EP2375001A2 - Rotor and assembly for reducing leakage flow - Google Patents

Rotor and assembly for reducing leakage flow Download PDF

Info

Publication number
EP2375001A2
EP2375001A2 EP11161550A EP11161550A EP2375001A2 EP 2375001 A2 EP2375001 A2 EP 2375001A2 EP 11161550 A EP11161550 A EP 11161550A EP 11161550 A EP11161550 A EP 11161550A EP 2375001 A2 EP2375001 A2 EP 2375001A2
Authority
EP
European Patent Office
Prior art keywords
rotor
land
groove
assembly
lands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11161550A
Other languages
German (de)
French (fr)
Inventor
Sudhakar Neeli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP2375001A2 publication Critical patent/EP2375001A2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type

Definitions

  • One or more aspects of the present invention relate to rotor and assembly for reducing leakage flow, for example, in rotary machines.
  • Rotary machines such as steam and gas turbines are used for power generation and mechanical drive applications. These machines generally include multiple turbine and/or compressor stages. In operation, pressurized fluid flows through a series of stationary and rotary components. Minimizing fluid leakage enhances the operation and efficiency of the rotary machine.
  • end-packing seals are used to prevent or minimize the steam leaking into the atmosphere.
  • Leakage flows from a HP/IP (high pressure/intermediate pressure) stages are used to seal the end packing.
  • HP/IP high pressure/intermediate pressure
  • a 1000MW machine may have a 6-flow LP stage indicating that six end packing seals are used to prevent steam leakage into the atmosphere.
  • FIG. 1 A conventional end-packing seal assembly widely used in a steam turbine is illustrated in FIG. 1 .
  • the conventional end packing seal assembly 100 is of a "slant square teeth" type in which slanted teeth 120 are formed on a stator 110 and square teeth 140 are formed on a rotor 130.
  • rotational direction of the rotor 130 is into and out of the page as shown by arrow 170
  • axial direction is horizontal as shown by arrow 150
  • radial direction is vertical on the page as shown by arrow 160.
  • the fluid e.g., steam
  • the stator teeth 120 and the rotor teeth 140 seal against the leakage flow of steam from a relatively high pressure side (right) to a relatively low pressure side (left).
  • leakage flow represents energy that is not captured, i.e., it constitutes waste. If the leakage flow can be reduced, the same steam can be used to generate more output. Thus, any reduction of steam usage at the sealing end-packing will improve overall performance of the turbine.
  • a non-limiting aspect of the present invention relates to a rotor of a rotary machine.
  • the rotor comprises a plurality of rotor lands spaced apart from each other in an axial direction. At least one rotor land has a groove formed thereon, and the groove has a shape that generates a vortex as fluid flows over the rotor so as to resist axial flow of the fluid.
  • the assembly comprises a stator and a rotor.
  • the stator includes a plurality of teeth spaced apart from each other in an axial direction
  • the rotor includes a plurality of rotor lands spaced apart from each other in the axial direction.
  • At least one rotor land has a groove formed thereon, and the groove has a shape that generates a vortex as fluid flows over the rotor so as to resist axial flow of the fluid.
  • teeth of the stator and the rotor will be referred to as rotor "lands" from this point on.
  • rotor teeth will be referred to as rotor "lands” from this point on.
  • teeth or “teeth” will generally refer to the stator and "land” or “lands” will generally refer to the rotor.
  • Leakage flow has two main drivers - effective clearance and axial velocity.
  • Effective clearance may be associated with resistance to fluid flow in general - lower the clearance, higher the resistance to fluid flow.
  • Axial velocity is related to how fast the steam flows axially from the high pressure side on the right and exits to the low pressure side on the left - faster the axial velocity component, more leakage flow occurs.
  • reduction(s) in one or both of these drivers will reduce the leakage flow and enhance efficiency.
  • One way to reduce the leakage flow is to reduce the clearance between the stator and the rotor.
  • the best sealing position is when a stator tooth sits on a rotor land, i.e., the tooth and the corresponding land are aligned vertically, i.e., aligned in the radial direction. This is where physical minimum clearance (or simply "minimum clearance") occurs.
  • minimum clearance or simply "minimum clearance"
  • the worst position is when the land is in between two teeth. Leakage flow can be reduced by reducing the minimum clearance so that less steam flows through. This requires very tight tolerances in forming the stators and rotors, and great strides have been made in this area.
  • Another way to the leakage flow is to dynamically oppose the flow of the fluid during operation of the turbine.
  • the leakage flow in the axial direction. Any resistance to this axial flow also reduces the effective clearance.
  • rotor land 140 does not oppose the axial flow. Indeed, the fluid is guided to flow in the undesirable axial direction.
  • FIG. 2 illustrates a non-limiting embodiment of an assembly, e.g., for a rotary machine, that addresses one or more shortcomings of the conventional end-packing seal assembly.
  • the assembly 200 could be an end packing seal assembly for a steam turbine or can be an assembly for many types of rotary machines.
  • the assembly 200 includes a stator 210 with a plurality of slanted teeth 220 each with tips 225 and spaced apart from each other in the axial direction.
  • the pitch of the stator teeth is denoted "Ps”.
  • the assembly 200 includes a rotor 230 with plurality of lands 240 also spaced apart in the axial direction, the pitch of the rotor lands 240 is denoted "Pr".
  • the axial, radial and rotational directions are represented as 250, 260 and 270, respectively. Unless otherwise specifically stated or shown, it can be assumed that the directions for the remaining figures are the same as FIG. 2 .
  • the stator teeth 220 outnumber the rotor lands 240. But this is not a requirement.
  • the assembly 200 includes at least one rotor land 240 that has a groove 245 formed thereon.
  • the groove 245 has a depth "d" and the rotor land 240 has a height of "h” as illustrated in FIG. 3 .
  • Both the depth and the height of the groove 245 and land 240 are not particularly limited. As non-limiting examples, the depth d may range between 20 and 40 mils and the height h may be 125 mils.
  • the groove 245 also referred to as "slots" acts as a vortex generator generating a vortex that oppose the axial flow of the fluid.
  • FIG. 3 also shows that the clearance "c" between the tooth 220 and the land 240 is at the minimum when the tooth 220 is aligned with the land 240.
  • Minimum clearance may be defined as a difference in the radial height of the tip 225 of the stator tooth 220 and the radial height of the rotor land 240.
  • the vortex generated by the groove 245 aerodynamically resists the flow of the fluid.
  • the effect of the groove 245, at least in part, is that the fluid flow encounters increased losses in pressure ratios across the rotor lands 240 due to the vortex generated by the grooves 245. The losses in the pressure ratios reduce the flow's velocity.
  • simulations reveal that at the minimum clearance, the vortex also changes the fluid's axial velocity component.
  • the axial component of the fluid flow is changed to flow tangentially to the rotational direction and/or to flow in the radial direction.
  • the groove 245 still generates a vortex that reduces the leakage flow by opposing the fluid flow and changing the axial velocity component of the fluid flow.
  • the axial velocity component change is a greater contributor towards reducing the leakage flow when there is no alignment.
  • each groove 245 generates a vortex that make the fluid's flow path more torturous reducing the effective clearance and changing the axial velocity component of the fluid flow.
  • each groove generates a vortex that resists the axial flow of the fluid when the fluid passes over the rotor.
  • seal assemblies with grooves on lands can achieve reduction in the leakage flow. Simulations reveal that at various clearances, leakage flow reduction can be above 8%, which can represent significant savings. Simulations also reveal that shapes of grooves affect the amount of reduction.
  • FIG. 2 illustrates an embodiment in which the grooves 245 are formed on every land 240. While this is preferable, it is not strictly necessary. Having a groove formed on at least one rotor land will contribute to reducing the leakage flow.
  • FIGs. 2 , 3 and 4 illustrate the groove 245 as having a wide "U" shape, but the groove shape is not so limited, and shapes such as a rectangle, square, curve, semi-circle, trapezoid, triangle and so on are also contemplated.
  • An example of a rectangular shaped groove is illustrated in FIG. 5 .
  • a centerline 610 is drawn which represents a center of an axial width 620 of the rotor land.
  • the groove (trapezoidal shape in this example) is not a mirror image about centerline 610.
  • the bottom of the groove need not be strictly horizontal.
  • the groove's bottom may be slanted. While not illustrated, the groove can also have an irregular shape.
  • some lands 240 are vertically (i.e., in a radial direction) aligned with at least one stator tooth 220 so as to have the minimum clearance, while other lands 240 are in between two of the teeth 220.
  • alignment simply indicates that the tip 225 of the stator tooth 220 vertically overlaps with some part of the axial width 620 of the rotor land 240 as illustrated in FIGs. 8, 9 and 10 .
  • the tip 225 is substantially aligned with the centerline 610 of the axial width 620 of the rotor land 240.
  • the stator tooth tip 225 overlaps the rotor land 240 on the downstream side of the centerline 610
  • the tooth tip 225 overlaps the land 240 on the upstream side.
  • the pitch Pr of the rotor land is not the same as the pitch Ps of the stator.
  • the rotor pitch Pr has different degrees of effectiveness for a given clearance "c" between the stator teeth and the rotor lands.
  • the rotor pitch Pr can be optimized for a particular minimum clearance design.
  • the radial height of the rotor lands are all substantially equal. But in many steam turbines, the radial height of the turbine can vary along on at least a portion of its axial length.
  • FIG. 11 illustrates a non-limiting variation of a assembly illustrating a "stepped" seal. In this instance, the radial height of at least one rotor land 240 is different from other rotor lands 240. While not illustrated, it should be noted that the radial heights of the lands 240 need not be monotonicallv increasing or decreasine.
  • stators with slanted teeth are illustrated. But this is not a strict requirement. Stators that have substantially no slant in their teeth are also contemplated as illustrated in FIG. 12 .
  • the rotor pitch Pr can vary. In FIG. 2 , it is assumed that the rotor pitch Pr is assumed to be regular. But this is not strictly necessary. In FIG. 13 , two different rotor pitches Pr1 and Pr2 are illustrated. Of course, more than two are contemplated. These non-limiting embodiments demonstrate that the rotor lands can be created in regular and/or irregular intervals.
  • FIG. 14 illustrates yet another non-limiting embodiment of the assembly.
  • the axial width 620 of the rotor lands 240 is greater than the stator pitch Ps.
  • each rotor land 240 is wider than the stator pitch, all rotor lands 240 will be aligned with at least one stator tooth 220. But in FIG. 14 , it is seen that there is at least one stator 220 that is not aligned with any land 240.

Abstract

In a rotary machine such as a steam turbine, pressurized fluid flows through a series of stationary and rotary components. Minimizing leakage flow of the fluid enhances the operation and efficiency of the machine. At least one rotor land (240) has a groove (245) formed thereon to generate a vortex as the fluid passes over. The vortex resists the axial flow of the fluid, which reduces the leakage flow.

Description

  • One or more aspects of the present invention relate to rotor and assembly for reducing leakage flow, for example, in rotary machines.
  • BACKGROUND OF THE INVENTION
  • Rotary machines such as steam and gas turbines are used for power generation and mechanical drive applications. These machines generally include multiple turbine and/or compressor stages. In operation, pressurized fluid flows through a series of stationary and rotary components. Minimizing fluid leakage enhances the operation and efficiency of the rotary machine.
  • In a steam turbine for example, end-packing seals are used to prevent or minimize the steam leaking into the atmosphere. Leakage flows from a HP/IP (high pressure/intermediate pressure) stages are used to seal the end packing. As an example, a 1000MW machine may have a 6-flow LP stage indicating that six end packing seals are used to prevent steam leakage into the atmosphere.
  • A conventional end-packing seal assembly widely used in a steam turbine is illustrated in FIG. 1. The conventional end packing seal assembly 100 is of a "slant square teeth" type in which slanted teeth 120 are formed on a stator 110 and square teeth 140 are formed on a rotor 130. In FIG. 1, rotational direction of the rotor 130 is into and out of the page as shown by arrow 170, axial direction is horizontal as shown by arrow 150, and radial direction is vertical on the page as shown by arrow 160. Also, it is assumed that the fluid, e.g., steam, moves axially from right to left as shown by block arrow 180. The stator teeth 120 and the rotor teeth 140 seal against the leakage flow of steam from a relatively high pressure side (right) to a relatively low pressure side (left).
  • It will be appreciated that leakage flow represents energy that is not captured, i.e., it constitutes waste. If the leakage flow can be reduced, the same steam can be used to generate more output. Thus, any reduction of steam usage at the sealing end-packing will improve overall performance of the turbine.
  • BRIEF SUMMARY OF THE INVENTION
  • A non-limiting aspect of the present invention relates to a rotor of a rotary machine. The rotor comprises a plurality of rotor lands spaced apart from each other in an axial direction. At least one rotor land has a groove formed thereon, and the groove has a shape that generates a vortex as fluid flows over the rotor so as to resist axial flow of the fluid.
  • Another non-limiting aspect of the present invention relates to an assembly for a rotary machine. The assembly comprises a stator and a rotor. The stator includes a plurality of teeth spaced apart from each other in an axial direction, and the rotor includes a plurality of rotor lands spaced apart from each other in the axial direction. At least one rotor land has a groove formed thereon, and the groove has a shape that generates a vortex as fluid flows over the rotor so as to resist axial flow of the fluid.
  • The invention will now be described in greater detail in connection with the drawings identified below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • FIG. 1 is a view of a conventional end-packing seal assembly of a steam turbine;
    • FIG. 2 is a view of an embodiment of an assembly of a rotary machine;
    • FIG. 3 is a view of an example of a rotor land that is aligned with a stator tooth;
    • FIG. 4 is a view of an example of a rotor land that is not aligned with any stator tooth;
    • FIGs 5, 6, and 7 are views illustrating example groove shapes formed on rotor lands;
    • FIGs. 8, 9, and 10 illustrate examples of alignments of a stator tooth with a corresponding rotor land; and
    • FIGs. 11, 12, 13 and 14 are views of other non-limiting assembly embodiments of a rotary machine.
    DETAILED DESCRIPTION OF THE INVENTION
  • For ease of distinction between the teeth of the stator and the rotor, the rotor teeth will be referred to as rotor "lands" from this point on. Thus, unless specifically noted, "tooth" or "teeth" will generally refer to the stator and "land" or "lands" will generally refer to the rotor.
  • Leakage flow has two main drivers - effective clearance and axial velocity. Effective clearance may be associated with resistance to fluid flow in general - lower the clearance, higher the resistance to fluid flow. Axial velocity is related to how fast the steam flows axially from the high pressure side on the right and exits to the low pressure side on the left - faster the axial velocity component, more leakage flow occurs. Thus, reduction(s) in one or both of these drivers will reduce the leakage flow and enhance efficiency.
  • One way to reduce the leakage flow is to reduce the clearance between the stator and the rotor. In an assembly for a rotary machine, the best sealing position is when a stator tooth sits on a rotor land, i.e., the tooth and the corresponding land are aligned vertically, i.e., aligned in the radial direction. This is where physical minimum clearance (or simply "minimum clearance") occurs. The worst position is when the land is in between two teeth. Leakage flow can be reduced by reducing the minimum clearance so that less steam flows through. This requires very tight tolerances in forming the stators and rotors, and great strides have been made in this area.
  • Another way to the leakage flow is to dynamically oppose the flow of the fluid during operation of the turbine. As noted above, of one primary concern is the leakage flow in the axial direction. Any resistance to this axial flow also reduces the effective clearance. However, in the conventional end-packing seal assembly 100 of FIG. 1, once the fluid passes through the minimum clearance, rotor land 140 does not oppose the axial flow. Indeed, the fluid is guided to flow in the undesirable axial direction.
  • FIG. 2 illustrates a non-limiting embodiment of an assembly, e.g., for a rotary machine, that addresses one or more shortcomings of the conventional end-packing seal assembly. The assembly 200 could be an end packing seal assembly for a steam turbine or can be an assembly for many types of rotary machines. As shown, the assembly 200 includes a stator 210 with a plurality of slanted teeth 220 each with tips 225 and spaced apart from each other in the axial direction. The pitch of the stator teeth is denoted "Ps". The assembly 200 includes a rotor 230 with plurality of lands 240 also spaced apart in the axial direction, the pitch of the rotor lands 240 is denoted "Pr". The axial, radial and rotational directions are represented as 250, 260 and 270, respectively. Unless otherwise specifically stated or shown, it can be assumed that the directions for the remaining figures are the same as FIG. 2. In this particular embodiment, the stator teeth 220 outnumber the rotor lands 240. But this is not a requirement.
  • Unlike the conventional seal assembly 100 of FIG. 1, the assembly 200 includes at least one rotor land 240 that has a groove 245 formed thereon. The groove 245 has a depth "d" and the rotor land 240 has a height of "h" as illustrated in FIG. 3. Both the depth and the height of the groove 245 and land 240 are not particularly limited. As non-limiting examples, the depth d may range between 20 and 40 mils and the height h may be 125 mils. At all clearances, the groove 245 (also referred to as "slots") acts as a vortex generator generating a vortex that oppose the axial flow of the fluid.
  • FIG. 3 also shows that the clearance "c" between the tooth 220 and the land 240 is at the minimum when the tooth 220 is aligned with the land 240. Minimum clearance may be defined as a difference in the radial height of the tip 225 of the stator tooth 220 and the radial height of the rotor land 240. At the minimum clearance, the vortex generated by the groove 245 aerodynamically resists the flow of the fluid. The effect of the groove 245, at least in part, is that the fluid flow encounters increased losses in pressure ratios across the rotor lands 240 due to the vortex generated by the grooves 245. The losses in the pressure ratios reduce the flow's velocity.
  • In addition to reducing the flow's velocity, simulations reveal that at the minimum clearance, the vortex also changes the fluid's axial velocity component. In other words, the axial component of the fluid flow is changed to flow tangentially to the rotational direction and/or to flow in the radial direction.
  • Even when there is no alignment between the rotor land 240 and the stator teeth 220, i.e., when the land 240 is in between two teeth 220 (see FIG. 4), the groove 245 still generates a vortex that reduces the leakage flow by opposing the fluid flow and changing the axial velocity component of the fluid flow. However, the axial velocity component change is a greater contributor towards reducing the leakage flow when there is no alignment.
  • Regardless of how the rotor lands 240 are positioned relative to the stator teeth 220, each groove 245 generates a vortex that make the fluid's flow path more torturous reducing the effective clearance and changing the axial velocity component of the fluid flow. In short, each groove generates a vortex that resists the axial flow of the fluid when the fluid passes over the rotor.
  • At low physical clearances, the quantity of fluid leakage will generally be low. However, the leakage increases rapidly with increase in the clearance. Experiments indicate that compared to seal assemblies without grooves on lands (e.g., FIG. 1), seal assemblies with grooves on lands (e.g., FIG. 2) can achieve reduction in the leakage flow. Simulations reveal that at various clearances, leakage flow reduction can be above 8%, which can represent significant savings. Simulations also reveal that shapes of grooves affect the amount of reduction.
  • FIG. 2 illustrates an embodiment in which the grooves 245 are formed on every land 240. While this is preferable, it is not strictly necessary. Having a groove formed on at least one rotor land will contribute to reducing the leakage flow.
  • Also, FIGs. 2, 3 and 4 illustrate the groove 245 as having a wide "U" shape, but the groove shape is not so limited, and shapes such as a rectangle, square, curve, semi-circle, trapezoid, triangle and so on are also contemplated. An example of a rectangular shaped groove is illustrated in FIG. 5. It is also not strictly necessary that the groove shape be symmetrical about a center of the land as illustrated in FIG. 6. In this figure, a centerline 610 is drawn which represents a center of an axial width 620 of the rotor land. As seen, the groove (trapezoidal shape in this example) is not a mirror image about centerline 610. Further, the bottom of the groove need not be strictly horizontal. As seen in FIG. 7, the groove's bottom may be slanted. While not illustrated, the groove can also have an irregular shape.
  • All these examples are provided to indicate that any shape that promotes vortex generation is contemplated. It is recognized that for machining purposes, some shapes may be preferred over others. Yet further, all grooves need not be shaped the same. Some grooves may be rectangular, some may be U shaped, others may be semi-circular and so on so as to generate a mixture of vortices. Indeed, some rotor lands may not have grooves at all. Again for ease of machining the grooves, minimizing the number of shapes may be preferred.
  • Referring back to FIG. 2, note that some lands 240 are vertically (i.e., in a radial direction) aligned with at least one stator tooth 220 so as to have the minimum clearance, while other lands 240 are in between two of the teeth 220. Here, alignment simply indicates that the tip 225 of the stator tooth 220 vertically overlaps with some part of the axial width 620 of the rotor land 240 as illustrated in FIGs. 8, 9 and 10. In FIG. 8, the tip 225 is substantially aligned with the centerline 610 of the axial width 620 of the rotor land 240. In FIG. 9, the stator tooth tip 225 overlaps the rotor land 240 on the downstream side of the centerline 610, and in FIG. 10, the tooth tip 225 overlaps the land 240 on the upstream side.
  • Also as illustrated in FIG. 2, it is seen that the pitch Pr of the rotor land is not the same as the pitch Ps of the stator. Experiments indicate that the rotor pitch Pr has different degrees of effectiveness for a given clearance "c" between the stator teeth and the rotor lands. Thus, in a non-limiting embodiment, the rotor pitch Pr can be optimized for a particular minimum clearance design.
  • In the embodiment illustrated in FIG. 2, the radial height of the rotor lands are all substantially equal. But in many steam turbines, the radial height of the turbine can vary along on at least a portion of its axial length. FIG. 11 illustrates a non-limiting variation of a assembly illustrating a "stepped" seal. In this instance, the radial height of at least one rotor land 240 is different from other rotor lands 240. While not illustrated, it should be noted that the radial heights of the lands 240 need not be monotonicallv increasing or decreasine.
  • In the above disclosed figures, stators with slanted teeth are illustrated. But this is not a strict requirement. Stators that have substantially no slant in their teeth are also contemplated as illustrated in FIG. 12. In another non-limiting variation, the rotor pitch Pr can vary. In FIG. 2, it is assumed that the rotor pitch Pr is assumed to be regular. But this is not strictly necessary. In FIG. 13, two different rotor pitches Pr1 and Pr2 are illustrated. Of course, more than two are contemplated. These non-limiting embodiments demonstrate that the rotor lands can be created in regular and/or irregular intervals.
  • FIG. 14 illustrates yet another non-limiting embodiment of the assembly. In this embodiment, the axial width 620 of the rotor lands 240 is greater than the stator pitch Ps. When each rotor land 240 is wider than the stator pitch, all rotor lands 240 will be aligned with at least one stator tooth 220. But in FIG. 14, it is seen that there is at least one stator 220 that is not aligned with any land 240.
  • While not illustrated, just as the groove shapes can vary, the axial widths of the rotor lands can vary as well. It also bears repeating that while an assembly of a steam turbine has been described, one or more aspects are applicable to many types of rotary machines.
  • This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
  • For completeness, various aspects of the invention are now set out in the following numbered clauses:
    1. 1. A rotor for a rotary machine, comprising:
      • a plurality of rotor lands spaced apart from each other in an axial direction,
      wherein at least one rotor land has a groove formed thereon, and
      wherein the groove has a shape that generates a vortex as fluid flows over the rotor so as to resist an axial flow of the fluid.
    2. 2. The rotor of clause 1, wherein the shape of the groove formed on at least one rotor land is different from the shape of the groove formed on at least one other rotor land.
    3. 3. The rotor of clause 1, wherein a shape of the groove is one of rectangle, square, curve, semi-circle, trapezoid, and triangle.
    4. 4. The rotor of clause 1, wherein a bottom of the groove is slanted.
    5. 5. The rotor of clause 1, wherein the rotor lands are created in regular intervals.
    6. 6. The rotor of clause 1, wherein the rotor lands are created in irregular intervals.
    7. 7. The rotor of clause 1, wherein a radial height one rotor land is different from a radial height of at least one other rotor land.
    8. 8. An assembly for a rotary machine, comprising:
      • a stator with a plurality of teeth spaced apart from each other in an axial direction; and
      • a rotor with a plurality of rotor lands spaced apart from each other in the axial direction,
      wherein at least one rotor land has a groove formed thereon, and
      wherein the groove has a shape that generates a vortex as fluid flows over the rotor so as to resist an axial flow of the fluid.
    9. 9. The assembly of clause 8, wherein the shape of the groove formed on one rotor land is different from the shape of the groove formed on at least one other rotor land.
    10. 10. The assembly of clause 8, wherein a shape of the groove is one of rectangle, square, curve, semi-circle, trapezoid, and triangle.
    11. 11. The assembly of clause 8, wherein a bottom of the groove is slanted.
    12. 12. The assembly of clause 8, wherein the rotor lands are created in regular intervals.
    13. 13. The assembly of clause 8, wherein the rotor lands are created in irregular intervals.
    14. 14. The assembly of clause 8, wherein a pitch of the rotor lands is adjusted based on a minimum clearance between the rotor lands and the stator teeth.
    15. 15. The assembly of clause 8, wherein a radial height one rotor land is different from a radial height of at least one other rotor land.
    16. 16. The assembly of clause 8, wherein at least one stator tooth is slanted.
    17. 17. The assembly of clause 8, wherein at least one rotor land is aligned with a corresponding stator tooth such that a tip of the corresponding stator tooth vertically overlaps an axial width of the rotor land.
    18. 18. The assembly of clause 17, wherein at least rotor land is not aligned with any stator tooth.
    19. 19. The assembly of clause 18, wherein at least one stator tooth is not aligned with any rotor land.
    20. 20. The assembly of clause 8, wherein the rotary machine is a steam turbine and the assembly is an end-packing seal assembly of the steam turbine.

Claims (7)

  1. A rotor (230) for a rotary machine, comprising:
    a plurality of rotor lands (240) spaced apart from each other in an axial direction,
    wherein at least one rotor land (240) has a groove (245) formed thereon, and
    wherein the groove (245) has a shape that generates a vortex as fluid flows over the rotor (230) so as to resist an axial flow of the fluid.
  2. The rotor (230) of claim 1, wherein the shape of the groove (245) formed on at least one rotor land (240) is different from the shape of the groove (245) formed on at least one other rotor land (240).
  3. The rotor of claim 1, wherein a shape of the groove is one of rectangle, square, curve, semi-circle, trapezoid, and triangle.
  4. The rotor of claim 1, wherein a bottom of the groove is slanted.
  5. The rotor of claim 1, wherein the rotor lands are created in regular intervals.
  6. The rotor of claim 1, wherein the rotor lands are created in irregular intervals.
  7. The rotor (230) of claim 1, wherein a radial height of one rotor land (240) is different from a radial height of at least one other rotor land (240).
EP11161550A 2010-04-08 2011-04-07 Rotor and assembly for reducing leakage flow Withdrawn EP2375001A2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/756,443 US20110250073A1 (en) 2010-04-08 2010-04-08 Rotor and assembly for reducing leakage flow

Publications (1)

Publication Number Publication Date
EP2375001A2 true EP2375001A2 (en) 2011-10-12

Family

ID=43881028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11161550A Withdrawn EP2375001A2 (en) 2010-04-08 2011-04-07 Rotor and assembly for reducing leakage flow

Country Status (4)

Country Link
US (1) US20110250073A1 (en)
EP (1) EP2375001A2 (en)
JP (1) JP2011220522A (en)
RU (1) RU2011112993A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109488391A (en) * 2017-10-25 2019-03-19 智伟电力(无锡)有限公司 A kind of vortex packing of steam turbine
US11035472B2 (en) 2016-06-22 2021-06-15 Kobe Steel, Ltd. Labyrinth seal
US11060615B2 (en) 2016-05-31 2021-07-13 Kobe Steel, Ltd. Labyrinth seal

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206082B2 (en) * 2009-04-29 2012-06-26 General Electric Company Packing seal rotor lands
US10107115B2 (en) * 2013-02-05 2018-10-23 United Technologies Corporation Gas turbine engine component having tip vortex creation feature
JP6510915B2 (en) * 2015-07-03 2019-05-08 株式会社神戸製鋼所 Labyrinth seal
JP6623138B2 (en) * 2016-10-13 2019-12-18 株式会社神戸製鋼所 Labyrinth seal
JP6650383B2 (en) * 2016-10-13 2020-02-19 株式会社神戸製鋼所 Labyrinth seal
US11047249B2 (en) 2019-05-01 2021-06-29 Raytheon Technologies Corporation Labyrinth seal with passive check valve
CN112196631A (en) * 2020-09-30 2021-01-08 中国航发沈阳发动机研究所 Labyrinth sealing structure
US11692557B2 (en) * 2021-01-04 2023-07-04 Danfoss A/S Step seal for refrigerant compressors

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US835836A (en) * 1906-02-27 1906-11-13 Richard Schulz Labyrinth packing for rotary machines.
US1482031A (en) * 1923-01-18 1924-01-29 Said Parsons Packing for rotating bodies
US1831242A (en) * 1926-12-09 1931-11-10 Westinghouse Electric & Mfg Co Labyrinth packing
US2123818A (en) * 1935-07-11 1938-07-12 Wegmann Ernst Labyrinth packing
US4335886A (en) * 1980-07-22 1982-06-22 Cornell Pump Company Labyrinth seal with current-forming sealing passages
US5639095A (en) * 1988-01-04 1997-06-17 Twentieth Technology Low-leakage and low-instability labyrinth seal
US5244216A (en) * 1988-01-04 1993-09-14 The Texas A & M University System Labyrinth seal
US5029876A (en) * 1988-12-14 1991-07-09 General Electric Company Labyrinth seal system
US6131910A (en) * 1992-11-19 2000-10-17 General Electric Co. Brush seals and combined labyrinth and brush seals for rotary machines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060615B2 (en) 2016-05-31 2021-07-13 Kobe Steel, Ltd. Labyrinth seal
US11035472B2 (en) 2016-06-22 2021-06-15 Kobe Steel, Ltd. Labyrinth seal
CN109488391A (en) * 2017-10-25 2019-03-19 智伟电力(无锡)有限公司 A kind of vortex packing of steam turbine
CN109488391B (en) * 2017-10-25 2024-05-07 智伟电力(无锡)有限公司 Vortex steam seal of steam turbine

Also Published As

Publication number Publication date
JP2011220522A (en) 2011-11-04
RU2011112993A (en) 2012-10-20
US20110250073A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
EP2375001A2 (en) Rotor and assembly for reducing leakage flow
JP5985351B2 (en) Axial flow turbine
JP6266197B2 (en) Turbine engine seal
US20140072415A1 (en) Swirl interruption seal teeth for seal assembly
JP5147885B2 (en) Rotor vibration preventing structure and steam turbine using the same
EP2096262A1 (en) Axial flow turbine with low shroud leakage losses
US20100166544A1 (en) Turbomachinery
JP2011137450A (en) Turbine engine seal
EP2246598B1 (en) Packing seal rotor lands
EP3064709A1 (en) Turbine bucket platform for influencing hot gas incursion losses
WO2012052740A1 (en) Sealing device for reducing fluid leakage in turbine apparatus
JP5643245B2 (en) Turbo machine
JP6153650B2 (en) Steam turbine stationary body and steam turbine provided with the same
RU2608664C2 (en) Honeycomb gland and method of its making
JP2009243287A (en) Axial flow turbine
CN108204251B (en) Flow guiding structure for steam seal outlet at blade top
JP2013177866A (en) Turbomachine
CN108368744B (en) Sealing fin, sealing structure and turbine machine
US9470101B2 (en) Turbomachine
EP3492705A1 (en) Film-riding sealing system
CN104712376A (en) Axially faced seal system, rotor, and turbine
JP2008128275A (en) Labyrinth seal
EP2653664A2 (en) Method and apparatus for blade tip clearance flow reduction in a turbine
EP4130453A1 (en) Labyrinth seal, and gas turbine
CN212716775U (en) Radial vapor seal structure of reaction type steam turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141101