phosphorous.
  • the incorporation of Ba-oxide helps to eliminate unwanted core-clad interface problem and achieve relatively low optical loss in the 0.6-1.6 ⁇ m wavelength region thereby improving the reproducibility of the process in producing fibers with desired optical properties.
  • the present invention proposes the use of Ba as an alternate codopant which does not have any undesirable absorption or emission peak in silica operating wavelength region and in addition provides, smooth core-clad interface.
  • incorporation of Ba changes the refractive Index (RI) difference of core layer appreciably (more than Al) compared to cladding glass and provides the advantage of adjusting the Numerical Aperture (NA).
  • RI refractive Index
  • NA Numerical Aperture
  • the composition of the core and cladding glass are controlled in a manner to achieve NA between 0.15 and 0.25. The modification provides good control over RE incorporation and uniformity along the preform/fiber length comparable to the known techniques.
  • the inventive step lies in introducing Ba salt as a new codopant to control the RE incorporation in fabrication of the RE doped optical fiber and provide smooth core-clad interface [ Figure 2 ].
  • the inventive step resides in the use of Barium Oxide (BaO) generated from Barium salt in situ as a codopant.
  • the core-clad interface is defect free even at high co-dopant concentration.
  • Al or P is added to increase the RE solubility in the fiber core since the large RE ions cannot be accommodated within the rigid network of silica due to absence of sufficient non-bridging oxygen.
  • the main advantage of introducing Ba as co-dopant is elimination of unwanted defect generation in the form of star-like patterns along the core-clad interface, which are very common in case of high Al-doped fibers, especially Al doped germano-silicate fibers.
  • the defect formation is associated with scattering and degradation in optical properties of the fibers.
  • a rare earth (RE) doped optical fiber is prepared by implementing the method as defined.
  • the optical fiber comprises SiO 2 in the range of 88-90 mol%, GeO 2 in the range of 9-11 mol%, BaO 0.1-0.9 mol%, and rare earth metals selected from Er 2 O 3 and Yb 2 O 3 in the range of 0.01-0.06 mol%.
  • the optical fiber is suitable for developing fiber lasers, amplifiers and sensors for different purposes and other devices where such fiber is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Lasers (AREA)

Claims (16)

  1. Procédé amélioré pour la fabrication de fibres optiques dopées aux terres rares (RE) en utilisant un nouveau co-dopant, comprenant les étapes suivantes :
    a. dépôt d'un revêtement synthétique pur dopé au SiO2 ou au P2O5-F à l'intérieur d'un tube de substrat en verre de silice pour obtenir une structure de type revêtement adapté ou enfoncé,
    b. formation d'un cœur en déposant une couche de particules non frittées comprenant au moins un des éléments GeO2 et P2O5 sur une surface du tube à une température comprise entre 1200 et 1300 °C, la couche de particules non frittées étant déposée sous la forme d'une couche de suie poreuse ;
    c. maintien des concentrations de GeO2 entre 3,0 et 15,0 % en moles dans la couche de cœur ;
    d. maintien des concentrations de P2O5 entre 0,5 et 1,5 % en moles dans le cœur, lorsqu'il est ajouté au GeO2 ;
    e. trempage du tube contenant la couche de suie poreuse dans une solution contenant du sel RE dans la plage de concentration de 0,002 M à 0,3 M avec du sel métallique dans la plage de concentration de 0,15 (M) à 2,0 (M) ;
    f. séchage de la couche de cœur imbibée sous N2 sec ou de n'importe quel gaz inerte à travers le tube pendant 10 à 30 minutes ;
    g. chauffage progressif du tube en présence de O2 et de He dans la plage de température de 700 à 1100 °C pour effectuer l'oxydation ;
    h. déshydratation de la couche de cœur à une température comprise entre 800 et 1200 °C et en présence de Cl2 et de O2 ;
    i. frittage de la couche de cœur en présence d'un mélange de O2 et de He dans la plage de température de 1200 à 1850 °C ;
    j. écrasement du tube à une température comprise entre 2000 et 2300 °C pour obtenir une préforme ;
    k. gainage de la préforme avec des tubes de silice de dimensions appropriées ;
    l. étirage de fibres à partir de la préforme ; ledit procédé étant caractérisé par l'utilisation d'oxyde de baryum (BaO) à partir dudit sel métallique comme co-dopant pour contrôler l'incorporation de RE tout en fabriquant la fibre optique dopée au RE et pour y fournir une interface cœur-gaine lisse.
  2. Procédé selon la revendication 1, la température de dépôt de la couche de particules non frittées se situant de préférence dans la plage de 1250 à 1280 °C.
  3. Procédé selon la revendication 1, la couche de particules non frittées comprenant au moins l'un des éléments suivants : GeO2, P2O5 en tant que modificateurs d'indice de réfraction.
  4. Procédé selon la revendication 1, l'épaisseur de la couche de suie poreuse étant comprise entre 3 et 25 µm.
  5. Procédé selon la revendication 1, le sel RE étant choisi parmi le chlorure ou le nitrate.
  6. Procédé selon la revendication 1, la source d'oxyde de baryum étant le sel de baryum choisi parmi le chlorure ou le nitrate utilisé pour préparer la solution utilisée dans le procédé.
  7. Procédé selon la revendication 1, la solution étant préparée à partir d'un solvant choisi parmi l'eau.
  8. Procédé selon la revendication 1, le temps de trempage utilisé étant de 30 minutes à 90 minutes, mais de préférence 45 minutes.
  9. Procédé selon la revendication 1, le mélange de O2 et de He pouvant être dans la gamme de 3:1 à 6:1 pendant l'oxydation.
  10. Procédé selon la revendication 1, le rapport de Cl2:O2 pendant la déshydratation se situant dans la gamme de 1,5:1 à 3:1.
  11. Procédé selon la revendication 1, la période de déshydratation se situant entre 45 min et 1,5 heure.
  12. Procédé selon la revendication 1, le frittage ayant lieu en présence de O2 et He à une température comprise entre 1200 °C et 1850 °C.
  13. Procédé selon la revendication 1, les compositions du cœur et de la gaine étant appropriées pour obtenir une ouverture numérique (NA) comprise entre 0,15 et 0,25.
  14. Procédé dans lequel la concentration en ions RE3+ est maintenue dans la plage de 100 à 2000 ppm dans la fibre finale.
  15. Fibre optique dopée aux terres rares (RE) préparée par le procédé selon la revendication 1, comprenant SiO2 dans la gamme de 88 à 90 % en moles, GeO2 dans la gamme de 9 à 11 % en moles, BaO dans la gamme de 0,1 à 0,9 % en moles, et des métaux de terres rares choisis parmi Er2O3 et Yb2O3 dans la gamme de 0,01 à 0,06 % en moles.
  16. Utilisation d'une fibre optique dopée au RE selon la revendication 15, dans des lasers à fibre, des amplificateurs et des capteurs, pour différents usages et dans d'autres dispositifs où une telle fibre est utilisée.
EP10720035.4A 2009-03-27 2010-03-29 Procédé amélioré destiné à la fabrication d'une fibre optique dopée avec un lanthanide au moyen d'un nouveau co-dopant. fibre optique fabriquée avec et utilisation de la fibre Active EP2411340B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN609DE2009 2009-03-27
PCT/IN2010/000201 WO2010109494A2 (fr) 2009-03-27 2010-03-29 Procédé amélioré destiné à la fabrication d'une fibre optique dopée avec un lanthanide au moyen d'un nouveau co-dopant

Publications (2)

Publication Number Publication Date
EP2411340A2 EP2411340A2 (fr) 2012-02-01
EP2411340B1 true EP2411340B1 (fr) 2020-12-09

Family

ID=42290148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10720035.4A Active EP2411340B1 (fr) 2009-03-27 2010-03-29 Procédé amélioré destiné à la fabrication d'une fibre optique dopée avec un lanthanide au moyen d'un nouveau co-dopant. fibre optique fabriquée avec et utilisation de la fibre

Country Status (4)

Country Link
US (1) US8649650B2 (fr)
EP (1) EP2411340B1 (fr)
CN (1) CN102421715A (fr)
WO (1) WO2010109494A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2411340B1 (fr) * 2009-03-27 2020-12-09 Council of Scientific & Industrial Research Procédé amélioré destiné à la fabrication d'une fibre optique dopée avec un lanthanide au moyen d'un nouveau co-dopant. fibre optique fabriquée avec et utilisation de la fibre
EP2495589A1 (fr) 2011-03-04 2012-09-05 Draka Comteq B.V. Fibre optique d'amplification dopée par des terres rares pour dispositifs compacts et procédé de fabrication correspondant
SI3001834T1 (en) * 2013-05-03 2018-07-31 Council Of Scientific & Industrial Research PRODUCT PROCESS WITH YTTERBIUM DOPEED OPTICAL FIBER
GB201711849D0 (en) * 2017-07-24 2017-09-06 Nkt Photonics As Reducing light-induced loss in optical fibre

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063308A1 (fr) * 2002-01-24 2003-07-31 Np Photonics, Inc. Lasers a fibre a mode unique en verre phosphate dopee aux terres rares
US20030213268A1 (en) * 2002-05-20 2003-11-20 Homa Daniel Scott Process for solution-doping of optical fiber preforms

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284500A (en) * 1989-10-31 1994-02-08 Fujitsu Limited Process for fabricating an optical fiber preform
JP2766420B2 (ja) * 1992-04-07 1998-06-18 株式会社フジクラ エルビウム添加石英の製造方法
US6587633B2 (en) * 2000-03-30 2003-07-01 Corning Oti, Inc. Active optical fibre doped with rare earth elements
US6751990B2 (en) * 2001-03-06 2004-06-22 Council Of Scientific And Industrial Research Process for making rare earth doped optical fiber
DE60117161D1 (de) * 2001-10-18 2006-04-20 Council Scient Ind Res Verfahren zur herstellung einer mit seltenen erden dotierten optischen faser
US6851281B2 (en) * 2002-03-28 2005-02-08 Council Of Scientific And Industrial Research Method of fabricating rare earth doped optical fibre
US7292766B2 (en) * 2003-04-28 2007-11-06 3M Innovative Properties Company Use of glasses containing rare earth oxide, alumina, and zirconia and dopant in optical waveguides
BRPI0418833B1 (pt) * 2004-05-11 2013-03-19 composiÇço de vidro de germanato para amplificaÇço de fibra àptica, fibra de amplificador àptico, amplificador àptico, e, dispositivo laser.
US7116472B2 (en) * 2005-02-18 2006-10-03 Fitel Usa Corp. Rare-earth-doped optical fiber having core co-doped with fluorine
EP2411340B1 (fr) * 2009-03-27 2020-12-09 Council of Scientific & Industrial Research Procédé amélioré destiné à la fabrication d'une fibre optique dopée avec un lanthanide au moyen d'un nouveau co-dopant. fibre optique fabriquée avec et utilisation de la fibre

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063308A1 (fr) * 2002-01-24 2003-07-31 Np Photonics, Inc. Lasers a fibre a mode unique en verre phosphate dopee aux terres rares
US20030213268A1 (en) * 2002-05-20 2003-11-20 Homa Daniel Scott Process for solution-doping of optical fiber preforms

Also Published As

Publication number Publication date
US8649650B2 (en) 2014-02-11
WO2010109494A3 (fr) 2010-12-09
US20120201504A1 (en) 2012-08-09
CN102421715A (zh) 2012-04-18
EP2411340A2 (fr) 2012-02-01
WO2010109494A2 (fr) 2010-09-30

Similar Documents

Publication Publication Date Title
US6889528B2 (en) Process of making rare earth doped optical fiber
EP0466932B1 (fr) Verres quartzeux dopes avec un element de terre rare et production d'un tel verre
US8340487B2 (en) Rare earth-doped core optical fiber and manufacturing method thereof
EP1043281B1 (fr) Procédé de fabrication d'une préforme dopée par un métal terre rare pour fibres optiques
DK3001834T3 (en) PROCEDURE FOR MANUFACTURING SURFACE DOTED OPTICAL FIBER
EP1441991B1 (fr) Procede de fabrication de fibres optiques dopees a la terre rare
US6751990B2 (en) Process for making rare earth doped optical fiber
JPH0575704B2 (fr)
CA2436579C (fr) Procede de fabrication de fibre optique dopee aux terres rares
EP2411340B1 (fr) Procédé amélioré destiné à la fabrication d'une fibre optique dopée avec un lanthanide au moyen d'un nouveau co-dopant. fibre optique fabriquée avec et utilisation de la fibre
AU2001242728A1 (en) A process for making rare earth doped optical fibre
JP4158910B2 (ja) 希土類元素添加ガラスの製造方法およびそれを用いた光増幅用ファイバ
EP1487751B1 (fr) Procede de fabrication d'une fibre optique dopee aux terres rares
WO1993024422A1 (fr) Dispositif de transmission de lumiere et son procede de production
Paul et al. Materials and Fabrication Technology of Rare-Earth-Doped Optical Fibres
ZA200403772B (en) A process of making rare earth doped optical fibre.
ZA200305990B (en) A process for making rare earth doped optical fibre.
AU4295393A (en) Light transmitting device and method for the manufacture thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110926

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170130

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200814

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1343270

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010066107

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210316

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1343270

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210322

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010066107

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010066107

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210329

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210329

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220329

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100329

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209