EP2394794B1 - Hand tool machine with pneumatic striking mechanism - Google Patents

Hand tool machine with pneumatic striking mechanism Download PDF

Info

Publication number
EP2394794B1
EP2394794B1 EP11164399.5A EP11164399A EP2394794B1 EP 2394794 B1 EP2394794 B1 EP 2394794B1 EP 11164399 A EP11164399 A EP 11164399A EP 2394794 B1 EP2394794 B1 EP 2394794B1
Authority
EP
European Patent Office
Prior art keywords
pneumatic chamber
anvil
sealing element
axis
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11164399.5A
Other languages
German (de)
French (fr)
Other versions
EP2394794A1 (en
Inventor
Markus Hartmann
Frank Kohlschmied
Christian Daubner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hilti AG
Original Assignee
Hilti AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilti AG filed Critical Hilti AG
Publication of EP2394794A1 publication Critical patent/EP2394794A1/en
Application granted granted Critical
Publication of EP2394794B1 publication Critical patent/EP2394794B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/06Hammer pistons; Anvils ; Guide-sleeves for pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/005Arrangements for adjusting the stroke of the impulse member or for stopping the impact action when the tool is lifted from the working surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0011Details of anvils, guide-sleeves or pistons
    • B25D2217/0015Anvils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/035Bleeding holes, e.g. in piston guide-sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/365Use of seals

Definitions

  • the present invention relates to a machine tool, in particular a hand-guided chiseling machine tool, as from the preamble of claim 1 and the WO2009036526 A1 known.
  • a chisel action should be set when a chisel is lifted from a workpiece.
  • an air spring can be deactivated by means of additional ventilation openings, which are only opened when the bit is disengaged.
  • An anvil also known as an intermediate beater or anvil, should be kept away from the vents after a space. However, this is partly due to the rebound of the anus on a front stop is not given.
  • a machine tool has an anvil, a guide tube in which the anvil is guided along an axis, and a pneumatic chamber, which is closed by the striker, the guide tube and a self-medium-actuated valve device.
  • a volume of the pneumatic chamber changes with movement of the striker along the axis.
  • the intrinsic medium actuated valve means has a pivotable sealing element between the striker and the guide tube. The pivotable sealing element is pivoted in a folded position during movement of the striker in the direction of impact and in a movement of the striker against the direction of impact in an unfolded position. In the retracted position, the sealing element has a first inflow surface, defined by the projection of the sealing element on a plane perpendicular to the axis.
  • the sealing element In the deployed position, the sealing element has a second inflow surface, also defined as the area of a projection of the sealing element on the plane perpendicular to the axis.
  • the second inflow area is larger than the first inflow area.
  • the radial dimension of the sealing element In the folded position, the radial dimension of the sealing element is less than in the unfolded position.
  • the pneumatic chamber serves as an anvil brake, which is controlled by the direction of movement of the beatpiece.
  • the pneumatic chamber is closed by the valve means when the striker after, for example, a blank in the Machine tool runs into it.
  • the pressure changing with the movement of the striker in the pneumatic chamber caused deceleration of the striker.
  • the valve device opened the pneumatic chamber when the striker is moved in the direction of impact.
  • the brake is deactivated.
  • One embodiment provides that, if the volume of the pneumatic chamber during a movement of the striker in the direction of impact is increasing, the pivotable sealing element is pivoted in a folded towards the pneumatic chamber pressure gradients in the retracted position and at a rising towards the pneumatic chamber Pressure gradient is pivoted in the unfolded position, and if the volume of the pneumatic chamber with a movement of the striker in the direction of impact is decreasing, the pivotable sealing element pivoted in a direction to the pneumatic chamber increasing pressure gradient in the folded position and in a direction towards the pneumatic chamber sloping pressure gradient is pivoted in the unfolded position.
  • An embodiment has a further pneumatic chamber, which is closed by the striker, the guide tube and the self-medium-actuated valve means, the volume of a pneumatic chamber with a movement of the striker in the direction of impact increasing and a volume of the further pneumatic chamber in a movement of the Döppers is decreasing and wherein the pneumatic chamber and the other pneumatic chamber are connected by the self-medium-actuated valve device.
  • One embodiment provides that the sealing element attached to the striker and in the unfolded position a contact portion of the sealing element contacts the guide tube or alternatively attached the sealing element to the guide tube and contacts the striker in the unfolded position of the contact portion of the sealing element.
  • the contacting contact portion limits the pivotal movement of the movable portion of the sealing element. The sealing element is thereby stabilized in the unfolded position.
  • One embodiment provides that if the volume of the pneumatic chamber is increasing with a movement of the striker in the direction of impact, a pivot joint of the sealing element opposite the contact portion, along the axis, further away from the pneumatic chamber, and if the volume of the pneumatic chamber at a movement of the striker in the direction of impact is decreasing, the pivot joint of the sealing element relative to the contact portion, along the axis, closer to the pneumatic chamber is arranged.
  • the pivot joint may be formed by a solid-state joint.
  • the sealing element is fastened with a fastening portion on the striker or the guide tube and a lip of the sealing element is inclined relative to the axis, wherein if the volume of the pneumatic chamber is increasing with a movement of the striker in the direction of impact, the lip along the axis of the pneumatic chamber is inclined away from the mounting portion, and if the volume of the pneumatic chamber is decreasing in the impact direction when the striker is moving, the lip is inclined away from the mounting portion along the axis away from the pneumatic chamber.
  • the sealing element has a V- or U-shaped cross-sectional profile along the axis, wherein the cross-sectional profile is open towards the pneumatic chamber, if the volume of the pneumatic chamber is increasing in a movement of the striker in the direction of impact, and the cross-sectional profile is opened away from the pneumatic chamber, if the volume of the pneumatic chamber during a movement of the striker is decreasing in the direction of impact.
  • An embodiment provides that the sealing element is asymmetrical with respect to any plane perpendicular to the axis.
  • One embodiment has a stop on which the pivotable sealing element rests in the unfolded position and is spaced in the retracted position.
  • the stop supports the sealing element in the unfolded position against the forces acting on the sealing element.
  • One embodiment has a throttle that connects the pneumatic chamber to an air reservoir.
  • An effective cross-sectional area of the pneumatic chamber defined by the differential of the volume of the pneumatic chamber in the direction of impact is greater than one hundred times a cross-sectional area of the throttle.
  • the striker is moved parallel to the axis, resulting in a volume change of the pneumatic chamber proportional to the displacement along the axis and the effective cross-sectional area.
  • the effective cross-sectional area can be determined by the mathematical operation of differentiating according to the direction of movement or impact.
  • the effective cross-sectional area corresponds to the largest cross-sectional area perpendicular to the axis.
  • the ratio of the effective cross-sectional area of the pneumatic chamber to the Cross-sectional area of the throttle determines a relative flow velocity of the air in the throttle relative to the speed of the striker. From this relative flow rate, the air can escape quickly enough from the pneumatic chamber, without a pressure gradient builds up to the environment. It was recognized that an absolute speed of air in the throttle can not be exceeded. However, the throttle seems to lock a limit of absolute speed.
  • the ratio of one hundred times, preferably three hundred times, is chosen so that in a driven by the percussion striker, the absolute velocity of the air is achieved in the throttle, with a manually moving striker, the absolute speed is clearly below.
  • the throttle locks in the beaten doubler and opens when manually moving anvil.
  • a flow passage through the valve means may have a cross-sectional area which is less than one-hundredth of the effective cross-sectional area of the pneumatic chamber.
  • the cross-sectional area may, for example, be greater than 1/1500 or greater than 1/2000 of the effective cross-sectional area.
  • the cross-sectional area of the closed / throttling valve may be formed by bores, notches and / or grooves extending along the axis in the sealing element.
  • Fig. 1 shows a hammer drill 1 as an embodiment of a chiseling machine tool.
  • the hammer drill 1 has a machine housing 2, in which a motor 3 and a driven by the motor 3 pneumatic percussion 4 are arranged and a tool holder 5 is preferably releasably attached.
  • the motor 3 is, for example, an electric motor which is supplied with power via a wired mains connection 6 or a rechargeable battery system.
  • the pneumatic impact mechanism 4 drives a tool 7 inserted into the tool holder 5 , for example a drill bit or a chisel, away from the hammer drill 1 , along an axis 8 in the direction of impact 9 into a workpiece.
  • the hammer drill 1 optionally has a rotary drive 10 , which can rotate the tool 7 in addition to the striking movement about the axis 8 .
  • a rotary drive 10 which can rotate the tool 7 in addition to the striking movement about the axis 8 .
  • On the machine housing 2 one or two handles 11 are attached, which allow a user to guide the hammer drill 1 .
  • the pneumatic impact mechanism 4 shown by way of example has a percussion piston 12, which is excited by an excited air spring 13 to move forward, ie in the direction of impact 9, along the axis 8 .
  • the percussion piston 12 strikes an anvil 20 and thereby releases a portion of its kinetic energy to the striker 20 . Due to the recoil and excited by the air spring 13 , the percussion piston 12 moves after behind, ie against the direction of impact 9 until the compressed air spring 13, the percussion piston 12 drives back to the front.
  • the air spring 13 is formed by a pneumatic chamber which is closed axially, forward by a rear end face 21 of the percussion piston 12 and axially, to the rear by an excitation piston 22 .
  • the pneumatic chamber can be circumferentially closed by a hammer tube 23 , in which the percussion piston 12 and the exciter piston 22 are guided along the axis 8 .
  • the percussion piston 12 can slide in a cup-shaped excitation piston, wherein the excitation piston closes the cavity of the pneumatic chamber in the radial direction, ie circumferentially.
  • the air spring 13 is energized by a forced, oscillating movement along the axis 8 of the exciter piston 22 .
  • An eccentric 24, a wobble drive, etc. can convert the rotational movement of the motor 3 in the linear oscillating motion.
  • a period of forced movement of the exciter piston 22 is tuned to the interaction of the system of percussion piston 12, air spring 13 and striker 20 and their relative axial distances, in particular a predetermined impact point 25 of the percussion piston 12 with the striker 20 to the system resonant and thus optimal for an energy transfer from the motor 3 to the percussion piston 12 to stimulate.
  • the striker 20 is a body, preferably a body of revolution, with a front impact surface 26 exposed in the direction of impact 9 and a rear impact surface 27 exposed against the direction of impact 9. Impact on its rear impact surface 27 is transmitted to the striker 20 on its front striking surface 26 adjacent tool 7.
  • the striker 20 may be referred to its function as an intermediate beater.
  • a guide 28 guides the striker 20 along the axis 8.
  • the striker 20 partially dives with a rear end into a rear guide section 29 .
  • the rear end rests with its radial outer surface on the guide portion 29 in the radial direction.
  • a front guide portion 30 may equally surround a front end of the striker 20 and restrict its radial movement.
  • the rear and the front guide portion 29, 30 form with their axially aligned surfaces at the same time two stops which limit an axial movement of the striker 20 on a distance between the rear stop 29 and the front, lying in the direction of impact 9 stop (striker) 30 .
  • the striker 20 has a thickened central portion 33, which abuts with its end faces on the axial surfaces of the guide portions 29, 30 .
  • the example shown guide 28 has a, for example, cylindrical, circumferentially closed guide tube 31, in which the Anvil 20.
  • the thicker portion 33 of the striker 20 is radially spaced with its lateral surface 34, ie radial outer surface, at least in sections or along its entire circumference by an inner wall 32 of the guide tube 31 .
  • Over the entire axial length of the central thickened portion 33 extends a groove-shaped or cylindrical gap 35 between the striker 20 and the guide tube 31.
  • the gap 35 may for example have a radial dimension of between 0.5 mm and 4 mm.
  • the tool 7 When chiselling, the tool 7 is supported on the front striking surface 26 of the striker 20 , whereby the striker 20 is held in engagement with the rear stop 29 ( Fig. 2 ).
  • the impact mechanism 4 is designed for the engaged position of the striker 20 .
  • the predetermined impact point 25 ( Fig. 2 ) of the percussion piston 12 and reversal point in the movement of the percussion piston 12 is determined by the rear impact surface 27 of the engaged striker 20 .
  • the beating function of the pneumatic percussion mechanism 4 should be interrupted, otherwise the hammer drill 1 hits empty.
  • An impact of the percussion piston 12 on the striker 20 causes the striker 20 to slide to the front stop 30 and preferably stops in its vicinity.
  • the percussion piston 12 can move beyond the predetermined impact point 25 to the front, in the direction of impact 9 up to the preferably damping stop 30 .
  • the effect of the air spring 13 is reduced or canceled, which is why the percussion piston 12 stops due to the weakened or lacking coupling to the excitation piston 22 .
  • the impact mechanism 4 is activated again when the striker 20 is engaged to the rear stop 29 and the percussion piston 12, the vent opening 36 closes.
  • the striker 20 remains lying 30 for an empty blow preferably in the vicinity of the front stopper, the anvil 20 can move substantially unrestrained in the impact direction 9 to the front stop 30, but the movement is in the opposite direction toward the rear stop 29 against a spring force at least one air spring 40.
  • the spring force of the air spring 40 is controlled in dependence on the direction of movement of the striker 20, based on the guide 28 .
  • An at least partially radially extending surface of the striker 20 and an at least partially radially extending surface of the guide 28 form inner surfaces of the pneumatic chamber 40 for the air spring, which are oriented perpendicular or inclined to the axis 8 .
  • An axial distance of the two radially extending surfaces changes with the movement of the striker 20 and thus the volume of the pneumatic chamber 40. The volume change causes a change in the pressure within the pneumatic chamber 40.
  • a rear bounce surface 41 of the thicker section 33 facing the direction of impact 9 can form the first radially extending inner surface of the pneumatic chamber 40 .
  • a rear bounce surface 42 of the guide 28, which points in the direction of impact 9 and defines the rear stop 29 with the rear bounce surface 41 of the thicker section 33, may be the second radially extending inner surface of the pneumatic chamber 40 .
  • the pneumatic chamber 40 is closed on one side by the guide 28 and on the other side by the striker 22 .
  • a hermetic, airtight seal between the striker 20 and the guide 28 is effected by a first sealing element 43 and a second sealing element 44.
  • the sealing elements 43, 44 are arranged offset from one another along the axis 8 .
  • the first sealing element 43 is arranged, for example, between the two stops 29, 30, the second sealing element 44 axially outside the two stops 29, 30, that is, the respective bouncing surfaces 42 .
  • Between the two sealing elements 43, 44 are the radially extending inner surfaces of the pneumatic chamber 40.
  • the sealing elements 43, 44 are arranged on portions of the striker 20 of different cross section, whereby the distance of the sealing elements 43, 44 to the axis of the eighth is different in size. In other embodiments, at least portions of the sealing elements 43, 44 are at different distances from the axis 8. In a projection on a plane perpendicular to the axis 8 , the two seals do not overlap, or at least in sections, not.
  • the dependence of the air spring 40 on the direction of movement of the striker 20 is achieved in that at least one of the sealing elements 43, 44 is designed as a valve 100.
  • An air duct 45 binds the pneumatic chamber 40 to an air reservoir in the environment, eg the machine housing 2 .
  • the valve 100 is arranged, which controls an air flow through the channel 45 .
  • the control takes place in dependence on the movement of the striker 20.
  • the valve 100 opens and air can flow from the reservoir through the channel 45 into the increasing volume of the pneumatic chamber 40 ; the air spring is thereby deactivated.
  • the valve 100 locks the channel 45 when the striker 20 against the Direction of impact 9 moves.
  • the pressure in the pneumatic chamber 40 increases with the decreasing volume of the pneumatic chamber 40 , whereby the air spring 40 counteracts the movement of the striker 20 .
  • the valve 100 is an automatic or self-medium actuated valve 100, eg a check valve or a throttle check valve.
  • the valve 100 is actuated by an air flow which flows into the valve 100 .
  • the air flow is a result of a pressure difference between the pneumatic chamber 40 and via the valve 100 associated with their space 51.
  • the bonded area 51 can be a very large air reservoir, for example, the environment, the interior of the machine housing 51, or other finished, pneumatic chamber with limited volume.
  • FIG. 3 and FIG. 5 show in longitudinal section through the percussion an exemplary embodiment of the valve 100 in the closed w. open position.
  • Cross sections through the closed valve 100 in the plane IV-IV and the open valve 100 in the plane VI-VI are in 4 and FIG. 6 shown.
  • Fig. 7 shows an enlarged partial section of the valve 100th
  • a lip seal 101 spans the central portion 33 of the striker 20.
  • the lip seal 101 has a tubular, cylindrical attachment portion 103, with which the lip seal 101 is attached to the striker 20 .
  • the attachment portion 103 may be inserted, for example, on the groove bottom 88 in an annular groove 106 in the middle portion 33 .
  • the attachment portion can clamp 103 on the striker 20, glued or otherwise secured such as to suppress slipping of the lip seal 101 along the axis. 8
  • a lip 102 of the lip seal 101 is inclined relative to the axis 8 and a radial distance to the mounting portion 103 increases toward the pneumatic chamber 40.
  • the contour of the lip 102 may, for example, partially hollow cone-shaped with a direction towards the pneumatic chamber 40 opening cone his.
  • the lip 102 and the mounting portion 103 surrounding a bag-like cavity 104 which is closed open in the direction to the pneumatic chamber 40 and in the direction away from the pneumatic chamber 40th
  • the bag-like cavity 104 opens against the direction of impact 9.
  • In a section long to the axis 8 of the lip seal 101 has a V-shaped or U-shaped profile.
  • the lip 102 is pivotable relative to the attachment portion 103 so that a radial dimension 110 of the lip seal 101 is variable.
  • the radial dimension 110 may, for example, be the difference between the outside diameter and the inside diameter of the lip sealing ring 101 .
  • the lip seal 101 can be in an unfolded position (FIG. Fig. 4 ) occupy, in which the lip 102 is pivoted in the greatest possible distance from the attachment portion 103 .
  • An end face of the lip sealing ring 101 which is oriented perpendicular to the axis 8, for example, corresponds to the cross-sectional area of the gap 35.
  • the lip 102 contacts with a contact portion 113, the guide tube 31.
  • the lip seal ring 101 may be from the extended position to a collapsed Position ( Fig. 6 ) are pivoted. The end face of the lip seal 101 is thereby reduced from the end face of the unfolded lip seal 101 , which reduces the radial dimension 101b . The contact portion 113 comes off the guide tube 31.
  • the lip seal 101 forms the sealing element of the valve 100. With a lip seal 101 unfolded, the valve 100 is in a closed / throttled and with a collapsed lip seal 101 , the valve 100 is in an open position. The change of the lip seal 101 between the folded and unfolded position is effected by the pressure ratio in the pneumatic chamber 40 and the flow direction in the gap 35 . A flow of air towards the rear pneumatic chamber 40 flows to a surface 114 of the lip 102 that is partially radial to the guide 28 . The inflowing air causes the lip 102 to pivot towards the attachment portion 103, and consequently, the lip seal 101 to collapse . The continuing air keeps the lip seal 101 in the folded position, leaving the valve 100 open.
  • an air flow from the rear, pneumatic chamber 40 flows into a surface 114 of the lip 102, which points away from the guide 28 partially radially.
  • the inflowing air thereby causes the lip 102 to pivot away from the attachment portion 103 toward the guide tube 31 .
  • the lip seal 101 goes into the unfolded position. In the unfolded position, the pivotable lip 102 abuts against a stop 119 with at least a portion of the surface 114 facing away from the pneumatic chamber 40 .
  • the stopper 119 is formed, for example, by the guide tube 31 against which the contact portion 113 abuts.
  • the valve 100 is closed and kept closed.
  • the lip 102 may be made of an elastic material, eg rubber.
  • a thickness of the lip 102 may be significantly less than its dimension along the axis 8 .
  • the relatively low thickness of the lip 102 allows the airflow into and / or out of the pneumatic chamber 40, the lip 102 is pivoted by bending.
  • the lip 102 is resiliently biased to the deployed position. In a basic position, the valve 100 is closed. In this embodiment, it is sufficient that the air flow into the pneumatic chamber 40 causes the bending.
  • the lip 102 and attachment portion 103 may be a one-piece, monolithic, or one-piece molded component of the same material, eg, rubber.
  • An area in which the pivotable lip 102 merges into the fixing portion 103 immovable with respect to the striker 20 may be farther from the pneumatic chamber 40 than the contact portion 113.
  • a solid state hinge 107 may connect the lip 102 to the attachment portion 103 .
  • the solid-state joint 107 has a smaller thickness than the lip 102, whereby a pivoting movement takes place mainly around the solid-state joint 107 .
  • the second sealing element 44 can be offset axially relative to the rear stop 29 , counter to the direction of impact 9 , and can be, for example, a sealing ring mounted in a stationary manner in the guide 28 .
  • the sealing ring 44 is inserted, for example, in the sleeve 29 and terminates flush with a rear end 75 of the striker 20 from.
  • the rear end 75 of the striker 20 has a smaller diameter than the middle portion 33.
  • Fig. 8 shows an embodiment in which the lip 102 is mounted rotatably mounted in a separate mounting portion 103 .
  • the attachment portion 103 has a bearing shell 116 into which a bearing head 117 of the lip 102 is inserted.
  • Fig. 9 shows a further embodiment of the valve 100.
  • a stop 118 On the side remote from the pneumatic chamber 40 side rises from the mounting portion 103 in the radial direction, a stop 118.
  • the lip 102 is located with a portion of its facing away from the pneumatic chamber 40 surface 114 on the stop 118th when the lip seal 101 is opened. In the folded position, the lip 102 is pivoted away from the stop or reference (dashed line).
  • the stop 118 on the striker 20 limits the pivotal movement of the lip 102.
  • the embodiment with the stop 118 is exemplified with a rotatably mounted lip 102 , may equally be used for a lip 102 that is flexible by a solid-state hinge 107 or over its length.
  • the sealing element 101 is anchored in the inner wall and the lip 102 touches the striker 20th
  • Fig. 10 shows in longitudinal section a further embodiment with a rear air spring 40, a front air spring 120 and at least the valve 100 for controlling the behavior of the striker 20.
  • a forward movement ie in the direction of impact 9 of the striker 20
  • the volume of the rear pneumatic chamber 40 is increased and reduces the volume of the front pneumatic chamber 120 .
  • the volume of air displaced in the front pneumatic chamber 120 may flow through the valve 100 into the rear pneumatic chamber 40 .
  • the volume of the front pneumatic chamber 120 increases and reduces the volume of the rear pneumatic chamber 40.
  • the spring force of the rear air spring 40 and the front air spring 120 is dependent on the direction of movement of the striker 20 controlled.
  • the valve 100 prevents air flow which would equalize the increased pressure in the rear pneumatic chamber 40 and the reduced pressure in the front pneumatic chamber 120 .
  • the backward movement therefore takes place against the spring force of the two air springs 40 and 120 and is braked.
  • the spring force of the air springs 40, 120 may be different, the pressure-loaded rear air spring 40 may exhibit a greater braking effect than the front air spring 120 .
  • the front pneumatic spring 120 of the front air spring has an at least partially radially extending front inner wall 131 formed by the guide 28 and an at least partially radially extending rear inner wall 132 formed by the striker 20 .
  • the rear pneumatic chamber 40 of the rear air spring has an at least partially radially extending front inner wall 41, which is formed by the striker 20 , and an at least partially radially extending, rear inner wall 42, which is formed by the guide 28 .
  • the pneumatic chambers 40, 120 are closed by the inner wall 32 of the cylindrical or prismatic guide tube 31 .
  • the pneumatic chambers 40, 120 are closed by the striker 20 .
  • a first sealing element 43 and a second sealing element 44 arranged to seal the rear pneumatic chamber 40 airtight.
  • the front and rear inner walls 41, 42 of the rear pneumatic chamber 40 are disposed along the axis 8 between the first seal member 43 and the second seal member 44 .
  • a third sealing element 133 is in the direction of impact 9 in front of the front inner wall 131 of the front arranged pneumatic chamber 120 .
  • the front and rear inner walls 131, 132 of the front pneumatic chamber 120 are located along the axis 8 within the first seal member 43 and the third seal member 133.
  • the coupled via the air duct 134 front and rear pneumatic chamber 40, 120 have a constant relative to the environment closed air volume, wherein a distribution of the air volume to the two chambers 40, 120 varies depending on the current position of the striker 20 .
  • Fig. 11 shows an embodiment with a stationary valve 180 in a pneumatic chamber 40 whose volume increases in movement of the striker 20 in the direction of impact 9 .
  • the construction of the valve 180 may correspond to the valve 100 .
  • a lip sealing ring 181 of the valve 180 is fastened in the guide 28 and inserted, for example, in an annular groove of a sleeve 29 inserted into the guide tube 31 .
  • An annular pivotable lip 182 is inclined relative to the axis 8 and extends toward the pneumatic chamber 40 from the guide 28.
  • the pivotable lip 182 may contact the striker 20 in a deployed position.
  • the pivotable lip 182 contacts the striker 20 at its smaller diameter end portion 76 .
  • the first sealing element 43 on the circumference of the central portion 33 may be a permanently sealing sealing element or a valve which is inserted, for example, in an annular groove 160 in the central portion.
  • the speed of the striker 20 in the direction of impact 9 is approximately in the range of 1 m / s to 10 m / s at a blank. Accordingly, the volume of the pneumatic chamber 40 increases rapidly . As a result of the opened valve 100 , air flows into the pneumatic chamber 40 at a high rate, so that a pressure equalization rapidly sets in.
  • the valve 50 releases in its open position a flow-through surface (hydraulic surface) which is at least 1/30, preferably at least 1/20, or at least 10% of the annular, effective cross-sectional area of the volume of the pneumatic chamber 40 .
  • the hydraulic surface is defined perpendicular to the flow direction in the valve 50 .
  • the effective cross-sectional area is the differential of the volume after the direction of movement, ie the change in volume is determined by the product of the effective cross-sectional area and the longitudinal displacement of the striker 20.
  • the valve 100 closes and the compression of the closed pneumatic chamber 40 brakes the striker 20.
  • the throttle opening 54 leaves only a small air flow, whereby the overpressure in the pneumatic chamber 40 is maintained.
  • the throttle opening 54 may be, for example, a bore through the wall of the guide tube 31 .
  • the area of a flow cross-section (hydraulic cross-section) of the throttle opening 54 is at least two orders of magnitude smaller than the annular cross-sectional area of the pneumatic chamber 40, eg less than 0.5 percent.
  • the throttle opening 54 is greater than 1/2000 or 1/1500 of the annular cross-sectional area to allow manual insertion of the striker 20 .
  • the flow cross-section or the cross-sectional area of the throttle opening 54 is determined at its narrowest point perpendicular to the flow direction.
  • the volume of the pneumatic chamber 40 changes in proportion to the velocity of the striker 20 and to the annular cross-sectional area of the volume enclosed by the pneumatic chamber 40 . If the throttle 54 to compensate for the change in volume without pressure change, the displaced air must pass through the throttle 20 at least one hundred times the speed of the striker.
  • the flow properties of air set the flow velocity an upper limit, which is why a pressure equalization is possible with a slow but not a fast moving striker 20 .
  • the valve 100 may be designed as a throttle valve which leaves a corresponding throttle opening open in a closed / throttling position.
  • the lip seal 101 may have axially extending bores 200 from a side facing the pneumatic chamber 40 to a side facing away from the pneumatic chamber 40 .
  • the diameter of the axial bores may, for example, have a cross section whose area is at least two orders of magnitude smaller than in the area of the flow cross section (hydraulic cross section) of the opened valve 100 , for example less than 0.5% and, for example, greater than 0.05%.
  • a throttle can also be made possible by a lip 102 which is not completely flush with the guide 31 .
  • the lip may have notches 201 at its contacting portion 113 .
  • a flow cross section of the throttle between the notch 201 and the guide 31 is within the above specified limits of at most 1/100, eg smaller 1/300 of the effective cross-sectional area, ie, in the illustrated example, the annular cross-sectional area of the volume of the pneumatic chamber 40.
  • channels for the restrictor may be introduced along the attachment portion 103 by grooves in the attachment portion 103 or groove bottom 106 .

Description

GEBIET DER ERFINDUNGFIELD OF THE INVENTION

Die vorliegende Erfindung betrifft eine Werkzeugmaschine, insbesondere eine handgeführte meißelnde Werkzeugmaschine, wie aus dem Oberbegriff von Anspruch 1 und der WO2009036526 A1 bekannt.The present invention relates to a machine tool, in particular a hand-guided chiseling machine tool, as from the preamble of claim 1 and the WO2009036526 A1 known.

Bei meißelnden Handwerkzeugmaschinen soll eine Meißeltätigkeit eingestellt werden, wenn ein Meißel von einem Werkstück abgehoben wird. Bei pneumatisch arbeitenden Schlagwerken kann eine Luftfeder mittels zusätzlicher Belüftungsöffnungen deaktiviert werden, welche nur bei einem ausgerückten Meißel geöffnet werden. Ein Döpper, auch als Zwischenschläger oder Amboss bezeichnet, sollte hierfür nach einem Leerschlag von den Belüftungsöffnungen entfernt bleiben. Allerdings ist dies teilweise aufgrund des Abpralls des Döppers an einem vorderen Anschlag nicht gegeben.In chiseling hand tools, a chisel action should be set when a chisel is lifted from a workpiece. For pneumatically operated striking mechanisms, an air spring can be deactivated by means of additional ventilation openings, which are only opened when the bit is disengaged. An anvil, also known as an intermediate beater or anvil, should be kept away from the vents after a space. However, this is partly due to the rebound of the anus on a front stop is not given.

OFFENBARUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION

Eine erfindungsgemäße Werkzeugmaschine hat einen Döpper, ein Führungsrohr in dem der Döpper längs einer Achse geführt ist, und eine pneumatische Kammer, die durch den Döpper, das Führungsrohr und eine eigenmedium-betätigte Ventileinrichtung abgeschlossen ist. Ein Volumen der pneumatischen Kammer ändert sich mit einer Bewegung des Döppers entlang der Achse .Die eigenmedium-betätigte Ventileinrichtung hat zwischen dem Döpper und dem Führungsrohr ein schwenkbares Dichtelement. Das schwenkbares Dichtelement ist bei einer Bewegung des Döppers in Schlagrichtung in eine eingeklappte Stellung und bei einer Bewegung des Döppers entgegen der Schlagrichtung in eine ausgeklappte Stellung verschwenkt. In der eingeklappten Stellung hat das Dichtelement eine erste Anströmfläche, definiert durch die Projektion des Dichtelements auf eine Ebene senkrecht zur Achse. In der ausgeklappten Stellung hat das Dichtelement eine zweite Anströmfläche, ebenfalls definiert als die Fläche einer Projektion des Dichtelements auf die Ebene senkrecht zur Achse. Die zweite Anströmfläche ist größer als die erste Anströmfläche. In der eingeklappten Stellung ist die radiale Abmessung des Dichtelements geringer als in der ausgeklappten Stellung. Die pneumatische Kammer dient als Döpperbremse, die durch die Bewegungsrichtung des Döppers gesteuert ist. Die pneumatische Kammer wird durch die Ventileinrichtung geschlossen, wenn der Döpper nach beispielsweise einem Leerschlag in die Werkzeugmaschine hinein läuft. Der sich mit der Bewegung des Döppers in der pneumatischen Kammer ändernde Druck bewirkten Abbremsen des Döppers. Die Ventileinrichtung öffnete die pneumatische Kammer, wenn der Döpper in Schlagrichtung bewegt wird. Die Bremse ist deaktiviert.A machine tool according to the invention has an anvil, a guide tube in which the anvil is guided along an axis, and a pneumatic chamber, which is closed by the striker, the guide tube and a self-medium-actuated valve device. A volume of the pneumatic chamber changes with movement of the striker along the axis. The intrinsic medium actuated valve means has a pivotable sealing element between the striker and the guide tube. The pivotable sealing element is pivoted in a folded position during movement of the striker in the direction of impact and in a movement of the striker against the direction of impact in an unfolded position. In the retracted position, the sealing element has a first inflow surface, defined by the projection of the sealing element on a plane perpendicular to the axis. In the deployed position, the sealing element has a second inflow surface, also defined as the area of a projection of the sealing element on the plane perpendicular to the axis. The second inflow area is larger than the first inflow area. In the folded position, the radial dimension of the sealing element is less than in the unfolded position. The pneumatic chamber serves as an anvil brake, which is controlled by the direction of movement of the beatpiece. The pneumatic chamber is closed by the valve means when the striker after, for example, a blank in the Machine tool runs into it. The pressure changing with the movement of the striker in the pneumatic chamber caused deceleration of the striker. The valve device opened the pneumatic chamber when the striker is moved in the direction of impact. The brake is deactivated.

Eine Ausgestaltung sieht vor, dass falls das Volumen der pneumatischen Kammer bei einer Bewegung des Döppers in Schlagrichtung zunehmend ist, das schwenkbare Dichtelement bei einem in Richtung zu der pneumatischen Kammer abfallenden Druckgradienten in die eingeklappte Stellung verschwenkt und bei einem in Richtung zu der pneumatischen Kammer ansteigendem Druckgradienten in die ausgeklappte Stellung verschwenkt ist, und falls das Volumen der pneumatischen Kammer bei einer Bewegung des Döppers in Schlagrichtung abnehmend ist, das schwenkbare Dichtelement bei einem in Richtung zu der pneumatischen Kammer ansteigendem Druckgradienten in die eingeklappte Stellung verschwenkt und bei einem in Richtung zu der pneumatischen Kammer abfallenden Druckgradienten in die ausgeklappte Stellung verschwenkt ist.One embodiment provides that, if the volume of the pneumatic chamber during a movement of the striker in the direction of impact is increasing, the pivotable sealing element is pivoted in a folded towards the pneumatic chamber pressure gradients in the retracted position and at a rising towards the pneumatic chamber Pressure gradient is pivoted in the unfolded position, and if the volume of the pneumatic chamber with a movement of the striker in the direction of impact is decreasing, the pivotable sealing element pivoted in a direction to the pneumatic chamber increasing pressure gradient in the folded position and in a direction towards the pneumatic chamber sloping pressure gradient is pivoted in the unfolded position.

Eine Ausgestaltung hat eine weitere pneumatischen Kammer, die durch den Döpper, das Führungsrohr und die eigenmedium-betätigte Ventileinrichtung abgeschlossen ist, wobei das Volumen der einen pneumatischen Kammer bei einer Bewegung des Döppers in Schlagrichtung zunehmend und ein Volumen der weiteren pneumatischen Kammer bei einer Bewegung des Döppers abnehmend ist und wobei die pneumatische Kammer und die weitere pneumatische Kammer durch die eigenmedium-betätigte Ventileinrichtung verbunden sind.An embodiment has a further pneumatic chamber, which is closed by the striker, the guide tube and the self-medium-actuated valve means, the volume of a pneumatic chamber with a movement of the striker in the direction of impact increasing and a volume of the further pneumatic chamber in a movement of the Döppers is decreasing and wherein the pneumatic chamber and the other pneumatic chamber are connected by the self-medium-actuated valve device.

Eine Ausgestaltung sieht vor, dass das Dichtelement an dem Döpper befestigt und in der ausgeklappten Stellung ein Kontaktabschnitt des Dichtelements das Führungsrohr berührt oder alternativ das Dichtelement an dem Führungsrohr befestigt und in der ausgeklappten Stellung der Kontaktabschnitt des Dichtelements den Döpper berührt. Der berührende Kontaktabschnitt begrenzt die Schwenkbewegung des beweglichen Abschnitts des Dichtelements. Das Dichtelement wird hierdurch in der ausgeklappten Stellung stabilisiert.One embodiment provides that the sealing element attached to the striker and in the unfolded position a contact portion of the sealing element contacts the guide tube or alternatively attached the sealing element to the guide tube and contacts the striker in the unfolded position of the contact portion of the sealing element. The contacting contact portion limits the pivotal movement of the movable portion of the sealing element. The sealing element is thereby stabilized in the unfolded position.

Eine Ausgestaltung sieht vor, dass falls das Volumen der pneumatischen Kammer bei einer Bewegung des Döppers in Schlagrichtung zunehmend ist, ein Schwenkgelenk des Dichtelements gegenüber dem Kontaktabschnitt, längs der Achse, weiter von der pneumatische Kammer entfernt ist, und falls das Volumen der pneumatischen Kammer bei einer Bewegung des Döppers in Schlagrichtung abnehmend ist, das Schwenkgelenk des Dichtelements gegenüber dem Kontaktabschnitt, längs der Achse, näher an der pneumatische Kammer angeordnet ist. Das Schwenkgelenk kann durch ein Festkörpergelenk gebildet sein.One embodiment provides that if the volume of the pneumatic chamber is increasing with a movement of the striker in the direction of impact, a pivot joint of the sealing element opposite the contact portion, along the axis, further away from the pneumatic chamber, and if the volume of the pneumatic chamber at a movement of the striker in the direction of impact is decreasing, the pivot joint of the sealing element relative to the contact portion, along the axis, closer to the pneumatic chamber is arranged. The pivot joint may be formed by a solid-state joint.

Eine Ausgestaltung sieht vor, dass das Dichtelement mit einen Befestigungsabschnitt an dem Döpper oder dem Führungsrohr befestigt ist und eine Lippe des Dichtelements gegenüber der Achse geneigt ist, wobei falls das Volumen der pneumatischen Kammer bei einer Bewegung des Döppers in Schlagrichtung zunehmend ist, die Lippe längs der Achse hin zu der pneumatischen Kammer von dem Befestigungsabschnitt weg geneigt ist, und falls das Volumen der pneumatischen Kammer bei einer Bewegung des Döppers in Schlagrichtung abnehmend ist, die Lippe längs der Achse weg von der pneumatischen Kammer von dem Befestigungsabschnitt weg geneigt ist.One embodiment provides that the sealing element is fastened with a fastening portion on the striker or the guide tube and a lip of the sealing element is inclined relative to the axis, wherein if the volume of the pneumatic chamber is increasing with a movement of the striker in the direction of impact, the lip along the axis of the pneumatic chamber is inclined away from the mounting portion, and if the volume of the pneumatic chamber is decreasing in the impact direction when the striker is moving, the lip is inclined away from the mounting portion along the axis away from the pneumatic chamber.

Eine Ausgestaltung sieht vor, dass das Dichtelement ein V- oder U-förmiges Querschnittsprofil längs der Achse aufweist, wobei das Querschnittsprofil in Richtung zur der pneumatischen Kammer geöffnet ist, falls das Volumen der pneumatischen Kammer bei einer Bewegung des Döppers in Schlagrichtung zunehmend ist, und das Querschnittsprofil von der pneumatischen Kammer abgewandt geöffnet ist, falls das Volumen der pneumatischen Kammer bei einer Bewegung des Döppers in Schlagrichtung abnehmend ist.An embodiment provides that the sealing element has a V- or U-shaped cross-sectional profile along the axis, wherein the cross-sectional profile is open towards the pneumatic chamber, if the volume of the pneumatic chamber is increasing in a movement of the striker in the direction of impact, and the cross-sectional profile is opened away from the pneumatic chamber, if the volume of the pneumatic chamber during a movement of the striker is decreasing in the direction of impact.

Eine Ausgestaltung sieht vor, dass das Dichtelement asymmetrisch bezüglich jeglicher Ebenen senkrecht zur Achse ist.An embodiment provides that the sealing element is asymmetrical with respect to any plane perpendicular to the axis.

Eine Ausgestaltung hat einen Anschlag an dem das schwenkbare Dichtelement in der ausgeklappten Stellung anliegt und in der eingeklappten Stellung beabstandet ist. Der Anschlag unterstützt das Dichtelement in der ausgeklappten Stellung gegen die auf das Dichtelement wirkenden Kräfte.
Eine Ausführungsform hat eine Drossel, welche die pneumatische Kammer mit einem Luftreservoir verbindet. Eine effektive Querschnittsfläche der pneumatischen Kammer, definiert durch das Differential des Volumens der pneumatischen Kammer nach der Schlagrichtung ist größer als das Hundertfache einer Querschnittsfläche der Drossel. Der Döpper wird parallel zu der Achse bewegt, wodurch sich eine Volumenänderung der pneumatischen Kammer proportional zu der Verschiebung längs der Achse und der effektiven Querschnittsfläche ergibt. Die effektive Querschnittsfläche kann durch die mathematische Operation des Differenzierens nach der Bewegungs- bzw. Schlagrichtung ermittelt werden. Bei einer zylindrischer Führung und einem zylindrischen Döpper entspricht die effektive Querschnittsfläche der größten Querschnittsfläche senkrecht zur Achse. Das Verhältnis der effektiven Querschnittsfläche der pneumatischen Kammer zu der Querschnittsfläche der Drossel legt eine relative Strömungsgeschwindigkeit der Luft in der Drossel bezogen auf die Geschwindigkeit des Döppers fest. Ab dieser relativen Strömungsgeschwindigkeit kann die Luft rasch genug aus der pneumatischen Kammer entweichen, ohne dass sich ein Druckgefälle zur Umgebung aufbaut. Es wurde erkannt, dass ein absolute Geschwindigkeit der Luft in der Drossel nicht überschritten werden kann. Die Drossel scheint aber einem Grenzwert der absoluten Geschwindigkeit zu sperren. Das Verhältnis des Hundertfachen, bevorzugt des Dreihundertfachen, ist so gewählt, dass bei einem von dem Schlagwerk getriebenen Döpper die absolute Geschwindigkeit der Luft in der Drossel erreicht wird, bei einem manuell bewegten Döpper die absolute Geschwindigkeit deutlich unterschritten wird. Im Ergebnis sperrt die Drossel bei dem geschlagen Döpper und öffnet bei manuell bewegten Döpper.
One embodiment has a stop on which the pivotable sealing element rests in the unfolded position and is spaced in the retracted position. The stop supports the sealing element in the unfolded position against the forces acting on the sealing element.
One embodiment has a throttle that connects the pneumatic chamber to an air reservoir. An effective cross-sectional area of the pneumatic chamber defined by the differential of the volume of the pneumatic chamber in the direction of impact is greater than one hundred times a cross-sectional area of the throttle. The striker is moved parallel to the axis, resulting in a volume change of the pneumatic chamber proportional to the displacement along the axis and the effective cross-sectional area. The effective cross-sectional area can be determined by the mathematical operation of differentiating according to the direction of movement or impact. With a cylindrical guide and a cylindrical striker, the effective cross-sectional area corresponds to the largest cross-sectional area perpendicular to the axis. The ratio of the effective cross-sectional area of the pneumatic chamber to the Cross-sectional area of the throttle determines a relative flow velocity of the air in the throttle relative to the speed of the striker. From this relative flow rate, the air can escape quickly enough from the pneumatic chamber, without a pressure gradient builds up to the environment. It was recognized that an absolute speed of air in the throttle can not be exceeded. However, the throttle seems to lock a limit of absolute speed. The ratio of one hundred times, preferably three hundred times, is chosen so that in a driven by the percussion striker, the absolute velocity of the air is achieved in the throttle, with a manually moving striker, the absolute speed is clearly below. As a result, the throttle locks in the beaten doubler and opens when manually moving anvil.

In der ausgeklappten Stellung des schwenkbaren Dichtelement kann ein Strömungskanal durch die Ventileinrichtung eine Querschnittsfläche aufweist, welche geringer als ein Hundertstel der effektiven Querschnittsfläche der pneumatischen Kammer ist. Die Querschnittsfläche kann beispielsweise größer 1/1500 oder größer einem 1/2000 der effektiven Querschnittsfläche ausgebildet sein. Die Querschnittsfläche des geschlossen/drosselnden Ventils kann durch längs der Achse verlaufende Bohrungen, Kerben und/oder Rillen in dem Dichtelement gebildet sein.In the deployed position of the pivotable sealing member, a flow passage through the valve means may have a cross-sectional area which is less than one-hundredth of the effective cross-sectional area of the pneumatic chamber. The cross-sectional area may, for example, be greater than 1/1500 or greater than 1/2000 of the effective cross-sectional area. The cross-sectional area of the closed / throttling valve may be formed by bores, notches and / or grooves extending along the axis in the sealing element.

KURZE BESCHREIBUNG DER FIGURENBRIEF DESCRIPTION OF THE FIGURES

Die nachfolgende Beschreibung erläutert die Erfindung anhand von exemplarischen Ausführungsformen und Figuren. In den Figuren zeigen:

Fig. 1
eine Handwerkzeugmaschine mit pneumatischem Schlagwerk und einer Döpperbremse,
Fig. 2
das pneumatische Schlagwerk in Betriebsstellung,
Fig. 3
Döpperbremse mit einer Kammer und bewegten Ventil in bremsender Stellung;
Fig. 4
Querschnitte in den Ebenen IV-IV von Fig. 3;
Fig. 5
Döpperbremse von Fig. 3 in gelöster Stellung;
Fig. 6
Querschnitte in den Ebenen VI-VI von Fig. 5;
Fig. 7
Detailansicht eines Ventils;
Fig. 8
Ausführungsform mit einem anders gestalteten Ventil;
Fig. 9
Ausführungsform mit einem anders gestalteten Ventil;
Fig. 10
Döpperbremse mit zwei Kammern;
Fig. 11
Döpperbremse mit stationärem Ventil.
The following description explains the invention with reference to exemplary embodiments and figures. In the figures show:
Fig. 1
a hand tool with pneumatic percussion and an anvil brake,
Fig. 2
the pneumatic impact mechanism in operating position,
Fig. 3
Striker brake with a chamber and moving valve in braking position;
Fig. 4
Cross sections in the levels IV-IV of Fig. 3 ;
Fig. 5
Striker brake of Fig. 3 in a detached position;
Fig. 6
Cross sections in the VI-VI planes of Fig. 5 ;
Fig. 7
Detail view of a valve;
Fig. 8
Embodiment with a differently designed valve;
Fig. 9
Embodiment with a differently designed valve;
Fig. 10
Beater with two chambers;
Fig. 11
Beater brake with stationary valve.

Gleiche oder funktionsgleiche Elemente werden durch gleiche Bezugszeichen in den Figuren indiziert, soweit nicht anders angegeben.Identical or functionally identical elements are indicated by the same reference numerals in the figures, unless stated otherwise.

AUSFÜHRUNGSFORMEN DER ERFINDUNGEMBODIMENTS OF THE INVENTION

Fig. 1 zeigt einen Bohrhammer 1 als Ausführungsform für eine meißelnde Werkzeugmaschine. Der Bohrhammer 1 hat ein Maschinengehäuse 2, in dem ein Motor 3 und ein von dem Motor 3 angetriebenes pneumatisches Schlagwerk 4 angeordnet sind und eine Werkzeugaufnahme 5 vorzugsweise lösbar befestigt ist. Der Motor 3 ist beispielsweise ein Elektromotor, der über einen kabelgebundenen Netzanschluss 6 oder ein aufladbares Batteriesystem mit Strom versorgt wird. Das pneumatische Schlagwerk 4 treibt ein in die Werkzeugaufnahme 5 eingesetztes Werkzeug 7, z.B. einen Bohrmeißel oder einen Meißel, von dem Bohrhammer 1 weg, längs einer Achse 8 in Schlagrichtung 9 in ein Werkstück. Der Bohrhammer 1 weist optional einen Drehantrieb 10 auf, der das Werkzeug 7 zusätzlich zu der schlagenden Bewegung um die Achse 8 drehen kann. An dem Maschinengehäuse 2 sind ein oder zwei Handgriffe 11 befestigt, die einem Anwender ermöglichen, den Bohrhammer 1 zu führen. Eine rein meißelnde Ausführungsform, z.B. ein Meißelhammer, unterscheidet sich von dem Bohrhammer 1 im wesentlichen nur durch das Fehlen des Drehantriebs 10. Fig. 1 shows a hammer drill 1 as an embodiment of a chiseling machine tool. The hammer drill 1 has a machine housing 2, in which a motor 3 and a driven by the motor 3 pneumatic percussion 4 are arranged and a tool holder 5 is preferably releasably attached. The motor 3 is, for example, an electric motor which is supplied with power via a wired mains connection 6 or a rechargeable battery system. The pneumatic impact mechanism 4 drives a tool 7 inserted into the tool holder 5 , for example a drill bit or a chisel, away from the hammer drill 1 , along an axis 8 in the direction of impact 9 into a workpiece. The hammer drill 1 optionally has a rotary drive 10 , which can rotate the tool 7 in addition to the striking movement about the axis 8 . On the machine housing 2 , one or two handles 11 are attached, which allow a user to guide the hammer drill 1 . A purely chiseling embodiment, eg a chisel hammer, differs from the hammer drill 1 essentially only by the absence of the rotary drive 10.

Das beispielhaft dargestellte pneumatische Schlagwerk 4 hat einen Schlagkolben 12, der durch eine erregte Luftfeder 13 zu einer Bewegung nach vorne, d.h. in Schlagrichtung 9, längs der Achse 8 angeregt wird. Der Schlagkolben 12 schlägt auf einen Döpper 20 auf und gibt dabei einen Teil seiner kinetischen Energie an den Döpper 20 ab. Aufgrund des Rückstoßes und angeregt durch die Luftfeder 13 bewegt sich der Schlagkolben 12 nach hinten, d.h. entgegen der Schlagrichtung 9, bis die komprimierte Luftfeder 13 den Schlagkolben 12 wieder nach vorne treibt. Die Luftfeder 13 ist durch eine pneumatische Kammer gebildet, die axial, nach vorne durch eine hintere Stirnfläche 21 des Schlagkolbens 12 und axial, nach hinten durch einen Erregerkolben 22 abgeschlossen ist. In radialer Richtung kann die pneumatische Kammer umfänglich durch ein Schlagrohr 23 abgeschlossen sein, in dem der Schlagkolben 12 und der Erregerkolben 22 längs der Achse 8 geführt sind. In anderen Bauformen kann der Schlagkolben 12 in einem topfförmigen Erregerkolben gleiten, wobei der Erregerkolben den Hohlraum der pneumatischen Kammer in radialer Richtung, d.h. umfänglich abschließt. Die Luftfeder 13 wird durch eine gezwungene, oszillierende Bewegung längs der Achse 8 des Erregerkolbens 22 erregt. Ein Exzenterantrieb 24, ein Taumelantrieb etc. kann die Drehbewegung des Motors 3 in die lineare, oszillierende Bewegung umsetzen. Eine Periode der gezwungenen Bewegung des Erregerkolbens 22 ist auf das Zusammenspiel des Systems aus Schlagkolben 12, Luftfeder 13 und Döpper 20 und deren relative axiale Abstände, insbesondere einen vorgegebenen Stoßpunkt 25 des Schlagkolbens 12 mit dem Döpper 20 abgestimmt, um das System resonant und damit optimal für eine Energieübertragung von dem Motor 3 auf den Schlagkolben 12 anzuregen.The pneumatic impact mechanism 4 shown by way of example has a percussion piston 12, which is excited by an excited air spring 13 to move forward, ie in the direction of impact 9, along the axis 8 . The percussion piston 12 strikes an anvil 20 and thereby releases a portion of its kinetic energy to the striker 20 . Due to the recoil and excited by the air spring 13 , the percussion piston 12 moves after behind, ie against the direction of impact 9 until the compressed air spring 13, the percussion piston 12 drives back to the front. The air spring 13 is formed by a pneumatic chamber which is closed axially, forward by a rear end face 21 of the percussion piston 12 and axially, to the rear by an excitation piston 22 . In the radial direction, the pneumatic chamber can be circumferentially closed by a hammer tube 23 , in which the percussion piston 12 and the exciter piston 22 are guided along the axis 8 . In other designs, the percussion piston 12 can slide in a cup-shaped excitation piston, wherein the excitation piston closes the cavity of the pneumatic chamber in the radial direction, ie circumferentially. The air spring 13 is energized by a forced, oscillating movement along the axis 8 of the exciter piston 22 . An eccentric 24, a wobble drive, etc., can convert the rotational movement of the motor 3 in the linear oscillating motion. A period of forced movement of the exciter piston 22 is tuned to the interaction of the system of percussion piston 12, air spring 13 and striker 20 and their relative axial distances, in particular a predetermined impact point 25 of the percussion piston 12 with the striker 20 to the system resonant and thus optimal for an energy transfer from the motor 3 to the percussion piston 12 to stimulate.

Der Döpper 20 ist ein Körper, vorzugsweise ein Rotationskörper, mit einer vorderen, in Schlagrichtung 9 freiliegenden Schlagfläche 26 und einer hinteren, entgegen der Schlagrichtung 9 freiliegenden Schlagfläche 27. Ein Stoß auf seine hintere Schlagfläche 27 überträgt der Döpper 20 auf das an seiner vorderen Schlagfläche 26 anliegende Werkzeug 7. Der Döpper 20 kann seiner Funktion entsprechend auch als Zwischenschläger bezeichnet werden.The striker 20 is a body, preferably a body of revolution, with a front impact surface 26 exposed in the direction of impact 9 and a rear impact surface 27 exposed against the direction of impact 9. Impact on its rear impact surface 27 is transmitted to the striker 20 on its front striking surface 26 adjacent tool 7. The striker 20 may be referred to its function as an intermediate beater.

Eine Führung 28 führt den Döpper 20 längs der Achse 8. In dem dargestellten Beispiel taucht der Döpper 20 teilweise mit einem hinteren Ende in einen hinteren Führungsabschnitt 29 ein. Das hintere Ende liegt mit seiner radialen Außenfläche an dem Führungsabschnitt 29 in radialer Richtung an. Ein vorderer Führungsabschnitt 30 kann gleichermaßen einen vorderes Ende des Döppers 20 umschließen und dessen radiale Bewegung einschränken. Der hintere und der vordere Führungsabschnitt 29, 30 bilden mit ihren axial ausgerichteten Flächen zugleich zwei Anschläge, die eine axiale Bewegung des Döppers 20 auf eine Wegstrecke zwischen dem hinteren Anschlag 29 und dem vorderen, in Schlagrichtung 9 liegenden Anschlag (Döpperanschlag) 30 begrenzen. Der Döpper 20 hat einen verdickten mittleren Abschnitt 33, welcher mit seinen Stirnflächen an den axialen Flächen der Führungsabschnitte 29, 30 anschlägt. Die beispielhaft dargestellte Führung 28 hat ein, beispielsweise zylindrisches, umfänglich geschlossenes Führungsrohr 31, in dem der Döpper 20. Der dickere Abschnitt 33 des Döppers 20 ist mit seiner Mantelfläche 34, d.h. radialen Außenfläche, wenigstens abschnittsweise oder entlang seines gesamten Umfangs von einer Innenwand 32 des Führungsrohrs 31 radial beabstandet. Über die gesamte axiale Länge des mittleren verdickten Abschnitts 33 verläuft ein rinnenförmiger oder zylindrischer Spalt 35 zwischen dem Döpper 20 und dem Führungsrohr 31. Der Spalt 35 kann beispielsweise eine radiale Abmessung von zwischen 0,5 mm und 4 mm haben.A guide 28 guides the striker 20 along the axis 8. In the illustrated example, the striker 20 partially dives with a rear end into a rear guide section 29 . The rear end rests with its radial outer surface on the guide portion 29 in the radial direction. A front guide portion 30 may equally surround a front end of the striker 20 and restrict its radial movement. The rear and the front guide portion 29, 30 form with their axially aligned surfaces at the same time two stops which limit an axial movement of the striker 20 on a distance between the rear stop 29 and the front, lying in the direction of impact 9 stop (striker) 30 . The striker 20 has a thickened central portion 33, which abuts with its end faces on the axial surfaces of the guide portions 29, 30 . The example shown guide 28 has a, for example, cylindrical, circumferentially closed guide tube 31, in which the Anvil 20. The thicker portion 33 of the striker 20 is radially spaced with its lateral surface 34, ie radial outer surface, at least in sections or along its entire circumference by an inner wall 32 of the guide tube 31 . Over the entire axial length of the central thickened portion 33 extends a groove-shaped or cylindrical gap 35 between the striker 20 and the guide tube 31. The gap 35 may for example have a radial dimension of between 0.5 mm and 4 mm.

Beim Meißeln stützt sich das Werkzeug 7 an der vorderen Schlagfläche 26 des Döppers 20 ab, wodurch der Döpper 20 an dem hinteren Anschlag 29 eingerückt gehalten wird (Fig. 2). Das Schlagwerk 4 ist auf die eingerückte Stellung des Döppers 20 ausgelegt. Der vorgegebene Stoßpunkt 25 (Fig. 2) des Schlagkolben 12 und Umkehrpunkt in der Bewegung des Schlagkolbens 12 wird durch die hintere Schlagfläche 27 des eingerückten Döppers 20 festgelegt.When chiselling, the tool 7 is supported on the front striking surface 26 of the striker 20 , whereby the striker 20 is held in engagement with the rear stop 29 ( Fig. 2 ). The impact mechanism 4 is designed for the engaged position of the striker 20 . The predetermined impact point 25 ( Fig. 2 ) of the percussion piston 12 and reversal point in the movement of the percussion piston 12 is determined by the rear impact surface 27 of the engaged striker 20 .

Sobald ein Anwender das Werkzeug 7 von dem Werkstück entfernt, soll die schlagende Funktion des pneumatischen Schlagwerks 4 unterbrochen werden, da sonst der Bohrhammer 1 leer schlägt. Ein Stoß des Schlagkolbens 12 auf den Döpper 20 führt dazu, dass der Döpper 20 zu dem vorderen Anschlag 30 gleitet und bevorzugt in dessen Nähe stehen bleibt. Der Schlagkolben 12 kann sich über den vorgegebenen Stoßpunkt 25 nach vorne, in Schlagrichtung 9 bis zu dem vorzugsweise dämpfenden Anschlag 30 hinausbewegen. In der über den Stoßpunkt 25 hinaus vorgerückten Stellung gibt der Schlagkolben 12 eine Belüftungsöffnung 36 in dem Schlagrohr 23 frei, durch welche die pneumatische Kammer der erregten Luftfeder 13 mit vorzugsweise der Umgebung in dem Maschinengehäuse 2 verbunden und belüftet wird. Die Wirkung der Luftfeder 13 wird reduziert oder aufgehoben, weshalb der Schlagkolbens 12 aufgrund der abgeschwächten oder ausbleibenden Ankopplung an den Erregerkolben 22 stehen bleibt. Das Schlagwerk 4 wird wieder aktiviert, wenn der Döpper 20 bis zu dem hinteren Anschlag 29 eingerückt wird und der Schlagkolben 12 die Belüftungsöffnung 36 verschließt.Once a user removes the tool 7 from the workpiece, the beating function of the pneumatic percussion mechanism 4 should be interrupted, otherwise the hammer drill 1 hits empty. An impact of the percussion piston 12 on the striker 20 causes the striker 20 to slide to the front stop 30 and preferably stops in its vicinity. The percussion piston 12 can move beyond the predetermined impact point 25 to the front, in the direction of impact 9 up to the preferably damping stop 30 . In the advanced beyond the impact point 25 position of the percussion piston 12 a vent opening 36 in the impact tube 23 free, through which the pneumatic chamber of the excited air spring 13 is preferably connected to the environment in the machine housing 2 and vented. The effect of the air spring 13 is reduced or canceled, which is why the percussion piston 12 stops due to the weakened or lacking coupling to the excitation piston 22 . The impact mechanism 4 is activated again when the striker 20 is engaged to the rear stop 29 and the percussion piston 12, the vent opening 36 closes.

Damit der Döpper 20 nach einem Leerschlag vorzugsweise in der Nähe des vorderen Anschlags 30 liegen bleibt, kann sich der Döpper 20 im wesentlichen ungebremst in Schlagrichtung 9 zu dem vorderen Anschlag 30 bewegen, in Gegenrichtung zu dem hinteren Anschlag 29 erfolgt die Bewegung jedoch gegen eine Federkraft wenigstens einer Luftfeder 40. Die Federkraft der Luftfeder 40 wird in Abhängigkeit der Bewegungsrichtung des Döppers 20, bezogen auf die Führung 28 gesteuert.Thus, the striker 20 remains lying 30 for an empty blow preferably in the vicinity of the front stopper, the anvil 20 can move substantially unrestrained in the impact direction 9 to the front stop 30, but the movement is in the opposite direction toward the rear stop 29 against a spring force at least one air spring 40. The spring force of the air spring 40 is controlled in dependence on the direction of movement of the striker 20, based on the guide 28 .

Eine wenigstens teilweise radial verlaufende Fläche des Döppers 20 und eine wenigstens teilweise radial verlaufende Fläche der Führung 28 bilden Innenflächen der pneumatischen Kammer 40 für die Luftfeder, welche senkrecht oder geneigt zur Achse 8 orientiert sind. Ein axialer Abstand der beiden radial verlaufenden Flächen ändert sich mit der Bewegung des Döppers 20 und damit das Volumen der pneumatischen Kammer 40. Die Volumenänderung bewirkt eine Änderung des Drucks innerhalb der pneumatischen Kammer 40. An at least partially radially extending surface of the striker 20 and an at least partially radially extending surface of the guide 28 form inner surfaces of the pneumatic chamber 40 for the air spring, which are oriented perpendicular or inclined to the axis 8 . An axial distance of the two radially extending surfaces changes with the movement of the striker 20 and thus the volume of the pneumatic chamber 40. The volume change causes a change in the pressure within the pneumatic chamber 40.

Eine entgegen der Schlagrichtung 9 weisende, hintere Prellfläche 41 des dickeren Abschnitts 33 kann die erste radial verlaufende Innenfläche der pneumatischen Kammer 40 bilden. Eine in Schlagrichtung 9 weisende, hintere Prellfläche 42 der Führung 28, die mit der hinteren Prellfläche 41 des dickeren Abschnitts 33 den hinteren Anschlag 29 definiert, kann die zweite radial verlaufende Innenfläche der pneumatischen Kammer 40 sein.A rear bounce surface 41 of the thicker section 33 facing the direction of impact 9 can form the first radially extending inner surface of the pneumatic chamber 40 . A rear bounce surface 42 of the guide 28, which points in the direction of impact 9 and defines the rear stop 29 with the rear bounce surface 41 of the thicker section 33, may be the second radially extending inner surface of the pneumatic chamber 40 .

In radialer Richtung ist die pneumatische Kammer 40 auf einer Seite durch die Führung 28 und auf der anderen Seite durch den Döpper 22 abgeschlossen. Eine hermetische, luftdichte Versiegelung zwischen dem Döpper 20 und der Führung 28 erfolgt durch ein erstes Dichtelement 43 und ein zweites Dichtelement 44. Die Dichtelemente 43, 44 sind längs der Achse 8 zueinander versetzt angeordnet. Das erste Dichtelement 43 ist beispielsweise zwischen den beiden Anschlägen 29, 30, das zweites Dichtelement 44 axial außerhalb der beiden Anschläge 29, 30, d.h. der jeweiligen Prellflächen 42 angeordnet. Zwischen den beiden Dichtelementen 43, 44 befinden sich die radial verlaufenden Innenflächen der pneumatischen Kammer 40. In der dargestellten Ausführungsform sind die Dichtelemente 43, 44 auf Abschnitten des Döppers 20 mit unterschiedlichem Querschnitt angeordnet, wodurch der Abstand der Dichtelemente 43, 44 zu der Achse 8 verschieden groß ist. In anderen Ausführungsformen sind wenigstens Abschnitte der Dichtelemente 43, 44 in verschiedenem Abstand zur Achse 8. In einer Projektion auf eine Ebene senkrecht zur Achse 8 überlappen die zwei Dichtungen nicht oder wenigstens abschnittsweise nicht.In the radial direction, the pneumatic chamber 40 is closed on one side by the guide 28 and on the other side by the striker 22 . A hermetic, airtight seal between the striker 20 and the guide 28 is effected by a first sealing element 43 and a second sealing element 44. The sealing elements 43, 44 are arranged offset from one another along the axis 8 . The first sealing element 43 is arranged, for example, between the two stops 29, 30, the second sealing element 44 axially outside the two stops 29, 30, that is, the respective bouncing surfaces 42 . Between the two sealing elements 43, 44 are the radially extending inner surfaces of the pneumatic chamber 40. In the illustrated embodiment, the sealing elements 43, 44 are arranged on portions of the striker 20 of different cross section, whereby the distance of the sealing elements 43, 44 to the axis of the eighth is different in size. In other embodiments, at least portions of the sealing elements 43, 44 are at different distances from the axis 8. In a projection on a plane perpendicular to the axis 8 , the two seals do not overlap, or at least in sections, not.

Die Abhängigkeit der Luftfeder 40 von der Bewegungsrichtung des Döppers 20 wird dadurch erreicht, dass wenigstens eines der Dichtelemente 43, 44 als Ventil 100 ausgebildet ist. Ein Luftkanal 45 bindet die pneumatische Kammer 40 an ein Luftreservoir in der Umgebung, z.B. dem Maschinengehäuse 2, an. In dem Kanal 45 ist das Ventil 100 angeordnet, welches einen Luftstrom durch den Kanal 45 steuert. Die Steuerung erfolgt in Abhängigkeit der Bewegung des Döppers 20. Wenn sich der Döpper 20 in Schlagrichtung 9 bewegt, öffnet das Ventil 100 und Luft kann aus dem Reservoir durch den Kanal 45 in das sich vergrößernde Volumen der pneumatischen Kammer 40 nachströmen; die Luftfeder wird hierdurch deaktiviert. Das Ventil 100 sperrt den Kanal 45, wenn der Döpper 20 sich entgegen der Schlagrichtung 9 bewegt. Der Druck in der pneumatischen Kammer 40 steigt mit dem sich verringernden Volumen der pneumatischen Kammer 40 an, wodurch die Luftfeder 40 der Bewegung des Döppers 20 entgegenwirkt.The dependence of the air spring 40 on the direction of movement of the striker 20 is achieved in that at least one of the sealing elements 43, 44 is designed as a valve 100. An air duct 45 binds the pneumatic chamber 40 to an air reservoir in the environment, eg the machine housing 2 . In the channel 45 , the valve 100 is arranged, which controls an air flow through the channel 45 . The control takes place in dependence on the movement of the striker 20. When the striker 20 moves in the direction of impact 9 , the valve 100 opens and air can flow from the reservoir through the channel 45 into the increasing volume of the pneumatic chamber 40 ; the air spring is thereby deactivated. The valve 100 locks the channel 45 when the striker 20 against the Direction of impact 9 moves. The pressure in the pneumatic chamber 40 increases with the decreasing volume of the pneumatic chamber 40 , whereby the air spring 40 counteracts the movement of the striker 20 .

Das Ventil 100 ist ein selbsttätiges oder eigenmedium-betätigtes Ventil 100, z.B. ein Rückschlagventil oder ein Drosselrückschlagventil. Das Ventil 100 wird durch einen Luftstrom betätigt, der in das Ventil 100 einströmt. Der Luftstrom ist Folge einer Druckdifferenz zwischen der pneumatischen Kammer 40 und dem mit ihr über das Ventil 100 verbundenen Raum 51. Der verbundene Raum 51 kann ein sehr großes Luftreservoir, z.B. die Umgebung, das Innere des Maschinengehäuses 51, oder eine andere abgeschlossene, pneumatische Kammer mit begrenztem Volumen sein.The valve 100 is an automatic or self-medium actuated valve 100, eg a check valve or a throttle check valve. The valve 100 is actuated by an air flow which flows into the valve 100 . The air flow is a result of a pressure difference between the pneumatic chamber 40 and via the valve 100 associated with their space 51. The bonded area 51 can be a very large air reservoir, for example, the environment, the interior of the machine housing 51, or other finished, pneumatic chamber with limited volume.

Fig. 3 und Fig. 5 zeigen im Längsschnitt durch das Schlagwerk eine beispielhafte Ausführung des Ventils 100 im geschlossenen w. geöffneter Stellung. Querschnitte durch das geschlossene Ventil 100 in der Ebene IV-IV und das geöffnete Ventil 100 in der Ebene VI-VI sind in Fig. 4 und Fig. 6 gezeigt. Fig. 7 zeigt einen vergrößerten Teilschnitt des Ventils 100. FIG. 3 and FIG. 5 show in longitudinal section through the percussion an exemplary embodiment of the valve 100 in the closed w. open position. Cross sections through the closed valve 100 in the plane IV-IV and the open valve 100 in the plane VI-VI are in 4 and FIG. 6 shown. Fig. 7 shows an enlarged partial section of the valve 100th

Ein Lippendichtring 101 umspannt den mittleren Abschnitt 33 des Döppers 20. Der Lippendichtring 101 hat einen schlauchförmigen, zylindrischen Befestigungsabschnitt 103, mit dem der Lippendichtring 101 an dem Döpper 20 befestigt ist. Der Befestigungsabschnitt 103 kann beispielsweise auf dem Nutboden 88 in eine Ringnut 106 in den mittleren Abschnitt 33 eingesetzt sein. Alternativ oder zusätzlich kann der Befestigungsabschnitt 103 auf den Döpper 20 geklemmt, geklebt oder sonst wie befestigt sein, um ein Verrutschen des Lippendichtrings 101 längs der Achse8 zu unterdrücken.A lip seal 101 spans the central portion 33 of the striker 20. The lip seal 101 has a tubular, cylindrical attachment portion 103, with which the lip seal 101 is attached to the striker 20 . The attachment portion 103 may be inserted, for example, on the groove bottom 88 in an annular groove 106 in the middle portion 33 . Alternatively or additionally, the attachment portion can clamp 103 on the striker 20, glued or otherwise secured such as to suppress slipping of the lip seal 101 along the axis. 8

Eine Lippe 102 des Lippendichtrings 101 ist gegenüber der Achse 8 geneigt und ein radialer Abstand zu dem Befestigungsabschnitt 103 erhöht sich in Richtung zu der pneumatischen Kammer 40. Die Kontur der Lippe 102 kann beispielsweise abschnittsweise hohlkegelförmig mit einem in Richtung zu der pneumatischen Kammer 40 öffnenden Kegel sein. Die Lippe 102 und der Befestigungsabschnitt 103 umschließen einen sackartigen Hohlraum 104, welcher in Richtung zu der pneumatischen Kammer 40 offen und in Richtung weg von der pneumatischen Kammer 40 geschlossen ist. Bei der in Fig. 4 dargestellt in Schlagrichtung 9 vor dem Lippendichtring 101 angeordneten pneumatischen Kammer 40 öffnet sich der sackartige Hohlraum 104 entgegen der Schlagrichtung 9. In einem Schnitt längst zur Achse 8 hat der Lippendichtring 101 ein V- oder U-förmiges Profil.A lip 102 of the lip seal 101 is inclined relative to the axis 8 and a radial distance to the mounting portion 103 increases toward the pneumatic chamber 40. The contour of the lip 102 may, for example, partially hollow cone-shaped with a direction towards the pneumatic chamber 40 opening cone his. The lip 102 and the mounting portion 103 surrounding a bag-like cavity 104 which is closed open in the direction to the pneumatic chamber 40 and in the direction away from the pneumatic chamber 40th At the in Fig. 4 represented in the direction of impact 9 in front of the lip seal 101 arranged pneumatic chamber 40 , the bag-like cavity 104 opens against the direction of impact 9. In a section long to the axis 8 of the lip seal 101 has a V-shaped or U-shaped profile.

Die Lippe 102 ist gegenüber dem Befestigungsabschnitt 103 schwenkbar, damit eine radiale Abmessung 110 des Lippendichtrings 101 veränderlich ist. Die radiale Abmessung 110 kann beispielsweise die Differenz von Außendurchmesser zu Innendurchmesser des Lippendichtrings 101 sein. Der Lippendichtring 101 kann eine ausgeklappte Stellung (Fig. 4) einnehmen, in welcher die Lippe 102 in einen möglichst großen Abstand zu dem Befestigungsabschnitt 103 geschwenkt ist. Eine Stirnfläche des Lippendichtrings 101, welche senkrecht zu der Achse 8 orientiert ist, entspricht beispielsweise der Querschnittsfläche des Spalts 35. In der dargestellten Ausgestaltung berührt die Lippe 102 mit einem Kontaktabschnitt 113 das Führungsrohr 31. Der Lippendichtring 101 kann von der ausgeklappten Stellung in eine eingeklappte Stellung (Fig. 6) geschwenkt werden. Die Stirnfläche des Lippendichtrings 101 wird hierdurch gegenüber der Stirnfläche des ausgeklappten Lippendichtrings 101 verringert, die radiale Abmessung 101b verkleinert. Der Kontaktabschnitt 113 löst sich von dem Führungsrohr 31. The lip 102 is pivotable relative to the attachment portion 103 so that a radial dimension 110 of the lip seal 101 is variable. The radial dimension 110 may, for example, be the difference between the outside diameter and the inside diameter of the lip sealing ring 101 . The lip seal 101 can be in an unfolded position (FIG. Fig. 4 ) occupy, in which the lip 102 is pivoted in the greatest possible distance from the attachment portion 103 . An end face of the lip sealing ring 101, which is oriented perpendicular to the axis 8, for example, corresponds to the cross-sectional area of the gap 35. In the illustrated embodiment, the lip 102 contacts with a contact portion 113, the guide tube 31. The lip seal ring 101 may be from the extended position to a collapsed Position ( Fig. 6 ) are pivoted. The end face of the lip seal 101 is thereby reduced from the end face of the unfolded lip seal 101 , which reduces the radial dimension 101b . The contact portion 113 comes off the guide tube 31.

Der Lippendichtring 101 bildet das Dichtelement des Ventils 100. Bei einem ausgeklappten Lippendichtring 101 ist das Ventil 100 in einer geschlossenen/ drosselnden und bei einem eingeklappten Lippendichtring 101 ist das Ventil 100 in einer geöffneten Stellung. Der Wechsel des Lippendichtrings 101 zwischen der eingeklappten und ausgeklappten Stellung wird durch das Druckverhältnis in der pneumatischen Kammer 40 und die Strömungsrichtung in dem Spalt 35 bewirkt. Ein Luftstrom in Richtung zu der hinteren, pneumatischen Kammer 40 strömt eine teilweise radial zur Führung 28 weisende Fläche 114 der Lippe 102 an. Die anströmende Luft bewirkt ein Schwenken der Lippe 102 in Richtung zu dem Befestigungsabschnitt 103 und folglich ein Einklappen des Lippendichtrings 101. Die weiter nachfließende Luft hält der Lippendichtring 101 in der eingeklappten Stellung, wodurch das Ventil 100 offen gehalten bleibt. Ein Luftstrom aus der hinteren, pneumatischen Kammer 40 strömt hingegen eine teilweise radial von der Führung 28 wegweisende Fläche 114 der Lippe 102 an. Die anströmende Luft bewirkt dadurch ein Schwenken der Lippe 102 weg von dem Befestigungsabschnitt 103 zu dem Führungsrohr 31 hin. Der Lippendichtring 101 geht in die ausgeklappte Stellung über. In der ausgeklappten Stellung liegt die schwenkbare Lippe 102 mit wenigstens einem Abschnitt der von der pneumatischen Kammer 40 wegweisenden Fläche 114 an einem Anschlag 119 an. Der Anschlag 119 wird beispielsweise durch das Führungsrohr 31 gebildet, an dem der Kontaktabschnitt 113 anliegt. Das Ventil 100 ist geschlossen und bleibt geschlossen gehalten.The lip seal 101 forms the sealing element of the valve 100. With a lip seal 101 unfolded, the valve 100 is in a closed / throttled and with a collapsed lip seal 101 , the valve 100 is in an open position. The change of the lip seal 101 between the folded and unfolded position is effected by the pressure ratio in the pneumatic chamber 40 and the flow direction in the gap 35 . A flow of air towards the rear pneumatic chamber 40 flows to a surface 114 of the lip 102 that is partially radial to the guide 28 . The inflowing air causes the lip 102 to pivot towards the attachment portion 103, and consequently, the lip seal 101 to collapse . The continuing air keeps the lip seal 101 in the folded position, leaving the valve 100 open. By contrast, an air flow from the rear, pneumatic chamber 40 flows into a surface 114 of the lip 102, which points away from the guide 28 partially radially. The inflowing air thereby causes the lip 102 to pivot away from the attachment portion 103 toward the guide tube 31 . The lip seal 101 goes into the unfolded position. In the unfolded position, the pivotable lip 102 abuts against a stop 119 with at least a portion of the surface 114 facing away from the pneumatic chamber 40 . The stopper 119 is formed, for example, by the guide tube 31 against which the contact portion 113 abuts. The valve 100 is closed and kept closed.

Die Lippe 102 kann aus einem elastischen Material, z.B. Kautschuk sein. Eine Stärke der Lippe 102 kann deutlich geringer als ihre Abmessung längs der Achse 8 sein. Die relativ geringe Stärke der Lippe 102 ermöglicht, dass der Luftstrom in und/oder aus der pneumatischen Kammer 40 die Lippe 102 durch Verbiegen verschwenkt. Die Lippe 102 ist beispielsweise elastisch in die ausgeklappte Stellung vorgespannt. In einer Grundstellung ist das Ventil 100 geschlossen. In dieser Ausgestaltung ist es ausreichend, dass der Luftstrom in die pneumatischen Kammer 40 das Verbiegen bewirkt.The lip 102 may be made of an elastic material, eg rubber. A thickness of the lip 102 may be significantly less than its dimension along the axis 8 . The relatively low thickness of the lip 102 allows the airflow into and / or out of the pneumatic chamber 40, the lip 102 is pivoted by bending. For example, the lip 102 is resiliently biased to the deployed position. In a basic position, the valve 100 is closed. In this embodiment, it is sufficient that the air flow into the pneumatic chamber 40 causes the bending.

Die Lippe 102 und der Befestigungsabschnitt 103 können ein einteiliges, monolithisches oder ein in einem Stück gespritztes Bauelement aus demselben Material, z.B. Kautschuk sein. Ein Bereich in dem die schwenkbare Lippe 102 in den gegenüber dem Döpper 20 unbeweglichen Befestigungsabschnitt 103 übergeht, kann von der pneumatischen Kammer 40 weiter entfernt sein, als der Kontaktabschnitt 113. The lip 102 and attachment portion 103 may be a one-piece, monolithic, or one-piece molded component of the same material, eg, rubber. An area in which the pivotable lip 102 merges into the fixing portion 103 immovable with respect to the striker 20 may be farther from the pneumatic chamber 40 than the contact portion 113.

Ein Festkörpergelenk 107 kann die Lippe 102 mit dem Befestigungsabschnitt 103 verbinden. Das Festkörpergelenk 107 hat eine geringere Stärke als die Lippe 102, wodurch eine Schwenkbewegung vorwiegend um das Festkörpergelenk 107 erfolgt.A solid state hinge 107 may connect the lip 102 to the attachment portion 103 . The solid-state joint 107 has a smaller thickness than the lip 102, whereby a pivoting movement takes place mainly around the solid-state joint 107 .

Das zweite Dichtelement 44 kann zu dem hinteren Anschlag 29 axial, entgegen der Schlagrichtung 9 versetzt angeordnet und kann beispielsweise ein in der Führung 28 stationär gelagerter Dichtring sein. Der Dichtring 44 ist beispielsweise in die Hülse 29 eingesetzt und schließt bündig mit einem hinteren Ende 75 des Döppers 20 ab. Das hintere Ende 75 des Döppers 20 hat beispielsweise einen geringeren Durchmesser als der mittlere Abschnitt 33. The second sealing element 44 can be offset axially relative to the rear stop 29 , counter to the direction of impact 9 , and can be, for example, a sealing ring mounted in a stationary manner in the guide 28 . The sealing ring 44 is inserted, for example, in the sleeve 29 and terminates flush with a rear end 75 of the striker 20 from. For example, the rear end 75 of the striker 20 has a smaller diameter than the middle portion 33.

Fig. 8 zeigt eine Ausgestaltung bei der die Lippe 102 in einem separaten Befestigungsabschnitt 103 drehbar gelagert befestigt ist. Der Befestigungsabschnitt 103 hat eine Lagerschale 116, in die ein Lagerkopf 117 der Lippe 102 eingesetzt ist. Fig. 8 shows an embodiment in which the lip 102 is mounted rotatably mounted in a separate mounting portion 103 . The attachment portion 103 has a bearing shell 116 into which a bearing head 117 of the lip 102 is inserted.

Fig. 9 zeigt eine weitere Ausgestaltung des Ventils 100. Auf der von der pneumatischen Kammer 40 entfernten Seite erhebt sich von dem Befestigungsabschnitt 103 in radialer Richtung ein Anschlag 118. Die Lippe 102 liegt mit einem Abschnitt ihrer von der pneumatischen Kammer 40 abgewandten Fläche 114 an dem Anschlag 118 an, wenn der Lippendichtring 101 aufgeklappt ist. In der eingeklappten Stellung ist die Lippe 102 von dem Anschlag oder Bezugszeichen weggeschwenkt (gestrichelter Darstellung). Der Anschlag 118 an dem Döpper 20 begrenzt in die Schwenkbewegung der Lippe 102. Die Ausführungsform mit dem Anschlag 118 ist beispielhaft mit einer drehgelagerten Lippe 102 dargestellt, kann gleichermaßen auch für ein durch ein Festkörpergelenk 107 oder über ihre Länge biegsame Lippe 102 verwendet werden. Fig. 9 shows a further embodiment of the valve 100. On the side remote from the pneumatic chamber 40 side rises from the mounting portion 103 in the radial direction, a stop 118. The lip 102 is located with a portion of its facing away from the pneumatic chamber 40 surface 114 on the stop 118th when the lip seal 101 is opened. In the folded position, the lip 102 is pivoted away from the stop or reference (dashed line). The stop 118 on the striker 20 limits the pivotal movement of the lip 102. The embodiment with the stop 118 is exemplified with a rotatably mounted lip 102 , may equally be used for a lip 102 that is flexible by a solid-state hinge 107 or over its length.

In einer weiteren Ausführungsform ist das Dichtelement 101 in der Innenwand verankert und die Lippe 102 berührt den Döpper 20. In a further embodiment, the sealing element 101 is anchored in the inner wall and the lip 102 touches the striker 20th

Fig. 10 zeigt im Längsschnitt eine weitere Ausführungsform mit einer hinteren Luftfeder 40, einer vorderen Luftfeder 120 und wenigstens dem Ventil 100 zum Steuern des Verhaltens des Döppers 20. Bei einer Vorwärtsbewegung, d.h. in Schlagrichtung 9 des Döppers 20 wird das Volumen der hinteren pneumatischen Kammer 40 vergrößert und das Volumen der vorderen pneumatischen Kammer 120 verringert. Das in der vorderen pneumatischen Kammer 120 verdrängt Luftvolumen kann durch das Ventil 100 in die hintere pneumatische Kammer 40 strömen. Bei einer Rückwärtsbewegung, d.h. entgegen der Schlagrichtung 9 des Döppers 20 erhöht sich das Volumen der vorderen pneumatischen Kammer 120 und verringert sich das Volumen der hinteren pneumatischen Kammer 40. Die Federkraft der hinteren Luftfeder 40 und der vorderen Luftfeder 120 wird in Abhängigkeit der Bewegungsrichtung des Döppers 20 gesteuert. Das Ventil 100 verhindert einen Luftstrom, welcher den in der hinteren pneumatischen Kammer 40 erhöhten Druck und den in der vorderen pneumatischen Kammer 120 verringerten Druck ausgleichen würde. Die Rückwärtsbewegung erfolgt daher gegen die Federkraft der beiden Luftfedern 40 und 120 und wird gebremst. Die Federkraft der Luftfedern 40, 120 kann verschieden sein, die auf Druck belastete hintere Luftfeder 40 kann eine größere bremsende Wirkung als die vordere Luftfeder 120 entfalten. Fig. 10 shows in longitudinal section a further embodiment with a rear air spring 40, a front air spring 120 and at least the valve 100 for controlling the behavior of the striker 20. In a forward movement, ie in the direction of impact 9 of the striker 20 , the volume of the rear pneumatic chamber 40 is increased and reduces the volume of the front pneumatic chamber 120 . The volume of air displaced in the front pneumatic chamber 120 may flow through the valve 100 into the rear pneumatic chamber 40 . In a backward movement, ie opposite to the direction of impact 9 of the striker 20 , the volume of the front pneumatic chamber 120 increases and reduces the volume of the rear pneumatic chamber 40. The spring force of the rear air spring 40 and the front air spring 120 is dependent on the direction of movement of the striker 20 controlled. The valve 100 prevents air flow which would equalize the increased pressure in the rear pneumatic chamber 40 and the reduced pressure in the front pneumatic chamber 120 . The backward movement therefore takes place against the spring force of the two air springs 40 and 120 and is braked. The spring force of the air springs 40, 120 may be different, the pressure-loaded rear air spring 40 may exhibit a greater braking effect than the front air spring 120 .

Die vordere pneumatische Kammer 120 der vorderen Luftfeder hat eine wenigstens teilweise radial verlaufende, vordere Innenwand 131, welche durch die Führung 28 gebildet wird, und eine wenigstens teilweise radial verlaufende, hintere Innenwand 132, welche durch den Döpper 20 gebildet wird. Die hintere pneumatische Kammer 40 der hinteren Luftfeder hat eine wenigstens teilweise radial verlaufende, vordere Innenwand 41, welche durch den Döpper 20 gebildet wird, und eine wenigstens teilweise radial verlaufende, hintere Innenwand 42, welche durch die Führung 28 gebildet wird. In radialer Richtung nach Außen sind die pneumatischen Kammern 40, 120 durch die Innenwand 32 des zylindrischen oder prismatischen Führungsrohr 31 abgeschlossen. In radialer Richtung nach Innen sind die pneumatischen Kammern 40, 120 durch den Döpper 20 abgeschlossen. In dem radialen Spalt 35 für die gleitende Bewegung des Döppers 20 in der Führung 28 sind axial zueinander versetzt ein erstes Dichtelement 43 und ein zweites Dichtelement 44 angeordnet, um die hintere pneumatische Kammer 40 luftdicht zu versiegeln. Die vordere und die hintere Innenwand 41, 42 der hinteren pneumatischen Kammer 40 sind längs der Achse 8 zwischen dem ersten Dichtelement 43 und dem zweiten Dichtelement 44 angeordnet. Ein drittes Dichtelement 133 ist in Schlagrichtung 9 vor der vorderen Innenwand 131 der vorderen pneumatischen Kammer 120 angeordnet. Die vordere und die hintere Innenwand 131, 132 der vorderen pneumatischen Kammer 120 liegen entlang der Achse 8 innerhalb des ersten Dichtelements 43 und des dritten Dichtelements 133. The front pneumatic spring 120 of the front air spring has an at least partially radially extending front inner wall 131 formed by the guide 28 and an at least partially radially extending rear inner wall 132 formed by the striker 20 . The rear pneumatic chamber 40 of the rear air spring has an at least partially radially extending front inner wall 41, which is formed by the striker 20 , and an at least partially radially extending, rear inner wall 42, which is formed by the guide 28 . In the radial outward direction, the pneumatic chambers 40, 120 are closed by the inner wall 32 of the cylindrical or prismatic guide tube 31 . In the radial direction inward, the pneumatic chambers 40, 120 are closed by the striker 20 . In the radial gap 35 for the sliding movement of the striker 20 in the guide 28 are axially offset from each other, a first sealing element 43 and a second sealing element 44 arranged to seal the rear pneumatic chamber 40 airtight. The front and rear inner walls 41, 42 of the rear pneumatic chamber 40 are disposed along the axis 8 between the first seal member 43 and the second seal member 44 . A third sealing element 133 is in the direction of impact 9 in front of the front inner wall 131 of the front arranged pneumatic chamber 120 . The front and rear inner walls 131, 132 of the front pneumatic chamber 120 are located along the axis 8 within the first seal member 43 and the third seal member 133.

Die über den Luftkanal 134 gekoppelte vordere und hintere pneumatische Kammer 40, 120 haben ein konstantes gegenüber der Umgebung abgeschlossenes Luftvolumen, wobei eine Aufteilung des Luftvolumens auf die beiden Kammern 40, 120 in Abhängigkeit der momentanen Stellung des Döppers 20 variiert.The coupled via the air duct 134 front and rear pneumatic chamber 40, 120 have a constant relative to the environment closed air volume, wherein a distribution of the air volume to the two chambers 40, 120 varies depending on the current position of the striker 20 .

Fig. 11 zeigt eine Ausführungsform mit einem stationären Ventil 180 bei einer pneumatischen Kammer 40 deren Volumen sich bei Bewegung des Döppers 20 in Schlagrichtung 9 vergrößert. Der Aufbau des Ventils 180 kann dem Ventil 100 entsprechen. Ein Lippendichtring 181 des Ventils 180 ist in der Führung 28 befestigt und beispielsweise in einer Ringnut einer in das Führungsrohr 31 eingeschobenen Hülse 29 eingesetzt. Eine ringförmige, schwenkbare Lippe 182 ist gegenüber der Achse 8 geneigt und entfernt sich in Richtung zu der pneumatischen Kammer 40 von der Führung 28. In der dargestellten Ausführungsform kann die schwenkbare Lippe 182 den Döpper 20 in einer ausgeklappten Stellung berühren. Beispielhaft berührt die schwenkbare Lippe 182 den Döpper 20 an dessen Endabschnitt 76 mit geringerem Durchmesser. Ein Luftstrom in die pneumatische Kammer 40 verschwenkt die Lippe 182 Weg von den Döpper 20, wodurch das Ventil 180 geöffnet wird. Das erste Dichtelement 43 auf dem Umfang des mittleren Abschnitts 33 kann ein permanent abdichtendes Dichtelement oder ein Ventil sein, welches beispielsweise in eine Ringnut 160 in dem mittleren Abschnitt eingesetzt ist. Fig. 11 shows an embodiment with a stationary valve 180 in a pneumatic chamber 40 whose volume increases in movement of the striker 20 in the direction of impact 9 . The construction of the valve 180 may correspond to the valve 100 . A lip sealing ring 181 of the valve 180 is fastened in the guide 28 and inserted, for example, in an annular groove of a sleeve 29 inserted into the guide tube 31 . An annular pivotable lip 182 is inclined relative to the axis 8 and extends toward the pneumatic chamber 40 from the guide 28. In the illustrated embodiment, the pivotable lip 182 may contact the striker 20 in a deployed position. By way of example, the pivotable lip 182 contacts the striker 20 at its smaller diameter end portion 76 . Airflow into the pneumatic chamber 40 pivots the lip 182 away from the striker 20, thereby opening the valve 180 . The first sealing element 43 on the circumference of the central portion 33 may be a permanently sealing sealing element or a valve which is inserted, for example, in an annular groove 160 in the central portion.

Die Geschwindigkeit des Döppers 20 in Schlagrichtung 9 liegt etwa im Bereich von 1 m/s bis 10 m/s bei einem Leerschlag. Entsprechend schnell vergrößert sich das Volumen der pneumatischen Kammer 40. Durch das geöffnete Ventil 100 strömt Luft in pneumatische Kammer 40 mit einer hohen Rate ein, so dass sich rasch ein Druckausgleich einstellt. Das Ventil 50 gibt hierfür in seiner geöffneten Stellung eine durchströmbare Fläche (hydraulische Fläche) frei, welche wenigstens 1/30, vorzugsweise wenigstens 1/20, oder wenigstens 10 % der ringförmigen, effektiven Querschnittsfläche des Volumens der pneumatischen Kammer 40 beträgt. Die hydraulische Fläche ist senkrecht zu der Strömungsrichtung in dem Ventil 50 definiert. Die effektive Querschnittsfläche ist das Differential des Volumens nach der Bewegungsrichtung, d.h. die Änderung des Volumens bestimmt sich aus dem Produkt der effektiven Querschnittsfläche und der Längsverschiebung des Döppers 20. Wenn der Döpper 20 an dem Döpperanschlag 30 reflektiert wird, kann seine Geschwindigkeit entgegen der Schlagrichtung 9 in gleicher Größenordnung von 1 m/s bis 10 m/s liegen. Das Ventil 100 schließt und die Kompression der geschlossenen pneumatischen Kammer 40 bremst den Döpper 20. Die Drosselöffnung 54 lässt nur einen geringen Luftstrom austreten, wodurch der Überdruck in der pneumatischen Kammer 40 aufrecht erhalten bleibt.The speed of the striker 20 in the direction of impact 9 is approximately in the range of 1 m / s to 10 m / s at a blank. Accordingly, the volume of the pneumatic chamber 40 increases rapidly . As a result of the opened valve 100 , air flows into the pneumatic chamber 40 at a high rate, so that a pressure equalization rapidly sets in. For this purpose, the valve 50 releases in its open position a flow-through surface (hydraulic surface) which is at least 1/30, preferably at least 1/20, or at least 10% of the annular, effective cross-sectional area of the volume of the pneumatic chamber 40 . The hydraulic surface is defined perpendicular to the flow direction in the valve 50 . The effective cross-sectional area is the differential of the volume after the direction of movement, ie the change in volume is determined by the product of the effective cross-sectional area and the longitudinal displacement of the striker 20. When the striker 20 is reflected on the striker 30 , its velocity can be counter to the direction of impact 9 in the same order of magnitude of 1 m / s to 10 m / s. The valve 100 closes and the compression of the closed pneumatic chamber 40 brakes the striker 20. The throttle opening 54 leaves only a small air flow, whereby the overpressure in the pneumatic chamber 40 is maintained.

Bei einer langsamen Bewegung von weniger als 0,2 m/s entgegen der Schlagrichtung 9, typisch für ein neues Ansetzen des Meißels, kann die Luft mit einer ausreichenden Rate durch die Drosselöffnung 54 austreten, um einen Druckausgleich zu ermöglichen. Die Drosselöffnung 54 kann beispielsweise eine Bohrung durch die Wand des Führungsrohrs 31 sein. Die Fläche eines Strömungsquerschnitts (hydraulischer Querschnitt) der Drosselöffnung 54 ist um wenigstens zwei Größenordnungen geringer als die ringförmige Querschnittsfläche der pneumatischen Kammer 40, z.B. kleiner als 0,5 Prozent. Die Drosselöffnung 54 ist beispielsweise größer als 1/2000 oder 1/1500 der ringförmigen Querschnittsfläche, um ein manuelles Einschieben des Döppers 20 zu ermöglichen. Der Strömungsquerschnitt oder die Querschnittsfläche der Drosselöffnung 54 ist an deren engster Stelle senkrecht zur Strömungsrichtung bestimmt. Bei der Bewegung des Döppers 20 ändert sich das Volumen der pneumatischen Kammer 40 proportional zu der Geschwindigkeit des Döppers 20 und zu der ringförmigen Querschnittsfläche des von der pneumatischen Kammer 40 umschlossenen Volumens. Soll die Drossel 54 die Volumenänderung ohne Druckänderung ausgleichen, muss die verdrängte Luft mit einer um das wenigstens Hundertfache der Geschwindigkeit des Döppers die Drossel 20 passieren. Die Strömungseigenschaften von Luft setzen der Strömungsgeschwindigkeit eine obere Grenze, weshalb ein Druckausgleich zwar bei einem langsamen aber bei nicht einem schnell bewegenden Döpper 20 möglich ist.With a slow movement of less than 0.2 m / s against the direction of impact 9, typically for a new attachment of the bit, the air may exit through the orifice 54 at a rate sufficient to allow pressure equalization. The throttle opening 54 may be, for example, a bore through the wall of the guide tube 31 . The area of a flow cross-section (hydraulic cross-section) of the throttle opening 54 is at least two orders of magnitude smaller than the annular cross-sectional area of the pneumatic chamber 40, eg less than 0.5 percent. For example, the throttle opening 54 is greater than 1/2000 or 1/1500 of the annular cross-sectional area to allow manual insertion of the striker 20 . The flow cross-section or the cross-sectional area of the throttle opening 54 is determined at its narrowest point perpendicular to the flow direction. As the striker 20 moves, the volume of the pneumatic chamber 40 changes in proportion to the velocity of the striker 20 and to the annular cross-sectional area of the volume enclosed by the pneumatic chamber 40 . If the throttle 54 to compensate for the change in volume without pressure change, the displaced air must pass through the throttle 20 at least one hundred times the speed of the striker. The flow properties of air set the flow velocity an upper limit, which is why a pressure equalization is possible with a slow but not a fast moving striker 20 .

Alternativ zu einer gesonderten Drosselöffnung 54 kann das Ventil 100 als Drosselventil ausgelegt sein, das eine entsprechende Drosselöffnung in einer geschlossenen/ drosselnden Stellung offen lässt. Beispielsweise kann das Lippendichtring 101 axial verlaufende Bohrungen 200 von einer der pneumatischen Kammer 40 zugewandten Seite zu einer der pneumatischen Kammer 40 abgewandten Seite aufweisen. Der Durchmesser der axialen Bohrungen kann beispielsweise einen Querschnitt aufweisen, dessen Fläche wenigstens zwei Größenordnungen geringer als in die Fläche des Strömungsquerschnitts (hydraulische Querschnitt) das geöffneten Ventils 100 ist, z.B. kleiner als 0,5% und z.B. größer als 0,05%.As an alternative to a separate throttle opening 54 , the valve 100 may be designed as a throttle valve which leaves a corresponding throttle opening open in a closed / throttling position. For example, the lip seal 101 may have axially extending bores 200 from a side facing the pneumatic chamber 40 to a side facing away from the pneumatic chamber 40 . The diameter of the axial bores may, for example, have a cross section whose area is at least two orders of magnitude smaller than in the area of the flow cross section (hydraulic cross section) of the opened valve 100 , for example less than 0.5% and, for example, greater than 0.05%.

Eine Drossel kann auch durch eine nicht vollständig an der Führung 31 abschließende Lippe 102 ermöglicht werden. Die Lippe kann Einkerbungen 201 an ihrem berührenden Abschnitt 113 aufweisen. Ein Strömungsquerschnitt der Drossel zwischen der Einkerbung 201 und der Führung 31 liegt in den obige angegebenen Grenzen von höchstens 1/100, z.B. kleiner 1/300 der effektiven Querschnittsfläche, d.h. in dem dargestellten Beispiel der ringförmigen Querschnittsfläche des Volumens der pneumatischen Kammer 40. Alternativ oder zusätzlich können Kanäle für die Drossel entlang des Befestigungsabschnitts 103 durch Rillen in dem Befestigungsabschnitt 103 oder dem Nutboden 106 eingebracht sein.A throttle can also be made possible by a lip 102 which is not completely flush with the guide 31 . The lip may have notches 201 at its contacting portion 113 . A flow cross section of the throttle between the notch 201 and the guide 31 is within the above specified limits of at most 1/100, eg smaller 1/300 of the effective cross-sectional area, ie, in the illustrated example, the annular cross-sectional area of the volume of the pneumatic chamber 40. Alternatively or additionally, channels for the restrictor may be introduced along the attachment portion 103 by grooves in the attachment portion 103 or groove bottom 106 .

Claims (13)

  1. Power tool, comprising
    a motor (3),
    a pneumatic striking mechanism (4) having an exciter piston (22), an air spring (13), a striking piston (12) and an anvil (20), wherein the air spring (13) is excited into a forced oscillating movement along an axis (8) by the motor (3), the striking piston is excited into a movement in the striking direction (9) along the axis (8) by the excited air spring (13) and the striking piston (12) strikes the anvil (20), and
    a guide tube (31) in which the anvil (20) is guided along the axis (8), characterised by
    a pneumatic chamber (40, 120) closed by the anvil (20), the guide tube (31) and a valve mechanism (100, 180) actuated by its own medium and in that the volume of the pneumatic chamber (40) varies as the anvil (20) moves along the axis (8), wherein the valve mechanism (100, 180) actuated by its own medium has a swivelling sealing element (101, 181) between the anvil (20) and the guide tube (31), the swivelling sealing element (101, 181) is swivelled into a swung-in position having a first inflow surface (110b) in a projection on to a plane perpendicular to the axis (8) when the anvil (20) moves in the striking direction (9) and is swivelled into a swung-out position having a second inflow surface (110) in a projection on to a plane perpendicular to the axis (8) when the anvil (20) moves in the opposite direction to the striking direction (9), and the second inflow surface (110) is greater than the first inflow surface (110).
  2. Power tool according to claim 1, characterised in that,
    if the volume of the pneumatic chamber (40) increases when the anvil (20) moves in the striking direction (9), the swivelling sealing element (101, 181) is swivelled into the swung-in position when the pressure gradient decreases in the direction of the pneumatic chamber (40) and is swivelled into the swung-out position when the pressure gradient increases in the direction of the pneumatic chamber (40) and,
    if the volume of the pneumatic chamber (120) decreases when the anvil (20) moves in the striking direction (9), the swivelling sealing element (101) is swivelled into the swung-in position when the pressure gradient increases in the direction of the pneumatic chamber (120) and is swivelled into the swung-out position when the pressure gradient decreases in the direction of the pneumatic chamber (120).
  3. Power tool according to claim 2, characterised by a further pneumatic chamber closed by the anvil (20), the guide tube (31) and the valve mechanism (101) actuated by its own medium, wherein the volume of the first pneumatic chamber (40) increases when the anvil (20) moves in the striking direction (9) and the volume of the further pneumatic chamber (120) decreases upon movement of the anvil (20) and wherein the pneumatic chamber (40) and the further pneumatic chamber (120) are connected by the valve mechanism (101) actuated by its own medium.
  4. Power tool according to one of the preceding claims, characterised in that the sealing element (101) is fastened to the anvil and a contact portion (113) of the sealing element (101) contacts the guide tube in the swung-out position or alternatively the sealing element (101) is fastened to the guide tube (31) and the contact portion (113) of the sealing element (101) contacts the anvil (20) in the swung-out position.
  5. Power tool according to claim 4, characterised in that,
    if the volume of the pneumatic chamber (40) increases when the anvil moves in the striking direction, a swivel joint (107) of the sealing element is arranged further away from the pneumatic chamber (40) along the axis (8) than the contact portion (113) and,
    if the volume of the pneumatic chamber (120) decreases when the anvil (20) moves in the striking direction (9), the swivel joint (107) of the sealing element (101) is arranged closer to the pneumatic chamber (120) along the axis (8) than the contact portion (113).
  6. Power tool according to claim 5, characterised in that the swivel joint (107) is formed by a flexure joint.
  7. Power tool according to one of the preceding claims, characterised in that the sealing element is fastened to the anvil (20) or the guide tube (31) by means of a fastening portion (103) and a lip (102) of the sealing element (101) is inclined with respect to the axis (8), wherein,
    if the volume of the pneumatic chamber (40) increases when the anvil moves in the striking direction (9), the lip (102) is inclined away from the fastening portion (103) along the axis (8) towards the pneumatic chamber (40) and,
    if the volume of the pneumatic chamber (120) decreases when the anvil (20) moves in the striking direction (9), the lip (102) is inclined away from the fastening portion (103) along the axis (8) away from the pneumatic chamber (120).
  8. Power tool according to one of the preceding claims, characterised in that the sealing element has a V-shaped or U-shaped cross-sectional profile along the axis, wherein the cross-sectional profile is open in the direction of the pneumatic chamber (40) if the volume of the pneumatic chamber increases when the anvil (20) moves in the striking direction (9) and the cross-sectional profile is open in the direction away from the pneumatic chamber (120) if the volume of the pneumatic chamber decreases when the anvil moves in the striking direction (9).
  9. Power tool according to claim 8, characterised in that the sealing element is asymmetrical with respect to all planes perpendicular to the axis.
  10. Power tool according to one of the preceding claims, characterised by a stop (118, 119) against which the swivelling sealing element bears in the swung-out position and from which it is arranged at a distance in the swung-in position.
  11. Power tool according to one of the preceding claims, characterised by a throttle (54) that connects the pneumatic chamber (40, 120) to an air reservoir, wherein the effective cross-sectional area of the pneumatic chamber (40, 120) defined by the differential of the volume of the pneumatic chamber (40, 120) in the striking direction (9) is more than one hundred times the cross-sectional area of the throttle (54).
  12. Power tool according to claim 11, characterised in that, in the swung-out position of the swivelling sealing element (101, 181), a flow channel (200, 201) through the valve mechanism (100, 180) has a cross-sectional area that is less than one hundredth of the effective cross-sectional area of the pneumatic chamber (40, 120).
  13. Power tool according to claim 12, characterised in that the cross-sectional area is formed by bores, notches and/or grooves in the sealing element (101, 181) extending along the axis (8).
EP11164399.5A 2010-06-10 2011-05-02 Hand tool machine with pneumatic striking mechanism Active EP2394794B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010029917 DE102010029917A1 (en) 2010-06-10 2010-06-10 machine tool

Publications (2)

Publication Number Publication Date
EP2394794A1 EP2394794A1 (en) 2011-12-14
EP2394794B1 true EP2394794B1 (en) 2019-04-03

Family

ID=44509849

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11164399.5A Active EP2394794B1 (en) 2010-06-10 2011-05-02 Hand tool machine with pneumatic striking mechanism

Country Status (4)

Country Link
US (1) US9050713B2 (en)
EP (1) EP2394794B1 (en)
CN (1) CN102310391B (en)
DE (1) DE102010029917A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206451B4 (en) * 2012-04-19 2020-12-10 Hilti Aktiengesellschaft Hand machine tool
DE102012210088A1 (en) * 2012-06-15 2013-12-19 Hilti Aktiengesellschaft machine tool
US9308635B2 (en) * 2013-01-28 2016-04-12 Caterpillar Inc. Variable volume accumulator
EP2857150A1 (en) * 2013-10-03 2015-04-08 HILTI Aktiengesellschaft Manual tool machine
WO2015061370A1 (en) 2013-10-21 2015-04-30 Milwaukee Electric Tool Corporation Adapter for power tool devices
EP3117962A1 (en) * 2015-07-17 2017-01-18 HILTI Aktiengesellschaft Manual machine tool
EP3181300A1 (en) * 2015-12-15 2017-06-21 HILTI Aktiengesellschaft Percussive handheld machine tool
EP3231560A1 (en) * 2016-04-13 2017-10-18 HILTI Aktiengesellschaft Handheld machine tool
EP3697574A1 (en) 2017-10-20 2020-08-26 Milwaukee Electric Tool Corporation Percussion tool
CN108120628A (en) * 2018-01-25 2018-06-05 中国商用飞机有限责任公司北京民用飞机技术研究中心 A kind of impact injury fabricated device
US11059155B2 (en) 2018-01-26 2021-07-13 Milwaukee Electric Tool Corporation Percussion tool
WO2020150622A1 (en) * 2019-01-17 2020-07-23 Carlson Donald W Multi-stroke powered safety hammer system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009036526A1 (en) * 2007-09-21 2009-03-26 Sparky Eltos Ad Impact mechanism for electrical hammer drills

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067584A (en) 1962-02-15 1962-12-11 Black & Decker Mfg Co Sealing ring means for reciprocating piston used in power-operated percussive tool
DE7408480U (en) 1973-03-19 1974-06-06 The Black And Decker Manufacturing Co Idle device for ripping hammers
SE398066B (en) 1975-03-18 1977-12-05 Atlas Copco Ab METHOD AND DEVICE FOR STRIKING PROCESSING FOR DAMPING THE RECYCLE FROM A WORKING TOOL
SE416901C (en) * 1979-03-30 1985-03-10 Atlas Copco Ab PNEUMATIC BATTERY MECHANISM
GB2084917A (en) 1980-10-08 1982-04-21 Kango Electric Hammers Ltd Improvements in or relating to percussive tools
EP0052507B1 (en) * 1980-11-18 1985-02-13 Black & Decker Inc. Percussive drills
CH664730A5 (en) 1983-07-21 1988-03-31 Sig Schweiz Industrieges METHOD AND DEVICE FOR DAMPING THE BALL Bounce IN DRUMMING TOOLS.
DE3826213A1 (en) * 1988-08-02 1990-02-15 Bosch Gmbh Robert DRILLING HAMMER
DE9213373U1 (en) * 1992-10-05 1994-02-10 Merkel Martin Gmbh Co Kg Shaft sealing ring with a sealing lip
DE4400779A1 (en) * 1994-01-13 1995-07-20 Duss Maschf Electropneumatic hammer or rotary hammer
JP3292969B2 (en) * 1995-08-18 2002-06-17 株式会社マキタ Hammer drill
GB9902793D0 (en) * 1999-02-09 1999-03-31 Black & Decker Inc Rotary hammer
GB9902789D0 (en) * 1999-02-09 1999-03-31 Black & Decker Inc Rotary hammer
FR2853038B1 (en) * 2003-03-24 2005-07-01 Freudenberg SEAL AND REALIMENTATION TRIM
DE102007000135A1 (en) * 2007-03-08 2008-09-11 Hilti Ag Hand tool with pneumatic percussion
DE102008000727A1 (en) * 2008-03-18 2009-09-24 Robert Bosch Gmbh Portable machine tool, in particular drilling or percussion hammer, with a club catching device and / or racket damping device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009036526A1 (en) * 2007-09-21 2009-03-26 Sparky Eltos Ad Impact mechanism for electrical hammer drills

Also Published As

Publication number Publication date
US9050713B2 (en) 2015-06-09
EP2394794A1 (en) 2011-12-14
US20110303431A1 (en) 2011-12-15
CN102310391B (en) 2015-09-09
DE102010029917A1 (en) 2011-12-15
CN102310391A (en) 2012-01-11

Similar Documents

Publication Publication Date Title
EP2394794B1 (en) Hand tool machine with pneumatic striking mechanism
EP2394793B1 (en) Hand tool machine with pneumatic striking mechanism and method of controlling the same
EP2394795B1 (en) Machine tool
EP1893388B1 (en) Drilling and/or percussive hammer with no-load operation control
EP3389933B1 (en) Percussive handheld machine tool
EP1648663B1 (en) Hollow piston hammer device with air equilibration and idle openings
DE102009026542A1 (en) machine tool
DE69910572T2 (en) IN-HOLE DRILLING HAMMER AND PISTON USED IN IT
EP3068585B1 (en) Hand tool machine
EP0663270B1 (en) Impact hammer with rotative and/or percussive action
EP1697090B1 (en) Impact mechanism for a hand-held machine tool with repetitive striking action
EP1261459A2 (en) Pneumatic piston percussive mechanism with a hollow percussion piston
WO2017102418A1 (en) Percussive power tool
EP3389932B1 (en) Percussive handheld machine tool
EP3389934B1 (en) Percussive handheld machine tool
EP1355764A1 (en) Pneumatic percussive tool with a short working drive piston
DE19847687C2 (en) Hollow piston striking mechanism with sleeve control
CH696633A5 (en) Air cushion percussion.
EP2857150A1 (en) Manual tool machine
EP2564985B1 (en) Air cushion striking mechanism for a motorised hammer drill or demolition hammer
DE3316013A1 (en) Hammer drill with a pneumatically actuated percussion body
DE3634282A1 (en) Power-driven hammer drill
DE2714921B2 (en) Ram for determining soil properties and for taking soil samples

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120614

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181004

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1115147

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015549

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190704

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015549

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190502

26N No opposition filed

Effective date: 20200106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1115147

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110502

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 13

Ref country code: FR

Payment date: 20230526

Year of fee payment: 13

Ref country code: DE

Payment date: 20230519

Year of fee payment: 13

Ref country code: CH

Payment date: 20230602

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 13