EP2389741A1 - Procédé de codage de données à double entrelacement de symboles de parité, pour une infrastructure radio, et codec associé - Google Patents

Procédé de codage de données à double entrelacement de symboles de parité, pour une infrastructure radio, et codec associé

Info

Publication number
EP2389741A1
EP2389741A1 EP10707323A EP10707323A EP2389741A1 EP 2389741 A1 EP2389741 A1 EP 2389741A1 EP 10707323 A EP10707323 A EP 10707323A EP 10707323 A EP10707323 A EP 10707323A EP 2389741 A1 EP2389741 A1 EP 2389741A1
Authority
EP
European Patent Office
Prior art keywords
matrices
data
subsets
columns
parity symbols
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10707323A
Other languages
German (de)
English (en)
Inventor
Bessem Sayadi
Yann Leprovost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Publication of EP2389741A1 publication Critical patent/EP2389741A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2703Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2703Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
    • H03M13/2707Simple row-column interleaver, i.e. pure block interleaving
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2703Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
    • H03M13/2717Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions the interleaver involves 3 or more directions
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2906Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
    • H03M13/2909Product codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2906Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
    • H03M13/2909Product codes
    • H03M13/2912Product codes omitting parity on parity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/1515Reed-Solomon codes

Definitions

  • the invention relates to the transmission of data by wave transmission infrastructures.
  • wave transmission infrastructure is meant here any communication infrastructure in which the data transmission takes place by means of waves. Therefore, it may be both a radio communication network and a broadcast network. As non-limiting examples, it may therefore be a wireless broadcast network (for example a terrestrial network of DVB-H type (for "Digital Video Broadcasting - Handhelds” - mobile TV), or a hybrid network (that is to say both satellite and terrestrial (for example a DVB-SH type network (for "Digital Video Broadcasting - Satellite Services to Handhelds") (or DVB-SSP) - coupled satellite channel to a terrestrial radio relay channel)), or a cellular or mobile network (such as for example a GSM / EDGE or UMTS type network) or even a metropolitan network or MAN (for "Metropolitan Area Network).
  • a wireless broadcast network for example a terrestrial network of DVB-H type (for "Digital Video Broadcasting - Handhelds" - mobile TV)
  • a hybrid network that is to say both satellite and terrestrial (for example a
  • the DVB-SH network is a hybrid variant of the DVB-H network (for "Digital Video Broadcasting - Handhelds") which has been developed for mobile television, ie for the one-way broadcasting of content. , such as television programs, in broadcast mode (broadcast / point-to-point) or in multicast mode (point-to-multipoint).
  • the satellite channel is intended to provide global coverage while the terrestrial relay radio channel is intended to provide the ground with a cellular type coverage.
  • the transmission of content in broadcast mode or in multicast mode is done through dedicated services, which may possibly be time multiplexed.
  • the radio signals transmitted by an infrastructure are subject to degradation, in particular when they borrow the band S (between about 1. 55 GHz and about 5.2 GHz).
  • the level of these impairments may vary depending on the environment of the communication terminals which are the recipients of the transmitted data (possibly content).
  • the propagation channel can be in different states depending on the level of weakening of the direct signal induced by a local shadow zone (for example because of the presence of tree (s) or building (s). )).
  • LOS for Line Of Sight
  • the Markov model reproduces large or very small signal attenuation variations in two main environments called “intermediate shading by trees” (or ITS for Intermediate Tree Shadowing ”) and suburban (or SUB for" suburban ").
  • certain networks implement a large-scale temporal diversity.
  • the latter can be provided by interleaving (or “interleaving") performed at the level of the physical layer (for class 2 terminals) or the link layer (for class 1 terminals).
  • Interleaving at the link layer is an IP interleaving called MPE-IFEC (for "MulitiProtocol Encapsulation - Inter-bursts Forward Error Code” - "Multiprotocol Encapsulation - Forward Error Encoding”) ).
  • the MPE-IFEC technique is based on the paralleling of the first M (encoding / decoding) matrices, called ADTs (for "Application Data Tables"), and made up of subsets of data of at least one burst (possibly IP (Internet Protocol)) received, the subsets of data of each burst being distributed in at least one encoding / decoding matrix, then the paralleling of M second matrices, called FDT (for "FEC Data Tables”) and consist of parity symbols resulting from an encoding (Reed-Solomon type) of the data contained in the first M matrices, and finally the distribution by simple interleaving subsets of parity symbols of each second matrix in S successive sets containing at least the respective data of successive bursts received.
  • ADTs Application Data Tables
  • the S FEC data sets are sent with the associated data in a time slice generally called burst time slice (or "time-slice burst”).
  • burst time slice or "time-slice burst”
  • the MPE-IFEC coding technique is also described in DVB Bluebook A.131, entitled “MPE-IFEC (draft TS 102 772 V1.1.1)", published in November 2008 by the ETSI (European Telecommunications Standard Institute). .
  • An ITS environment imposes an increase in the length of consecutive erroneous bursts, and a reduction in the length of consecutive non-errored bursts is reduced.
  • a SUB environment imposes a reduction in the length of the consecutive erroneous bursts, and an increase in the length of the consecutive non-erroneous bursts.
  • the MPE-IFEC technique is truly efficient in the presence of an ITS environment only if the depth of the interleaving is important (typically 30 seconds, which corresponds to a variable S of value high), while it is truly efficient in the presence of a SUB environment only if the depth of the interleaving is low (typically 10 seconds, which corresponds to a variable S of low value).
  • the operator of a network type DVB-SH is therefore forced to configure the latter according to the worst environment, namely the ITS environment.
  • the invention therefore aims to improve the situation in a wave transmission infrastructure.
  • the method according to the invention may comprise other characteristics that can be taken separately or in combination, and in particular:
  • variable B can be equal to 3;
  • the first M matrices can be constituted using a technique called “multiprotocol encapsulation (MPE)";
  • the M second matrices and the third M matrices can be constituted by means of a technique called "direct error correction"
  • the invention also proposes a codec (or "codec-decoder") intended to equip communication equipment adapted to connect to a transmission infrastructure by means of waves, and comprising: coding means responsible for constituting parallel:
  • interleaving means arranged to interleave, on the one hand, J subsets of parity symbols of each second matrix in J successive sets, and, on the other hand, P subsets of parity symbols of each third matrix in P of these successive sets, and to place in each of the successive sets the respective data of successive bursts received.
  • the coding means may for example be responsible for forming the first M matrices by means of a technique known as "multiprotocol encapsulation (MPE)".
  • MPE multiprotocol encapsulation
  • FEC direct error correction
  • FIG. 1 very schematically and functionally illustrates a hybrid transmission infrastructure that makes it possible to implement the invention
  • FIG. 2 partially and schematically illustrates an exemplary IP burst data coding according to the invention.
  • the attached drawings may not only serve to complete the invention, but also contribute to its definition, if any.
  • the object of the invention is to propose a data coding method for the transmission of these data by a wave transmission infrastructure.
  • the wave transmission infrastructure is hybrid (PFC, SAT, RA), and more specifically that it is a network.
  • DVB-SH type or
  • DVB-SSP DVB-SSP
  • the invention is not limited to this type of wave transmission infrastructure. It concerns indeed any type of infrastructure for transmitting data (possibly content, possibly multimedia), by wave, to radio communication terminals. Therefore, it may be both a radio communication network and a broadcast network. By way of nonlimiting examples, it may also be a wireless broadcast network (for example a terrestrial network of DVB-H type (for "Digital Video Broadcasting - Handhelds" - mobile TV), or a cellular or mobile network (such as for example a network type
  • the radio communication terminals are mobile phones (or cellular) or communicating digital personal assistants (or PDAs).
  • the invention is not limited to this type of radio communication terminal. It concerns indeed all communication equipment, fixed or mobile (or portable or cellular), capable at least to receive data over the airwaves via an infrastructure of the aforementioned type.
  • a multimedia content receiver such as a decoder, a residential gateway (or “residential gateway”) or a STB ("Set-Top Box”). ")
  • a multimedia content receiver such as a decoder, a residential gateway (or “residential gateway") or a STB ("Set-Top Box”).
  • the data broadcast to the terminals (TC) are multimedia content data such as television programs.
  • multimedia content data such as television programs.
  • the invention is not limited to this type of data. It concerns any type of content, including videos, file data (or "data"), signaling data, radio programs, and audio content.
  • the implementation of the invention requires the existence of a wave transmission infrastructure, here of the hybrid type and therefore comprising a satellite transmission channel and a communication channel. terrestrial radio transmission.
  • the satellite transmission channel comprises a PFC satellite platform (or gateway) for the provision of encoded contents and at least one SAT communication satellite coupled to each other by means of waves.
  • the satellite platform PFC is for example coupled to a content server SC which feeds it into contents in the form of bursts (or "bursts"), here of IP type (it could indeed be packet data type NAL (video) or RTP, for example). It is responsible for encoding these received contents by means of a coded CD (implementing a method according to the invention) before transmitting them by waves to the (communication) satellite SAT, which then takes care of the retransmit (broadcast) to TC terminals, either directly or indirectly via the terrestrial radio transmission channel.
  • bursts here of IP type (it could indeed be packet data type NAL (video) or RTP, for example).
  • This terrestrial radio transmission channel comprises at least one radio access network RA which may for example be part of a mobile (or cellular) communication network.
  • this radio access network RA is of the UTRAN (or 3G) type. It therefore mainly comprises N base stations (called Node Bs in the case of a UTRAN) and radio network controllers CR (called RNCs in the case of a UTRAN), connected together, as well as satellite communication PS which is coupled by waves to the satellite SAT (to receive the encoded contents) and wired to the radio network controllers CR (to feed encoded content received.
  • the TC terminals can receive the encoded contents either directly from the satellite SAT, when they are not located in a shadow zone, or N base stations, when they are located in a shadow zone.
  • Each TC terminal includes a CD codec, similar to that which equips the satellite platform PFC, so as to be able to decode the encoded contents it receives.
  • the invention proposes implementing, within the CD codec of the PFC satellite platform, a method of coding the content data received in the form of IP bursts (and more precisely encapsulated in
  • the method according to the invention comprises four main steps that are performed by the CD codec when its satellite platform PFC receives bursts of content data (s) from the content server SC.
  • a first main step of the method according to the invention consists in forming in parallel M first matrices of T lines and C columns with data subsets of B bursts IP. It will be understood that we operate here by means of sliding windows.
  • Each first matrix can be considered as a block of B sub-blocks which each consist of a number of columns of data from a burst IP Si (and constituting a subset of the latter).
  • Variable B is at least two. Consequently, the subsets of data of each burst Si are distributed in at least two first successive matrices (Si and Si + 1). For example, the value of B can be three or four or even more.
  • the number C of columns of each first matrix is, for example, equal to 191.
  • the number T of rows of each first matrix is, for example, at most equal to 1024.
  • the first M matrices can for example be constituted by means of the technique called "multiprotocol encapsulation" (or MPE). Note also that when the encoding technique is that which is called MPE-IFEC, each first matrix is what one skilled in the art calls an application data table (ADT). )).
  • a second main step of the method according to the invention consists in forming in parallel M second matrices of T lines and N columns with parity symbols which result from an encoding of the data which are respectively contained in the T lines of each of the first Ms. matrices formed during the first main step.
  • each second matrix is derived from (and therefore associated with) one of the first M matrices.
  • the second M matrices can be constituted at the means of the technique called "direct error correction" (or FEC).
  • FEC direct error correction
  • the line encoding is of the Reed-Solomon (or RS) type and each second matrix is what the person skilled in the art calls a FEC data table (or FEC Data Table). ).
  • the number N of columns of each second matrix is for example equal to 64 (in the case DVB-SH).
  • a third main step of the method according to the invention consists in constituting in parallel M third matrices of K rows and C columns with parity symbols which result from an encoding of the data which are respectively contained in the C columns of each of the first Ms. matrices formed during the first main step.
  • each third matrix is derived from (and therefore associated with) one of the first M matrices.
  • the M third matrices can be formed using the so-called "direct error correction” (FEC) technique.
  • FEC direct error correction
  • the line encoding is of the Reed-Solomon (or RS) type and each third matrix is what a person skilled in the art calls a data table.
  • FEC FEC (or FDT (for "FEC Data Table”)
  • the number K of rows of each third matrix is for example equal to 64 (in the case DVB-SH).
  • one of the first M matrices can be considered as two complementary parts of a "product matrix” consisting of parity symbols that can be called here "product codes" Cij (i and j denote respectively a row and a column).
  • Each row of this product matrix constitutes, for example, a codeword
  • each column of this product matrix constitutes for example a codeword
  • first, second and third main steps can be implemented by an encoding module MC of the coded CD which equips the PFC satellite platform.
  • a fourth main step of the method according to the invention consists in particular of distributing by means of a double interlacing (or “interleaving"), on the one hand, J subsets of parity symbols of each second matrix in J successive sets Ei and, on the other hand, P subsets of parity symbols of each third matrix in P of these successive sets Ei.
  • interleaving depth means the number of successive sets of data Ei in which the subsets of parity symbols of a second or third matrix are distributed.
  • One of the two variables J and P may be greater than or equal to one, while the other must be greater than or equal to two.
  • the value of J can be equal to two or three or even more
  • the value of P can be three or four, or even more.
  • J may be equal to P, but this is not mandatory.
  • the fourth main step also consists in placing in each successive set Ei the respective data of successive bursts Si received.
  • Each set Ei produced by the coding method according to the invention is thus finally constituted by at least data of one of the received bursts S 1, subset J subsets of parity symbols from J second matrices and P subassemblies parity symbols from P third matrices.
  • FIG. 2 schematically shows an exemplary IP burst data coding performed by means of a CD coding implementing the method according to the invention.
  • the variable M is equal to 4
  • the variable B is equal to 3
  • the variable J is equal to 2
  • the variable P is equal to 4.
  • the "upper" part of FIG. 2 shows eight salvos S1 to S8 successively received by the satellite platform PFC
  • the erroneous bursts are corrected progressively since the above-mentioned sets Ei, which are transmitted successively via the satellite SAT and via the radio access network RA, comprise complementary subsets of parity symbols, and therefore it is necessary to wait to have received at least (B + max (JP) - D) time slots of salvo (sets Ei and FEC associated) to have the completeness parity symbols (FEC) needed to correct the content data of a salvo if initially received by the satellite platform PFC.
  • the decoding of the content data (which includes any corrections) is ensured by the CD codecs of the TC terminals.
  • the invention is particularly advantageous because it makes it possible to perform an effective correction both in an ITS environment and in a SUB environment. In addition, it reduces the bandwidth used for error correction redundancy because the coding rate is reduced, and therefore it increases the number of services broadcast due to the higher performance offered by the codes. of product regarding error correction. In addition, the invention offers operators more flexibility to size their hybrid infrastructures, as it improves the quality of services and saves bandwidth. Finally, since the interleaving depths (J and P) may be small, the perceived quality of the contents is improved and the switching time between different channel contents (or “zapping time") is reduced (in case of error it is sufficient to wait for a delay equal to min (J, P) to change the channel).
  • the invention is not limited to the embodiments of encoding method, coding and platform (or gateway) described above, only by way of example, but it encompasses all the variants that may be considered by the man of art within the scope of the claims below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

Un procédé est dédié au codage de données, devant être transmises au moyen d'une infrastructure de transmission par voie d'ondes, et comprend i) une étape consistant à constituer en parallèle M premières matrices de T lignes et C colonnes avec des sous-ensembles de données de B salves successives reçues, les sous-ensembles de données de chaque salve étant répartis dans au moins deux premières matrices successives, ii) une étape consistant à constituer en parallèle M deuxièmes matrices de T lignes et N colonnes avec des symboles de parité résultant d'un encodage des données qui sont contenues respectivement dans les lignes de chacune des M premières matrices, iii) une étape consistant à constituer en parallèle M troisièmes matrices de K lignes et C colonnes avec des symboles de parité résultant d'un encodage des données qui sont contenues respectivement dans les colonnes de chacune des M premières matrices, et iv) une étape consistant à répartir par entrelacement, d'une part, J sous-ensembles de symboles de parité de chaque deuxième matrice dans J ensembles successifs, et d'autre part, P sous-ensembles de symboles de parité de chaque troisième matrice dans P de ces ensembles successifs, et à placer dans chacun des ensembles successifs les données respectives des salves successives reçues.

Description

PROCÉDÉ DE CODAGE DE DONNÉES À DOUBLE ENTRELACEMENT DE SYMBOLES DE PARITÉ, POUR UNE INFRASTRUCTURE RADIO, ET CODEC ASSOCIÉ
L'invention concerne la transmission de données par des infrastructures de transmission par voie d'ondes.
On entend ici par « infrastructure de transmission par voie d'ondes », toute infrastructure de communication dans laquelle la transmission de données se fait par voie d'ondes. Par conséquent, il pourra s'agir aussi bien d'un réseau de communication radio que d'un réseau de diffusion par voie d'ondes. A titre d'exemples non limitatifs, il pourra donc s'agir d'un réseau de diffusion sans fil (comme par exemple un réseau terrestre de type DVB-H (pour « Digital Video Broadcasting - Handhelds » - télévision mobile), ou un réseau hybride (c'est-à-dire à la fois satellitaire et terrestre (comme par exemple un réseau de type DVB-SH (pour « Digital Video Broadcasting - Satellite services to Handhelds ») (ou DVB-SSP) - voie satellitaire couplée à une voie radio terrestre de relais))), ou bien d'un réseau cellulaire ou mobile (comme par exemple un réseau de type GSM/EDGE ou UMTS) ou bien encore d'un réseau métropolitain ou MAN (pour « Metropolitan Area
Network » - comme par exemple un réseau de type WiMAX).
Il est rappelé que le réseau DVB-SH est une variante hybride du réseau DVB-H (pour « Digital Video Broadcasting - Handhelds ») qui a été développée pour la télévision mobile, c'est-à-dire pour la diffusion monodirectionnelle de contenus, de type programmes de télévision, en mode « broadcast » (diffusion/point-à-point) ou en mode « multicast » (point-à- multipoints). Dans un réseau DVB-SH la voie satellitaire est destinée à assurer une couverture globale tandis que la voie radio terrestre de relais est destinée à fournir au sol une couverture de type cellulaire. Il est également rappelé que la transmission de contenus en mode diffusion ou en mode multicast se fait par le biais de services dédiés, qui peuvent être éventuellement multiplexes temporellement. Comme le sait l'homme de l'art, les signaux radio transmis par une infrastructure, par exemple de type hybride, font l'objet de dégradations, en particulier lorsqu'ils empruntent la bande S (comprise entre environ 1 ,55 GHz et environ 5,2 GHz). Le niveau de ces dégradations peut varier en fonction de l'environnement des terminaux de communication qui sont les destinataires des données transmises (éventuellement des contenus). En fait, le canal de propagation peut se trouver dans différents états qui dépendent du niveau d'affaiblissement du signal direct induit par une zone d'ombre locale (par exemple du fait de la présence d'arbre(s) ou de bâtiment(s)). Par exemple, en appliquant un modèle de Markov à une infrastructure de type DVB-SH, on peut montrer que le canal peut se trouver dans trois états appelés LOS (« pour « Line Of Sight » (ligne de visée - dans l'axe de l'émetteur)), ombragé (ou « shadowing ») et bloqué ou non passant (ou encore « blockage »). En présence d'une élévation angulaire satellitaire d'environ 40°, le modèle de Markov reproduit les variations d'affaiblissement du signal à grande échelle ou très faibles dans deux principaux environnements appelés respectivement « ombrage intermédiaire par des arbres » (ou ITS pour « Intermediate Tree Shadowing ») et suburbain (ou SUB pour « suburban »).
Afin de garantir aux terminaux mobiles une qualité de service élevée en présence de conditions radio difficiles (par exemple de type affaiblissement profond ou défaut d'alignement par rapport à l'émetteur), certains réseaux, comme par exemple ceux de type DVB-SH, mettent en œuvre une diversité à grande échelle temporelle. Cette dernière peut être assurée par un entrelacement (ou « interleaving ») effectué au niveau de la couche physique (pour les terminaux de classe 2) ou de la couche de liaison (pour les terminaux de classe 1). L'entrelacement au niveau de la couche de liaison est un entrelacement de salves (ou « bursts ») IP appelé MPE-IFEC (pour « MulitiProtocol Encapsulation - Inter-bursts Forward Error Code » - « encapsulation multiprotocole - codage d'erreur directe »). II est rappelé que la technique appelée FEC consiste à adjoindre côté émission de la redondance à des données pour permettre la correction côté réception d'une partie des erreurs introduites par des pertes sur le canal de transmission de ces données. La technique MPE-IFEC repose sur ta mise en parallèle de M premières matrices (d'encodage/décodage), appelées ADTs (pour « Application Data Tables » - tables de données d'application), et constituées à partir de sous-ensembles de données d'au moins une salve (éventuellement IP (Internet Protocol)) reçue, les sous-ensembles de données de chaque salve étant répartis dans au moins une matrice d'encodage/décodage, puis la mise en parallèle de M secondes matrices, appelées FDT (pour « FEC Data Tables » - tables de données de FEC) et constituées de symboles de parité résultant d'un encodage (de type Reed- Solomon) des données qui sont contenues dans les M premières matrices, et enfin la répartition par simple entrelacement de sous-ensembles de symboles de parité de chaque seconde matrice dans S ensembles successifs contenant au moins les données respectives des salves successives reçues. On notera que les S ensembles de données FEC sont envoyés avec les données associées dans une tranche temporelle généralement appelée tranche temporelle de salve (ou « time-slice burst »). La technique de codage MPE- IFEC est par ailleurs décrite dans le document DVB Bluebook A.131 , intitulé « MPE-IFEC (draft TS 102 772 V1.1.1 ) », publié en novembre 2008 par l'ETSI (European Télécommunication Standard Institute). Un environnement ITS impose une augmentation de la longueur des salves erronées consécutives, et une réduction de la longueur des salves non erronées consécutives est réduite. En revanche, un environnement SUB impose une réduction de la longueur des salves erronées consécutives, et une augmentation de la longueur des salves non erronées consécutives. Or, on peut montrer que la technique MPE-IFEC n'est véritablement performante en présence d'un environnement ITS qu'à condition que la profondeur de l'entrelacement soit importante (typiquement 30 secondes, ce qui correspond à une variable S de valeur élevée), tandis qu'elle n'est véritablement performante en présence d'un environnement SUB qu'à condition que la profondeur de l'entrelacement soit faible (typiquement 10 secondes, ce qui correspond à une variable S de faible valeur). L'opérateur d'un réseau de type DVB-SH se retrouve donc contraint de configurer ce dernier en fonction du pire environnement, à savoir l'environnement ITS. L'invention a donc pour but d'améliorer la situation dans une infrastructure de transmission par voie d'ondes.
Elle propose à cet effet un procédé, dédié au codage de données devant être transmises au moyen d'une infrastructure de transmission par voie d'ondes, et comprenant les étapes suivantes :
- constituer en parallèle M premières matrices de T lignes et C colonnes avec des sous-ensembles de données de B salves (ou « bursts ») successives reçues, les sous-ensembles de données de chaque salve étant répartis dans au moins deux premières matrices successives, - constituer en parallèle M deuxièmes matrices de T lignes et N colonnes avec des symboles de parité résultant d'un encodage des données qui sont contenues respectivement dans les lignes de chacune des M premières matrices,
- constituer en parallèle M troisièmes matrices de K lignes et C colonnes avec des symboles de parité résultant d'un encodage des données qui sont contenues respectivement dans les colonnes de chacune des M premières matrices,
- répartir par entrelacement (ou « interleaving »), d'une part, J sous- ensembles de symboles de parité de chaque deuxième matrice dans J ensembles successifs, et d'autre part, P sous-ensembles de symboles de parité de chaque troisième matrice dans P de ces ensembles successifs, et placer dans chacun des ensembles successifs les données respectives des salves successives reçues.
Le procédé selon l'invention peut comporter d'autres caractéristiques qui peuvent être prises séparément ou en combinaison, et notamment :
- la variable M peut être définie par l'équation M = B + max(0 ; max(J ; P) - D) + max(0 ; D - B), où max() est la fonction maximum et D est un délai, exprimé en nombre de salves, entre l'instant de réception des données d'une salve et l'instant de transmission par l'infrastructure des données de cette même salve ;
- la variable B peut être égale à 3 ;
- la variable J peut être égale à 2 ; - la variable P peut être égale à 4 ;
- les M premières matrices peuvent être constituées au moyen d'une technique dite « encapsulation multiprotocole (MPE) » ;
- les M deuxièmes matrices et les M troisièmes matrices peuvent être constituées au moyen d'une technique dite de « correction d'erreur directe
(FEC) ».
L'invention propose également un codée (ou « codeur-décodeur »), destiné à équiper un équipement de communication propre à se connecter à une infrastructure de transmission par voie d'ondes, et comprenant : - des moyens de codage chargés de constituer en parallèle :
• M premières matrices de T lignes et C colonnes avec des sous- ensembles de données de B salves successives reçues, les sous- ensembles de données de chaque salve étant répartis dans au moins deux premières matrices successives, • M deuxièmes matrices de T lignes et N colonnes avec des symboles de parité résultant d'un encodage des données contenues respectivement dans les lignes de chacune des M premières matrices, et
• M troisièmes matrices de K lignes et C colonnes avec des symboles de parité résultant d'un encodage des données contenues respectivement dans les colonnes de chacune des M premières matrices, et
- des moyens d'entrelacement chargés de répartir par entrelacement, d'une part, J sous-ensembles de symboles de parité de chaque deuxième matrice dans J ensembles successifs, et d'autre part, P sous-ensembles de symboles de parité de chaque troisième matrice dans P de ces ensembles successifs, et de placer dans chacun des ensembles successifs les données respectives des salves successives reçues.
Les moyens de codage peuvent par exemple être chargés de constituer les M premières matrices au moyen d'une technique dite « encapsulation multiprotocole (MPE) ». En variante ou en complément, les moyens de codage peuvent par exemple être chargés de constituer les M troisièmes matrices au moyen d'une technique dite de « correction d'erreur directe (FEC) » L'invention est particulièrement bien adaptée, bien que de façon non exclusive, aux réseaux hybrides de type DVB-SH (ou DVB-SSP), ainsi qu'à toutes leurs évolutions. Mais, l'invention s'applique d'une manière générale à tout type d'infrastructure de transmission de données par voie d'ondes. D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels :
- la figure 1 illustre de façon très schématique et fonctionnelle une infrastructure de transmission hybride permettant de mettre en œuvre l'invention, et
- la figure 2 illustre de façon partielle et schématique un exemple de codage de données de salves IP selon l'invention.
Les dessins annexés pourront non seulement servir à compléter l'invention, mais aussi contribuer à sa définition, le cas échéant. L'invention a pour objet de proposer un procédé de codage de données en vue de la transmission de ces données par une infrastructure de transmission par voie d'ondes.
Dans ce qui suit, on considère à titre d'exemple non limitatif que l'infrastructure de transmission par voie d'ondes est de type hybride (PFC, SAT, RA), et plus précisément qu'il s'agit d'un réseau de type DVB-SH (ou
DVB-SSP). Mais, l'invention n'est pas limitée à ce type d'infrastructure de transmission par voie d'ondes. Elle concerne en effet tout type d'infrastructure permettant de transmettre des données (éventuellement de contenus, éventuellement multimédia), par voie d'ondes, à destination de terminaux de communication radio. Par conséquent, il pourra s'agir aussi bien d'un réseau de communication radio que d'un réseau de diffusion par voie d'ondes. A titre d'exemples non limitatifs, il pourra également s'agir d'un réseau de diffusion sans fil (comme par exemple un réseau terrestre de type DVB-H (pour « Digital Video Broadcasting - Handhelds » - télévision mobile), ou d'un réseau cellulaire ou mobile (comme par exemple un réseau de type
GSM/EDGE ou UMTS) ou bien encore d'un réseau métropolitain ou MAN (pour « Metropolitan Area Network » - comme par exemple un réseau de type WiMAX). Par ailleurs, on considère dans ce qui suit, à titre d'exemple non limitatif, que les terminaux de communication radio (TC) sont des téléphones mobiles (ou cellulaires) ou des assistants personnels numériques (ou PDAs) communicants. Mais, l'invention n'est pas limitée à ce type de terminal de communication radio. Elle concerne en effet tout équipement de communication, fixe ou mobile (ou portable ou encore cellulaire), capable au moins de recevoir des données par voie d'ondes via une infrastructure du type précité. Par conséquent, il pourra également s'agir d'un ordinateur fixe ou portable, d'un récepteur de contenus multimédia (comme par exemple un décodeur, une passerelle résidentielle (ou « residential gateway ») ou un STB (« Set-Top Box »)), dès lors qu'il est équipé de moyens de communication par voie d'ondes aptes au moins à la réception de données.
En outre, on considère dans ce qui suit, à titre d'exemple non limitatif, que les données, diffusés vers les terminaux (TC), sont des données de contenus multimédia tels que des programmes de télévision. Mais, l'invention n'est pas limitée à ce type de données. Elle concerne en effet tout type de contenu, et notamment les vidéos, les données de fichiers (ou « data »), les données de signalisation, les programmes de radio, et les contenus audio.
Comme cela est schématiquement illustré sur la figure 1 , la mise en œuvre de l'invention nécessite l'existence d'une infrastructure de transmission par voie d'ondes, ici de type hybride et donc comprenant une voie de transmission satellitaire et une voie de transmission radio terrestre.
La voie de transmission satellitaire comprend une plateforme (ou passerelle) satellitaire PFC pour la fourniture de contenus encodés et au moins un satellite de communication SAT couplés l'un à l'autre par voie d'ondes.
La plateforme satellitaire PFC est par exemple couplée à un serveur de contenus SC qui l'alimente en contenus sous la forme de salves (ou « bursts »), ici de type IP (il pourrait en effet s'agir de données de paquets de type NAL (vidéo) ou RTP, par exemple). Elle est chargée d'encoder ces contenus reçus au moyen d'un codée CD (mettant en œuvre un procédé selon l'invention) avant de les transmettre par voie d'ondes au satellite (de communication) SAT, qui se charge ensuite de les retransmettre (diffuser) vers des terminaux TC, soit directement, soit indirectement via la voie de transmission radio terrestre.
Cette voie de transmission radio terrestre comprend au moins un réseau d'accès radio RA qui peut par exemple faire partie d'un réseau de communication mobile (ou cellulaire). C'est l'hypothèse qui est retenue dans ce qui suit, à titre d'exemple non limitatif. Par exemple, ce réseau d'accès radio RA est de type UTRAN (ou 3G). Il comporte donc principalement des stations de base N (appelées Node Bs dans le cas d'un UTRAN) et des contrôleurs de réseau radio CR (appelés RNCs dans le cas d'un UTRAN), raccordés entre eux, ainsi qu'un équipement de communication satellitaire PS qui est couplé par voie d'ondes au satellite SAT (pour recevoir les contenus encodés) et par voie filaire aux contrôleurs de réseau radio CR (pour les alimenter en contenus encodés reçus.
Les terminaux TC peuvent recevoir les contenus encodés soit directement du satellite SAT, lorsqu'ils ne sont pas situés dans une zone d'ombre, soit des stations de base N, lorsqu'ils sont situés dans une zone d'ombre.
Chaque terminal TC comprend un codée CD, similaire à celui qui équipe la plateforme satellitaire PFC, de manière à pouvoir décoder les contenus encodés qu'il reçoit.
L'invention propose de mettre en œuvre au sein du codée CD de la plateforme satellitaire PFC un procédé de codage des données de contenu reçues sous la forme de salves IP (et plus précisément encapsulées en
RTP/UDP/IP. Il est rappelé que l'on appelle datagrammes IP les données qui sont contenues dans une salve IP.
Le procédé selon l'invention comprend quatre étapes principales qui sont effectuées par le codée CD lorsque sa plateforme satellitaire PFC reçoit des salves de données de contenu(s) du serveur de contenus SC.
Une première étape principale du procédé selon l'invention consiste à constituer en parallèle M premières matrices de T lignes et C colonnes avec des sous-ensembles de données de B salves IP de données. On comprendra que l'on fonctionne ici au moyen de fenêtres glissantes.
Par exemple, la variable M peut être définie par l'équation suivante : M = B + max(0 ; max(J ; P) - D) + max(0 ; D - B), où max() est la fonction maximum, J et P sont deux variables représentatives de deux profondeurs d'entrelacement sur lesquelles on reviendra plus loin, et D est un délai qui est exprimé en nombre de salves Si et qui représente l'écart temporel entre l'instant de réception des données d'une salve Si et l'instant de transmission par l'infrastructure hybride (et plus précisément par la plateforme satellitaire PFC) des données de cette même salve Si, une fois encodées par le codée CD.
Chaque première matrice peut être considérée comme un bloc de B sous-blocs qui sont chacun constitués d'un certain nombre de colonnes de données issues d'une salve IP Si (et constituant un sous-ensemble de cette dernière).
La variable B est au moins égale à deux. Par conséquent, les sous- ensembles de données de chaque salve Si sont répartis dans au moins deux premières matrices successives (Si et Si+1). Par exemple, la valeur de B peut être égale à trois ou quatre, voire même plus.
Le nombre C de colonnes de chaque première matrice est par exemple égal à 191. Le nombre T de lignes de chaque première matrice est par exemple au plus égal à 1024. On notera que les M premières matrices peuvent par exemple être constituées au moyen de la technique dite « encapsulation multiprotocole » (ou MPE). On notera également que lorsque la technique d'encodage est celle qui est appelée MPE-IFEC, chaque première matrice est ce que l'homme de l'art appelle une table de données d'application (ou ADT (pour « Application Data Table »)).
Une deuxième étape principale du procédé selon l'invention consiste à constituer en parallèle M deuxièmes matrices de T lignes et N colonnes avec des symboles de parité qui résultent d'un encodage des données qui sont contenues respectivement dans les T lignes de chacune des M premières matrices constituées lors de la première étape principale.
On comprendra que chaque deuxième matrice est issue de (et donc associée à) l'une des M premières matrices.
Par exemple, les M deuxièmes matrices peuvent être constituées au moyen de la technique dite de « correction d'erreur directe » (ou FEC). Dans ce cas, l'encodage de ligne est de type Reed-Solomon (ou RS) et chaque deuxième matrice est ce que l'homme de l'art appelle une table de données FEC (ou FDT (pour « FEC Data Table »)). Le nombre N de colonnes de chaque deuxième matrice est par exemple égal à 64 (dans le cas DVB-SH).
Une troisième étape principale du procédé selon l'invention consiste à constituer en parallèle M troisièmes matrices de K lignes et C colonnes avec des symboles de parité qui résultent d'un encodage des données qui sont contenues respectivement dans les C colonnes de chacune des M premières matrices constituées lors de la première étape principale.
On comprendra que chaque troisième matrice est issue de (et donc associée à) l'une des M premières matrices.
Par exemple, les M troisièmes matrices peuvent être constituées au moyen de la technique dite de « correction d'erreur directe » (ou FEC). Dans ce cas, l'encodage de ligne est de type Reed-Solomon (ou RS) et chaque troisième matrice est ce que l'homme de l'art appelle une table de données
FEC (ou FDT (pour « FEC Data Table »)).
Le nombre K de lignes de chaque troisième matrice est par exemple égal à 64 (dans le cas DVB-SH).
Il est important de noter que les deuxième et troisième étapes principales peuvent être effectuées sensiblement simultanément.
On notera que les deuxième et troisième matrices qui sont issues de
(et donc associées à) l'une des M premières matrices peuvent être considérées comme deux parties complémentaire d'une « matrice produit » constituée de symboles de parité que l'on peut ici appeler des « codes de produit » Cij (i et j désignent respectivement une ligne et une colonne).
Chaque rangée de cette matrice produit constitue par exemple un mot code
RS du champ Galois GF(q) ayant une capacité de correction d'erreur t1 , et chaque colonne de cette matrice produit constitue par exemple un mot code
RS du champ Galois GF(q) ayant une capacité de correction d'erreur t2.
On notera que les première, deuxième et troisième étapes principales peuvent être mises en œuvre par un module de codage MC du codée CD qui équipe la plateforme satellitaire PFC.
Une quatrième étape principale du procédé selon l'invention consiste notamment à répartir au moyen d'un double entrelacement (ou « interleaving »), d'une part, J sous-ensembles de symboles de parité de chaque deuxième matrice dans J ensembles Ei successifs, et d'autre part, P sous-ensembles de symboles de parité de chaque troisième matrice dans P de ces ensembles Ei successifs.
Comme indiqué précédemment les variables J et P sont représentatives des deux profondeurs d'entrelacement du procédé d'encodage selon l'invention. On entend ici par « profondeur d'entrelacement » le nombre d'ensembles de données Ei successifs dans lesquels sont répartis les sous-ensembles de symboles de parité d'une deuxième ou troisième matrice.
L'une des deux variables J et P peut être supérieure ou égale à un, tandis que l'autre doit être supérieure ou égale à deux. Par exemple, la valeur de J peut être égale à deux ou trois, voire même plus, et la valeur de P peut être égale à trois ou quatre, voire même plus.
On notera que J peut être égal à P, mais cela n'est pas obligatoire.
La quatrième étape principale consiste également à placer dans chacun des ensembles Ei successifs les données respectives des salves successives Si reçues. Chaque ensemble Ei produit par le procédé de codage selon l'invention est donc finalement constitué au moins des données de l'une des salves Si reçues, de J sous-ensembles de symboles de parité issus de J deuxièmes matrices et de P sous-ensembles de symboles de parité issus de P troisièmes matrices.
On notera également que la quatrième étape principale peut être mise en œuvre par un module d'entrelacement ME du codée CD qui équipe la plateforme satellitaire PFC et qui est couplé au module de codage MC du codée CD. On a schématiquement représenté sur la figure 2 un exemple de codage de données de salves IP effectué au moyen d'un codée CD mettant en œuvre le procédé selon l'invention. Dans cet exemple, la variable M est égale à 4, la variable B est égale à 3, la variable J est égale à 2 et la variable P est égale à 4. Par ailleurs, la partie « supérieure » de la figure 2 matérialise huit salves S1 à S8 successivement reçues par la plateforme satellitaire PFC, la partie « intermédiaire » de la figure 2 matérialise les quatre (M=4) associations parallèles d'une première matrice (ADT)1 d'une deuxième matrice (FDT1), issue de cette première matrice (ADT), et d'une troisième matrice (FDT2), issue de cette même première matrice (ADT), et la partie « inférieure » de la figure 2 matérialise cinq ensembles E4 à E8 constitués successivement (« au fil de l'eau ») à partir de salves Si précédemment reçues et des deuxième (FDT1) et troisième (FDT2) matrices des associations précitées (conformément aux flèches unidirectionnelles).
Du côté réception (c'est-à-dire dans les terminaux TC), les salves erronées sont corrigées progressivement étant donné que les ensembles Ei précités, qui sont transmis successivement via le satellite SAT et via le réseau d'accès radio RA, comportent des sous-ensembles complémentaires de symboles de parité, et donc qu'il faut attendre d'avoir reçu au moins (B + max(J.P) - D) tranches temporelles de salve (ensembles Ei et FEC associés) pour disposer de l'intégralité des symboles de parité (FEC) nécessaires à la correction des données de contenu d'une salve Si initialement reçue par la plateforme satellitaire PFC. Du côté réception, le décodage des données de contenu (qui inclut les éventuelles corrections) est assuré par les codées CD des terminaux TC.
L'invention est particulièrement avantageuse car elle permet d'effectuer une correction efficace aussi bien dans un environnement ITS que dans un environnement SUB. En outre, elle permet de diminuer Ia bande passante utilisée pour la redondance de correction d'erreur du fait que le taux de codage est réduit, et par conséquent elle permet d'augmenter le nombre de services diffusés grâce aux performances supérieures offertes par les codes de produit en matière de correction d'erreur. Par ailleurs, l'invention offre plus de flexibilité aux opérateurs pour dimensionner leurs infrastructures hybrides, du fait qu'elle permet d'améliorer la qualité des services et d'économiser de la bande passante. Enfin, étant donné que les profondeurs d'entrelacement (J et P) peuvent être faibles, la qualité perçue des contenus est améliorée et le délai de commutation entre contenus de canaux différents (ou « zapping time ») est réduit (en cas d'erreur il suffit en effet d'attendre un délai égal à min(J,P) pour changer de canal).
L'invention ne se limite pas aux modes de réalisation de procédé de codage, de codée et de plateforme (ou passerelle) décrits ci-avant, seulement à titre d'exemple, mais elle englobe toutes les variantes que pourra envisager l'homme de l'art dans le cadre des revendications ci-après.

Claims

REVENDICATIONS
1. Procédé de codage de données à transmettre au moyen d'une infrastructure de transmission par voie d'ondes (PFC1 SAT, RA), ledit procédé comprenant les étapes suivantes :
- constituer en parallèle M premières matrices de T lignes et C colonnes avec des sous-ensembles de données de B salves successives reçues, les sous-ensembles de données de chaque salve étant répartis dans au moins deux premières matrices successives, - constituer en parallèle M deuxièmes matrices de T lignes et N colonnes avec des symboles de parité résultant d'un encodage des données contenues respectivement dans les lignes de chacune desdites M premières matrices,
- constituer en parallèle M troisièmes matrices de K lignes et C colonnes avec des symboles de parité résultant d'un encodage des données contenues respectivement dans les colonnes de chacune desdites M premières matrices,
- répartir par entrelacement, d'une part, J sous-ensembles de symboles de parité de chaque deuxième matrice dans J ensembles successifs, et d'autre part, P sous-ensembles de symboles de parité de chaque troisième matrice dans P desdits ensembles successifs, et placer dans chacun desdits ensembles successifs les données respectives desdites salves successives reçues.
2. Procédé selon la revendication 1 , dans lequel M est défini par l'équation M = B + max(0 ; max(J ; P) - D) + max(0 ; D - B), où max() est la fonction maximum et D est un délai, exprimé en nombre de salves, entre l'instant de réception des données d'une salve et l'instant de transmission par ladite infrastructure (PFC, SAT, RA) des données de cette même salve.
3. Procédé selon l'une des revendications 1 et 2, B est égal à 3.
4. Procédé selon l'une des revendications 1 à 3, dans lequel J est égal à 2.
5. Procédé selon l'une des revendications 1 à 4, dans lequel P est égal à 4.
6. Procédé selon l'une des revendications 1 à 5, dans lequel lesdites M premières matrices sont constituées au moyen d'une technique dite « encapsulation multiprotocole (MPE) ».
7. Procédé selon l'une des revendications 1 à 6, dans lequel lesdites M deuxièmes matrices et lesdites M troisièmes matrices sont constituées au moyen d'une technique dite de « correction d'erreur directe (FEC) ».
8. Codée (CD) pour un équipement de communication (PFC) d'une infrastructure de transmission par voie d'ondes (PFC1 SAT, RA), ledit codée (CD) comprenant :
• des moyens de codage (MC) agencés pour constituer en parallèle i) M premières matrices de T lignes et C colonnes avec des sous-ensembles de données de B salves successives reçues, les sous-ensembles de données de chaque salve étant répartis dans au moins deux premières matrices successives, ii) M deuxièmes matrices de T lignes et N colonnes avec des symboles de parité résultant d'un encodage des données contenues respectivement dans les lignes de chacune desdites M premières matrices, et iii) M troisièmes matrices de K lignes et C colonnes avec des symboles de parité résultant d'un encodage des données contenues respectivement dans les colonnes de chacune desdites M premières matrices, et
• des moyens d'entrelacement (ME) agencés pour répartir par entrelacement, d'une part, J sous-ensembles de symboles de parité de chaque deuxième matrice dans J ensembles successifs, et d'autre part, P sous-ensembles de symboles de parité de chaque troisième matrice dans P desdits ensembles successifs, et pour placer dans chacun desdits ensembles successifs les données respectives desdites salves successives reçues.
9. Codée selon la revendication 8, dans lequel lesdits moyens de codage (MC) sont agencés pour constituer lesdites M premières matrices au moyen d'une technique dite « encapsulation multiprotocole (MPE) ».
10. Codée selon l'une des revendications 8 et 9, dans lequel lesdits moyens de codage (MC) sont agencés pour constituer lesdites M troisièmes matrices au moyen d'une technique dite de « correction d'erreur directe (FEC) ».
EP10707323A 2009-01-23 2010-01-19 Procédé de codage de données à double entrelacement de symboles de parité, pour une infrastructure radio, et codec associé Withdrawn EP2389741A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0950416A FR2941580A1 (fr) 2009-01-23 2009-01-23 Procede de codage de donnees a double entrelacement de symboles de parite, pour une infrastructure radio, et codec associe
PCT/FR2010/050082 WO2010084283A1 (fr) 2009-01-23 2010-01-19 Procédé de codage de données à double entrelacement de symboles de parité, pour une infrastructure radio, et codec associé

Publications (1)

Publication Number Publication Date
EP2389741A1 true EP2389741A1 (fr) 2011-11-30

Family

ID=41061329

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10707323A Withdrawn EP2389741A1 (fr) 2009-01-23 2010-01-19 Procédé de codage de données à double entrelacement de symboles de parité, pour une infrastructure radio, et codec associé

Country Status (5)

Country Link
US (1) US8677210B2 (fr)
EP (1) EP2389741A1 (fr)
JP (1) JP2012516099A (fr)
FR (1) FR2941580A1 (fr)
WO (1) WO2010084283A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11030149B2 (en) * 2018-09-06 2021-06-08 Sap Se File format for accessing data quickly and efficiently

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1401109A1 (fr) * 2002-09-20 2004-03-24 Alcatel Procédé et codeur pour implémenter un code de bloc linéaire et multidimensionel, qui est protégé entièrement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074656A (ja) * 2004-09-06 2006-03-16 Yokogawa Electric Corp 前方向誤り訂正方法とそれを用いた通信方法および通信装置
US7610544B2 (en) * 2005-05-18 2009-10-27 Telegent Systems, Inc. Erasure generation in a forward-error-correcting communication system
US8185785B2 (en) * 2006-11-28 2012-05-22 At&T Intellectual Property I, L.P. Broadcasting of digital video to mobile terminals
CN101563874B (zh) * 2006-12-21 2012-05-23 汤姆森许可贸易公司 支持对因特网协议网络上的音频以及视频数据进行前向纠错的方法
FR2911741A1 (fr) * 2007-01-23 2008-07-25 Udcast Sa Procede et dispositif contre la perte de salves dans un systeme de transmission dvb-h.
KR101405965B1 (ko) * 2007-06-25 2014-06-12 엘지전자 주식회사 디지털 방송 시스템 및 데이터 처리 방법
US20100011274A1 (en) * 2008-06-12 2010-01-14 Qualcomm Incorporated Hypothetical fec decoder and signalling for decoding control
US7664190B1 (en) * 2008-08-04 2010-02-16 Mediatek Inc. Multi-carrier receiver with dynamic power adjustment and method for dynamically adjusting the power consumption of a multi-carrier receiver

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1401109A1 (fr) * 2002-09-20 2004-03-24 Alcatel Procédé et codeur pour implémenter un code de bloc linéaire et multidimensionel, qui est protégé entièrement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BESSEM SAYADI ET AL: "Architecture for Real-Time Stream Error Handling in Converged DVB-SH/Cellular Network", GLOBAL TELECOMMUNICATIONS CONFERENCE, 2008. IEEE GLOBECOM 2008. IEEE, IEEE, PISCATAWAY, NJ, USA, 30 November 2008 (2008-11-30), pages 1 - 5, XP031370233, ISBN: 978-1-4244-2324-8 *
See also references of WO2010084283A1 *

Also Published As

Publication number Publication date
US8677210B2 (en) 2014-03-18
US20120008706A1 (en) 2012-01-12
WO2010084283A1 (fr) 2010-07-29
JP2012516099A (ja) 2012-07-12
FR2941580A1 (fr) 2010-07-30

Similar Documents

Publication Publication Date Title
EP0578313B1 (fr) Codage enchaíné, pour la transmission OFDM
US8161352B2 (en) Method for providing unequal error protection to data packets in a burst transmission system
EP2218203B1 (fr) Procede et dispositif de transmission robuste d'en-tetes reseau compresses
US20090013356A1 (en) Mobile television broadcast system
US20090028324A1 (en) Method and system for providing scrambled coded multiple access (scma)
US20140019830A1 (en) Joint application-layer forward error/erasure correction (FEC) and video coding
EP2241043A1 (fr) Procede de transmission de donnees depuis une infrastructure d'un reseau de radiocommunication vers des equipements utilisateur, et equipements pour la mise en uvre du procede
FR3023102A1 (fr) Procede de transmission dynamique et selectif fd-dsdf d'un signal numerique pour un systeme mamrc avec plusieurs relais full-duplex, produit programme et dispositif relais correspondants
EP2193620B1 (fr) Procede et equipement de transmission de donnees depuis l'infrastructure d'un reseau de radiocommunication vers des equipements utilisateur
WO2009121883A2 (fr) Procédé de transmission d'un signal numérique entre au moins deux émetteurs et au moins un récepteur, mettant en oeuvre au moins un relais, produit programme et dispositif relais correspondants
EP2119077B1 (fr) Procede et dispositif contre la perte de salves dans un systeme de transmission dvb-h
EP3084995A1 (fr) Procédé de transmission d'un signal numérique pour un système marc a un relais half-duplex dynamique, produit programme et dispositif relais correspondants
EP3084996B1 (fr) Procede de transmission d'un signal numerique pour un systeme marc a plusieurs relais half-duplex dynamiques, produit programme et dispositif relais correspondants
EP2389741A1 (fr) Procédé de codage de données à double entrelacement de symboles de parité, pour une infrastructure radio, et codec associé
WO2011064345A1 (fr) Procédé de turbocodage distribué adaptatif pour réseau coopératif
Gomez-Barquero et al. A novel physical layer split FEC scheme for long time interleaving with fast zapping support
Park ATSC 3.0 for future broadcasting: Features and extensibility
EP2436134A2 (fr) Procédé de transmission de données depuis une infrastructure d'un réseau de radiocommunication vers des équipements utilisateur, et équipements pour la mise en uvre du procédé
EP2722992B1 (fr) Méthode de codage pour canal à évanouissement quasi-périodique
Vargas et al. Adding different levels of QoS to the DVB-SH standard
WO2009144080A2 (fr) Procede, terminal et composant associes pour la protection contre les pertes en tv mobile multi-mode
WO2014033315A1 (fr) Procede d'emission cooperative, signal, entite source, entite relais, procede de reception, entite destinataire, systeme et programme d'ordinateur correspondant
Navarro et al. An error-resilient approach for real-time packet communications by HF-channel diversity
FR2968869A1 (fr) Procede de transmission d'un service dans un reseau de communications mobiles
Shin et al. On the DVB-SH System Architecture Incorporating T-DMB.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
111Z Information provided on other rights and legal means of execution

Free format text: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Effective date: 20130410

17Q First examination report despatched

Effective date: 20140116

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140527