EP2365271B1 - Evaporator which can be subjected to air, air-water heat pump and method for producing and adjusting an evaporator which can be subjected to air or an air-water heat pump - Google Patents

Evaporator which can be subjected to air, air-water heat pump and method for producing and adjusting an evaporator which can be subjected to air or an air-water heat pump Download PDF

Info

Publication number
EP2365271B1
EP2365271B1 EP11156185.8A EP11156185A EP2365271B1 EP 2365271 B1 EP2365271 B1 EP 2365271B1 EP 11156185 A EP11156185 A EP 11156185A EP 2365271 B1 EP2365271 B1 EP 2365271B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
refrigerant line
refrigerant
air
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11156185.8A
Other languages
German (de)
French (fr)
Other versions
EP2365271A2 (en
EP2365271A3 (en
Inventor
Johann Hummel
Patrick Schimke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolf GmbH
Original Assignee
Wolf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolf GmbH filed Critical Wolf GmbH
Publication of EP2365271A2 publication Critical patent/EP2365271A2/en
Publication of EP2365271A3 publication Critical patent/EP2365271A3/en
Application granted granted Critical
Publication of EP2365271B1 publication Critical patent/EP2365271B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures

Definitions

  • the invention relates to an evaporator which can be charged with air, in particular for an air-water heat pump, having at least one first and at least one second refrigerant line, wherein the first refrigerant line extends in a first evaporator region of the evaporator and the second refrigerant line extends in a second evaporator region
  • an air-water heat pump according to claim 8 and a method for the preparation of an air-blowing evaporator and an air-water heat pump according to claim 9 according to claim 9 first prevalent in the operation of the evaporator, a greater air flow rate.
  • DE 10 2008 024 562 A1 or DE 10 2005 029 048 B4 are known Heilbeetzyerbare evaporator.
  • Such evaporators have a plurality of refrigerant-carrying pipes (lines) which are in heat exchange with flowing air.
  • DE 10 2005 029 048 B4 describes an evaporator according to the preamble of claim 1.
  • the invention is therefore based on the object to propose a luftbeetz Maschinenmbo evaporator, an air-water heat pump and a method for producing or setting a luftbeetz Maschinenmbo evaporator or an air-water heat pump, the efficiency should be improved.
  • the object is achieved by an air-susceptible evaporator, in particular for an air-water heat pump, with at least a first and a second airbeetzschlagbaren refrigerant line, wherein the first refrigerant line runs in a first evaporator region of the evaporator and the second refrigerant line in a second Evaporator region extends, wherein in the first region in the operation of the evaporator prevails a greater air flow rate than in the second region, wherein the refrigerant lines are so deviating designed or adaptable, that an evaporation efficiency in the second refrigerant line is greater than an evaporation efficiency in the first refrigerant line.
  • evaporation efficiency is to be understood as meaning that a higher proportion of a fluid flowing through can be vaporized at a (fictitious) constant air flow velocity in the various regions, in a line having a "greater evaporation efficiency".
  • overheating in the refrigerant piping having a "greater evaporative efficiency” at the end thereof is greater than the corresponding overheating in the refrigerant piping having "lower evaporative efficiency" (fictitious); assuming that the refrigerant is completely evaporated.
  • overheating is meant the absorbed energy in the form of heat, based on the point of complete evaporation of the refrigerant.
  • a core idea of the invention is that inhomogeneities with respect to the air flow rate can be at least partially compensated by a corresponding configuration or adaptation of the refrigerant lines.
  • the evaporator can be operated with a comparatively slight overheating without the risk of an unstable overheating signal.
  • the so-called "minimal stable signal” (MSS) is comparatively low.
  • the term "minimum stable signal” refers in particular to the point where the overheating changes from the stable to the unstable state.
  • a comparatively low minimum stable signal or a comparatively low overheating higher evaporation temperatures can be realized.
  • the efficiency of the luftbeetzmacherbaren evaporator or a corresponding air-water heat pump is increased.
  • the varying formation, in particular interconnection, of individual refrigerant lines (circuits) of an air-susceptible evaporator is claimed independently as a function of an (inhomogeneous) flow profile.
  • a corresponding adaptation of the evaporator can be realized, for example, via a pressure loss, in particular over the length and / or the diameter and / or a throttle of the individual refrigerant lines (capillary lines).
  • the minimum stable signal and thus the efficiency can be improved.
  • the refrigerant lines are formed or formulated differently from each other such that the refrigerant lines during operation fluid flowing through in the first refrigerant line undergoes a lower pressure loss than the second refrigerant line.
  • the evaporation efficiency can be increased particularly easily, which improves the efficiency.
  • air can be understood as meaning the air present in the environment, but in general it should be understood as meaning any “gas”.
  • water Insofar as “water” is mentioned here and below, it can be understood as H 2 O, but in general it means any vaporizable medium.
  • air or “gas” can also be understood to mean any fluid, in particular a liquid, or “air” and “gas” can be replaced by a fluid or a liquid, respectively.
  • a preferably controllable pressure reducing means may be provided, through which preferably the pressure within the second refrigerant line relative to the first refrigerant line can be lowered.
  • At least one / the at least one controllable pressure reducing means in the second refrigerant line comprises an additional length and / or an at least partially enlarged diameter and / or a throttle device, like a throttle valve.
  • the second refrigerant line may for example be extended and / or widened by at least 10%, preferably by at least 20%, more preferably by at least 50%, compared to the first refrigerant line.
  • At least one measuring device is provided for measuring operationally relevant parameters, in particular the flow velocity and / or the pressure and / or the temperature in the evaporator, in particular the refrigerant lines and / or an evaporator housing.
  • the efficiency or the efficiency can be increased.
  • Measured values of the at least one measuring device, in particular the flow velocity of the air are preferably detectable for controlling the evaporation efficiency, in particular the pressure reduction, preferably of the pressure reducing means, by an external control unit optionally provided in / on the evaporator. This facilitates the setting or design or adaptation of the refrigerant pipes.
  • the design or adaptation of the refrigerant lines can preferably be made by the manufacturer or, for example, during assembly of the evaporator.
  • an adaptation can also take place during operation or the evaporator can be designed accordingly to make this possible.
  • At least three refrigerant lines are provided, wherein at least two refrigerant lines are switchable / connected in series such that they form an overall refrigerant line, wherein the total refrigerant line is preferably arranged in a region with comparatively low flow velocity during operation of the evaporator.
  • the length of the refrigerant lines can be changed by simple means and thus the pressure reduction can be adjusted.
  • the steps b) and c) are preferably controlled or regulated, in particular by means of a control and / or regulating unit, for example automatically, more preferably during operation.
  • a control and / or regulating unit for example automatically, more preferably during operation.
  • the refrigerant lines are deviated from each other so that the refrigerant lines in operation fluid flowing in the refrigerant line, which is in the area in which the operation of the evaporator, a larger air flow rate than in the other area is determined, a lower pressure drop is exposed as the fluid in the other (second) refrigerant line.
  • a corresponding pressure reducing means can be provided.
  • the length and / or the diameter can be changed or a throttle device can be provided.
  • At least one operational parameter in particular the flow rate and / or the pressure and / or the temperature in the evaporator, in particular the refrigerant lines and / or the evaporator housing is measured.
  • Corresponding measured values can be used to control the evaporation efficiency, in particular the pressure reduction, preferably the pressure reduction means, by means of an optionally provided control unit in or on the evaporator be used.
  • the change in the refrigerant piping length is preferably carried out by connecting two or more refrigerant lines in series or correspondingly eliminating an in-line circuit.
  • FIG. 1 shows the flow rate within an evaporator housing in which refrigerant lines 11 may be arranged, depending on the evaporator width and the evaporator height. As Fig. 1 can be taken, resulting in both the evaporator width and the evaporator height an inhomogeneous (non-uniform) course of the flow velocity.
  • the evaporator according to Fig. 2 comprises an evaporator housing 16 (generally evaporator section) in which refrigerant lines 11 to 15 are arranged.
  • the refrigerant lines 12 to 15 are arranged in a first region 17 and the refrigerant line 11 in a second region 18.
  • the air flow rate is comparatively low, which is indicated by the arrows 19.
  • the air flow velocity in the first region 17 is comparatively high, which is indicated by the arrows 20.
  • Fig. 2 Like yourself Fig. 2 can be removed, one of the lines, specifically the refrigerant pipe 11 may be formed extended. But it is also conceivable (what Fig. 2 not directly apparent), for example, to connect the refrigerant lines 12 and 13 in series, which would correspond to a prolonged total refrigerant line.
  • the air flow rates are predetermined by the structure of the evaporator or the heat pump and can be determined or calculated by methods known to the person skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Description

Die Erfindung betrifft einen luftbeaufschlagbaren Verdampfer, insbesondere für eine Luft-Wasser-Wärmepumpe, mit mindestens einer ersten und mindestens einer zweiten luftbeaufschlagbaren Kältemittelleitung, wobei die erste Kältemittelleitung in einem ersten Verdampferbereich des Verdampfers verläuft und die zweite Kältemittelleitung in einem zweiten Verdampferbereich verläuft, wobei im ersten Bereich im Betrieb des Verdampfers eine größere Luftströmungsgeschwindigkeit als im zweiten Bereich vorherrscht, nach Anspruch 1, eine Luftwasserwärmepumpe nach Anspruch 8 und ein Verfahren zur Herstellung bzw. Einstellung eines luftbeaufschlagbaren Verdampfers bzw. einer Luft-Wasser-Wärmepumpe nach Anspruch 9.
Beispielsweise aus der DE 10 2008 024 562 A1 oder DE 10 2005 029 048 B4 sind luftbeaufschlagbare Verdampfer bekannt. Derartige Verdampfer weisen eine Vielzahl von Kältemittel führenden Rohren (Leitungen) auf, die in Wärmeaustausch mit strömender Luft stehen. Der Wirkungsgrad derartiger luftbeaufschlagbarer Verdampfer bzw. entsprechender Luft-Wasser-Wärmepumpen wird jedoch insgesamt noch als unbefriedigend empfunden. DE 10 2005 029 048 B4 beschreibt einen Verdampfer gemäß dem Oberbegriff des Anspruchs 1.
The invention relates to an evaporator which can be charged with air, in particular for an air-water heat pump, having at least one first and at least one second refrigerant line, wherein the first refrigerant line extends in a first evaporator region of the evaporator and the second refrigerant line extends in a second evaporator region According to claim 1, an air-water heat pump according to claim 8 and a method for the preparation of an air-blowing evaporator and an air-water heat pump according to claim 9, according to claim 9 first prevalent in the operation of the evaporator, a greater air flow rate.
For example, from the DE 10 2008 024 562 A1 or DE 10 2005 029 048 B4 are known Luftbeaufschlagbare evaporator. Such evaporators have a plurality of refrigerant-carrying pipes (lines) which are in heat exchange with flowing air. The efficiency of such luftbeaufschlagbarer evaporator or corresponding air-water heat pump, however, is still perceived as unsatisfactory overall. DE 10 2005 029 048 B4 describes an evaporator according to the preamble of claim 1.

Der Erfindung liegt daher die Aufgabe zu Grunde, einen luftbeaufschlagbaren Verdampfer, eine Luft-Wasser-Wärmepumpe sowie ein Verfahren zur Herstellung bzw. Einstellung eines luftbeaufschlagbaren Verdampfers bzw. einer Luft-Wasser-Wärmepumpe vorzuschlagen, wobei der Wirkungsgrad verbessert sein soll.The invention is therefore based on the object to propose a luftbeaufschlagbaren evaporator, an air-water heat pump and a method for producing or setting a luftbeaufschlagbaren evaporator or an air-water heat pump, the efficiency should be improved.

Gemäß einem ersten Aspekt wird die Aufgabe gelöst durch einen luftbeaufschlagbaren Verdampfer, insbesondere für eine Luft-Wasser-Wärmepumpe, mit mindestens einer ersten und einer zweiten luftbeaufschlagbaren Kältemittelleitung, wobei die erste Kältemittelleitung in einem ersten Verdampferbereich des Verdampfers verläuft und die zweite Kältemittelleitung in einem zweiten Verdampferbereich verläuft, wobei im ersten Bereich im Betrieb des Verdampfers eine größere Luftströmungsgeschwindigkeit als im zweiten Bereich vorherrscht, wobei die Kältemittelleitungen derart voneinander abweichend ausgestaltet sind bzw. anpassbar sind, dass eine Verdampfungseffektivität in der zweiten Kältemittelleitung größer ist als eine Verdampfungseffektivität in der ersten Kältemittelleitung.According to a first aspect, the object is achieved by an air-susceptible evaporator, in particular for an air-water heat pump, with at least a first and a second airbeaufschlagbaren refrigerant line, wherein the first refrigerant line runs in a first evaporator region of the evaporator and the second refrigerant line in a second Evaporator region extends, wherein in the first region in the operation of the evaporator prevails a greater air flow rate than in the second region, wherein the refrigerant lines are so deviating designed or adaptable, that an evaporation efficiency in the second refrigerant line is greater than an evaporation efficiency in the first refrigerant line.

Unter "Verdampfungseffektivität" soll erfindungsgemäß verstanden werden, dass bei einer (fiktiven) konstanten Luftströmungsgeschwindigkeit in den verschiedenen Bereichen, in einer Leitung mit einer "größeren Verdampfungseffektivität" ein höherer Anteil eines durchströmenden Fluids verdampft werden kann. Anders ausgedrückt, ist eine Überhitzung in der Kältemittelleitung, die eine "größere Verdampfungseffektivität" aufweist, an deren Ende größer als die entsprechende Überhitzung in der Kältemittelleitung mit der "geringeren Verdampfungseffektivität" (fiktiv); voraussetzend, dass das Kältemittel vollständig verdampft wird.According to the invention, "evaporation efficiency" is to be understood as meaning that a higher proportion of a fluid flowing through can be vaporized at a (fictitious) constant air flow velocity in the various regions, in a line having a "greater evaporation efficiency". In other words, overheating in the refrigerant piping having a "greater evaporative efficiency" at the end thereof is greater than the corresponding overheating in the refrigerant piping having "lower evaporative efficiency" (fictitious); assuming that the refrigerant is completely evaporated.

Unter "Überhitzung" ist die aufgenommene Energie in Form von Wärme, bezogen auf den Punkt der vollständigen Verdampfung des Kältemittels, zu verstehen.By "overheating" is meant the absorbed energy in the form of heat, based on the point of complete evaporation of the refrigerant.

Ein Kerngedanke der Erfindung besteht darin, dass Inhomogenitäten bezüglich der Luftströmungsgeschwindigkeit durch eine entsprechende Ausgestaltung bzw. Anpassung der Kältemittelleitungen zumindest teilweise ausgeglichen werden können. Dadurch kann der Verdampfer mit einer vergleichsweise geringen Überhitzung betrieben werden, ohne dass die Gefahr eines instabilen Überhitzungssignales besteht. Insbesondere das so genannte "minimale stabile Signal" (MSS) ist vergleichsweise niedrig. Als "minimales stabiles Signal" wird insbesondere der Punkt bezeichnet, wo sich die Überhitzung vom stabilen zum instabilen Zustand ändert. Durch ein vergleichsweise niedriges minimales stabiles Signal bzw. eine vergleichsweise geringe Überhitzung können höhere Verdampfungstemperaturen realisiert werden. Dadurch wird der Wirkungsgrad des luftbeaufschlagbaren Verdampfers bzw. einer entsprechenden Luft-Wasser-Wärmepumpe erhöht.A core idea of the invention is that inhomogeneities with respect to the air flow rate can be at least partially compensated by a corresponding configuration or adaptation of the refrigerant lines. As a result, the evaporator can be operated with a comparatively slight overheating without the risk of an unstable overheating signal. In particular, the so-called "minimal stable signal" (MSS) is comparatively low. The term "minimum stable signal" refers in particular to the point where the overheating changes from the stable to the unstable state. By a comparatively low minimum stable signal or a comparatively low overheating higher evaporation temperatures can be realized. As a result, the efficiency of the luftbeaufschlagbaren evaporator or a corresponding air-water heat pump is increased.

Gemäß einem allgemeinen Gedanken, wird die variierende Ausbildung, insbesondere Verschaltung, von einzelnen Kältemittelleitungen (Kreisen) eines luftbeaufschlagbaren Verdampfers in Abhängigkeit von einem (inhomogenen) Strömungsprofil unabhängig beansprucht. Eine entsprechende Anpassung des Verdampfers kann beispielsweise über einen Druckverlust, insbesondere über die Länge und/oder den Durchmesser und/oder eine Drossel der einzelnen Kältemittelleitungen (Kapillarleitungen) realisiert werden.According to a general idea, the varying formation, in particular interconnection, of individual refrigerant lines (circuits) of an air-susceptible evaporator is claimed independently as a function of an (inhomogeneous) flow profile. A corresponding adaptation of the evaporator can be realized, for example, via a pressure loss, in particular over the length and / or the diameter and / or a throttle of the individual refrigerant lines (capillary lines).

Durch Anpassung der Kältemittelleitungen (Kreise) des Verdampfers an das tatsächliche Strömungsprofil kann das minimale stabile Signal und somit die Effizienz verbessert werden.By adjusting the refrigerant lines (circuits) of the evaporator to the actual flow profile, the minimum stable signal and thus the efficiency can be improved.

Eine ungleichmäßige Luftbeaufschlagung ergibt sich in der Praxis beispielsweise durch die Einbausituation des Verdampfers in einem Kompaktgerät.An uneven application of air results in practice, for example, by the installation situation of the evaporator in a compact device.

Vorzugsweise sind die Kältemittelleitungen derart voneinander abweichend ausgebildet bzw. ausbildbar, dass die Kältemittelleitungen im Betrieb durchströmendes Fluid in der ersten Kältemittelleitung einen geringeren Druckverlust erfährt als die zweite Kältemittelleitung. Dadurch kann die Verdampfungseffektivität besonders einfach gesteigert werden, was die Effizienz verbessert.Preferably, the refrigerant lines are formed or formulated differently from each other such that the refrigerant lines during operation fluid flowing through in the first refrigerant line undergoes a lower pressure loss than the second refrigerant line. As a result, the evaporation efficiency can be increased particularly easily, which improves the efficiency.

Unter "Luft" kann im engeren Sinne die in der Umwelt vorhandene Luft verstanden werden, im Allgemeinen soll jedoch darunter ein beliebiges "Gas" verstanden werden. Insofern hier und im Folgenden von "Wasser" die Rede ist, kann darunter H2O verstanden werden, allgemein ist damit jedoch ein beliebiges verdampfbares Medium gemeint. Unter "Luft" bzw. "Gas" kann gemäß einem allgemeinen Gedanken auch ein beliebiges Fluid, insbesondere eine Flüssigkeit verstanden werden bzw. "Luft" und "Gas" können sinngemäß durch ein Fluid bzw. eine Flüssigkeit ersetzt werden.In the narrower sense, "air" can be understood as meaning the air present in the environment, but in general it should be understood as meaning any "gas". Insofar as "water" is mentioned here and below, it can be understood as H 2 O, but in general it means any vaporizable medium. According to a general idea, "air" or "gas" can also be understood to mean any fluid, in particular a liquid, or "air" and "gas" can be replaced by a fluid or a liquid, respectively.

In der zweiten Kältemittelleitung kann ein vorzugsweise steuerbares Druckminderungsmittel vorgesehen sein, durch das vorzugsweise der Druck innerhalb der zweiten Kältemittelleitung gegenüber der ersten Kältemittelleitung abgesenkt werden kann. Dadurch wird auf einfache Weise der Wirkungsgrad verbessert.In the second refrigerant line, a preferably controllable pressure reducing means may be provided, through which preferably the pressure within the second refrigerant line relative to the first refrigerant line can be lowered. As a result, the efficiency is improved in a simple manner.

Vorzugsweise umfasst mindestens ein/das mindestens eine steuerbare Druckminderungsmittel in der zweiten Kältemittelleitung eine zusätzliche Länge und/oder einen zumindest abschnittsweise vergrößerten Durchmesser und/oder eine Drosselvorrichtung, wie ein Drosselventil. Dadurch kann der Druck auf konstruktiv einfache Weise gemindert werden und die Effizienz gesteigert werden. Die zweite Kältemittelleitung kann beispielsweise um mindestens 10 %, vorzugsweise um mindestens 20 %, weiter vorzugsweise um mindestens 50 % gegenüber der ersten Kältemittelleitung verlängert und/oder verbreitert sein.Preferably, at least one / the at least one controllable pressure reducing means in the second refrigerant line comprises an additional length and / or an at least partially enlarged diameter and / or a throttle device, like a throttle valve. As a result, the pressure can be reduced in a structurally simple manner and the efficiency can be increased. The second refrigerant line may for example be extended and / or widened by at least 10%, preferably by at least 20%, more preferably by at least 50%, compared to the first refrigerant line.

Vorzugsweise ist mindestens eine Messeinrichtung zum Messen betriebsrelevanter Parameter, insbesondere der Strömungsgeschwindigkeit und/oder des Druckes und/oder der Temperatur im Verdampfer, insbesondere den Kältemittelleitungen und/oder einem Verdampfergehäuse vorgesehen. Dadurch kann die Effizienz bzw. der Wirkungsgrad gesteigert werden. Messwerte der mindestens einen Messeinrichtung, insbesondere die Strömungsgeschwindigkeit der Luft, sind vorzugsweise zur Steuerung der Verdampfungseffektivität, insbesondere der Druckminderung, vorzugsweise des Druckminderungsmittels, durch eine gegebenenfalls im/am Verdampfer vorgesehene externe Steuereinheit erfassbar. Dies erleichtert die Einstellung bzw. Ausgestaltung bzw. Anpassung der Kältemittelleitungen.Preferably, at least one measuring device is provided for measuring operationally relevant parameters, in particular the flow velocity and / or the pressure and / or the temperature in the evaporator, in particular the refrigerant lines and / or an evaporator housing. As a result, the efficiency or the efficiency can be increased. Measured values of the at least one measuring device, in particular the flow velocity of the air, are preferably detectable for controlling the evaporation efficiency, in particular the pressure reduction, preferably of the pressure reducing means, by an external control unit optionally provided in / on the evaporator. This facilitates the setting or design or adaptation of the refrigerant pipes.

Die Ausgestaltung bzw. Anpassung der Kältemittelleitungen kann vorzugsweise herstellerseitig oder beispielsweise bei der Montage des Verdampfers erfolgen. Gegebenenfalls kann eine Anpassung auch während des Betriebes erfolgen bzw. der Verdampfer entsprechend ausgebildet sein, um dies zu ermöglichen.The design or adaptation of the refrigerant lines can preferably be made by the manufacturer or, for example, during assembly of the evaporator. Optionally, an adaptation can also take place during operation or the evaporator can be designed accordingly to make this possible.

Vorzugsweise sind mindestens drei Kältemittelleitungen vorgesehen, wobei mindestens zwei Kältemittelleitungen derart in Reihe schaltbar/geschaltet sind, dass sie eine Gesamtkältemittelleitung ausbilden, wobei die Gesamtkältemittelleitung vorzugsweise in einem Bereich mit vergleichsweise geringer Strömungsgeschwindigkeit im Betrieb des Verdampfers angeordnet ist. Dadurch kann mit einfachen Mitteln die Länge der Kältemittelleitungen verändert werden und damit die Druckminderung eingestellt werden.Preferably, at least three refrigerant lines are provided, wherein at least two refrigerant lines are switchable / connected in series such that they form an overall refrigerant line, wherein the total refrigerant line is preferably arranged in a region with comparatively low flow velocity during operation of the evaporator. As a result, the length of the refrigerant lines can be changed by simple means and thus the pressure reduction can be adjusted.

Die obige Aufgabe wird unabhängig gelöst durch eine Luft-Wasser-Wärmepumpe mit einem luftbeaufschlagbaren Verdampfer der vorbeschriebenen Art.The above object is achieved independently by an air-water heat pump with a luftbeaufschlagbaren evaporator of the type described above.

Weiterhin wird die Aufgabe unabhängig gelöst durch ein Verfahren zur Herstellung bzw. Einstellung eines luftbeaufschlagbaren Verdampfers, insbesondere der vorbeschriebenen Art und/oder zur Herstellung bzw. Einstellung einer Luft-Wasser-Wärmepumpe der vorbeschriebenen Art mit den Schritten:

  1. a) Bereitstellen mindestens eines Verdampferbereiches, insbesondere mindestens eines Verdampfergehäuses;
  2. b) Bestimmen, insbesondere Errechnen und/oder Messen, einer Strömungsgeschwindigkeit der Luft innerhalb mindestens eines ersten und eines zweiten Gehäuse-Bereiches; und
  3. c) Anordnen mindestens einer ersten Kältemittelleitung im ersten Bereich und einer zweiten Kältemittelleitung in dem zweiten Bereich, wobei die Kältemittelleitungen derart ausgebildet sind bzw. ausgebildet werden, dass die Verdampfungseffektivität in der Kältemittelleitung, die sich in dem Bereich befindet, bei dem die größere Strömungsgeschwindigkeit der Luft bestimmt wurde, kleiner ist als in der anderen Kältemittel-Leitung.
Furthermore, the object is achieved independently by a method for producing or setting an air-susceptible evaporator, in particular of the type described above, and / or for producing or setting an air-to-water heat pump of the type described above with the steps:
  1. a) providing at least one evaporator area, in particular at least one evaporator housing;
  2. b) determining, in particular calculating and / or measuring, a flow velocity of the air within at least a first and a second housing region; and
  3. c) arranging at least a first refrigerant line in the first region and a second refrigerant line in the second region, wherein the refrigerant lines are formed such that the evaporation efficiency in the refrigerant line that is in the region where the larger flow velocity of the Air is determined smaller than in the other refrigerant line.

Vorzugsweise werden die Schritte b) und c), insbesondere mittels einer Steuer- und/oder Regeleinheit, beispielsweise automatisch, weiter vorzugsweise während des Betriebes, gesteuert bzw. geregelt. Bezüglich der Vorteile des Verfahrens wird auf die Ausführungen zu dem luftbeaufschlagbaren Verdampfer verwiesen.The steps b) and c) are preferably controlled or regulated, in particular by means of a control and / or regulating unit, for example automatically, more preferably during operation. With regard to the advantages of the method, reference is made to the comments on the air-actuated evaporator.

Vorzugsweise werden die Kältemittelleitungen derart voneinander abweichend ausgebildet bzw. angepasst, dass die Kältemittelleitungen im Betrieb durchströmendes Fluid in der Kältemittelleitung, die sich in dem Bereich befindet, bei dem im Betrieb des Verdampfers eine größere Luftstromgeschwindigkeit als in dem anderen Bereich bestimmt wird, einem geringeren Druckverlust ausgesetzt wird als das Fluid in der anderen (zweiten) Kältemittelleitung. Dazu kann ein entsprechendes Druckminderungsmittel vorgesehen werden.Preferably, the refrigerant lines are deviated from each other so that the refrigerant lines in operation fluid flowing in the refrigerant line, which is in the area in which the operation of the evaporator, a larger air flow rate than in the other area is determined, a lower pressure drop is exposed as the fluid in the other (second) refrigerant line. For this purpose, a corresponding pressure reducing means can be provided.

Insbesondere kann zur Druckminderung die Länge und/oder der Durchmesser verändert werden oder eine Drosselvorrichtung vorgesehen werden.In particular, to reduce the pressure, the length and / or the diameter can be changed or a throttle device can be provided.

Vorzugsweise wird mindestens ein betriebsrelevanter Parameter, insbesondere die Strömungsgeschwindigkeit und/oder der Druck und/oder die Temperatur im Verdampfer, insbesondere den Kältemittelleitungen und/oder dem Verdampfergehäuse gemessen. Entsprechende Messwerte können zur Steuerung der Verdampfungseffektivität, insbesondere der Druckminderung, vorzugsweise des Druckminderungsmittels durch eine gegebenenfalls im/am Verdampfer vorgesehene oder externe Steuereinheit herangezogen werden. Die Veränderung der Kältemittelleitungslänge erfolgt vorzugsweise dadurch, dass zwei oder mehrere Kältemittelleitungen in Reihe geschaltet werden oder entsprechend eine In-Reihe-Schaltung aufgehoben wird.Preferably, at least one operational parameter, in particular the flow rate and / or the pressure and / or the temperature in the evaporator, in particular the refrigerant lines and / or the evaporator housing is measured. Corresponding measured values can be used to control the evaporation efficiency, in particular the pressure reduction, preferably the pressure reduction means, by means of an optionally provided control unit in or on the evaporator be used. The change in the refrigerant piping length is preferably carried out by connecting two or more refrigerant lines in series or correspondingly eliminating an in-line circuit.

Weitere Ausführungsformen ergeben sich aus den Unteransprüchen.Further embodiments emerge from the subclaims.

Nachfolgend wird die Erfindung auch hinsichtlich weiterer Merkmale und Vorteile anhand von Ausführungsbeispielen beschrieben, die anhand der Abbildungen näher erläutert werden.The invention will also be described in terms of further features and advantages based on embodiments, which are explained in more detail with reference to the drawings.

Hierbei zeigen:

Fig. 1
ein Diagramm eines Strömungsprofils innerhalb eines Verdampfers bzw. Verdampfergehäuses; und
Fig. 2
eine schematische Darstellung einer Ausführungsform des Verdampfers.
Hereby show:
Fig. 1
a diagram of a flow profile within an evaporator or evaporator housing; and
Fig. 2
a schematic representation of an embodiment of the evaporator.

Das Diagramm gemäß Fig. 1 zeigt die Strömungsgeschwindigkeit innerhalb eines Verdampfers bzw. Verdampfergehäuses, in dem Kältemittelleitungen 11 angeordnet sein können, in Abhängigkeit von der Verdampferbreite und der Verdampferhöhe. Wie Fig. 1 entnommen werden kann, ergibt sich sowohl über die Verdampferbreite als auch über die Verdampferhöhe ein inhomogener (ungleichmäßiger) Verlauf der Strömungsgeschwindigkeit.The diagram according to Fig. 1 shows the flow rate within an evaporator housing in which refrigerant lines 11 may be arranged, depending on the evaporator width and the evaporator height. As Fig. 1 can be taken, resulting in both the evaporator width and the evaporator height an inhomogeneous (non-uniform) course of the flow velocity.

Der Verdampfer gemäß Fig. 2 umfasst ein Verdampfergehäuse 16 (allgemein Verdampferabschnitt), in dem Kältemittelleitungen 11 bis 15 angeordnet sind. Die Kältemittelleitungen 12 bis 15 sind dabei in einem ersten Bereich 17 und die Kältemittelleitung 11 in einem zweiten Bereich 18 angeordnet. Im zweiten Bereich 18 ist die Luftströmungsgeschwindigkeit vergleichsweise gering, was durch die Pfeile 19 angedeutet ist. Die Luftströmungsgeschwindigkeit im ersten Bereich 17 ist vergleichsweise hoch, was durch die Pfeile 20 angedeutet ist.The evaporator according to Fig. 2 comprises an evaporator housing 16 (generally evaporator section) in which refrigerant lines 11 to 15 are arranged. The refrigerant lines 12 to 15 are arranged in a first region 17 and the refrigerant line 11 in a second region 18. In the second region 18, the air flow rate is comparatively low, which is indicated by the arrows 19. The air flow velocity in the first region 17 is comparatively high, which is indicated by the arrows 20.

Relationen wie "größer", "kleiner", "länger", "kürzer", und dergleichen sollen derart verstanden werden, dass die entsprechenden Größen zumindest nicht gleich sind. Vorzugsweise kann ein Unterschied von mindestens 1%, weiter vorzugsweise mindestens 5%, noch weiter vorzugsweise von mindestens 10%, noch weiter vorzugsweise mindestens 50% gemeint sein.Relations such as "larger", "smaller", "longer", "shorter", and the like are to be understood such that the corresponding quantities are at least not the same. Preferably, a difference of at least 1%, more preferably at least 5%, more preferably at least 10%, even more preferably at least 50%.

Wie sich Fig. 2 entnehmen lässt, kann eine der Leitungen, hier konkret die Kältemittelleitung 11, verlängert ausgebildet sein. Es ist aber auch denkbar (was Fig. 2 nicht direkt zu entnehmen ist), beispielsweise die Kältemittelleitungen 12 und 13 in Serie zu schalten, was einer verlängerten Gesamtkältemittelleitung entspräche.Like yourself Fig. 2 can be removed, one of the lines, specifically the refrigerant pipe 11 may be formed extended. But it is also conceivable (what Fig. 2 not directly apparent), for example, to connect the refrigerant lines 12 and 13 in series, which would correspond to a prolonged total refrigerant line.

Die Luftströmungsgeschwindigkeiten sind durch die Struktur des Verdampfers bzw. der Wärmepumpe vorgegeben und durch dem Fachmann bekannte Verfahren bestimmbar oder errechenbar.The air flow rates are predetermined by the structure of the evaporator or the heat pump and can be determined or calculated by methods known to the person skilled in the art.

In der Beschreibung wurden für gleiche und gleich wirkende Teile dieselben Bezugsziffern verwendet.In the description, the same reference numerals have been used for the same and like parts.

An dieser Stelle sei darauf hingewiesen, dass alle oben beschriebenen Teile für sich alleine gesehen und in jeder Kombination, insbesondere die in den Zeichnungen dargestellten Details, als erfindungswesentlich beansprucht werden. Änderungen hiervon sind dem Fachmann geläufig.It should be noted at this point that all the above-described parts taken alone and in any combination, in particular the details shown in the drawings, are claimed as essential to the invention. Changes are familiar to the person skilled in the art.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1111
KältemittelleitungRefrigerant line
1212
KältemittelleitungRefrigerant line
1313
KältemittelleitungRefrigerant line
1414
KältemittelleitungRefrigerant line
1515
KältemittelleitungRefrigerant line
1616
Verdichtergehäusecompressor housing
1717
erster Bereichfirst area
1818
zweiter Bereichsecond area
1919
Pfeilarrow
2020
Pfeilarrow

Claims (10)

  1. Evaporator to which air can be applied, in particular for an air/water heat pump, having at least a first and a second refrigerant line (11, 12) to which air can be applied, wherein the first refrigerant line (11) runs in a first evaporator region (17) of the evaporator and the second refrigerant line (12) runs in a second evaporator region (18), wherein in the first region (17) a greater air flow speed prevails during operation of the evaporator than in the second region (18),
    characterized in that
    the refrigerant lines (11, 12) are differently designed from one another or else are adaptable in such a manner that an evaporation efficiency in the second refrigerant line is greater than in the first refrigerant line, wherein evaporation efficiency should be understood to mean that with a notional constant air flow speed in the first region and also the second region, a higher proportion of a fluid passing through during operation is evaporated in the second refrigerant line or else overheating in the second refrigerant line, at the end thereof, is greater than the corresponding overheating in the first refrigerant line in the event that the refrigerant is completely evaporated.
  2. The evaporator according to claim 1,
    Characterized in that
    the refrigerant lines (11, 12) are differently designed from one another or can be configured in such a manner that the fluid flowing through the refrigerant lines (11, 12) during operation is exposed to a smaller pressure loss in the first refrigerant line (11) than in the second refrigerant line (12).
  3. The evaporator according to claim 1 or 2,
    Characterized in that
    a preferably controllable pressure-reducing means is provided in the second refrigerant line (12), through which the pressure within the second refrigerant line (12) can be lowered by comparison with the first refrigerant line (11).
  4. The evaporator according to one of the preceding claims,
    Characterized in that
    at least one/the at least one, preferably controllable, pressure-reducing means comprises an additional length in the second refrigerating line (12) and/or an at least sectionally enlarged diameter and/or a throttle device such as a throttle valve.
  5. The evaporator according to one of the preceding claims,
    Characterized in that
    at least one measuring device for measuring at least one operationally relevant parameter, in particular the flow speed and/or the pressure and/or the temperature in the evaporator, in particular the refrigerant lines (11 to 15) or an evaporator housing (16), is provided.
  6. The evaporator according to claim 5,
    Characterized in that
    measurements of the at least one measuring device, in particular the flow speed, can be recorded for controlling the evaporation efficiency, in particular the pressure reduction, preferably of the pressure-reducing means, by a control unit which is provided in/on the evaporator where necessary or is external.
  7. The evaporator according to one of the preceding claims,
    Characterized in that
    at least three refrigerant lines are provided, wherein at least two refrigerant lines can be connected in series in such a manner that they form an overall refrigerant line, wherein the overall refrigerant line is preferably arranged in a region with a comparatively smaller flow speed during evaporator operation.
  8. An air/water heat pump having an evaporator according to one of the preceding claims.
  9. A method for producing or adjusting an evaporator to which air can be applied according to one of claims 1 to 7 and/or for producing or adjusting an air/water heat pump according to claim 8 comprising the steps:
    provision of an evaporator region, in particular an evaporator housing (16), determination, in particular calculation and/or measurement, of the flow speed of the air within at least a first and second partial region of the evaporator regions and
    arrangement of at least a first refrigerant line (11) in the first partial region (17) and a second refrigerant line (12) in the second partial region (18), wherein the refrigerant lines (11, 12) are configured or adapted in such a manner that an evaporator efficiency in the refrigerant line which is located in the region in which a greater air flow speed was determined than in the other region is smaller than in the other region,
    wherein evaporator efficiency should be understood to mean that with a notional, constant air flow speed in the first region and second region, a higher proportion of a through-flowing fluid is evaporated during operation in the second refrigerant line or else overheating in the second refrigerant line, at the end thereof, is greater than the corresponding overheating in the first refrigerant line in the event that the refrigerant is completely evaporated.
  10. The method according to claim 9,
    characterized in that
    steps b) and c) are controlled or regulated by means of a control and/or regulating unit, in particularly automatically, preferably during operation.
EP11156185.8A 2010-03-05 2011-02-28 Evaporator which can be subjected to air, air-water heat pump and method for producing and adjusting an evaporator which can be subjected to air or an air-water heat pump Active EP2365271B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010000646 2010-03-05
DE102010017235 2010-06-04
DE102010061319A DE102010061319A1 (en) 2010-03-05 2010-12-17 Luftbeaufschlagbarer evaporator, air-water heat pump and method for producing or setting a luftbeaufschlagbaren evaporator or an air-water heat pump

Publications (3)

Publication Number Publication Date
EP2365271A2 EP2365271A2 (en) 2011-09-14
EP2365271A3 EP2365271A3 (en) 2018-04-18
EP2365271B1 true EP2365271B1 (en) 2018-12-26

Family

ID=44168496

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11156185.8A Active EP2365271B1 (en) 2010-03-05 2011-02-28 Evaporator which can be subjected to air, air-water heat pump and method for producing and adjusting an evaporator which can be subjected to air or an air-water heat pump

Country Status (2)

Country Link
EP (1) EP2365271B1 (en)
DE (1) DE102010061319A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017110580A1 (en) 2017-05-16 2018-11-22 Güntner Gmbh & Co. Kg A heat exchanger device and method for exchanging heat between air and a fluid carried in a heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005029048B4 (en) 2005-06-21 2007-11-08 Alfons Kruck An air heat pump evaporator for an air heat pump heater and method of operating an air heat pump heater
DE102008024562B4 (en) 2008-05-21 2021-06-10 Stiebel Eltron Gmbh & Co. Kg Heat pump device with a finned tube heat exchanger as an evaporator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2365271A2 (en) 2011-09-14
DE102010061319A1 (en) 2011-09-08
EP2365271A3 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
DE102006045028B4 (en) Constant temperature liquid circulating device and method of controlling the temperature in the device
EP1606556B1 (en) Method for adjusting several parallel connected heat exchangers
EP2870414B1 (en) Method for operating a heat exchanger and hvac installation for implementing the method
DE102004035879A1 (en) Cooling system, in particular for a motor vehicle, and method for cooling a heat source
EP2960587A1 (en) Method for limiting the supply flow rate in a heat transfer system
EP1926942B1 (en) Heat exchanger
EP1588076A1 (en) Cooling circuit, especially for a motor vehicle transmission
EP3119622B1 (en) Heating/cooling module
EP3601906B1 (en) Refrigeration appliance and method for the operation thereof
DE112010003299T5 (en) Control for the oil operating temperature of a hydraulic drive device
DE102010055241A1 (en) Fluidic supply system with a plurality of consumers
DE102013220039A1 (en) Heat exchanger
DE3005751A1 (en) METHOD AND DEVICE FOR INCREASING THE HEATING OUTPUT OF EVAPORATORS
DE3106822A1 (en) Distribution pipe
EP1712868B1 (en) Heat exchanger
EP3325882B1 (en) Control system for a gas burner
EP2365271B1 (en) Evaporator which can be subjected to air, air-water heat pump and method for producing and adjusting an evaporator which can be subjected to air or an air-water heat pump
EP1191287A2 (en) Pipe system for thermal energy exchange
EP3601902B1 (en) Refrigeration appliance and method for the operation thereof
AT512867A2 (en) filtering device
WO2016055162A1 (en) Method for controlling a coupled heat exchanger system and heat-exchanger system
DE102009030041A1 (en) Vehicle air conditioning system with evaporators cooling passenger compartment and e.g. hybrid drive battery, has single excess pressure relief valve
DE102014000901B4 (en) solar system
DE102016219205B4 (en) Multi-pass air/refrigerant heat exchanger, air conditioning device for a motor vehicle and motor vehicle
EP2662647A2 (en) Refrigeration and/or freezer device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 1/04 20060101ALI20180313BHEP

Ipc: F25B 39/02 20060101ALI20180313BHEP

Ipc: F28F 27/02 20060101AFI20180313BHEP

17P Request for examination filed

Effective date: 20180328

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180628

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180830

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HUMMEL, JOHANN

Inventor name: SCHIMKE, PATRICK

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1082001

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015193

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FELBER UND PARTNER AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015193

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190326

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20190927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 14

Ref country code: CH

Payment date: 20240301

Year of fee payment: 14