EP2386660B1 - Casting mould - Google Patents

Casting mould Download PDF

Info

Publication number
EP2386660B1
EP2386660B1 EP11165452.1A EP11165452A EP2386660B1 EP 2386660 B1 EP2386660 B1 EP 2386660B1 EP 11165452 A EP11165452 A EP 11165452A EP 2386660 B1 EP2386660 B1 EP 2386660B1
Authority
EP
European Patent Office
Prior art keywords
graphite
cast body
cast
iron
circumferential rim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11165452.1A
Other languages
German (de)
French (fr)
Other versions
EP2386660A1 (en
Inventor
Ulrich Severing
Bernd Eppli
Lutz Krodel-Teuchert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHW Casting Technologies GmbH
Original Assignee
SHW Casting Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHW Casting Technologies GmbH filed Critical SHW Casting Technologies GmbH
Publication of EP2386660A1 publication Critical patent/EP2386660A1/en
Application granted granted Critical
Publication of EP2386660B1 publication Critical patent/EP2386660B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/10Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • C21D5/04Heat treatments of cast-iron of white cast-iron
    • C21D5/06Malleabilising
    • C21D5/14Graphitising

Definitions

  • the invention relates to a cast body, namely a tool for forming or forming a workpiece or a transmission member for transmitting force or torque to a workpiece contacting the original or forming tools, preferably a piston or plunger.
  • the tool or transfer member may be part of a press for forming or forming the workpiece or a forging tool.
  • the invention also relates to the tool or transfer member as such, prior to assembly with other components.
  • rollers made of chilled cast iron, in particular shell-cast iron, or forged steel are used.
  • the cast iron bodies are produced by chill casting, usually standing in static chill casting.
  • the ring molds is achieved that sets in the outer peripheral edge zone, the shell, a carbide, white cast iron.
  • the peripheral edge zone or shell solidifies metastable, white, the carbon is bound there in the form of carbides.
  • the melt solidifies in gray the carbon is present as free graphite in the iron matrix.
  • the required hardness at the outer circumference of the roll body, the surface hardness, is ensured by the material of the shell, the white cast iron.
  • the hardness is set at the surface and in the near-surface depth range.
  • the disadvantage of shell casting is the impact brittleness, its sensitivity to sudden changes in temperature, and uneven wear on the outer circumference of the roll due to the carbides contained in the white iron.
  • the EP 0 505 343 A1 proposes, in order to overcome the said drawbacks, that the roll body is cast from an iron-base alloy to form a pearlitic or ferritic-pearlitic microstructure which is at least 60% pearlitic.
  • the iron-based alloy contains 3.0 - 3.8% C, 1.5 - 3.0% Si and 0.5 - 0.9% Mn. Maximum levels are given for P and S.
  • As further alloying elements Cr, Ni, Cu, Mg, Mo, Sn or Al are used.
  • the roll body is surface hardened, called induction and flame hardening, and annealed after the martensitic transformation so that the roll body receives a temper martensite structure in its peripheral edge zone. With the martensitic structure of the peripheral edge zone is accompanied by a considerable risk of cracking.
  • the EP 2 213 790 A1 describes a roller body for a roller for treating a material, wherein the material of the peripheral edge zone of the roller body compared to the white cast iron has significantly improved strength values.
  • CH 360 701 A discloses a method for surface hardening of cast iron, in which the edge zone of a workpiece is converted into austenite by brief autogenous or induction heating and is then cooled relatively slowly.
  • roller bodies made of forged steel the mentioned material problems can be solved.
  • Surface hardness and hardening depth are adjusted on the roll body by subsequent thermal surface treatment.
  • the production takes place from a forging block, the weight of which depends on the size of the roll body.
  • Rolled bodies weigh many tons, for example, large roll bodies have a weight of about 50 tons or more.
  • the weight of the forge block can be up to 200t.
  • a hollow forging is possible in this weight range only with great effort.
  • high demands are placed on the inner quality of the forged steel with regard to defects, inclusions and the like. The application is therefore very low.
  • Ur- or forming devices in particular for forming metal workpieces are comparable.
  • Such tools and transfer members may be to act about stamps, dies, pistons and rams of presses and blacksmiths.
  • the cast body should have the required hardness on the surface and also in the near-surface depth range, but not in the application disadvantageous unevenness in wear and impact brittleness. The risk of cracking associated with a martensite shell should also be avoided.
  • the invention is based on a cast body which is cast from a single iron-based alloy.
  • the iron-base alloy forms an inner zone of gray cast iron, preferably nodular cast iron, in the cast body, and the inner zone encloses a peripheral edge zone containing the outer circumference of the cast body having a surface hardness greater than 400HV on the outer circumference, as has heretofore been prevalent Shell casting is the case.
  • the cast body can be seen in cross-section of full material, so that the inner zone of gray cast iron forms a central core of the cast body.
  • the casting may also be a hollow shell, so that the inner zone is an annular zone.
  • the inner zone and the peripheral edge zone are cast in one piece, the use of the two terms is intended to indicate the difference in the microstructure present in the two zones, hereinafter simply microstructure.
  • the peripheral edge zone consists either of fine-grained or very fine-grained perlite with vermicular graphite or preferably spheroidal graphite or of an intermediate-layer structure, preferably ADI with spherical or vermicular graphite.
  • the fine-grained pearlite is also known as sorbitol and the finest-grained as troostite.
  • the invention combines the advantages of castings with those of forged steel and avoids the risk of cracking associated with a martensite shell.
  • the cast body can be made significantly cheaper over its entire dimension in a cast and thus compared to a forged steel body.
  • the gray cast iron inner zone can be worked well, for example by cutting.
  • near-surface pheripheral holes for the passage of a thermal fluid can be created in the inner zone.
  • the hardness profile of the circumferential edge zone that is to say the hardness profile applied over the distance to the outer surface, corresponds at least to the hardness profile of conventional tools or transmission elements serving as master or forming and can be controlled by the heat treatment process.
  • the mechanical strength is significantly improved compared to shell casting, which is reflected in higher 0.2% yield strength, tensile strength and elongation at break values.
  • the elongation at break is advantageously increased, in particular the risk of cracking is significantly reduced.
  • the graphite spheres which form the spheroidal graphite in the solidified peripheral edge zone have a maximum size which corresponds to a guide number of at least 5 (0.06-0.12 mm) according to EN ISO 945 corresponds.
  • the precipitation of the graphite in the form of only such small graphite balls is also advantageous for the mechanical strength and is achieved in the casting process by adjusting the cooling rate of the melt.
  • the melt is cooled from the outside, from the outer circumference, wherein the cooling rate is on the one hand so small that sets in the peripheral edge zone to the outer periphery or virtually to the outer periphery of a ductile iron structure, but on the other hand is so large that the Graphite spheres of the peripheral edge zone are smaller than in the conventional nodular cast iron, for example, when poured into a sand mold.
  • the nodular graphite has almost only, preferably only, graphite balls having a maximum size which has a guideline value of at least 6 (0.03-0.06 mm), more preferably at least 7 (0.015 mm).
  • the graphite spheres of the nodular cast iron structure which is preferably also present in the inner zone, can be larger.
  • the proportion of spheroidal graphite on the free graphite of the solidified peripheral edge zone is at least 80%, preferably at least 90%, and from the graphite spheres of the spheroidal graphite graphite of the peripheral edge zone correspond to at least 90%, preferably at least 95%, the above requirements for the size of graphite nodules.
  • This standard is the currently valid EN ISO 945: 1994.
  • the vermicular graphite particles if present, have a maximum size, in this case the length, of 0.12 mm, more preferably at most 0.06 mm, and even more preferably at most 0.03 mm. Of the total vermicular graphite particles present, at least 90%, preferably at least 95%, fall into this size range.
  • the carbide content makes up at most 3%. Percentages in% are always expressed as mass%, i. understood as% share of the respective total mass. With respect to any carbide content, this means that it is less than 5 mass% of the mass of the peripheral edge zone as a whole, including the carbide portion, preferably at most 3 mass%.
  • a white cast iron typically has a carbide content of 15% or more. Also, due to the significantly reduced carbide content and therefore the reduced micro-notch effect, the material of the peripheral edge zone of the cast body according to the invention significantly improved strength values compared to white cast iron.
  • the casting is a tool for or in a device for prototyping or forming workpieces, in particular metallic workpieces.
  • the cast body may for example form a punch or a die for plastic molding. Particularly advantageously, it can form a transmission element for transmitting force or torque to a tool which acts directly on the material during shaping.
  • Pistons and plungers of or for priming or forming devices are preferred examples.
  • Presses and forging tools, in particular with hydraulic force or torque transmission, are preferred examples of original and forming devices in which a cast body according to the invention can be used.
  • the cast body according to the invention is at least finished insofar as it no longer has to be subjected to thermal treatment and is preferably no longer subjected to it, which specifically serves to adjust the microstructure.
  • Any post-treatment for example a grinding or polishing, optionally a machining or, for example, a mechanical training and, in principle, thermal treatments that do not change in particular the claimed for the peripheral edge zone structure to such an extent that it no longer corresponds to the claimed invention, are, however, excluded.
  • a method for producing the cast body comprises at least the following steps: the cast body is cast from a melt of an iron-based alloy, so that the melt is stable as cast iron both in the inner zone of the cast body and in the outer peripheral and reaching to the outer periphery peripheral edge zone and at least in the peripheral edge zone, but preferably also in the inner zone in a nodular cast iron structure or a cast structure with vermicular graphite solidifies.
  • the matrix of the cast iron is pearlitic / ferritic, with the proportion of pearlite being greater than 90% and that of the ferrite being less than 10%.
  • the proportion of the perlite of the cast iron matrix is greater than 95% and that of the ferrite is less than 5%.
  • any amount of carbide in the peripheral edge zone is less than 5%, preferably less than or equal to or less than 3%.
  • the cast body obtained with this cast structure is formed by means of a thermal surface treatment on the outer periphery, i. hardened on the peripheral surface, and in the peripheral edge zone.
  • the thermal surface treatment is carried out so that the peripheral edge zone forming casting material, cast iron with nodular graphite or nodular graphite, with nodular graphite being preferred, is converted into fine or very fine-grained perlite with vermicular or nodular graphite or into an interstage structure with spheroidal graphite or vermicular graphite. More specifically, the cast iron matrix is converted into said perlite or interstage structure, and the free graphite already precipitated by the casting as a stable phase is retained. Further, the melt is not poured into sand, but against mold to control the cooling rate. Chill casting can be static or instead dynamic, ie centrifugal casting.
  • the cast body is expediently poured upright, that is to say with a main axis in a vertical orientation. Casting against mold permits a more precise setting of the cooling rate, in particular via the choice of the thickness of the mold, the specific or the absolute, measured radially to the main axis of the cast body Heat capacity, the thermal conductivity or the mass of the mold or a suitable combination of such parameters on the part of the mold.
  • the cooling rate can be controlled, for example, by a single or, preferably, a combination of several of the following: lower die thickness, use of a die of a lower heat capacity material , Using a mold of lower thermal conductivity, lower mold mass, in each case in comparison with a mold for casting a cast body of the same geometry and the same material in conventional hard shell casting.
  • the cooling rate is set by cooling the mold not only so small that the melt solidifies stable in the peripheral edge zone, but on the other hand so large that explained above for the preferred spheroidal graphite nodular graphite is excreted in the peripheral edge zone in graphite spheres a maximum size corresponding to the guideline number 5, preferably a maximum size of the guideline number 6, according to EN ISO 945.
  • the graphite balls in the size range between 7 and 8 according to EN ISO 945, ie in the guideline 7/8 before.
  • Such a fine graphite precipitation has a positive effect on the mechanical strength.
  • the fine precipitation of the graphite also increases the regularity of the surrounding cast iron matrix, which in turn is advantageous for the transformation of this basic structure present after casting into fine-grained or ultraprecipitated perlite or into an interstage structure.
  • the cast body is hardened to a depth of advantageously at least 3 mm, preferably at least 5 mm, by the cast iron matrix being converted into the fine-grained or extremely fine-grained pearlite or the interstitial microstructure up to at least this hardening depth.
  • a hardening depth of 7 mm is optimal.
  • a hardening depth of more than 10 mm should not be ruled out, large hardening depths produce material stresses in the event of a temperature change, with the risk that the hardened layer, the circumferential edge zone, will flake off.
  • Flame hardening and induction hardening are particularly suitable as methods of thermal surface treatment, with induction hardening preference is given to the fact that flame hardening is limited to the lower part of the hardening depth, generally still below 3 mm. Flame hardening is therefore primarily for castings with small diameters of up to 600 mm into consideration, although the induction hardening is also given preference here.
  • the peripheral edge zone is briefly heated to the austenitic region, preferably to at least 880 ° C. and particularly preferably to about 950 ° C.
  • the heated material is cooled by a surface cooling, preferably by means of a water quenching, in a short time to below 100 ° C, preferably below 50 ° C, so that the isothermal conversion takes place in the fine or feinststreifigen perlite.
  • a surface cooling preferably by means of a water quenching
  • a higher cooling rate is set, but still not so large that a significant martensitic transformation takes place. Martensite is ideally avoided because of the associated risk of cracking.
  • the cast iron of the peripheral edge zone therefore has, in preferred embodiments, a martensite start temperature M s which is below the values given above, ie below 100 ° C., preferably below 50 ° C.
  • the material of the peripheral edge zone has a martensite start temperature M s which is below room temperature, ie below 20 ° C.
  • the surface hardened cast body is advantageously tempered to relieve stress.
  • the tempering temperature is above the temperature that reaches the cast body in later operation at the most, advantageously above 300 ° C, preferably a tempering temperature in the range of 300 to 350 ° C. Even after such tempering, the cast body in the peripheral edge zone has the fine or very fine-grained pearlitic structure with spherical or vermicular graphite or the interstitial structure with spherical or vermicular graphite.
  • the iron-base alloy has a carbon content of preferably at least 3%, preferably at most 4%.
  • the silicon content is preferably at least 1.7 and preferably at most 2.4%, whereby these are also always% by mass.
  • the degree of saturation Sc of the alloy is preferably in the range of 0.97 to 1.03, preferably it is slightly smaller than 1.0, so that the melt is slightly hypoeutectic.
  • a preferred alloying partner is copper, as a perlitizer, and having a proportion of preferably at least 0.5 and preferably at most 1.3%.
  • a particularly preferred alloying partner is also nickel, which is alloyed in a proportion of preferably more than 0.3%, more preferably more than 0.5%, and preferably at most 1.5%. Nickel increases the toughness and makes the material corrosion-resistant.
  • nickel is of particular value for preventing martensite transformation during curing. If the iron-base alloy contains both silicon and nickel, it is advantageous if the silicon content decreases with increasing nickel content and the nickel content decreases with increasing silicon content. Preference is given to a silicon content from the lower half of the range specified for silicon and a nickel content from the middle part of the range specified for nickel.
  • a particularly preferred iron alloy contains as alloying partners both Ni and Cu with preferably at least the minimum proportions indicated for each.
  • Manganese and tin are also preferred alloying agents, manganese preferably from 0.3 to 0.45%, tin preferably from 0.005 to 0.015%. Compared to the other alloying elements mentioned above, however, the meaning of manganese and tin is reversed.
  • a preferred iron-based alloy contains C, Si, Ni and Cu within the preferred limits of the proportions, optionally Mn and Sn, as well as unavoidable residual P and S and the remainder Fe. Any proportions of phosphorus and sulfur are advantageously each well below 0.1%, more preferably still well below 0.05%.
  • FIG. 1 shows a roller for the treatment of a web material, for example a calender roll, with a cast body 1, namely a roller body, and two flange pins 2 and 3, one of which is mounted on the left and the other on the right front side of the cast body 1.
  • the roller is rotatably mounted in the region of the journal flanges 2 and 3 about an axis of rotation R or provided for pivotal mounting.
  • a thermal fluid can be supplied, which can be derived via the other or preferably the same pin flange 2 or 3 again.
  • the cast body 1 pass through from one axial end to the other, continuous, near the outer periphery of the cast body 1 located, peripheral tempering 4, which are flowed through during the thermal treatment of the material of the thermal fluid.
  • FIG. 2 shows the cast body 1 in cross section AA.
  • a central cavity is continuously formed axially.
  • the cast body 1 is poured in a chill casting, for example in static chill casting, standing from a melt of an iron-based alloy.
  • the central cavity is formed or incorporated later in this Urformung.
  • As the iron-base alloy a cast iron alloy is used.
  • the cooling which experiences the melt primarily on the mold, is controlled so that the melt solidifies over the entire axial length of the cast body 1 from radially inward to radially outward to the outer circumference or almost to the outer circumference stably in a ductile iron structure, ie in the form of a cast iron with nodular graphite.
  • the control of the cooling is done by customized design of the mold.
  • the cooling rate can be adjusted in particular via the radial thickness of the mold, the heat capacity of the mold, the thermal conductivity of the mold material or the total mass of the mold.
  • the mold can only with respect to a single of the mentioned parameters or a combination be designed by two, three or all four of these parameters by appropriate material selection and dimensioning.
  • the solidification process is controlled so that the melt solidly solidifies not only in an inner zone 5 surrounding the rotation axis R, but also in a peripheral edge zone 6 enclosing the inner zone 5, which forms the outer circumference of the cast body.
  • the cast body 1 thus solidifies over its entire cross-section stable and not white.
  • the carbon is eliminated in the stable solidification in the form of nodular graphite.
  • the cast body 1 immediately obtained by the casting process thus has everywhere a nodular cast iron structure. Due to the cooling rate set deliberately by means of the mold, however, the graphite in the peripheral edge zone 1 separates out more finely than in the inner zone 5.
  • the graphite spherulites SG (sphero-graphite particles) of the peripheral edge zone 6 have a size in the range of the guide numbers of 5 to 8, ie a maximum dimension of at most 0.12 mm. More preferably, the cooling rate is set so that the graphite particles SG of the peripheral edge zone 6 have a size in the range of the guide numbers of 7 (0.022 microns) to 8 according to EN ISO 945, ie a maximum dimension of at most 0.03 mm.
  • the cast iron matrix is also in the peripheral edge zone 6 perlitic with at most a low ferrite content.
  • the pearlite content is at least 90%, more preferably at least 95%, and the ferrite content at most 10%, more preferably at most 5%. If carbide formation can not be prevented, the carbide content is less than 5%, more preferably less than 3%, not only in the inner zone 5 but also in the peripheral edge zone 6 solidified at a higher cooling rate.
  • FIG. 3 shows a part of the FIG. 2 and further, extracted, a further enlarged view of the microstructure of the casting obtained by the casting.
  • These are the different microstructures of the inner zone 5 and the peripheral edge zone 6 with respect to the fineness of the precipitated graphite particles SG.
  • the microstructure shown next to the cross section of the cast body 1 are primarily of a schematic nature, but qualitatively illustrate that the graphite particles SG are in the peripheral edge zone 6 are smaller than the graphite particles SG in the inner zone 5 and present in the peripheral edge zone 6 correspondingly in finer distribution.
  • the cast body 1 is made wear-resistant in its subsequent higher-hardness peripheral edge zone 6 already obtained by the casting in a subsequent hardening process.
  • the peripheral tempering 4 are incorporated, preferably drilled.
  • the circumferential edge zone 6 is that annular zone of the cast body 1 which, after hardening, has the hardness required for the respective application everywhere, ie extends from the outer circumference to the hardening depth. If the peripheral edge zone 6 of the hardened cast body 1 extends radially inwardly up to or even over the tempering channels 4, these are expediently incorporated before hardening. Otherwise, the tempering 4 can just as well be incorporated after curing.
  • the hardening process is carried out in such a way that the basic structure of the peripheral edge zone 6 obtained directly from the casting is converted into finely striated or, even more advantageously, finely striated perlite.
  • the graphite spherulites SG are thereby not or at least not changed in a manner relevant to the invention.
  • the hardening process can also be designed so that the cast iron matrix within the peripheral edge zone 6 converts into an interstage structure, preferably in austempered ductile iron (ADI).
  • ADI austempered ductile iron
  • the cast body 1 is heated uniformly in the peripheral edge zone 6 to a temperature in the austenitic region, for example at 950 ° C, and then quenched, wherein the quenching rate for the formation of an interstage structure is set higher than for the transformation into the fine perlite, but still not so big that a martensite transformation can take place.
  • the interstitial structure is similar to bainite, preferably the lower bainite, but is not bainite because it contains no or, for the desired strength, only negligible carbides. It is also true for the interstitial structure that the carbide fraction is advantageously less than 5%, preferably at most 3%. It would be ideal if neither the fine pearlitic structure nor the alternative interstitial structure would contain carbides.
  • FIG. 4 illustrates a curing process using the example of the preferred induction hardening.
  • an induction device 8 and a quenching device 9 are moved axially from one end face of the cast body 1 to the other.
  • the movement is uniform with the speed v and a constant during the hardening process axial Distance x, by which the induction device 8 precedes the quenching device 9.
  • the induction device 8 surrounds the cast body 1 by means of the induction device 8 up to the predetermined hardening depth, ie within the peripheral edge zone 6, uniformly throughout the temperature range and then quenched by means of the quenching device 9.
  • the quenching is preferably carried out with a liquid quenching fluid, for example water, which is injected onto the outer circumference of the cast body 1.
  • the peripheral edge zone 6 may in principle be heated by any other thermal surface treatment method as long as only the required temperature is adjusted with the required uniformity.
  • induction hardening in particular flame hardening comes into consideration, but primarily only for lower hardening depths. With increasing depth of cure, induction hardening is the preferred choice.
  • the Einhärttiefe and, accordingly, the thickness of the peripheral edge zone 6 is preferably at least 3mm, more preferably at least 5mm. On the other hand, it is advantageous in terms of thermal cycling, if the Einhärttiefe does not exceed 10mm.
  • the hardening depth can be influenced in particular by a variation of the distance x, in the case of induction hardening also by varying the frequency of the respective induction coil 8. Further adjusting parameters for influencing the hardening depth are the speed v, the choice of the quenching fluid and the throughput of quenching fluid.
  • FIGS. 5 and 6 are micrographs of the structure of the peripheral edge zone.
  • FIG. 5 shows the basic structure obtained directly from the casting in the scale 50: 1
  • FIG. 6 is a microsection of the structure after hardening, thus showing the hardness structure, also in scale 50: 1.
  • the graphite spheres or graphitic spherolites are denoted by SG, the perlite by P and ferrite islands by ⁇ .
  • the basic structure consists essentially of perlite and precipitated nodular graphite and small amounts of ferrite, less than 10% ferrite in the exemplary embodiment.
  • the hardness structure consists of fine-grained and very fine-grained pearlite, ie sorbitol and troostite, as well as the embedded sphero-graphite particles SG, the pearlite areas being designated S for sorbitol and T for troostite according to the fineness of the lamellae.
  • FIG. 7 the microhardness curve is shown at a given hardening depth of 3 mm, namely the hardness H in HV0.1 over the distance d from the outer circumference of the cast body 1, that is to say over the depth d.
  • the hardened cast body 1 is tempered, advantageously to a tempering temperature between 300 and 350 ° C.
  • a particularly preferred iron-base alloy for casting the cast body 1 is specified in the last column of the table.
  • the second and third columns contain preferred ranges for the respective alloying partner, with the narrower ranges within the respective wider range being particularly preferred for the same alloying element.
  • the proportion specified in the last column is most preferred.
  • the iron-based alloy contains in a preferred embodiment at least carbon, silicon, copper and nickel within the respective specified ranges of shares. Copper as a perlite former and nickel to prevent martensite transformation are preferably used in combination. Fe makes up the rest of the respective alloy.
  • the iron base melt of the composition of the last column has a saturation degree Sc of 0.99 to 1.00.
  • FIG. 8 shows a hydraulic press with a cast body 10 according to the invention, which forms a piston of the press.
  • the cast body 10 is guided in a cylinder 11 of the press along a working axis A back and forth.
  • a forming tool 12 for example a stamp, is arranged on a front side of the cast body 10.
  • the press has the die 12 axially opposite a die 13.
  • the cylinder 11 forms at the back of the casting 10 a pressure space with an inlet 14 and an outlet 15 for a hydraulic working fluid to the casting 10 for molding workpieces with a working pressure P of more than 100 bar, preferably at least 200 bar, in direction to be able to act on the die 13.
  • FIG. 9 shows a casting 10 with a modified form.
  • the modified cast body 10 may also be used as a piston of a press, preferably a hydraulic press. While the cast body 10 of the previous embodiment is at least substantially cylindrically shaped, the modified cast body 10 is at least substantially in the shape of a pot with a bottom forming the back of the piston and a side wall.
  • the cast bodies 10 each have a microstructure corresponding to the cast body 1 with a gray-solidified inner zone 5 and an outer peripheral edge zone 6, which encloses the inner zone 5 over the circumference and preferably also over the end faces.
  • the pot-shaped cast body 10 has a peripheral edge zone 6 according to the invention, as also preferably on that outer peripheral surface which rotates on the inside and preferably also on the end face located in the pot.
  • a peripheral edge zone 6 according to the invention preferably encloses the respective cast body 10 on all sides. For the zones 5 and 6 of the cast body 10, the statements made on the zones 5 and 6 of the cast body 1 apply.
  • the cast bodies 1 and 10 are each solidified in a nodular cast iron structure.
  • the embedded free graphite in the inner zone 5 and also in the peripheral edge zone 6 may be excreted substantially in the form of vermicular graphite or else in the form of spheroidal graphite and vermicular graphite.
  • the excretion of nodular graphite is given preference over the excretion of vermicular graphite.
  • the free graphite is present as spheroidal graphite and also as Vermikulargraphit, it is advantageous if the spheroidal graphite makes up the vast majority of the free graphite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Die Erfindung betrifft einen Gusskörper, nämlich ein Werkzeug zum Ur- oder Umformen eines Werkstücks oder ein Übertragungsglied zur Übertragung von Kraft oder Drehmoment auf ein das Werkstück beim Ur- oder Umformen kontaktierendes Werkzeug, vorzugsweise ein Kolben oder Stössel. Das Werkzeug oder Übertragungsglied kann Bestandteil einer Presse zum Umformen oder Urformen des Werkstücks oder eines Schmiedewerkzeugs sein. Die Erfindung betrifft das Werkzeug oder Übertragungsglied aber auch als solches, vor einem Zusammenbau mit weiteren Komponenten.The invention relates to a cast body, namely a tool for forming or forming a workpiece or a transmission member for transmitting force or torque to a workpiece contacting the original or forming tools, preferably a piston or plunger. The tool or transfer member may be part of a press for forming or forming the workpiece or a forging tool. The invention also relates to the tool or transfer member as such, prior to assembly with other components.

In der Papierherstellung werden Walzen von mehreren Metern Länge und mehr als einem Meter Durchmesser verwendet, um aus Celluloseschlamm mittels thermischer und mechanischer Behandlung die fertige Papierbahn herzustellen. Zum Einsatz kommen Walzen aus Hartguss, insbesondere Schalenhartguss, oder Schmiedestahl. Die Walzenkörper aus Hartguss werden im Kokillengussverfahren hergestellt, zumeist stehend im statischen Kokillenguss. Durch die Ringkokillen wird erreicht, dass sich in der äußeren Umfangsrandzone, der Schale, ein karbidisches, weißes Gusseisen einstellt. Die Umfangsrandzone beziehungsweise Schale erstarrt metastabil, weiß, der Kohlenstoff ist dort in Form von Karbiden gebunden. Im Kern kommt es zu einer stabilen Erstarrung, die Schmelze erstarrt dort grau, der Kohlenstoff liegt als freier Graphit in der Eisen-Matrix vor. Die erforderliche Härte am äußeren Umfang des Walzenkörpers, die Oberflächenhärte, wird von dem Werkstoff der Schale, dem weißen Gusseisen gewährleistet. Über die Kokille und die Legierungselemente der Eisenbasisschmelze wird die Härte an der Oberfläche und im oberflächennahen Tiefenbereich eingestellt. Nachteilig wirken sich beim Schalenhartguss die Schlagsprödigkeit, eine Empfindlichkeit gegenüber plötzlichen Temperaturänderungen und ein aufgrund der im Weißeisen enthaltenen Karbide ungleichmäßiger Verschleiß am äußeren Walzenumfang aus.In papermaking, rolls several meters in length and over one meter in diameter are used to make the finished paper web from cellulose sludge by thermal and mechanical treatment. Rollers made of chilled cast iron, in particular shell-cast iron, or forged steel are used. The cast iron bodies are produced by chill casting, usually standing in static chill casting. By the ring molds is achieved that sets in the outer peripheral edge zone, the shell, a carbide, white cast iron. The peripheral edge zone or shell solidifies metastable, white, the carbon is bound there in the form of carbides. At its core, solidification takes place, the melt solidifies in gray, the carbon is present as free graphite in the iron matrix. The required hardness at the outer circumference of the roll body, the surface hardness, is ensured by the material of the shell, the white cast iron. By means of the mold and the alloy elements of the iron base melt, the hardness is set at the surface and in the near-surface depth range. The disadvantage of shell casting is the impact brittleness, its sensitivity to sudden changes in temperature, and uneven wear on the outer circumference of the roll due to the carbides contained in the white iron.

Die EP 0 505 343 A1 schlägt zur Überwindung der genannten Nachteile vor, dass der Walzenkörper aus einer Eisenbasislegierung gegossen wird, sodass eine perlitische oder ferritischperlitische Mikrostruktur entsteht, die wenigstens zu 60% perlitisch ist. Die Eisenbasislegierung enthält 3.0 - 3.8% C, 1.5 - 3.0% Si und 0.5 - 0.9% Mn. Für P und S werden Höchstmengen angegeben. Als weitere Legierungselemente werden Cr, Ni, Cu, Mg, Mo, Sn oder Al verwendet. Der Walzengusskörper wird oberflächengehärtet, genannt werden Induktions- und Flammhärten, und nach der martensitischen Umwandlung angelassen, sodass der Walzenkörper in seiner Umfangsrandzone eine Anlassmartensitstruktur erhält. Mit dem martensitischen Gefüge der Umfangsrandzone geht eine beachtliche Rissgefahr einher.The EP 0 505 343 A1 proposes, in order to overcome the said drawbacks, that the roll body is cast from an iron-base alloy to form a pearlitic or ferritic-pearlitic microstructure which is at least 60% pearlitic. The iron-based alloy contains 3.0 - 3.8% C, 1.5 - 3.0% Si and 0.5 - 0.9% Mn. Maximum levels are given for P and S. As further alloying elements, Cr, Ni, Cu, Mg, Mo, Sn or Al are used. The roll body is surface hardened, called induction and flame hardening, and annealed after the martensitic transformation so that the roll body receives a temper martensite structure in its peripheral edge zone. With the martensitic structure of the peripheral edge zone is accompanied by a considerable risk of cracking.

Die EP 2 213 790 A1 beschreibt einen Walzenkörper für eine Walze zur Behandlung eines Materials, wobei der Werkstoff der Umfangsrandzone des Walzenkörpers im Vergleich zum weißen Gusseisen deutlich verbesserte Festigkeitswerte aufweist.The EP 2 213 790 A1 describes a roller body for a roller for treating a material, wherein the material of the peripheral edge zone of the roller body compared to the white cast iron has significantly improved strength values.

In der CH 360 701 A ist ein Verfahren zur Oberflächenhärtung von Gusseisen offenbart, bei dem die Randzone eines Werkstücks durch kurzzeitige Autogen- oder Induktionserhitzung in Austenit überführt wird und dann zunächst verhältnismäßig langsam abgekühlt wird.In the CH 360 701 A discloses a method for surface hardening of cast iron, in which the edge zone of a workpiece is converted into austenite by brief autogenous or induction heating and is then cooled relatively slowly.

Mit der Eingangs genannten Alternative, Walzenkörper aus Schmiedestahl, können die genannten Materialprobleme gelöst werden. Oberflächenhärte und Einhärttiefe werden am Walzenkörper durch nachträgliche thermische Oberflächenbehandlung eingestellt. Die Herstellung erfolgt allerdings aus einem Schmiedeblock, dessen Gewicht von der Größe des Walzenkörpers abhängt. Walzenkörper wiegen viele Tonnen, große Walzenkörper haben beispielsweise ein Gewicht von etwa 50t oder auch mehr. Für derartige Walzenkörper kann das Gewicht des Schmiedblocks bis zu 200t betragen. Ein Hohlschmieden ist in diesem Gewichtsbereich nur mit sehr hohem Aufwand möglich. Zusätzlich werden hohe Anforderungen an die innere Güte des Schmiedestahls hinsichtlich Fehlstellen, Einschlüssen und dergleichen gestellt. Das Ausbringen ist daher sehr gering.With the mentioned alternative, roller bodies made of forged steel, the mentioned material problems can be solved. Surface hardness and hardening depth are adjusted on the roll body by subsequent thermal surface treatment. However, the production takes place from a forging block, the weight of which depends on the size of the roll body. Rolled bodies weigh many tons, for example, large roll bodies have a weight of about 50 tons or more. For such roll body, the weight of the forge block can be up to 200t. A hollow forging is possible in this weight range only with great effort. In addition, high demands are placed on the inner quality of the forged steel with regard to defects, inclusions and the like. The application is therefore very low.

Die Verhältnisse bei Werkzeugen und Kraft- oder Drehmoment übertragenden Übertragungsgliedern von Ur- oder Umformvorrichtungen, insbesondere zum Formen metallischer Werkstücke, sind vergleichbar. Bei solchen Werkzeugen und Übertragungsgliedern kann es sich etwa um Stempel, Matrizen, Kolben und Stössel von Pressen und Schmiedevorrichtungen handeln.The conditions in tools and force or torque transmitting transmission elements of Ur- or forming devices, in particular for forming metal workpieces are comparable. Such tools and transfer members may be to act about stamps, dies, pistons and rams of presses and blacksmiths.

Es ist eine Aufgabe der Erfindung, einen Gusskörper, nämlich ein Ur- oder Umformwerkzeug oder ein Übertragungsglied für eine Ur- oder Umformvorrichtung, mit gegenüber Schalenhartguss verbesserten mechanischen Eigenschaften zu günstigem Preis bereitzustellen. Der Gusskörper soll die geforderte Härte an der Oberfläche und auch im oberflächennahen Tiefenbereich, allerdings nicht die in der Anwendung nachteilige Ungleichmäßigkeit im Verschleiß und Schlagsprödigkeit aufweisen. Die mit einer Martensitschale einhergehende Rissgefahr soll ebenfalls vermieden werden.It is an object of the invention to provide a cast body, namely a master or forming tool or a transfer member for a master or forming device, with improved compared to shell hard casting mechanical properties at a favorable price. The cast body should have the required hardness on the surface and also in the near-surface depth range, but not in the application disadvantageous unevenness in wear and impact brittleness. The risk of cracking associated with a martensite shell should also be avoided.

Die Erfindung geht von einem Gusskörper aus, der aus einer einzigen Eisenbasislegierung gegossen ist. Die Eisenbasislegierung bildet im Gusskörper eine innere Zone aus grauem Gusseisen, vorzugsweise Sphäroguss, und die innere Zone umschließend eine den äußeren Umfang des Gusskörpers enthaltende Umfangsrandzone, die am äußeren Umfang eine Oberflächenhärte größer als 400HV aufweist, wie dies auch für den bislang überwiegend zur Anwendung gelangenden Schalenhartguss der Fall ist. Der Gusskörper kann im Querschnitt gesehen aus vollem Material bestehen, so dass die innere Zone aus grauem Gusseisen einen zentralen Kern des Gusskörpers bildet. Der Gusskörper kann stattdessen auch ein hohler Mantel sein, so dass die innere Zone eine Ringzone ist. Die innere Zone und die Umfangsrandzone werden in einem Stück gegossen, die Verwendung der beiden Begriffe soll auf die Unterschiedlichkeit der in den beiden Zonen vorliegenden Mikrogefüge, im folgenden einfach Gefüge, hindeuten.The invention is based on a cast body which is cast from a single iron-based alloy. The iron-base alloy forms an inner zone of gray cast iron, preferably nodular cast iron, in the cast body, and the inner zone encloses a peripheral edge zone containing the outer circumference of the cast body having a surface hardness greater than 400HV on the outer circumference, as has heretofore been prevalent Shell casting is the case. The cast body can be seen in cross-section of full material, so that the inner zone of gray cast iron forms a central core of the cast body. Instead, the casting may also be a hollow shell, so that the inner zone is an annular zone. The inner zone and the peripheral edge zone are cast in one piece, the use of the two terms is intended to indicate the difference in the microstructure present in the two zones, hereinafter simply microstructure.

Nach der Erfindung besteht die Umfangsrandzone entweder aus feinstreifigem oder feinststreifigem Perlit mit Vermikulargraphit oder vorzugsweise Kugelgraphit oder aus einem Zwischenstufengefüge, vorzugsweise ADI mit Kugel- oder Vermikulargraphit. Den feinstreifigen Perlit bezeichnet man auch als Sorbit und den feinststreifigen als Troostit. Die Erfindung vereint die Vorteile von Gusskörpern mit denen der Werkstücke aus Schmiedestahl und vermeidet die mit einer Martensitschale einhergehende Rissgefahr. Der Gusskörper kann über seine gesamte Abmessung in einem Guss und somit im Vergleich zu einem Schmiedestahlkörper deutlich preiswerter hergestellt werden. Die aus grauem Gusseisen bestehende innere Zone lässt sich gut bearbeiten, beispielsweise spanend. So können in der inneren Zone oberflächennah pheriphere Bohrungen für die Durchleitung eines Thermalfluids geschaffen werden. Das Härteprofil der Umfangsrandzone, das heißt der über dem Abstand zur äußeren Oberfläche aufgetragene Verlauf der Härte, entspricht zumindest dem Härteprofil konventioneller der Ur- oder Umformung dienender Wergzeuge bzw. Übertragungsglieder und kann durch den Wärmebehandlungsprozess gesteuert werden. Die mechanische Festigkeit ist im Vergleich zum Schalenhartguss jedoch deutlich verbessert, was sich in höheren Werten für die 0.2% - Dehngrenze, die Zugfestigkeit und die Bruchdehnung ausdrückt. Gegenüber einem Anlassmartensitgefüge ist die Bruchdehnung vorteilhafterweise erhöht, insbesondere ist die Rissgefahr deutlich verringert.According to the invention, the peripheral edge zone consists either of fine-grained or very fine-grained perlite with vermicular graphite or preferably spheroidal graphite or of an intermediate-layer structure, preferably ADI with spherical or vermicular graphite. The fine-grained pearlite is also known as sorbitol and the finest-grained as troostite. The invention combines the advantages of castings with those of forged steel and avoids the risk of cracking associated with a martensite shell. The cast body can be made significantly cheaper over its entire dimension in a cast and thus compared to a forged steel body. The gray cast iron inner zone can be worked well, for example by cutting. Thus, near-surface pheripheral holes for the passage of a thermal fluid can be created in the inner zone. The hardness profile of the circumferential edge zone, that is to say the hardness profile applied over the distance to the outer surface, corresponds at least to the hardness profile of conventional tools or transmission elements serving as master or forming and can be controlled by the heat treatment process. However, the mechanical strength is significantly improved compared to shell casting, which is reflected in higher 0.2% yield strength, tensile strength and elongation at break values. Compared to a tempered martensite, the elongation at break is advantageously increased, in particular the risk of cracking is significantly reduced.

In bevorzugten Ausführungen, in denen der freie Graphit der Umfangsgrundzone zumindest im Wesentlichen als Kugelgraphit vorliegt, haben die Graphitkugeln, die den Kugelgraphit in der erstarrten Umfangsrandzone bilden, maximal eine Größe, die einer Richtzahl von wenigstens 5 (0.06 - 0.12 mm) nach EN ISO 945 entspricht. Die Ausscheidung des Graphits in Form nur solch kleiner Graphitkugeln ist ebenfalls vorteilhaft für die mechanische Festigkeit und wird im Gießprozess durch Einstellung der Abkühlgeschwindigkeit der Schmelze erzielt. Die Schmelze wird hierfür von Außen, vom äußeren Umfang her, gekühlt, wobei die Abkühlgeschwindigkeit einerseits so klein ist, dass sich in der Umfangsrandzone bis zum äußeren Umfang oder bis praktisch zum äußeren Umfang ein Sphärogussgefüge einstellt, andererseits aber doch so groß ist, dass die Graphitkugeln der Umfangsrandzone kleiner sind als beim herkömmlichen Sphäroguss, beispielsweise beim Gießen in eine Sandform. Besonders vorteilhaft ist es, wenn in dem durch den Guss in der Umfangsrandzone erhaltenen Grundgefüge der Kugelgraphit nahezu nur, vorzugsweise nur Graphitkugeln mit einer maximalen Größe aufweist, die einer Richtzahl von wenigstens 6 (0.03 - 0.06 mm), noch besser wenigstens 7 (0.015 - 0.03 mm) nach EN ISO 945 aufweist. Die Graphitkugeln des bevorzugt auch in der inneren Zone vorliegenden Sphärogussgefüges können demgegenüber größer sein. In den erläuterten bevorzugten Ausführungen beträgt der Anteil des Kugelgraphits am freien Graphit der erstarrten Umfangsrandzone wenigstens 80%, bevorzugt wenigstens 90%, und von den Graphitkugeln des Kugelgraphits der Umfangsrandzone entsprechen wenigstens 90%, vorzugsweise wenigstens 95%, den vorstehenden Vorgaben für die Größe der Graphitkugeln. Bei der genannten Norm handelt es sich um die zur Zeit gültige EN ISO 945:1994. Soweit der freie Graphit in Vermikularform ausgeschieden ist, gelten für die Vermikular-Graphitteilchen die genannten Angaben zur Größe und den prozentualen Anteilen ebenfalls. Demgemäß weisen die Vermikular-Graphitteilchen, soweit vorhanden, in bevorzugten Ausführungen eine maximale Größe auf, in diesem Fall die Länge, von 0.12 mm, bevorzugter höchstens 0.06 mm und noch bevorzugter höchstens 0.03 mm. Von den insgesamt vorhandenen Vermikular-Graphitteilchen fallen wenigstens 90%, vorzugsweise wenigstens 95%, in diesen Größenbereich.In preferred embodiments, in which the free graphite of the circumferential base zone is present at least essentially as spheroidal graphite, the graphite spheres which form the spheroidal graphite in the solidified peripheral edge zone have a maximum size which corresponds to a guide number of at least 5 (0.06-0.12 mm) according to EN ISO 945 corresponds. The precipitation of the graphite in the form of only such small graphite balls is also advantageous for the mechanical strength and is achieved in the casting process by adjusting the cooling rate of the melt. For this purpose, the melt is cooled from the outside, from the outer circumference, wherein the cooling rate is on the one hand so small that sets in the peripheral edge zone to the outer periphery or virtually to the outer periphery of a ductile iron structure, but on the other hand is so large that the Graphite spheres of the peripheral edge zone are smaller than in the conventional nodular cast iron, for example, when poured into a sand mold. It is particularly advantageous if, in the basic structure obtained by the casting in the peripheral edge zone, the nodular graphite has almost only, preferably only, graphite balls having a maximum size which has a guideline value of at least 6 (0.03-0.06 mm), more preferably at least 7 (0.015 mm). 0.03 mm) according to EN ISO 945. In contrast, the graphite spheres of the nodular cast iron structure, which is preferably also present in the inner zone, can be larger. In the illustrated preferred embodiments, the proportion of spheroidal graphite on the free graphite of the solidified peripheral edge zone is at least 80%, preferably at least 90%, and from the graphite spheres of the spheroidal graphite graphite of the peripheral edge zone correspond to at least 90%, preferably at least 95%, the above requirements for the size of graphite nodules. This standard is the currently valid EN ISO 945: 1994. As far as the free Graphite is excreted in vermicular form, for the vermicular graphite particles, the above information on size and percentages also apply. Accordingly, in preferred embodiments, the vermicular graphite particles, if present, have a maximum size, in this case the length, of 0.12 mm, more preferably at most 0.06 mm, and even more preferably at most 0.03 mm. Of the total vermicular graphite particles present, at least 90%, preferably at least 95%, fall into this size range.

Soweit das Gefüge der Umfangsrandzone überhaupt Karbide aufweist, liegt deren Anteil unter 5%, bevorzugt macht der Karbidanteil höchstens 3% aus. Anteilsangaben in % werden stets als Masse-%, d.h. als %-Anteil an der jeweiligen Gesamtmasse verstanden. In Bezug auf einen etwaigen Karbidanteil bedeutet dies, dass dieser von der Masse der Umfangsrandzone im Ganzen, einschließlich des Karbidanteils, weniger als 5 Massen-% ausmacht, bevorzugt höchstens 3 Massen-% beträgt. Zum Vergleich: Ein weißes Gusseisen hat typischerweise einen Karbidanteil von 15% und mehr. Auch aufgrund des deutlich verringerten Karbidanteils und der deshalb verringerten Mikrokerbwirkung weist der Werkstoff der Umfangsrandzone des erfindungsgemäßen Gusskörpers im Vergleich zum weißen Gusseisen deutlich verbesserte Festigkeitswerte auf.As far as the structure of the peripheral edge zone has at all carbides, their proportion is less than 5%, preferably the carbide content makes up at most 3%. Percentages in% are always expressed as mass%, i. understood as% share of the respective total mass. With respect to any carbide content, this means that it is less than 5 mass% of the mass of the peripheral edge zone as a whole, including the carbide portion, preferably at most 3 mass%. By comparison, a white cast iron typically has a carbide content of 15% or more. Also, due to the significantly reduced carbide content and therefore the reduced micro-notch effect, the material of the peripheral edge zone of the cast body according to the invention significantly improved strength values compared to white cast iron.

Der Gusskörper ist ein Werkzeug für eine oder in einer Vorrichtung zum Urformen oder Umformen von Werkstücken sein, insbesondere metallischer Werkstücke. Der Gusskörper kann beispielsweise einen Stempel oder eine Matrize zum plastischen Formen bilden. Besonders vorteilhaft kann er ein Übertragungsglied zur Übertragung von Kraft oder Drehmoment auf ein bei der Formung unmittelbar auf den Werkstoff wirkendes Werkzeug bilden. Kolben und Stössel von oder für Ur- oder Umformvorrichtungen sind bevorzugte Beispiele. Pressen und Schmiedewerkzeuge, insbesondere mit hydraulischer Kraft- oder Drehmomentübertragung, sind bevorzugte Beispiele von Ur- und Umformvorrichtungen, in denen ein erfindungsgemäßer Gusskörper zum Einsatz gelangen kann.The casting is a tool for or in a device for prototyping or forming workpieces, in particular metallic workpieces. The cast body may for example form a punch or a die for plastic molding. Particularly advantageously, it can form a transmission element for transmitting force or torque to a tool which acts directly on the material during shaping. Pistons and plungers of or for priming or forming devices are preferred examples. Presses and forging tools, in particular with hydraulic force or torque transmission, are preferred examples of original and forming devices in which a cast body according to the invention can be used.

Der erfindungsgemäße Gusskörper ist zumindest insoweit fertig als er keiner thermischen Behandlung mehr unterworfen werden muss und vorzugsweise auch nicht mehr unterworfen wird, die gezielt der Einstellung des Mikrogefüges dient. Eine etwaige Nachbehandlung, beispielsweise ein Schleifen oder Polieren, optional eine spanende Bearbeitung oder beispielsweise auch ein mechanisches Trainieren und grundsätzlich auch thermische Behandlungen, die insbesondere das für die Umfangsrandzone beanspruchte Gefüge nicht in solch einem Ausmaß ändern, dass es nicht mehr der beanspruchten Erfindung entspricht, sind hiervon allerdings ausgenommen.The cast body according to the invention is at least finished insofar as it no longer has to be subjected to thermal treatment and is preferably no longer subjected to it, which specifically serves to adjust the microstructure. Any post-treatment, for example a grinding or polishing, optionally a machining or, for example, a mechanical training and, in principle, thermal treatments that do not change in particular the claimed for the peripheral edge zone structure to such an extent that it no longer corresponds to the claimed invention, are, however, excluded.

Ein Verfahren zur Herstellung des Gusskörpers umfasst zumindest die folgenden Schritte: der Gusskörper wird aus einer Schmelze einer Eisenbasislegierung gegossen, so dass die Schmelze sowohl in der inneren Zone des Gusskörpers als auch in der sich außen anschließenden und bis zum äußeren Umfang reichenden Umfangsrandzone stabil als Gusseisen und zumindest in der Umfangsrandzone, bevorzugt aber auch in der inneren Zone in einem Sphärogussgefüge oder einem Gussgefüge mit Vermikulargraphit erstarrt. Die Matrix des Gusseisens ist perlitisch/ferritisch, wobei der Anteil des Perlits größer als 90% und der des Ferrits kleiner als 10% sein sollte. Bevorzugt ist der Anteil des Perlits der Gusseisenmatrix größer als 95% und der des Ferrits kleiner als 5%. Ein etwaiger Karbidanteil ist in der Umfangsrandzone kleiner als 5%, vorzugsweise kleiner oder höchstens gleich 3%. Der mit diesem Gussgefüge erhaltene Gusskörper wird mittels einer thermischen Oberflächenbehandlung am äußeren Umfang, d.h. an der Umfangsoberfläche, und in der Umfangsrandzone gehärtet.A method for producing the cast body comprises at least the following steps: the cast body is cast from a melt of an iron-based alloy, so that the melt is stable as cast iron both in the inner zone of the cast body and in the outer peripheral and reaching to the outer periphery peripheral edge zone and at least in the peripheral edge zone, but preferably also in the inner zone in a nodular cast iron structure or a cast structure with vermicular graphite solidifies. The matrix of the cast iron is pearlitic / ferritic, with the proportion of pearlite being greater than 90% and that of the ferrite being less than 10%. Preferably, the proportion of the perlite of the cast iron matrix is greater than 95% and that of the ferrite is less than 5%. Any amount of carbide in the peripheral edge zone is less than 5%, preferably less than or equal to or less than 3%. The cast body obtained with this cast structure is formed by means of a thermal surface treatment on the outer periphery, i. hardened on the peripheral surface, and in the peripheral edge zone.

Nach der Erfindung wird die thermische Oberflächenbehandlung so durchgeführt, dass der die Umfangsrandzone bildende Gusswerkstoff, Gusseisen mit Vermiluargraphit oder Kugelgraphit, wobei Kugelgraphit bevorzugt wird, in fein- oder feinststreifigen Perlit mit Vermikular- oder Kugelgraphit oder in ein Zwischenstufengefüge mit Kugelgraphit oder Vermikulargraphit umgewandelt wird. Genauer gesagt wird die Gusseisenmatrix in den genannten Perlit oder das Zwischenstufengefüge umgewandelt, und der bereits durch den Guss als stabile Phase ausgeschiedene freie Graphit bleibt erhalten. Die Schmelze wird ferner nicht in Sand gegossen, sondern gegen Kokille, um die Abkühlgeschwindigkeit kontrollieren zu können. Der Kokillenguss kann statisch oder stattdessen auch dynamisch, also als Schleudergussverfahren, durchgeführt werden. Der Gusskörper wird zweckmäßigerweise stehend, also mit einer Hauptachse in vertikaler Ausrichtung, gegossen. Der Guss gegen Kokille erlaubt eine präzisere Einstellung der Abkühlgeschwindigkeit insbesondere über die Wahl der radial zur Hauptachse des Gusskörpers gemessenen Dicke der Kokille, der spezifischen oder der absoluten Wärmekapazität, der thermischen Leitfähigkeit oder der Masse der Kokille oder einer geeigneten Kombination solcher Einstellparameter seitens der Kokille. Im Vergleich mit dem konventionellen Schalenhartguss, der üblicherweise ebenfalls im Kokillengussverfahren erfolgt, allerdings mit weiß erstarrender Umfangsrandzone, kann die Abkühlgeschwindigkeit beispielsweise mittels einer einzigen oder bevorzugt einer Kombination von mehreren der folgenden Maßnahmen gesteuert werden: geringere Kokillendicke, Verwendung einer Kokille aus einem Werkstoff geringerer Wärmekapazität, Verwendung einer Kokille geringerer thermischer Leitfähigkeit, geringere Kokillenmasse, jeweils im Vergleich mit einer Kokille zum Gießen eines Gusskörpers gleicher Geometrie und gleichem Materials im konventionellen Schalenhartguss.According to the invention, the thermal surface treatment is carried out so that the peripheral edge zone forming casting material, cast iron with nodular graphite or nodular graphite, with nodular graphite being preferred, is converted into fine or very fine-grained perlite with vermicular or nodular graphite or into an interstage structure with spheroidal graphite or vermicular graphite. More specifically, the cast iron matrix is converted into said perlite or interstage structure, and the free graphite already precipitated by the casting as a stable phase is retained. Further, the melt is not poured into sand, but against mold to control the cooling rate. Chill casting can be static or instead dynamic, ie centrifugal casting. The cast body is expediently poured upright, that is to say with a main axis in a vertical orientation. Casting against mold permits a more precise setting of the cooling rate, in particular via the choice of the thickness of the mold, the specific or the absolute, measured radially to the main axis of the cast body Heat capacity, the thermal conductivity or the mass of the mold or a suitable combination of such parameters on the part of the mold. In comparison with the conventional shell casting, which is also usually done by chill casting, but with white solidifying peripheral edge zone, the cooling rate can be controlled, for example, by a single or, preferably, a combination of several of the following: lower die thickness, use of a die of a lower heat capacity material , Using a mold of lower thermal conductivity, lower mold mass, in each case in comparison with a mold for casting a cast body of the same geometry and the same material in conventional hard shell casting.

In bevorzugten Ausführungen wird die Abkühlgeschwindigkeit durch Kühlung an der Kokille nicht nur so klein eingestellt, dass die Schmelze auch in der Umfangsrandzone stabil erstarrt, sondern andererseits so groß, dass wie vorstehend für den bevorzugten Kugelgraphit erläutert der Kugelgraphit in der Umfangsrandzone in Graphitkugeln ausgeschieden wird mit einer maximalen Größe entsprechend der Richtzahl 5, vorzugsweise einer maximalen Größe der Richtzahl 6, nach EN ISO 945. Besonders bevorzugt liegen die Graphitkugeln im Größenbereich zwischen 7 und 8 nach EN ISO 945, also bei der Richtzahl 7/8 vor. Solch eine feine Graphitausscheidung wirkt sich positiv auf die mechanische Festigkeit aus. Die Feinausscheidung des Graphits erhöht auch die Regelmäßigkeit der umgebenden Gusseisenmatrix, was wiederum für die Umwandlung dieses nach dem Guss vorliegenden Grundgefüges in fein- oder feinststreifigen Perlit oder in ein Zwischenstufengefüge von Vorteil ist.In preferred embodiments, the cooling rate is set by cooling the mold not only so small that the melt solidifies stable in the peripheral edge zone, but on the other hand so large that explained above for the preferred spheroidal graphite nodular graphite is excreted in the peripheral edge zone in graphite spheres a maximum size corresponding to the guideline number 5, preferably a maximum size of the guideline number 6, according to EN ISO 945. Particularly preferred are the graphite balls in the size range between 7 and 8 according to EN ISO 945, ie in the guideline 7/8 before. Such a fine graphite precipitation has a positive effect on the mechanical strength. The fine precipitation of the graphite also increases the regularity of the surrounding cast iron matrix, which in turn is advantageous for the transformation of this basic structure present after casting into fine-grained or ultraprecipitated perlite or into an interstage structure.

Durch die thermische Oberflächenbehandlung wird der Gusskörper bis in eine Tiefe von vorteilhafterweise wenigstens 3mm, bevorzugt wenigstens 5 mm gehärtet, indem die Gusseisenmatrix bis wenigstens in dieser Einhärttiefe in den fein- oder feinststreifigen Perlit oder das Zwischenstufengefüge umgewandelt wird. Für die Größenklasse von Gusskörpern, auf die es die Erfindung in erster Linie absieht, ist eine Einhärttiefe von 7 mm optimal. Eine Einhärttiefe über 10 mm soll zwar nicht ausgeschlossen werden, große Einhärttiefen erzeugen jedoch bei Temperaturwechsel Materialspannungen verbunden mit der Gefahr, dass die gehärtete Schicht, die Umfangsrandzone, abplatzt. Als Verfahren der thermischen Oberflächenbehandlung kommen insbesondere Flammhärten und Induktionshärten in Frage, wobei Induktionshärten der Vorzug gegeben wird, da Flammhärten auf den unteren Bereich der Einhärttiefe, im Allgemeinen noch unterhalb 3mm, begrenzt ist. Flammhärten kommt daher in erster Linie für Gusskörper mit kleinen Durchmessern von bis zu 600 mm in Betracht, wobei allerdings dem Induktionshärten auch hier der Vorzug gegeben wird. Die Umfangsrandzone wird in Abhängigkeit von der gewünschten Oberflächenhärte und Einhärttiefe kurzzeitig in den austenitischen Bereich, vorzugsweise auf wenigstens 880°C und besonders bevorzugt auf etwa 950°C erwärmt. Das erwärmte Material wird durch eine Oberflächenkühlung, vorzugsweise mittels einer Wasserabschreckung, in kurzer Zeit auf unter 100°C, vorzugsweise unter 50°C, abgekühlt, so dass die isotherme Umwandlung in den fein- oder feinststreifigen Perlit stattfindet. Soll das Gusseisen der Umfangsrandzone in ein Zwischenstufengefüge umgewandelt werden, wird eine höhere Abkühlgeschwindigkeit eingestellt, die aber immer noch nicht so groß ist, dass nennenswert eine martensitische Umwandlung stattfindet. Martensit wird wegen der damit verbundenen Rissgefahr im Idealfall gänzlich vermieden. Das Gusseisen der Umfangsrandzone weist in bevorzugten Ausführungen daher eine Martensitstarttemperatur Ms auf, die unter den vorstehend angegebenen Werten, d.h. unter 100°C, vorzugsweise unter 50°C, liegt. Besonders bevorzugt weist der Werkstoff der Umfangsrandzone eine Martensitstarttemperatur Ms auf, die unterhalb Raumtemperatur, d.h. unterhalb 20°C liegt.By means of the thermal surface treatment, the cast body is hardened to a depth of advantageously at least 3 mm, preferably at least 5 mm, by the cast iron matrix being converted into the fine-grained or extremely fine-grained pearlite or the interstitial microstructure up to at least this hardening depth. For the size class of castings, on which the invention is primarily intended, a hardening depth of 7 mm is optimal. Although a hardening depth of more than 10 mm should not be ruled out, large hardening depths produce material stresses in the event of a temperature change, with the risk that the hardened layer, the circumferential edge zone, will flake off. Flame hardening and induction hardening are particularly suitable as methods of thermal surface treatment, with induction hardening preference is given to the fact that flame hardening is limited to the lower part of the hardening depth, generally still below 3 mm. Flame hardening is therefore primarily for castings with small diameters of up to 600 mm into consideration, although the induction hardening is also given preference here. Depending on the desired surface hardness and hardening depth, the peripheral edge zone is briefly heated to the austenitic region, preferably to at least 880 ° C. and particularly preferably to about 950 ° C. The heated material is cooled by a surface cooling, preferably by means of a water quenching, in a short time to below 100 ° C, preferably below 50 ° C, so that the isothermal conversion takes place in the fine or feinststreifigen perlite. If the cast iron of the peripheral edge zone to be converted into an intermediate structure, a higher cooling rate is set, but still not so large that a significant martensitic transformation takes place. Martensite is ideally avoided because of the associated risk of cracking. The cast iron of the peripheral edge zone therefore has, in preferred embodiments, a martensite start temperature M s which is below the values given above, ie below 100 ° C., preferably below 50 ° C. Particularly preferably, the material of the peripheral edge zone has a martensite start temperature M s which is below room temperature, ie below 20 ° C.

Der oberflächengehärtete Gusskörper wird vorteilhafterweise angelassen, um Spannungen abzubauen. Die Anlasstemperatur liegt über der Temperatur, die der Gusskörper im späteren Betrieb höchstens erreicht, vorteilhafterweise über 300°C, bevorzugt wird eine Anlasstemperatur aus dem Bereich von 300 bis 350 °C. Auch nach solch einem Anlassen weist der Gusskörper in der Umfangsrandzone das fein- oder feinststreifig perlitische Gefüge mit Kugel- oder Vermikulargraphit oder das Zwischenstufengefüge mit Kugel- oder Vermikulargraphit auf.The surface hardened cast body is advantageously tempered to relieve stress. The tempering temperature is above the temperature that reaches the cast body in later operation at the most, advantageously above 300 ° C, preferably a tempering temperature in the range of 300 to 350 ° C. Even after such tempering, the cast body in the peripheral edge zone has the fine or very fine-grained pearlitic structure with spherical or vermicular graphite or the interstitial structure with spherical or vermicular graphite.

Die Eisenbasislegierung hat einen Kohlenstoffgehalt von vorzugsweise wenigstens 3%, vorzugsweise höchstens 4%. Der Siliziumgehalt beträgt vorzugsweise wenigstens 1.7 und vorzugsweise höchstens 2.4%, wobei auch dies wie stets Masse-% sind. Der Sättigungsgrad Sc der Legierung liegt vorzugsweise im Bereich von 0.97 bis 1.03, bevorzugt ist er geringfügig kleiner als 1.0, so dass die Schmelze leicht untereutektisch ist. Ein bevorzugter Legierungspartner ist Kupfer, als Perlitbildner, und mit einem Anteil von vorzugsweise wenigstens 0.5 und bevorzugt höchstens 1.3%. Ein besonders bevorzugter Legierungspartner ist auch Nickel, das in einem Anteil von vorzugsweise über 0.3%, noch bevorzugter über 0.5%, und vorzugsweise höchstens 1.5% zulegiert ist. Nickel erhöht die Zähigkeit und macht den Werkstoff korrosionsträger. Von besonderem Wert ist Nickel allerdings zur Verhinderung einer Martensitumwandlung beim Härten. Enthält die Eisenbasislegierung sowohl Silizium als auch Nickel, ist es vorteilhaft, wenn der Siliziumgehalt mit steigendem Nickelgehalt und der Nickelgehalt mit steigendem Siliziumgehalt abnehmen. Bevorzugt wird ein Siliziumanteil aus der unteren Hälfte des für Silizium angegebenen Bereichs und ein Nickelanteil aus dem mittleren Teil des für Nickel angegebenen Bereichs. Eine besonders bevorzugte Eisenlegierung enthält als Legierungspartner sowohl Ni als auch Cu mit bevorzugt wenigstens den hierfür jeweils angegebenen Mindestanteilen. Optionale Legierungspartner sind auch Mangan und Zinn, Mangan vorzugsweise aus dem Bereich von 0.3 bis 0.45%, Zinn bevorzugt aus dem Bereich von 0.005 bis 0.015%. Gegenüber den vorstehend genannten anderen Legierungselementen tritt die Bedeutung von Mangan und Zinn aber zurück. Eine bevorzugte Eisenbasislegierung enthält dementsprechend C, Si, Ni und Cu innerhalb der bevorzugten Anteilsgrenzen, gegebenenfalls Mn und Sn, sowie unvermeidbare Restanteile P und S sowie den Rest Fe. Etwaige Anteile von Phosphor und Schwefel liegen vorteilhafterweise jeweils deutlich unter 0.1%, bevorzugter noch deutlich unter 0.05%.The iron-base alloy has a carbon content of preferably at least 3%, preferably at most 4%. The silicon content is preferably at least 1.7 and preferably at most 2.4%, whereby these are also always% by mass. The degree of saturation Sc of the alloy is preferably in the range of 0.97 to 1.03, preferably it is slightly smaller than 1.0, so that the melt is slightly hypoeutectic. A preferred alloying partner is copper, as a perlitizer, and having a proportion of preferably at least 0.5 and preferably at most 1.3%. A particularly preferred alloying partner is also nickel, which is alloyed in a proportion of preferably more than 0.3%, more preferably more than 0.5%, and preferably at most 1.5%. Nickel increases the toughness and makes the material corrosion-resistant. However, nickel is of particular value for preventing martensite transformation during curing. If the iron-base alloy contains both silicon and nickel, it is advantageous if the silicon content decreases with increasing nickel content and the nickel content decreases with increasing silicon content. Preference is given to a silicon content from the lower half of the range specified for silicon and a nickel content from the middle part of the range specified for nickel. A particularly preferred iron alloy contains as alloying partners both Ni and Cu with preferably at least the minimum proportions indicated for each. Manganese and tin are also preferred alloying agents, manganese preferably from 0.3 to 0.45%, tin preferably from 0.005 to 0.015%. Compared to the other alloying elements mentioned above, however, the meaning of manganese and tin is reversed. Accordingly, a preferred iron-based alloy contains C, Si, Ni and Cu within the preferred limits of the proportions, optionally Mn and Sn, as well as unavoidable residual P and S and the remainder Fe. Any proportions of phosphorus and sulfur are advantageously each well below 0.1%, more preferably still well below 0.05%.

Vorteilhafte Merkmale werden ferner in den Unteransprüchen und deren Kombinationen offenbart.Advantageous features are further disclosed in the subclaims and their combinations.

Nachfolgend werden Ausführungsbeispiele der Erfindung anhand von Figuren erläutert. An den Ausführungsbeispielen offenbar werdende Merkmale bilden je einzeln und in jeder Merkmalskombination die Gegenstände der Ansprüche und auch die vorstehend beschriebenen Ausgestaltungen vorteilhaft weiter. Es zeigen:

Figur 1
eine nicht beanspruchte Walze mit einem Walzenkörper;
Figur 2
den Querschnitt A-A der Figur 1;
Figur 3
Details zum Mikrogefüge des Walzenkörpers;
Figur 4
den Walzenkörper während einer thermischen Oberflächenbehandlung;
Figur 5
ein Schliffbild des Grundgefüges des Walzenkörpers;
Figur 6
ein Schliffbild des Gefüges einer mittels der thermischen Oberflächenbehandlung gehärteten Umfangsrandzone des Walzenkörpers;
Figur 7
den Mikrohärteverlauf in der gehärteten Umfangsrandzone;
Figur 8
eine Presse mit einem erfindungsgemäßen Kolben; und
Figur 9
einen erfindungsgemäßen Kolben einer modifizierten Form.
Hereinafter, embodiments of the invention will be explained with reference to figures. The features disclosed in the exemplary embodiments form each individually and in each combination of features the subject-matter of the claims and also the embodiments described above. Show it:
FIG. 1
an unclaimed roller having a roller body;
FIG. 2
the cross section AA of FIG. 1 ;
FIG. 3
Details of the microstructure of the roll body;
FIG. 4
the roll body during a thermal surface treatment;
FIG. 5
a microsection of the basic structure of the roll body;
FIG. 6
a micrograph of the structure of a cured by means of the thermal surface treatment peripheral edge zone of the roller body;
FIG. 7
the microhardness curve in the hardened peripheral edge zone;
FIG. 8
a press with a piston according to the invention; and
FIG. 9
a piston according to the invention of a modified form.

Figur 1 zeigt eine Walze für die Behandlung eines Bahnmaterials, beispielsweise eine Kalanderwalze, mit einem Gusskörper 1, nämlich einem Walzenkörper, und zwei Flanschzapfen 2 und 3, von denen der eine an der linken und der andere an der rechten Stirnseite des Gusskörpers 1 montiert ist. Die Walze ist im Bereich der Zapfenflansche 2 und 3 um eine Drehachse R drehbar gelagert oder für die Drehlagerung vorgesehen. Für die thermische Behandlung des Bahnmaterials ist im Gusskörper 1 über einen der Zapfenflansche 2 und 3 ein Thermalfluid zuführbar, das über den anderen oder vorzugsweise den gleichen Zapfenflansch 2 oder 3 wieder abgeleitet werden kann. Den Gusskörper 1 durchziehen von einem axialen Ende zum anderen durchgehende, nahe des äußeren Umfangs des Gusskörpers 1 gelegene, periphere Temperierkanälen 4, die bei der thermischen Behandlung des Materials von dem Thermalfluid durchströmt werden. FIG. 1 shows a roller for the treatment of a web material, for example a calender roll, with a cast body 1, namely a roller body, and two flange pins 2 and 3, one of which is mounted on the left and the other on the right front side of the cast body 1. The roller is rotatably mounted in the region of the journal flanges 2 and 3 about an axis of rotation R or provided for pivotal mounting. For the thermal treatment of the web material is in the cast body 1 via one of the pin flanges 2 and 3, a thermal fluid can be supplied, which can be derived via the other or preferably the same pin flange 2 or 3 again. The cast body 1 pass through from one axial end to the other, continuous, near the outer periphery of the cast body 1 located, peripheral tempering 4, which are flowed through during the thermal treatment of the material of the thermal fluid.

Figur 2 zeigt den Gusskörper 1 im Querschnitt A-A. Im Gusskörper 1 ist axial durchgehend ein zentraler Hohlraum geformt. Der Gusskörper 1 wird im Kokillenguss, beispielsweise im statischen Kokillenguss, stehend aus einer Schmelze einer Eisenbasislegierung gegossen. Der zentrale Hohlraum wird gleich bei dieser Urformung geformt oder nachträglich eingearbeitet. Als Eisenbasislegierung wird eine Gusseisenlegierung verwendet. Die Abkühlung, die die Schmelze in erster Linie an der Kokille erfährt, wird so gesteuert, dass die Schmelze über die gesamte axiale Länge des Gusskörpers 1 von radial innen bis radial außen zum äußeren Umfang oder nahezu bis zum äußeren Umfang stabil in einem Sphärogussgefüge erstarrt, d.h. in Form eines Gusseisens mit Kugelgraphit. Die Steuerung der Abkühlung wird durch angepasste Auslegung der Kokille vorgenommen. Die Abkühlgeschwindigkeit kann insbesondere über die radiale Dicke der Kokille, die Wärmekapazität der Kokille, die thermische Leitfähigkeit des Kokillenmaterials oder die Gesamtmasse der Kokille eingestellt werden. Zur Einstellung kann die Kokille nur in Bezug auf einen einzigen der genannten Parameter oder eine Kombination von zwei, drei oder allen vier genannten Parametern durch entsprechende Werkstoffauswahl und Dimensionierung ausgelegt werden. FIG. 2 shows the cast body 1 in cross section AA. In the cast body 1, a central cavity is continuously formed axially. The cast body 1 is poured in a chill casting, for example in static chill casting, standing from a melt of an iron-based alloy. The central cavity is formed or incorporated later in this Urformung. As the iron-base alloy, a cast iron alloy is used. The cooling, which experiences the melt primarily on the mold, is controlled so that the melt solidifies over the entire axial length of the cast body 1 from radially inward to radially outward to the outer circumference or almost to the outer circumference stably in a ductile iron structure, ie in the form of a cast iron with nodular graphite. The control of the cooling is done by customized design of the mold. The cooling rate can be adjusted in particular via the radial thickness of the mold, the heat capacity of the mold, the thermal conductivity of the mold material or the total mass of the mold. For adjustment, the mold can only with respect to a single of the mentioned parameters or a combination be designed by two, three or all four of these parameters by appropriate material selection and dimensioning.

Der Erstarrungsprozess wird so gesteuert, dass die Schmelze nicht nur in einer die Rotationsachse R umgebenden inneren Zone 5 stabil erstarrt, sondern auch in einer die innere Zone 5 umschließenden Umfangsrandzone 6, die den äußeren Umfang des Gusskörpers bildet. Der Gusskörper 1 erstarrt somit über seinen gesamten Querschnitt stabil und nicht weiß. Der Kohlenstoff wird bei der stabilen Erstarrung in Form von Kugelgraphit ausgeschieden. Der durch den Gießprozess unmittelbar erhaltene Gusskörper 1 weist somit überall ein Sphärogussgefüge auf. Aufgrund der mittels der Kokille gezielt eingestellten Abkühlgeschwindigkeit scheidet sich der Graphit in der Umfangsrandzone 1 jedoch feiner als in der inneren Zone 5 aus. Die Graphit-Sphärolite SG (Sphäro-Graphitteilchen) der Umfangsrandzone 6 haben eine Größe aus dem Bereich der Richtzahlen von 5 bis 8, also eine größte Abmessung von höchstens 0.12 mm. Bevorzugter wird die Abkühlgeschwindigkeit so eingestellt, dass die Graphitteilchen SG der Umfangsrandzone 6 eine Größe aus dem Bereich der Richtzahlen von 7 (0.022 µm) bis 8 nach EN ISO 945 haben, also eine größte Abmessung von höchstens 0.03 mm. Die Gusseisenmatrix ist auch in der Umfangsrandzone 6 perlitisch mit allenfalls einem geringen Ferritanteil. Der Perlitanteil beträgt wenigstens 90%, bevorzugter wenigstens 95%, und der Ferritanteil höchstens 10%, bevorzugter höchstens 5%. Soweit eine Karbidbildung nicht verhindert werden kann, liegt der Karbidanteil nicht nur in der inneren Zone 5, sondern auch in der mit höherer Abkühlgeschwindigkeit erstarrten Umfangsrandzone 6 unter 5%, bevorzugter unter 3%.The solidification process is controlled so that the melt solidly solidifies not only in an inner zone 5 surrounding the rotation axis R, but also in a peripheral edge zone 6 enclosing the inner zone 5, which forms the outer circumference of the cast body. The cast body 1 thus solidifies over its entire cross-section stable and not white. The carbon is eliminated in the stable solidification in the form of nodular graphite. The cast body 1 immediately obtained by the casting process thus has everywhere a nodular cast iron structure. Due to the cooling rate set deliberately by means of the mold, however, the graphite in the peripheral edge zone 1 separates out more finely than in the inner zone 5. The graphite spherulites SG (sphero-graphite particles) of the peripheral edge zone 6 have a size in the range of the guide numbers of 5 to 8, ie a maximum dimension of at most 0.12 mm. More preferably, the cooling rate is set so that the graphite particles SG of the peripheral edge zone 6 have a size in the range of the guide numbers of 7 (0.022 microns) to 8 according to EN ISO 945, ie a maximum dimension of at most 0.03 mm. The cast iron matrix is also in the peripheral edge zone 6 perlitic with at most a low ferrite content. The pearlite content is at least 90%, more preferably at least 95%, and the ferrite content at most 10%, more preferably at most 5%. If carbide formation can not be prevented, the carbide content is less than 5%, more preferably less than 3%, not only in the inner zone 5 but also in the peripheral edge zone 6 solidified at a higher cooling rate.

Figur 3 zeigt einen Ausschnitt der Figur 2 und ferner, herausgezogen, eine nochmals vergrößerte Darstellung des Mikrogefüges des durch den Guss erhaltenen Gusskörpers. Es handelt sich um die hinsichtlich der Feinheit der ausgeschiedenen Graphitteilchen SG unterschiedlichen Gefüge der inneren Zone 5 und der Umfangsrandzone 6. Die neben dem Querschnitt des Gusskörpers 1 dargestellten Mikrogefüge sind in erster Linie schematischer Natur, verdeutlichen aber qualitativ, dass die Graphitteilchen SG in der Umfangsrandzone 6 kleiner als die Graphitteilchen SG in der inneren Zone 5 sind und in der Umfangsrandzone 6 entsprechend in feinerer Verteilung vorliegen. FIG. 3 shows a part of the FIG. 2 and further, extracted, a further enlarged view of the microstructure of the casting obtained by the casting. These are the different microstructures of the inner zone 5 and the peripheral edge zone 6 with respect to the fineness of the precipitated graphite particles SG. The microstructure shown next to the cross section of the cast body 1 are primarily of a schematic nature, but qualitatively illustrate that the graphite particles SG are in the peripheral edge zone 6 are smaller than the graphite particles SG in the inner zone 5 and present in the peripheral edge zone 6 correspondingly in finer distribution.

Der Gusskörper 1 wird in seiner bereits durch den Guss erhaltenen, höherfesten Umfangsrandzone 6 in einem nachfolgenden Härtungsprozess verschleißfest gemacht. Vor oder nach dem Härten werden die peripheren Temperierkanäle 4 eingearbeitet, vorzugsweise gebohrt. Als Umfangsrandzone 6 wird diejenige Ringzone des Gusskörpers 1 verstanden, die nach dem Härten die für die jeweilige Anwendung geforderte Härte überall aufweist, sich also vom äußeren Umfang bis in die Einhärttiefe erstreckt. Falls die Umfangsrandzone 6 des gehärteten Gusskörpers 1 sich radial einwärts bis zu oder sogar über die Temperierkanäle 4 erstreckt, werden diese zweckmäßigerweise vor dem Härten eingearbeitet. Andernfalls können die Temperierkanäle 4 ebensogut erst nach dem Härten eingearbeitet werden.The cast body 1 is made wear-resistant in its subsequent higher-hardness peripheral edge zone 6 already obtained by the casting in a subsequent hardening process. Before or after curing, the peripheral tempering 4 are incorporated, preferably drilled. The circumferential edge zone 6 is that annular zone of the cast body 1 which, after hardening, has the hardness required for the respective application everywhere, ie extends from the outer circumference to the hardening depth. If the peripheral edge zone 6 of the hardened cast body 1 extends radially inwardly up to or even over the tempering channels 4, these are expediently incorporated before hardening. Otherwise, the tempering 4 can just as well be incorporated after curing.

Der Härtungsprozess wird so durchgeführt, dass das unmittelbar aus dem Guss erhaltene Grundgefüge der Umfangsrandzone 6 in feinstreifigen oder noch vorteilhafter, in feinststreifigen Perlit umgewandelt wird. Die Graphitsphärolite SG werden hierdurch nicht oder zumindest nicht in einer für die Erfindung maßgeblichen Weise verändert. Alternativ zu der Umwandlung in fein- oder feinststreifigen Perlit, d.h. in Sorbit oder Troostit, kann der Härtungsprozess auch so gestaltet werden, dass sich die Gusseisenmatrix innerhalb der Umfangsrandzone 6 in ein Zwischenstufengefüge umwandelt, vorzugsweise in ADI (austempered ductile iron). In beiden Varianten wird der Gusskörper 1 in der Umfangsrandzone 6 gleichmäßig auf eine Temperatur im austenitischen Bereich erwärmt, beispielsweise auf 950°C, und anschließend abgeschreckt, wobei die Abschreckgeschwindigkeit für die Bildung eines Zwischenstufengefüges höher als für die Umwandlung in den feinen Perlit eingestellt wird, aber immer noch nicht so groß ist, dass eine Martensitumwandlung stattfinden kann. Das Zwischenstufengefüge ähnelt dem Bainit, bevorzugt dem unteren Bainit, ist aber kein Bainit, da es keine oder für die angestrebte Festigkeit nur vernachlässigbar wenig Karbide enthält. Auch für das Zwischenstufengefüge gilt, dass der Karbidanteil vorteilhafterweise weniger als 5%, vorzugsweise höchstens 3% beträgt. Es wäre ideal, wenn weder das feinperlitische Gefüge noch das alternative Zwischenstufengefüge Karbide enthalten würden.The hardening process is carried out in such a way that the basic structure of the peripheral edge zone 6 obtained directly from the casting is converted into finely striated or, even more advantageously, finely striated perlite. The graphite spherulites SG are thereby not or at least not changed in a manner relevant to the invention. Alternatively to the transformation into fine or microstrip pearlite, i. In sorbitol or troostite, the hardening process can also be designed so that the cast iron matrix within the peripheral edge zone 6 converts into an interstage structure, preferably in austempered ductile iron (ADI). In both variants, the cast body 1 is heated uniformly in the peripheral edge zone 6 to a temperature in the austenitic region, for example at 950 ° C, and then quenched, wherein the quenching rate for the formation of an interstage structure is set higher than for the transformation into the fine perlite, but still not so big that a martensite transformation can take place. The interstitial structure is similar to bainite, preferably the lower bainite, but is not bainite because it contains no or, for the desired strength, only negligible carbides. It is also true for the interstitial structure that the carbide fraction is advantageously less than 5%, preferably at most 3%. It would be ideal if neither the fine pearlitic structure nor the alternative interstitial structure would contain carbides.

Figur 4 veranschaulicht einen Härtungsprozess am Beispiel der bevorzugten Induktionshärtung. Zum Härten werden eine Induktionseinrichtung 8 und eine Abschreckeinrichtung 9 axial von einem Stirnende des Gusskörpers 1 zum anderen bewegt. Die Bewegung ist gleichmäßig mit der Geschwindigkeit v und einem während des Härtungsprozesses konstanten axialen Abstand x, um den die Induktionseinrichtung 8 der Abschreckeinrichtung 9 vorausläuft. Die Induktionseinrichtung 8 und die Abschreckeinrichtung 9 umgeben den Gusskörper 1. Mittels der Induktionseinrichtung 8 wird der Gusskörper 1 bis in die vorgegebene Einhärttiefe, d.h. innerhalb der Umfangsrandzone 6 überall gleichmäßig bis in den genannten Temperaturbereich erwärmt und anschließend mittels der Abschreckeinrichtung 9 abgeschreckt. Die Abschreckung wird vorzugsweise mit einem flüssigem Abschreckfluid, beispielsweise Wasser, vorgenommen, das auf den äußeren Umfang des Gusskörpers 1 gespritzt wird. Obgleich das Induktionshärten ein bevorzugtes Verfahren für das Härten durch thermische Oberflächenbehandlung ist, kann die Umfangsrandzone 6 grundsätzlich auch mittels jedes anderen Verfahrens der thermischen Oberflächenbehandlung erwärmt werden, solange nur die erforderliche Temperatur mit der erforderlichen Gleichmäßigkeit eingestellt wird. Als Alternative zum Induktionshärten kommt insbesondere das Flammhärten in Betracht, in erster Linie jedoch nur für geringere Einhärttiefen. Mit zunehmender Einhärttiefe ist das Induktionshärten die bevorzugte Wahl. Die Einhärttiefe und dementsprechend die Dicke der Umfangsrandzone 6 beträgt vorzugsweise wenigstens 3mm, bevorzugter wenigstens 5mm. Andererseits ist es im Hinblick auf Temperaturwechselbeanspruchungen vorteilhaft, wenn die Einhärttiefe 10mm nicht übersteigt. Die Einhärttiefe kann insbesondere durch eine Variation des Abstands x beeinflusst werden, im Falle des Induktionshärtens auch durch Variation der Frequenz der jeweiligen Induktionsspule 8. Weitere Stellparameter zur Beeinflussung der Einhärttiefe sind die Geschwindigkeit v, die Wahl des Abschreckfluids und der Durchsatz an Abschreckfluid. FIG. 4 illustrates a curing process using the example of the preferred induction hardening. For hardening, an induction device 8 and a quenching device 9 are moved axially from one end face of the cast body 1 to the other. The movement is uniform with the speed v and a constant during the hardening process axial Distance x, by which the induction device 8 precedes the quenching device 9. The induction device 8 surrounds the cast body 1 by means of the induction device 8 up to the predetermined hardening depth, ie within the peripheral edge zone 6, uniformly throughout the temperature range and then quenched by means of the quenching device 9. The quenching is preferably carried out with a liquid quenching fluid, for example water, which is injected onto the outer circumference of the cast body 1. Although induction hardening is a preferred method of thermal surface treatment curing, the peripheral edge zone 6 may in principle be heated by any other thermal surface treatment method as long as only the required temperature is adjusted with the required uniformity. As an alternative to induction hardening, in particular flame hardening comes into consideration, but primarily only for lower hardening depths. With increasing depth of cure, induction hardening is the preferred choice. The Einhärttiefe and, accordingly, the thickness of the peripheral edge zone 6 is preferably at least 3mm, more preferably at least 5mm. On the other hand, it is advantageous in terms of thermal cycling, if the Einhärttiefe does not exceed 10mm. The hardening depth can be influenced in particular by a variation of the distance x, in the case of induction hardening also by varying the frequency of the respective induction coil 8. Further adjusting parameters for influencing the hardening depth are the speed v, the choice of the quenching fluid and the throughput of quenching fluid.

Die Figuren 5 und 6 sind Schliffbilder des Gefüges der Umfangsrandzone 6. Figur 5 zeigt das unmittelbar durch den Guss erhaltene Grundgefüge im Maßstab 50:1, und Figur 6 ist ein Schliffbild des Gefüges nach dem Härten, zeigt also das Härtegefüge, ebenfalls im Maßstab 50:1. Im Grundgefüge der Figur 5 sind die Graphitkugeln bzw. Graphitsphärolite mit SG, der Perlit mit P und Ferritinseln mit α bezeichnet. Wie zu erkennen ist, besteht das Grundgefüge im Wesentlichen aus Perlit und ausgeschiedenem Kugelgraphit sowie geringen Mengen Ferrit, im Ausführungsbeispiel weniger als 10% Ferrit. Das Härtegefüge besteht aus feinstreifigem und feinststreifigem Perlit, also aus Sorbit und Troostit, sowie den eingebetteten Sphäro-Graphitteilchen SG, wobei die Perlitgebiete entsprechend der Feinheit der Lamellen mit S für Sorbit und T für Troostit bezeichnet sind.The FIGS. 5 and 6 are micrographs of the structure of the peripheral edge zone. 6 FIG. 5 shows the basic structure obtained directly from the casting in the scale 50: 1, and FIG. 6 is a microsection of the structure after hardening, thus showing the hardness structure, also in scale 50: 1. In the basic structure of the FIG. 5 the graphite spheres or graphitic spherolites are denoted by SG, the perlite by P and ferrite islands by α. As can be seen, the basic structure consists essentially of perlite and precipitated nodular graphite and small amounts of ferrite, less than 10% ferrite in the exemplary embodiment. The hardness structure consists of fine-grained and very fine-grained pearlite, ie sorbitol and troostite, as well as the embedded sphero-graphite particles SG, the pearlite areas being designated S for sorbitol and T for troostite according to the fineness of the lamellae.

In Figur 7 ist der Mikrohärteverlauf bei einer vorgegebenen Einhärttiefe von 3 mm dargestellt, nämlich die Härte H in HV0,1 über dem Abstand d vom äußeren Umfang des Gusskörpers 1, das heißt über der Tiefe d.In FIG. 7 the microhardness curve is shown at a given hardening depth of 3 mm, namely the hardness H in HV0.1 over the distance d from the outer circumference of the cast body 1, that is to say over the depth d.

Der gehärtete Gusskörper 1 wird angelassen, vorteilhafterweise auf eine Anlasstemperatur zwischen 300 und 350°C.The hardened cast body 1 is tempered, advantageously to a tempering temperature between 300 and 350 ° C.

In der nachfolgenden Tabelle wird eine für das Gießen des Gusskörpers 1 besonders bevorzugte Eisenbasislegierung in der letzten Tabellenspalte spezifiziert. Die zweite und dritte Spalte enthalten bevorzugte Bereiche für den jeweiligen Legierungspartner, wobei die engeren Bereiche innerhalb des jeweils weiteren Bereichs für das gleiche Legierungselement besonders bevorzugt werden. Für den jeweiligen Legierungspartner wird dann wiederum der in der letzten Spalte angegebene Anteil am stärksten bevorzugt. Die Eisenbasislegierung enthält in bevorzugter Ausführung zumindest Kohlenstoff, Silicium, Kupfer und Nickel innerhalb der jeweils spezifizierten Anteilsbereiche. Kupfer als Perlitbildner und Nickel zur Verhinderung einer Martensitumwandlung kommen vorzugsweise in Kombination zum Einsatz. Fe macht den Rest der jeweiligen Legierung aus. Legierungselement Anteil in Masse-% Anteil in Masse-% Anteil in Masse-% C 3.0 - 4.0 3.4 - 3.8 3.6 Si 1.7-2.4 1.9 - 2.2 2.1 Cu 0.5 - 1.3 0.7 - 1.0 0.90 Ni 0.3 - 1.5 0.7 - 1.0 0.85 Mn ≤ 0.5 ≤ 0.5 0.35 Sn ≤ 0.05 ≤ 0.05 0.01 P < 0.1 < 0.05 ≤ 0.03 S < 0.1 < 0.05 ≤ 0.01 In the table below, a particularly preferred iron-base alloy for casting the cast body 1 is specified in the last column of the table. The second and third columns contain preferred ranges for the respective alloying partner, with the narrower ranges within the respective wider range being particularly preferred for the same alloying element. For the respective alloying partner, in turn, the proportion specified in the last column is most preferred. The iron-based alloy contains in a preferred embodiment at least carbon, silicon, copper and nickel within the respective specified ranges of shares. Copper as a perlite former and nickel to prevent martensite transformation are preferably used in combination. Fe makes up the rest of the respective alloy. alloying element Share in mass% Share in mass% Share in mass% C 3.0 - 4.0 3.4 - 3.8 3.6 Si 1.7-2.4 1.9 - 2.2 2.1 Cu 0.5 - 1.3 0.7 - 1.0 0.90 Ni 0.3 - 1.5 0.7 - 1.0 0.85 Mn ≤ 0.5 ≤ 0.5 12:35 sn ≤ 0.05 ≤ 0.05 12:01 P <0.1 <0.05 ≤ 0.03 S <0.1 <0.05 ≤ 0.01

Legierungselemente der EisenbasislegierungAlloy elements of the iron-based alloy

Die Eisenbasisschmelze der Zusammensetzung der letzten Spalte weist einen Sättigungsgrad Sc von 0.99 bis 1.00 auf. Bevorzugt werden Eisenbasislegierungen mit einem Sättigungsgrad Sc aus dem Bereich von 0.97 bis 1.03, wobei aus diesem Bereich von Legierungen naheutektischer Zusammensetzung solche mit einem Sättigungsgrad Sc aus der unteren Hälfte des angegeben Bereichs bevorzugt werden.The iron base melt of the composition of the last column has a saturation degree Sc of 0.99 to 1.00. Preference is given to iron-base alloys having a degree of saturation Sc in the range from 0.97 to 1.03, from which range of alloys of near-eutectic composition those having a degree of saturation Sc from the lower half of the stated range are preferred.

An einer nach dem offenbarten Verfahren gegossenen und gehärteten Probe mit fein- und feinststreifigem Perlit mit Kugelgraphit, an der auch die Schliffbilder der Figuren 4 und 5 genommen und das Härteprofil der Figur 6 erstellt wurden, ergaben die im Zugversuch vorgenommenen Messungen die folgenden Eigenschaften hinsichtlich der Festigkeit und Härte:

  1. (i) 0.2%-Dehngrenze Rp, 0.2 > 400 N/mm2;
  2. (ii) Zugfestigkeit Rm > 650 N/mm2;
  3. (iii) Bruchdehnung A > 3-4%.
  4. (iv) Härte > 400 HV
On a sample cast and hardened according to the disclosed method with fine-grained and very fine-grained perlite with spheroidal graphite, on which also the micrographs of the FIGS. 4 and 5 taken and the hardness profile of FIG. 6 The measurements made in the tensile test gave the following properties in terms of strength and hardness:
  1. (i) 0.2% proof stress R p, 0.2 > 400 N / mm 2 ;
  2. (ii) tensile strength R m > 650 N / mm 2 ;
  3. (iii) Elongation at break A> 3-4%.
  4. (iv) hardness> 400 HV

Figur 8 zeigt eine hydraulische Presse mit einem erfindungsgemäßen Gusskörper 10, der einen Kolben der Presse bildet. Der Gusskörper 10 ist in einem Zylinder 11 der Presse längs einer Arbeitsachse A hin und her beweglich geführt. An einer Vorderseite des Gusskörpers 10 ist ein Umformwerkzeug 12, beispielhaft ein Stempel, angeordnet. Die Presse weist dem Stempel 12 axial gegenüberliegend eine Matrize 13 auf. Der Zylinder 11 bildet an der Rückseite des Gusskörpers 10 einen Druckraum mit einem Einlass 14 und einem Auslass 15 für ein hydraulisches Arbeitsfluid, um den Gusskörper 10 zum Pressformen von Werkstücken mit einem Arbeitsdruck P von mehr als 100 bar, vorzugsweise wenigstens 200 bar, in Richtung auf die Matrize 13 beaufschlagen zu können. FIG. 8 shows a hydraulic press with a cast body 10 according to the invention, which forms a piston of the press. The cast body 10 is guided in a cylinder 11 of the press along a working axis A back and forth. On a front side of the cast body 10, a forming tool 12, for example a stamp, is arranged. The press has the die 12 axially opposite a die 13. The cylinder 11 forms at the back of the casting 10 a pressure space with an inlet 14 and an outlet 15 for a hydraulic working fluid to the casting 10 for molding workpieces with a working pressure P of more than 100 bar, preferably at least 200 bar, in direction to be able to act on the die 13.

Figur 9 zeigt einen Gusskörper 10 mit einer modifizierten Form. Der modifizierte Gusskörper 10 kann ebenfalls als Kolben einer Presse, vorzugsweise hydraulischen Presse, verwendet werden. Während der Gusskörper 10 des vorherigen Ausführungsbeispiels zumindest im Wesentlichen einfach zylindrisch geformt ist, weist der modifizierte Gusskörper 10 zumindest im Wesentlichen die Form eines Topfs mit einem die Rückseite des Kolbens bildenden Boden und einer Seitenwand auf. Der Stempel 12, der beim Umformen das Werkstück kontaktiert, ragt aus dem vom Gusskörper 10 geformten Topf vor. Eingezeichnet ist auch die Arbeitsachse A für den in einer Presse eingebauten Zustand. FIG. 9 shows a casting 10 with a modified form. The modified cast body 10 may also be used as a piston of a press, preferably a hydraulic press. While the cast body 10 of the previous embodiment is at least substantially cylindrically shaped, the modified cast body 10 is at least substantially in the shape of a pot with a bottom forming the back of the piston and a side wall. The punch 12, which contacts the workpiece during forming, protrudes from the molded body 10 from the pot. Also marked is the working axis A for the installed in a press state.

Die Gusskörper 10 weisen jeweils ein dem Gusskörper 1 entsprechendes Mikrogefüge mit einer grau erstarrten inneren Zone 5 und einer äußeren Umfangsrandzone 6 auf, die die innere Zone 5 über den Umfang und vorzugsweise auch über die Stirnseiten umschließt. Der topfförmige Gusskörper 10 weist eine erfindungsgemäße Umfangsrandzone 6 wie bevorzugt auch an derjenigen äußeren Umfangsfläche auf, die innen umläuft und vorzugsweise auch an der im Topf gelegenen Stirnfläche. Bevorzugt umschließt eine erfindungsgemäße Umfangsrandzone 6 den jeweiligen Gusskörper 10 allseitig. Für die Zonen 5 und 6 der Gusskörper 10 gelten die zu den Zonen 5 und 6 des Gusskörpers 1 gemachten Ausführungen.The cast bodies 10 each have a microstructure corresponding to the cast body 1 with a gray-solidified inner zone 5 and an outer peripheral edge zone 6, which encloses the inner zone 5 over the circumference and preferably also over the end faces. The pot-shaped cast body 10 has a peripheral edge zone 6 according to the invention, as also preferably on that outer peripheral surface which rotates on the inside and preferably also on the end face located in the pot. A peripheral edge zone 6 according to the invention preferably encloses the respective cast body 10 on all sides. For the zones 5 and 6 of the cast body 10, the statements made on the zones 5 and 6 of the cast body 1 apply.

Die Gusskörper 1 und 10 sind jeweils in einem Sphärogussgefüge erstarrt. In alternativen Ausführungen kann der eingelagerte freie Graphit in der inneren Zone 5 und auch in der Umfangsrandzone 6 im Wesentlichen in Form von Vermikulargraphit oder auch in Form von Kugelgraphit und Vermikulargraphit ausgeschieden sein. Der Ausscheidung von Kugelgraphit wird gegenüber der Ausscheidung von Vermikulargraphit allerdings der Vorzug gegeben. In Ausführungen, in denen der freie Graphit als Kugelgraphit und auch als Vermikulargraphit vorliegt, ist es vorteilhaft, wenn der Kugelgraphit den überwiegenden Teil des freien Graphits ausmacht.The cast bodies 1 and 10 are each solidified in a nodular cast iron structure. In alternative embodiments, the embedded free graphite in the inner zone 5 and also in the peripheral edge zone 6 may be excreted substantially in the form of vermicular graphite or else in the form of spheroidal graphite and vermicular graphite. However, the excretion of nodular graphite is given preference over the excretion of vermicular graphite. In embodiments in which the free graphite is present as spheroidal graphite and also as Vermikulargraphit, it is advantageous if the spheroidal graphite makes up the vast majority of the free graphite.

Claims (15)

  1. A cast body, being a tool for forming or original moulding a work piece, or a transfer member (10) for transferring a force or torque onto a tool (12) which contacts the work piece during forming or original moulding, wherein the cast body is not a roller and
    a) is cast from an iron base alloy
    b) which forms an interior zone (5) of the cast body (10) made of grey cast iron (GJS, GJV) and,
    c) around the interior zone (5), a circumferential rim zone (6) which includes the outer circumference of the cast body (1)
    d) and has a surface hardness which is greater than 400 HV,
    e) wherein the circumferential rim zone (6) consists of ribbon grain or superfine ribbon grain pearlite (P) with embedded free graphite, preferably spheroidal graphite (SG) or vermicular graphite (V), or of an intermediate structure (ADI) with spheroidal graphite or vermicular graphite.
  2. The cast body according to the preceding claim, characterised in that the embedded free graphite is at least substantially spheroidal graphite (SG) and the graphite pebbles of said spheroidal graphite in the solidified circumferential rim zone (6) exhibit a size which corresponds to an index value of at least 5 and preferably at most 7 in accordance with EN ISO 945.
  3. The cast body according to any one of the preceding claims, characterised in that the cast iron in the circumferential rim zone (6) contains at least 95% pearlite and at most 5% ferrite.
  4. The cast body according to any one of the preceding claims, characterised in that the material of the circumferential rim zone (6) exhibits at least one of the following stability values:
    (i) 0.2% proof stress Rp, 0.2 > 400 N/mm2;
    (ii) tensile strength Rm > 600 N/mm2, preferably Rm > 650 N/mm2;
    (iii) elongation at rupture A > 1.5%, preferably A > 2%.
  5. The cast body according to any one of the preceding claims, characterised in that the cast body (10) is a constituent of a forging tool or press for forming or original moulding the work piece.
  6. The cast body according to any one of the preceding claims, characterised in that the cast body (10) is a piston or plunger, preferably for a hydraulic application of force.
  7. The cast body according to any one of the preceding claims and at least one of the following features:
    (i) the iron base alloy contains at least 0.3% nickel and preferably at most 1.5% nickel;
    (ii) the iron base alloy contains at least 0.5% copper and preferably at most 1.3% copper.
  8. The cast body according to any one of the preceding claims, characterised in that the iron base alloy contains at least 1.7% silicon and preferably at most 2.4% silicon.
  9. The cast body according to any one of the preceding claims, characterised in that the iron base alloy contains 3% to 4% carbon.
  10. A method for manufacturing a cast body according to any one of the preceding claims, wherein:
    a) the cast body (1; 10) is die-cast from a molten mass of an iron base alloy;
    b) the cooling speed at the die is set to be low enough that the molten mass does not solidify white but rather stably as cast iron (GJS, GJV) with freely embedded graphite, preferably spheroidal graphite (SG) or vermicular graphite (V), even in a circumferential rim zone (6) which includes the outer circumference of the cast body (1; 10);
    c) and the material of the circumferential rim zone (6) is transformed by means of a thermal surface treatment into ribbon grain or superfine ribbon grain pearlite (P) with spheroidal or vermicular graphite (SG, V) or into an intermediate structure (ADI) with spheroidal graphite or vermicular graphite.
  11. The method according to the preceding claim, characterised in that the embedded free graphite of the circumferential rim zone (6) is at least substantially spheroidal graphite (SG), and the cooling speed at the die is set to be high enough that the graphite pebbles of said spheroidal graphite (SG) in the solidified circumferential rim zone (6) exhibit a size which corresponds to an index value of at least 5 and preferably at most 7 in accordance with EN ISO 945.
  12. The method according to any one of the preceding claims, characterised in that the cast iron in the circumferential rim zone (6) contains at least 90% pearlite and at most 10% ferrite before the surface treatment.
  13. The method according to any one of the preceding claims, characterised in that the iron base alloy is composed in such a way that the martensite starting temperature (Ms) of the cast iron is lower than 20 °C.
  14. The method according to any one of the preceding claims, characterised in that the surface treatment is performed without martensitic transformation.
  15. The method according to any one of the preceding claims, characterised in that after a surface treatment has been performed, the cast body (1; 10) is tempered and cooled again, without martensitic transformation.
EP11165452.1A 2010-05-10 2011-05-10 Casting mould Active EP2386660B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201020006651 DE202010006651U1 (en) 2010-05-10 2010-05-10 cast body

Publications (2)

Publication Number Publication Date
EP2386660A1 EP2386660A1 (en) 2011-11-16
EP2386660B1 true EP2386660B1 (en) 2017-03-22

Family

ID=42539035

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11165452.1A Active EP2386660B1 (en) 2010-05-10 2011-05-10 Casting mould

Country Status (3)

Country Link
EP (1) EP2386660B1 (en)
DE (1) DE202010006651U1 (en)
IT (1) ITMI20110150U1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105728557A (en) * 2016-05-05 2016-07-06 太仓小小精密模具有限公司 High-hardness punching rod for punching die
DE102018209267A1 (en) * 2018-06-11 2019-12-12 Federal-Mogul Nürnberg GmbH Piston for internal combustion engines and use of a piston for internal combustion engines
CN109227046A (en) * 2018-10-18 2019-01-18 南通重矿金属新材料有限公司 A kind of production method of pass template
CN115962231B (en) * 2023-01-16 2023-06-27 泰尔重工股份有限公司 Integrated universal coupler flange fork head and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH360701A (en) * 1957-09-19 1962-03-15 Tiroler Roehren & Metallwerk Process for surface hardening of cast iron
JPS60250815A (en) * 1984-05-24 1985-12-11 Kubota Ltd Spheroidal graphite cast iron caliber roll having excellent resistance to crack and wear and its production
FI88420B (en) 1991-03-20 1993-01-29 Valmet Paper Machinery Inc FOERFARANDE FOER FRAMSTAELLNING AV EN VALS OCH EN VALS
JP3050368B2 (en) * 1995-10-18 2000-06-12 トヨタ自動車株式会社 Manufacturing method of integrated mold for press molding
JP3204293B2 (en) * 1996-04-29 2001-09-04 日立金属株式会社 Method of manufacturing spheroidal graphite cast iron member
JP4526616B2 (en) * 1999-06-01 2010-08-18 高周波熱錬株式会社 Gear made of spheroidal graphite cast iron material and manufacturing method thereof
FI118738B (en) * 2005-01-05 2008-02-29 Metso Paper Inc Globe Granite Cast Iron and Method of Manufacturing Globe Granite Cast Iron for Machine Construction Parts that Require Strength and Toughness
DE102009004562B4 (en) * 2009-01-14 2015-06-03 Shw Casting Technologies Gmbh Roller body for a roller for treating a material and method for producing a roller body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ITMI20110150U1 (en) 2011-11-11
EP2386660A1 (en) 2011-11-16
DE202010006651U1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
EP2213790B1 (en) Roller body for a roller for processing a material and method for producing a roller body
EP2411708B1 (en) Nitriding grade steel material composition for manufacturing piston rings and cylinder liners
DE2937724C2 (en) Steel product made by powder metallurgy with a high proportion of vanadium carbide
DE19630115C2 (en) Method of manufacturing a bevel gear and combined press device
DE602004011136T2 (en) High speed steel and process for its production
DE19780253C2 (en) Cast iron and piston ring
US20110274946A1 (en) Cast body
DE60030063T2 (en) POWDER METALLURGICAL PROCESS
DE102006017263A1 (en) Crankshaft and method for its production
EP2386660B1 (en) Casting mould
DE2048151A1 (en) Tempering, chromium-containing titanium carbide tool steel and materials made from it
EP1274872B1 (en) Method for the production of nitrogen alloyed steel, spray compacted steel
EP2192201B1 (en) Hardened spring steel, spring element and method for manufacturing a spring element
WO2021032893A1 (en) Tool steel for cold-working and high-speed applications
EP3211109B1 (en) Method for producing a thermoforming tool and thermoforming tool made from same
DE60011115T2 (en) STEEL MATERIAL, ITS USE AND MANUFACTURE
EP3088537A1 (en) Production method for hpi cast iron
DE3836328A1 (en) METHOD FOR PRODUCING SINGLE CAMS FROM CAST MATERIAL
DE69909940T2 (en) Martensitic stainless steel parts and process for their manufacture
EP2354264B1 (en) Wear-resistant, heat-resistant material and use of same
EP0719349B1 (en) Process of producing sintered articles
DE102005051715A1 (en) Hardening of cast iron parts containing residual austenite with cooling of regions of the parts after production, e.g. in a liquid coolant, useful in casting production
DE3116227A1 (en) Work roll of high chromium content and process for producing it
DE2927676C2 (en)
EP1206984B1 (en) Roller body from graded index material for working a web material and its manufacturing method

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120118

17Q First examination report despatched

Effective date: 20150717

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161010

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 877838

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011011884

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170623

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170724

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011011884

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20180102

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170622

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 877838

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011884

Country of ref document: DE

Owner name: HUETTENWERKE KOENIGSBRONN GMBH, DE

Free format text: FORMER OWNER: SHW CASTING TECHNOLOGIES GMBH, 73433 AALEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011011884

Country of ref document: DE

Representative=s name: SSM SANDMAIR PATENTANWAELTE RECHTSANWALT PARTN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011884

Country of ref document: DE

Owner name: SHW HIGH PRECISION CASTING TECHNOLOGY GMBH, DE

Free format text: FORMER OWNER: SHW CASTING TECHNOLOGIES GMBH, 73433 AALEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011011884

Country of ref document: DE

Representative=s name: SSM SANDMAIR PATENTANWAELTE RECHTSANWALT PARTN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011884

Country of ref document: DE

Owner name: HUETTENWERKE KOENIGSBRONN GMBH, DE

Free format text: FORMER OWNER: SHW HIGH PRECISION CASTING TECHNOLOGY GMBH, 89551 KOENIGSBRONN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230519

Year of fee payment: 13