EP2353031A1 - Device and method for detecting and measuring wind for an aircraft - Google Patents
Device and method for detecting and measuring wind for an aircraftInfo
- Publication number
- EP2353031A1 EP2353031A1 EP09753146A EP09753146A EP2353031A1 EP 2353031 A1 EP2353031 A1 EP 2353031A1 EP 09753146 A EP09753146 A EP 09753146A EP 09753146 A EP09753146 A EP 09753146A EP 2353031 A1 EP2353031 A1 EP 2353031A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- aircraft
- measurement
- wind
- distance
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/95—Lidar systems specially adapted for specific applications for meteorological use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
- G01P5/26—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/50—Systems of measurement based on relative movement of target
- G01S17/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Definitions
- the present invention relates to a method and a device for detecting and measuring wind at the front of an aircraft.
- an aircraft reference system a spatial reference system linked to the aircraft, referred to as an aircraft reference system.
- this aircraft reference system is defined in the usual way by a longitudinal direction of the aircraft, a transverse direction of the aircraft and a third direction, orthogonal to the other two, which by convention is called the vertical direction although does not coincide - at least in flight - with the "vertical" of a terrestrial reference as provided by gravity.
- the "vertical" of the terrestrial reference is called the direction of gravity.
- wind refers to the total movement of air at a given point, which results from the superposition of the average air movement (laminar flow) and turbulence at that point.
- Turbulence is an agitation that is constituted by complex and disordered movements, in continual transformation.
- Turbulence has adverse effects on the aircraft. It can in particular induce: vertical accelerations of the aircraft likely to move objects or passengers in the cabin; a change in altitude levels, which may in particular lead to a risk of collision with another aircraft; an excess of loads on the wing; important moments of rolling; a feeling of discomfort in the cabin ...
- turbulence Because they increase the loads on the wing, the turbulence forces to reinforce the structure of the aircraft; they therefore have an impact on the mass of the latter. In addition, the turbulence tires the structure of the aircraft and can thus limit its life, or at least penalize its operational profitability by imposing frequent controls of the structure and equipment of the aircraft. Also and most importantly, turbulence is the number one cause of injury to passengers, excluding fatal accidents. The detection and measurement of turbulence, as well as the implementation of corresponding palliative actions, therefore represent important issues.
- lidars ascronym for "Light Detection And Ranging", which means light wave detection and telemetry
- a lidar is an active sensor comprising a laser emitting a directed incident light beam, a telescope which collects the wave backscattered by the particles encountered by the incident beam, and processing means.
- FR 2 870 942 teaches to use a only lidar with a scan in four directions (two vertical and two transverse). In the aircraft reference system, the measurement points targeted during this scanning are located on the same sphere centered on the lidar.
- this sweep forms a square in a plane located at the distance "d" at the front of the aircraft. If, moreover, the displacement of the aircraft during the scanning is neglected, the vector difference between the velocity vectors (which are parallel to the direction of the lidar sight) obtained at two measurement points -forming a pair of measuring points-of the scanning can be assimilated to the component, according to the direction connecting said measurement points, of the wind speed at a point of the atmosphere located (at the time of measurement) between these two measuring points. For example, a pair of measuring points located on the same vertical axis provides an assessment of the vertical component of the wind speed at the point between these two measurement points.
- a pair of measuring points located on the same transverse axis provides an evaluation of the transverse component of the wind speed at the point between these two measurement points.
- the device of FR 2 870 942 makes it possible to obtain an evaluation of the vertical component of the wind speed at one or more points situated at the distance "d" at the front of the aircraft, as well as an evaluation the transverse component of the wind speed at one or more points located at the distance "d” at the front of the aircraft.
- US Pat. No. 5,724,125 describes a method for determining the wind speed at a target location located at altitude Z. The wind speed at the target location is calculated from measurements made on a cone of scan and at target altitude Z; in other words, the measurement points are all located on the ellipse defined by the intersection between the scan cone and the target altitude Z.
- FR 2 883 983 describes a device comprising three or four lidars and for measuring wind speeds - according to the respective sighting direction of each lidar - at four measurement points located at the front of the aircraft, at a distance of same distance from the latter greater than 30 meters. Given the weight and size of a lidar, the use of such a device (which comprises three or four) is difficult to envisage especially in a passenger aircraft.
- calculated wind speeds are generally used to establish avoidance or control strategies.
- they are used for the determination of control commands transmitted to the actuators of various movable control surfaces (control surfaces, ailerons, nozzles, spoilers, flaps ...) of the aircraft.
- control surfaces are thus controlled so as to reduce the loads incurred by the aircraft and the resulting disturbances.
- the turbulence that the aircraft will actually encounter must be evaluated as accurately as possible.
- the known devices described above provide interesting information but whose accuracy and relevance may be considered insufficient.
- the invention aims to overcome these disadvantages by proposing a device and a wind detection and measurement method that make it possible to determine with greater precision the turbulence occurring in the front of an aircraft.
- the invention also aims to enable the risks of excitation of the aircraft or of a part thereof to be evaluated at a frequency corresponding to a rigid eigen mode or a flexible mode of its structure. .
- the invention relates to a wind detection and measurement device embedded in an aircraft, comprising a lidar for the cyclic measurement of wind speeds in at least a pair of measuring points located at the same distance, said distance measurement, the nose of the aircraft.
- the device according to the invention is characterized in that it is adapted to measure at each cycle, using said lidar, wind speeds in a plurality of pairs of measuring points located at different measurement distances, the difference between the largest measurement distance and the smallest measurement distance being greater than 100 meters.
- the invention extends to the detection and measurement method performed by the device according to the invention.
- the invention also relates to a wind detection and measurement method implemented in an aircraft, in which cyclic measurements, using a lidar, wind speeds in at least a couple of points of measured at the same distance, the so-called measuring distance, from the nose of the aircraft.
- the method according to the invention is characterized in that wind speeds are measured at each cycle by means of said lidar at a plurality of pairs of measuring points situated at different measurement distances, the difference between the distance the largest measurement and the smallest measurement distance being greater than 100 meters.
- the difference between the largest measurement distance and the smallest measurement distance is greater than 200 meters, preferably greater than 500 meters, or even greater than 800 meters.
- wind speeds of at least three, preferably at least six, measurement distances are measured at each cycle, and the device according to the invention is adapted for this purpose.
- the measurement of the wind at different distances from the nose of the aircraft and over a measurement interval greater than at least 100 meters makes it possible to gain considerably in precision. Indeed, we know that the precision of a lidar decreases with distance. Thanks to the invention, the measurement of the wind at a location initially located at a great distance from the aircraft can be refined as the aircraft approaches this location. In addition, the prior devices all assume that the wind is stationary over the duration d / V (where "d" is the sighting distance of the lidar and V the speed of movement of the aircraft). This hypothesis is further removed from reality because the distance "d" is large and / or the turbulence is important. The device according to the invention makes it possible to obtain a plurality of measurements at the same given location of the atmosphere as the aircraft moves.
- location here means a point of the atmosphere (defined in a reference not linked to the aircraft, for example a terrestrial reference, unlike the measurement points that are defined in the aircraft reference) or a zone of limited size around a point of the atmosphere, the various successive measurements taking place precisely at this point or in the immediate vicinity thereof.
- the device according to the invention thus makes it possible to take into account the variations of the wind, at a given location, which occur between the first measurement made at this location and the moment when the aircraft arrives at said location.
- the device according to the invention is adapted to construct at each cycle at least one signal, said wind profile signal in a direction said direction of excitation, from a plurality of measurements including the last or optionally the penultimate measurement made at each of the measurement distances for at least a pair of measurement points aligned in the direction of excitation, said wind profile signal representing at a given moment in an aircraft reference system the component, according to said direction of excitation, the wind speed at the front of the aircraft as a function of the distance "x" in the longitudinal direction (this distance being expressed relative to the nose of the aircraft).
- at least one wind profile signal as previously defined is advantageously constructed at each cycle.
- the device according to the invention is adapted to construct:
- a wind profile signal in the vertical direction in a median vertical longitudinal plane (plane of symmetry) of the aircraft said signal representing at a given moment the vertical component of the wind speed in this median plane; it is established from measurements of wind speed in a pair of measurement points belonging to said median plane, at each measurement distance for which such a pair is acquired,
- At least one wind profile signal in the vertical direction in a port plane of the aircraft said signal representing at a given moment the vertical component of the wind speed in a vertical plane facing the port wing of the aircraft; aircraft; it is established from measurements of wind speed in a pair of measuring points belonging to said port plane, at each measurement distance for which such a pair is acquired,
- At least one wind profile signal in the vertical direction in a starboard plane of the aircraft said signal representing at a given moment the vertical component of the wind speed in a vertical plane facing the starboard wing of the aircraft. aircraft; it is established from measurements of wind speed in a pair of measuring points belonging to said starboard plane, at each measurement distance for which such a pair is acquired, - at least one wind profile signal in the transverse direction, representing at a given moment the transverse component of the wind speed in a plane, called a horizontal plane, orthogonal to the vertical direction; this signal is established from measurements of wind speed in a pair of measurement points belonging to said horizontal plane, at each measurement distance for which such a pair is acquired.
- the device according to the invention is also preferably adapted to process this wind profile signal so as to determine a frequency content.
- the frequency, at a given distance x, of such a wind profile signal is representative of the frequency at which the aircraft will be excited according to the direction of excitation (of said profile) when it reaches the position of the wind. atmosphere corresponding to this given distance x.
- the determination of the frequency content of this signal therefore makes it possible to estimate the frequencies at which the aircraft is likely to be excited as it moves.
- this information which no prior known device is able to provide, is extremely useful in the choice of control surfaces to actuate and corresponding actuation parameters.
- the wind detection and measurement device is adapted to process a wind profile signal so as to determine whether it or a part thereof comprises at least one frequency included in at least one predefined frequency range.
- the device is adapted to: - treat the wind profile signal so as to determine whether it or a part thereof comprises at least a frequency close to a rigid eigenmode of the aircraft.
- the device in the case of a wind profile signal in the vertical direction, is advantageously adapted to process said signal so as to determine whether it or a part thereof comprises at least a frequency close to a rigid eigenmode of the aircraft known as incidence oscillation frequency; the treatment is thus advantageously adapted to make it possible to determine whether the wind profile signal comprises at least one frequency less than 0.5 Hz (the incidence oscillation frequency of an aircraft being generally of the order of 0.2 Hz at 0.4Hz);
- processing the wind profile signal so as to determine whether it or a part thereof comprises at least a frequency close to a flexible eigen mode of the aircraft and in particular of its wing, its fuselage or its empennages (vertical and horizontal).
- a frequency close to a flexible eigen mode of the aircraft and in particular of its wing, its fuselage or its empennages vertical and horizontal.
- the treatment is advantageously adapted to make it possible to determine whether a part of the wind profile signal corresponding to the range of distances [0; 400m] or [0; 2s] has at least one frequency greater than 0.5 Hz.
- the treatment is advantageously adapted to make it possible to determine whether a part of the profile signal wind in the vertical direction corresponding to the range of distances [0; 200m] or [0; 1s] -or optionally [200m; 400m] or [1s; 2s] - comprises at least one frequency greater than or equal to 1 Hz.
- the treatment is advantageously adapted to make it possible to determine whether a part of the signal of wind profile in the vertical direction corresponding to the range of distances [0; 200m] or [0; 1s] - even [0; 100m] or [0; 0.5s] or [100m; 200m] or [0.5s; 1s] - comprises at least one frequency greater than or equal to 2.5 Hz (or even greater than or equal to 3 Hz depending on the aircraft).
- the power of a lidar usually determines its range of sight.
- the lidar of the device according to the invention is therefore preferably chosen as a function of the desired maximum measurement distance. However, if this maximum distance is very large, it is also possible to use a lidar power less than that required and able to compensate for its lack of power by delivering incident light pulses grouped by packet. This limits the on-board power required for the operation of the device according to the invention.
- the device according to the invention is suitable for measuring wind speeds at a plurality of measurement points located on the same direction of view, at different measurement distances, from the same incident light pulse or of the same packet of incident light pulses grouped.
- its lidar comprises for example a telescope equipped with a shutter controlled so as to be able to open successively at different times corresponding to the different measurement distances after each incident light pulse or each delivered packet.
- the device according to the invention can be adapted to acquire, from one and the same incident light pulse or from the same group of grouped pulses, all measurement points located on the same sighting distance or only a part of these measuring points.
- the device is also adapted to deliver several incident light pulses or several packets of pulses grouped for each direction of sight.
- This preferred version does not exclude the possibility of providing a wind detection and measurement device adapted to deliver an incident light pulse (or possibly a group of pulsed pulses) for each measurement point.
- the device preferably has a variable power and means for adjusting the power, at each incident light pulse delivered, depending on the measurement distance of the corresponding measurement point.
- a fixed power lidar preferably chosen as a function of the maximum measurement distance, which has the advantage of reducing the measurement error for small measurement distances - that is, say when getting closer to the aircraft-.
- the device according to the invention is adapted to make it possible to define each measurement distance not only in unit of length, for example in meters or feet, but also in units of time, preferably in seconds.
- it advantageously comprises calculation means able to calculate the distance (expressed in unit length) between the lidar and each measurement point, from the measurement distance expressed in time and data representative of the speed of measurement.
- flight of the aircraft provided in real time by a processing unit of the aircraft.
- These calculation means may be integrated in said processing unit of the aircraft or in a processing unit specific to lidar.
- the device according to the invention is suitable for measuring wind speeds up to measurement distances of up to 4 seconds or 800 meters, or even 5 seconds or 1000 meters, or possibly even 7 seconds or 1400 meters.
- the maximum measurement distance of the device according to the invention is chosen as a function of the smallest frequency that one wishes to detect.
- the device according to the invention is adapted for measuring wind speeds in at least six measuring points at each measurement distance, which points form, at each measurement distance, three pairs, called vertical pairs, of measuring points aligned in the vertical direction and at least one pair, said transverse torque, measuring points aligned in the transverse direction.
- the device according to the invention is suitable for measuring wind speeds in at least ten measurement points forming five vertical pairs of measuring points.
- the device according to the invention is adapted to measure wind speeds at least a measurement distance close to the aircraft, for example less than 250ms or 50m and preferably less than 150ms or 30m, in order to offer an alternative device to the anemometer of the aircraft.
- the device according to the invention is suitable for measuring wind speeds at measurement distances that are closer and closer to each other in the direction of the aircraft, or that are more and more distant from each other at the same time. as one moves away from the aircraft.
- ⁇ x advantageously increases with x. For example, ⁇ x grows exponentially.
- the wind detection and measurement device is connected to a processing unit of the aircraft itself connected to sensors of the aircraft chosen from: an inertial unit able to measure the vertical speed Vz of the aircraft with respect to the ground, the angle ⁇ of inclination of the wings of the aircraft relative to the horizontal, the attitude ⁇ of the aircraft and its pitching speed q; an airspeed sensor, usually used to measure the speed Vtas of the aircraft relative to the air mass in which the aircraft operates; an incidence probe, usually used to measure the angle of incidence ⁇ of the aircraft; a skid probe, usually used to measure the skid angle ⁇ of the aircraft.
- the device according to the invention and one or more of the aforementioned sensors can then advantageously be used to hybridize the signal in order to improve the accuracy of the measurement.
- FIG. 1 is a diagrammatic perspective view of an aircraft and of the environment at the front thereof, on which measurement points targeted by a device according to the invention are shown,
- FIG. 2 is a diagram showing a wind profile signal constructed using a device according to the invention.
- the aircraft illustrated in FIG. 1 is equipped with a wind detection and measurement device which, according to the invention, comprises a lidar and is adapted to measure wind speeds at a plurality of pairs of measuring points located at different distances, called measurement distances, from the nose of the aircraft.
- this device comprises a single lidar and therefore has a limited weight and bulk.
- this lidar comprises a laser capable of emitting incident light pulses directed, separated or grouped in packets, a telescope which collects the wave backscattered by the particles encountered by the incident beam.
- the device according to the invention further comprises computer processing means (software and hardware) microprocessor (s).
- the telescope and the processing means are advantageously adapted to collect, at each incident light pulse or at each packet of group pulses emitted by the laser, the backscattered wave at different times t n from the moment the pulse is transmitted.
- the distance ⁇ x between two consecutive measurement distances increases with x, for example exponentially.
- the laser advantageously has a wavelength located in the ultraviolet, which offers a good resolution. It also has a power adapted to measure wind speeds at a maximum measurement distance between 500m and 1500m, for example of the order of 1000m or 5s. However, it may have a lower power and in this case deliver incident light pulses grouped in packets, in order to compensate for a power that is a priori insufficient (for long distances measurement).
- the device according to the invention furthermore comprises means for adjusting the aiming direction of its lidar, making it possible to modify the aiming direction between two transmitted incident light pulses (or between two packets).
- the device is programmed to emit incident light pulses along twelve viewing directions. In other words, at least for certain measuring distances X n , the device is able to measure wind speeds in twelve measuring points 1 to 12.
- the measuring points located at the same measurement distance belong to the same sphere centered on the lidar in the aircraft reference system.
- FIG. 1 By approximation, they are represented in FIG. 1 as belonging to the same plane, called the measuring plane, orthogonal to the longitudinal direction L of the aircraft and located at a distance from the nose of the aircraft equal to the measurement distance.
- the measuring plane orthogonal to the longitudinal direction L of the aircraft and located at a distance from the nose of the aircraft equal to the measurement distance.
- the measurement points 1 and 11 form a vertical pair of measuring points providing, by vectorial difference of the speeds measured at these points, an evaluation of the vertical component W Z A of the wind speed at a point in the atmosphere located facing the longitudinal direction of a central or distal portion (that is to say close to the end) of the starboard wing of the aircraft,
- the measurement points 2 and 10 form a vertical pair of measuring points providing, by vectorial difference, an evaluation of the vertical component W Z B of the wind speed at a location in the opposite atmosphere - according to the direction longitudinal-a proximal portion (that is to say close to the root) or central portion of the starboard wing of the aircraft,
- the measurement points 3 and 9 form a vertical pair of measuring points providing, by vectorial difference, an evaluation of the vertical component W z c of the wind speed at a point in the atmosphere situated on a central longitudinal axis of the aircraft, that is to say facing the longitudinal direction of the nose and the fuselage of the aircraft,
- the measuring points 4 and 8 form a vertical pair of measuring points providing, by vectorial difference, an evaluation of the vertical component W Z D of the wind speed at a location of the atmosphere located opposite the longitudinal direction of a proximal portion (ie - say close to the root) or central port wing of the aircraft
- the measuring points 5 and 7 form a vertical pair of measuring points providing, by vector difference, an evaluation of the vertical component W Z E of the wind speed at a location in the atmosphere opposite - in the longitudinal direction - a central or distal portion (that is, near the tip) of the port wing of the aircraft
- measuring points 1 and 5 form a transverse pair of measuring points providing, by vectorial difference, an evaluation of the transverse component W t A of the wind speed in one place of the atmosphere located in a vertical longitudinal plane year (plane of symmetry) of the aircraft, above the central longitudinal axis of the aircraft,
- the measurement points 6 and 12 form a transverse pair of measuring points providing, by vectorial difference, an evaluation of the transverse component W t B of the wind speed at a location of the atmosphere situated on the central longitudinal axis of the aircraft, that is to say, facing the nose and the fuselage of the aircraft,
- the measurement points 11 and 7, or the measuring points 10 and 8 form a transverse pair of measuring points providing, by vectorial difference, an evaluation of the transverse component W t c of the wind speed at a location of the atmosphere located in the median vertical longitudinal plane of the aircraft, below the central longitudinal axis of the aircraft.
- each series of measurement points comprises at least four measurement points distributed over the range of distances [0; 200m] or [0; 1s] and at least three other measuring points distributed over the range of distances [200m; 1000m] or [1s; 5s].
- the number of measurement points per series and their distribution may vary from one series to one other.
- the series of measurement points 3 and 9, which provide evaluations of the vertical component W 2 C of the wind speed opposite the fuselage of the aircraft, advantageously comprise a relatively large number of measurement points, of which at least eight (and preferably at least 16) measuring points distributed over the range of distances [0; 200m] or [0; 1s] and at least six (and preferably at least twelve) other measuring points distributed over the range of distances [200m; 1000m] or [1s; 5s].
- the series of measuring points 2, 10, 4 and 8 for example may comprise a smaller number of measuring points, in particular in the range of distances [200m; 1000m] or [1s; 5s].
- the device preferably operates as follows.
- a first light pulse is emitted in the first direction of view passing through the measuring points 1; this pulse makes it possible to acquire the frequency of the backscattered wave at the measurement point 1 for each measurement distance (of the series), and thus to measure the wind speed according to the first direction of sight at each measuring point 1.
- the adjustment means are then actuated to change the aiming direction of the lidar, so that it points to the measuring points 2.
- a second light pulse is then emitted in the second direction of view (passing through the measuring points 2); this pulse makes it possible to acquire the frequency of the backscattered wave for the series of measurement points 2, and thus to measure the wind speed according to the second direction of sight for each of said measurement points 2.
- the adjustment means are then actuated to change the sighting direction of the lidar, so that it points to the measuring points 3, then a third light pulse is emitted according to this new -third-direction of sight, and so on for all the sighting directions.
- the acquisition of measurements for the twelve series of measurement points constitutes a measurement cycle, which is repeated indefinitely iteratively.
- the device according to the invention is advantageously adapted to perform a complete measurement cycle in less than 60ms.
- the wind sensor and wind measurement processing means calculate, by vector difference, the vertical component W Z A of the wind speed in each measurement plane from the measured speeds for measuring points 1 and 11 of said plane of measured.
- the vertical component W 2 B of the wind speed in each measurement plane is calculated analogously from the speeds measured for the measuring points 2 and 10 of said measurement plane, and so on for all the vertical components.
- the processing means also calculate, by vector difference, the transverse component W t A of the wind speed in each measurement plane from the speeds measured for the measuring points 1 and 5 (or 2 and 4) of said measurement plane , as well as the transverse component W t B - respectively W t c - of the wind speed in each measurement plane from the speeds measured for the measurement points 12 and 6 - respectively 11 and 7 (or 10 and 8) - of said measurement plan.
- the means for processing the wind detection and measurement device may optionally calculate wind speed components from measured speeds for different measurement cycles (successive or otherwise) and / or for points measured at different measurement distances (consecutive or not), in order to take into account the distance traveled by the aircraft in the terrestrial reference system during a measurement cycle.
- the processing means can be programmed to calculate the vertical component W Z A of the wind speed at a distance Xj for the cycle j from, on the one hand, of the speed measured for the measuring point 11 on the distance Xj for the cycle j-1, and secondly from the speed measured for the measuring point 1 to the distance Xj for the cycle j (provided that the direction of "rotation" of the measuring cycle is the one described more high).
- the processing means can be programmed to calculate the vertical component W z c of the wind speed at a distance Xj for the cycle j from, on the one hand, the speed measured for the measuring point 3 to the distance Xj + i for the cycle j-1, and on the other hand the speed measured for the point of measure 9 at the distance Xj for the cycle j.
- Each wind profile signal represents at a given instant the component in a direction of excitation (vertical or transverse) of the wind speed at the front of the aircraft as a function of the distance x.
- the set of components W z c calculated for the different measurement distances and for the same measurement cycle is used to construct a wind profile signal in the vertical direction in the median plane of the aircraft.
- FIG. 2 illustrates this signal which, in the example, is a continuous signal (which may however be in steps) obtained by interpolation from the calculated components W z c . This signal makes it possible to predict the pitching excitations of the aircraft.
- the set of components W Z B calculated for the different measurement distances and for the same measurement cycle can be used to construct a wind profile signal in the vertical direction in a starboard plane of the aircraft.
- the set of components W Z D calculated for the different measurement distances and for the same measurement cycle can be used to construct a wind profile signal in the vertical direction in a port plane of the aircraft.
- the other calculated velocity components can be used in a similar way to construct other wind profile signals if necessary, or to refine the previous signals in certain situations.
- Each wind profile signal thus constructed characterizes the atmospheric environment of the aircraft at a given moment and is updated continuously at least every 60 ms (duration of a measurement cycle).
- the processing means of the device according to the invention are also advantageously adapted to process at least one wind profile signal, and for example the wind profile signal W z c , so as to determine a frequency content.
- the treatments applied to determine this frequency content depend on the frequencies sought and therefore on the excitation direction concerned, that is to say on the profile of the wind profile analyzed.
- the following description relates to the signal W z c (direction of vertical excitation, wind in the median plane of the aircraft).
- This wind profile signal W z c makes it possible, in particular, to detect whether pitching phenomena of the aircraft (which generate great discomfort for persons) are likely to occur.
- the processing means are adapted to look for whether the wind profile signal W z c comprises at least one frequency close to the incidence oscillation frequency of the aircraft.
- Such an incidence oscillation frequency is generally of the order of 0.3 Hz.
- the lidar preferably has a maximum sighting distance of some 5s or 1000m, and on the other hand at least four and preferably at least eight measuring points are provided over the range of distances. [0; 5s] or [0; 1000m] or, for the reasons given below, over the range of distances [1s; 5s] or [200m; 100Om].
- the pitching phenomena are advantageously countered using one or more mobile control surfaces of the tail of the aircraft.
- Such moving surfaces have an indirect effect on the loads experienced by the fuselage and wing of the aircraft. It is therefore preferable to detect the corresponding turbulence as soon as possible, that is to say at a great distance from the nose of the aircraft. Therefore, the part of the wind profile signal corresponding to the range of distances [1s; 5s] or [200m; 100Om].
- the processing means advantageously process the whole of the signal W z c or the above-mentioned signal part so as to determine whether the latter or this comprises frequencies lower than 0.5 Hz.
- the wind profile signal W z c also makes it possible to detect the presence of turbulence likely to endanger the structure of the aircraft, and in particular its wing.
- the processing means of the device according to the invention are advantageously adapted to investigate whether the wind profile signal W z c comprises at least a frequency close to a natural mode of oscillation in bending of the wing.
- the first natural bending mode of the wing of an aircraft is generally between 1.1 Hz and 1.5 Hz. To observe such a frequency, it suffices to analyze the wind profile signal over a period of 0.67s to 1s.
- the effects of such turbulence are advantageously countered using one or more movable wing control surfaces.
- the processing means therefore preferably treat the part of the wind profile signal W z c corresponding to the range of distances [0; 1s] or [0; 200m] so as to determine if it has frequencies greater than 1 Hz.
- the processing means are advantageously adapted to process the part of the wind profile signal corresponding to the range of distances [0; 2s] or [0; 400m] so as to determine if it has frequencies greater than 0.5Hz.
- the processing means comprise at least one low-pass filter and at least one high-pass filter.
- the low-pass filter makes it possible to attenuate or even eliminate the high frequencies and thus to detect the low frequencies; the high-pass filter allows reverse to detect high frequencies.
- Said filters are chosen according to the desired frequency ranges. In the example, it is advantageous to use firstly a low-pass filter whose cutoff frequency (frequency above which the frequencies are attenuated or eliminated) is equal to 0.5Hz, and secondly a high-pass filter whose cutoff frequency (frequency below which the frequencies are attenuated or eliminated) is substantially equal to 0.5 Hz or 1 Hz.
- the processing means are adapted to evaluate an average period of the wind profile signal on the part of signal to be processed (that is to say on the interval [0; 400m] or [ 0; 2s], or the interval [0; 200m] or [0; 1s], or the whole of the signal, depending on the desired frequency range), as a function of the number of passages of said signal by the value zero on this part .
- the inverse of this average period thus evaluated provides an average frequency of the signal on the treated part.
- the processing means are adapted to estimate an average standard deviation of the wind profile signal on the part of the signal to be processed, based on the maximum amplitude of the signal on this part and a coefficient constant predetermined empirically and statistically, which coefficient represents the average ratio between the standard deviation and the maximum amplitude of a wind profile signal. They are also adapted to compare the estimated standard deviation with a range of standard deviations corresponding to the desired frequency range, which range of standard deviations is previously determined by integrating a part of a Von Karman spectrum. or Kolmogorov, which represents a density of energy as a function of spatial frequency and is empirically and statistically predefined.
- the processing means may be adapted to similarly process other wind profile signals.
- the invention may be subject to numerous variations with respect to the illustrated embodiment, provided that these variants fall within the scope delimited by the claims.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Multimedia (AREA)
- Aviation & Aerospace Engineering (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
The invention relates to a device for detecting and measuring wind at the front of an aircraft, said device comprising a lidar for the cyclic measurement of wind speeds at at least a couple of measuring points located at the same distance, so-called measuring distance, from the nose of the aircraft. The invention is characterised in that it is suitable for measuring wind speeds, at each cycle, by means of the lidar, at a plurality of couples of measuring points (1-12) located at different measuring distances (xp-2, xp-1, xp), the difference between the largest measuring distance and the smallest measuring distance being more than 100 metres. The invention also relates to a method for detecting and measuring wind, which can be implemented by the device according to the invention.
Description
Dispositif et procédé de détection et de mesure de vent pour aéronef Device and method for detecting and measuring wind for aircraft
La présente invention concerne un procédé et un dispositif de détection et de mesure de vent à l'avant d'un aéronef.The present invention relates to a method and a device for detecting and measuring wind at the front of an aircraft.
Certains éléments de l'art antérieur ou de l'invention sont décrits ici dans un référentiel spatial lié à l'aéronef, dit référentiel aéronef. Dans toute la description, ce référentiel aéronef est défini de façon usuelle par une direction longitudinale de l'aéronef, une direction transversale de l'aéronef et une troisième direction, orthogonale aux deux autres, qui par convention est appelée direction verticale bien qu'elle ne coïncide pas -du moins en vol- avec la "verticale" d'un référentiel terrestre telle que fournie par la gravité. Lorsqu'un doute est possible quant au référentiel concerné, la "verticale" du référentiel terrestre est appelée direction de la gravité.Certain elements of the prior art or of the invention are described here in a spatial reference system linked to the aircraft, referred to as an aircraft reference system. Throughout the description, this aircraft reference system is defined in the usual way by a longitudinal direction of the aircraft, a transverse direction of the aircraft and a third direction, orthogonal to the other two, which by convention is called the vertical direction although does not coincide - at least in flight - with the "vertical" of a terrestrial reference as provided by gravity. When there is doubt about the referential concerned, the "vertical" of the terrestrial reference is called the direction of gravity.
Par ailleurs, le terme "vent" désigne le mouvement total de l'air en un point donné, qui résulte de la superposition du mouvement moyen de l'air (écoulement laminaire) et de la turbulence en ce point. La turbulence est une agitation qui est constituée par des mouvements complexes et désordonnés, en continuelle transformation.In addition, the term "wind" refers to the total movement of air at a given point, which results from the superposition of the average air movement (laminar flow) and turbulence at that point. Turbulence is an agitation that is constituted by complex and disordered movements, in continual transformation.
La turbulence a des effets néfastes sur l'aéronef. Elle peut notamment induire : des accélérations verticales de l'aéronef susceptibles de déplacer des objets ou passagers dans la cabine ; un changement de niveaux d'altitude, qui peut notamment induire un risque de collision avec un autre aéronef ; un excédent de charges sur la voilure ; d'importants moments de roulis ; une sensation d'inconfort dans la cabine...Turbulence has adverse effects on the aircraft. It can in particular induce: vertical accelerations of the aircraft likely to move objects or passengers in the cabin; a change in altitude levels, which may in particular lead to a risk of collision with another aircraft; an excess of loads on the wing; important moments of rolling; a feeling of discomfort in the cabin ...
Trois types de turbulence sont notamment à l'origine de troubles causés à l'aéronef :Three types of turbulence are notably responsible for disturbances caused to the aircraft:
- la turbulence en air clair, qui résulte de cisaillements de vent ; cette turbulence, non convective, apparaît à haute altitude à proximité des courants jets, le plus souvent au droit des montagnes et plutôt en hiver,- turbulence in clear air, which results from wind shear; this turbulence, non-convective, appears at high altitude close to jet streams, most often at mountain level and in winter,
- la turbulence convective, qui apparaît à l'intérieur ou au voisinage des nuages ; des turbulences très sévères peuvent survenir dans les nuages d'orage, où coexistent des courants verticaux de sens contraire pouvant atteindre des dizaines de m/s. Ces phénomènes sont locaux et généralement visibles (en raison de la présence des nuages),convective turbulence, which appears in or near the clouds; very severe turbulence can occur in storm clouds, where vertical currents in opposite directions can coexist up to tens of m / s. These phenomena are local and generally visible (due to the presence of clouds),
- la turbulence de sillage, créée par le passage d'un aéronef ;
les vortex générés par un aéronef lourd peuvent induire d'importants moments de roulis sur un aéronef plus léger.wake turbulence, created by the passage of an aircraft; vortices generated by a heavy aircraft can induce significant rolling moments on a lighter aircraft.
Parce qu'elles augmentent les charges sur la voilure, les turbulences obligent à renforcer la structure de l'aéronef ; elles ont par conséquent un impact sur la masse de ce dernier. De surcroît, les turbulences fatiguent la structure de l'aéronef et peuvent de ce fait limiter sa durée de vie, ou à tout le moins pénaliser sa rentabilité opérationnelle en imposant de fréquents contrôles de la structure et des équipements de l'aéronef. Aussi et surtout, les turbulences sont la première cause de blessures chez les passagers, si l'on exclut les accidents fatals. La détection et la mesure des turbulences, ainsi que la mise en œuvre d'actions palliatives correspondantes, représentent donc des enjeux importants.Because they increase the loads on the wing, the turbulence forces to reinforce the structure of the aircraft; they therefore have an impact on the mass of the latter. In addition, the turbulence tires the structure of the aircraft and can thus limit its life, or at least penalize its operational profitability by imposing frequent controls of the structure and equipment of the aircraft. Also and most importantly, turbulence is the number one cause of injury to passengers, excluding fatal accidents. The detection and measurement of turbulence, as well as the implementation of corresponding palliative actions, therefore represent important issues.
Il est connu d'utiliser des lidars (acronyme de "Light Détection And Ranging", qui signifie détection par ondes lumineuses et télémétrie) pour mesurer des vitesses de vent à l'avant de l'aéronef à une distance donnée de celui-ci, en vue de détecter les turbulences survenant à cette distance. Un lidar est un capteur actif comprenant un laser émettant un faisceau lumineux incident dirigé, un télescope qui recueille l'onde rétrodiffusée par les particules rencontrées par le faisceau incident, et des moyens de traitement. L'onde rétrodiffusée recueillie à l'instant t=2d/c (où "c" désigne la vitesse de la lumière) après émission d'un faisceau incident correspond à l'onde rétrodiffusée par la couche atmosphérique située à la distance "d" du lidar, dite distance de visée. Selon l'effet Doppler, la vitesse de déplacement de ladite couche atmosphérique selon la direction de visée du lidar est déduite de la différence entre la fréquence du faisceau incident et celle de l'onde rétrodiffusée. Pour obtenir les composantes transversales et verticales -dans le référentiel aéronef- de la vitesse du vent à une distance "d" donnée de l'aéronef (distance de visée du lidar) supérieure à 150 mètres, FR 2 870 942 enseigne d'utiliser un seul lidar avec un balayage selon quatre directions (deux verticales et deux transversales). Dans le référentiel aéronef, les points de mesure visés durant ce balayage sont situés sur une même sphère centrée sur le lidar. Compte tenu des secteurs angulaires (faibles) balayés, on considère par approximation que ce balayage forme un carré dans un plan situé à la distance "d" à l'avant de l'aéronef. Si par ailleurs on néglige le déplacement de l'aéronef durant le balayage, la différence vectorielle entre les vecteurs vitesses (qui sont parallèles à la direction
de visée du lidar) obtenus en deux points de mesure -formant un couple de points de mesure- du balayage peut être assimilée à la composante, selon la direction reliant lesdits points de mesure, de la vitesse du vent en un point de l'atmosphère situé (au moment de la mesure) entre ces deux points de mesure. Ainsi par exemple, un couple de points de mesure situés sur un même axe vertical fournit une évaluation de la composante verticale de la vitesse du vent au point situé entre ces deux points de mesure. De même, un couple de points de mesure situés sur un même axe transversal fournit une évaluation de la composante transversale de la vitesse du vent au point situé entre ces deux points de mesure. Ainsi, le dispositif de FR 2 870 942 permet d'obtenir une évaluation de la composante verticale de la vitesse du vent en un ou plusieurs points situés à la distance "d" à l'avant de l'aéronef, ainsi qu'une évaluation de la composante transversale de la vitesse du vent en un ou plusieurs points situés à la distance "d" à l'avant de l'aéronef. Selon le même principe, US 5 724 125 décrit un procédé de détermination de la vitesse du vent à un endroit cible situé à l'altitude Z. La vitesse du vent à l'endroit cible est calculée à partir de mesures réalisées sur un cône de balayage et à l'altitude cible Z ; en d'autres termes, les points de mesure sont tous situés sur l'ellipse définie par l'intersection entre le cône de balayage et l'altitude cible Z.It is known to use lidars (acronym for "Light Detection And Ranging", which means light wave detection and telemetry) for measuring wind speeds at the front of the aircraft at a given distance from it, to detect turbulence occurring at this distance. A lidar is an active sensor comprising a laser emitting a directed incident light beam, a telescope which collects the wave backscattered by the particles encountered by the incident beam, and processing means. The backscattered wave collected at time t = 2d / c (where "c" designates the speed of light) after emission of an incident beam corresponds to the wave backscattered by the atmospheric layer located at the distance "d" lidar, the so-called sighting distance. According to the Doppler effect, the displacement speed of said atmospheric layer in the direction of view of the lidar is deduced from the difference between the frequency of the incident beam and that of the backscattered wave. In order to obtain the cross-sectional and vertical components -in the aircraft reference system- of the wind speed at a given distance "d" from the aircraft (lidar sight distance) greater than 150 meters, FR 2 870 942 teaches to use a only lidar with a scan in four directions (two vertical and two transverse). In the aircraft reference system, the measurement points targeted during this scanning are located on the same sphere centered on the lidar. Given the swept (weak) angular sectors, it is considered by approximation that this sweep forms a square in a plane located at the distance "d" at the front of the aircraft. If, moreover, the displacement of the aircraft during the scanning is neglected, the vector difference between the velocity vectors (which are parallel to the direction of the lidar sight) obtained at two measurement points -forming a pair of measuring points-of the scanning can be assimilated to the component, according to the direction connecting said measurement points, of the wind speed at a point of the atmosphere located (at the time of measurement) between these two measuring points. For example, a pair of measuring points located on the same vertical axis provides an assessment of the vertical component of the wind speed at the point between these two measurement points. Similarly, a pair of measuring points located on the same transverse axis provides an evaluation of the transverse component of the wind speed at the point between these two measurement points. Thus, the device of FR 2 870 942 makes it possible to obtain an evaluation of the vertical component of the wind speed at one or more points situated at the distance "d" at the front of the aircraft, as well as an evaluation the transverse component of the wind speed at one or more points located at the distance "d" at the front of the aircraft. According to the same principle, US Pat. No. 5,724,125 describes a method for determining the wind speed at a target location located at altitude Z. The wind speed at the target location is calculated from measurements made on a cone of scan and at target altitude Z; in other words, the measurement points are all located on the ellipse defined by the intersection between the scan cone and the target altitude Z.
Enfin, FR 2 883 983 décrit un dispositif comprenant trois ou quatre lidars et permettant de mesurer des vitesses de vent -selon la direction de visée respective de chaque lidar- en quatre points de mesure situés à l'avant de l'aéronef, à une même distance de ce dernier supérieure à 30 mètres. Compte tenu du poids et de l'encombrement d'un lidar, l'utilisation d'un tel dispositif (qui en comprend trois ou quatre) est difficilement envisageable notamment dans un avion de transport de passagers.Finally, FR 2 883 983 describes a device comprising three or four lidars and for measuring wind speeds - according to the respective sighting direction of each lidar - at four measurement points located at the front of the aircraft, at a distance of same distance from the latter greater than 30 meters. Given the weight and size of a lidar, the use of such a device (which comprises three or four) is difficult to envisage especially in a passenger aircraft.
Quel que soit le dispositif employé, les vitesses de vent calculées sont généralement utilisées pour établir des stratégies d'évitement ou de contrôle. En particulier, elles servent à la détermination d'ordres de commande transmis aux actionneurs de diverses surfaces mobiles de contrôle (gouvernes, ailerons, becs, spoilers, volets...) de l'aéronef. Ces surfaces de contrôle sont ainsi commandées de façon à réduire les charges subies par l'aéronef et les troubles qui en découlent.
Pour commander à bon escient ces surfaces de contrôle, il convient d'évaluer de la façon la plus précise possible les turbulences que va effectivement rencontrer l'aéronef. Les dispositifs connus décrits ci-dessus fournissent des informations intéressantes mais dont la précision et la pertinence peuvent être jugées insuffisantes.Whatever device is used, calculated wind speeds are generally used to establish avoidance or control strategies. In particular, they are used for the determination of control commands transmitted to the actuators of various movable control surfaces (control surfaces, ailerons, nozzles, spoilers, flaps ...) of the aircraft. These control surfaces are thus controlled so as to reduce the loads incurred by the aircraft and the resulting disturbances. To properly control these control surfaces, the turbulence that the aircraft will actually encounter must be evaluated as accurately as possible. The known devices described above provide interesting information but whose accuracy and relevance may be considered insufficient.
L'invention vise à pallier ces inconvénients en proposant un dispositif et un procédé de détection et de mesure de vent qui permettent de déterminer avec une plus grande précision les turbulences survenant à l'avant d'un aéronef.The invention aims to overcome these disadvantages by proposing a device and a wind detection and measurement method that make it possible to determine with greater precision the turbulence occurring in the front of an aircraft.
Dans une version préférée, l'invention vise également à permettre d'évaluer les risques d'excitation de l'aéronef ou d'une partie de celui-ci selon une fréquence correspondant à un mode propre rigide ou à un mode souple de sa structure.In a preferred version, the invention also aims to enable the risks of excitation of the aircraft or of a part thereof to be evaluated at a frequency corresponding to a rigid eigen mode or a flexible mode of its structure. .
Pour ce faire, l'invention concerne un dispositif de détection et de mesure de vent embarqué dans un aéronef, comprenant un lidar pour la mesure cyclique de vitesses de vent en au moins un couple de points de mesure situés à une même distance, dite distance de mesure, du nez de l'aéronef. Le dispositif selon l'invention est caractérisé en ce qu'il est adapté pour mesurer à chaque cycle, à l'aide dudit lidar, des vitesses de vent en une pluralité de couples de points de mesure situés à différentes distances de mesure, la différence entre la distance de mesure la plus grande et la distance de mesure la plus petite étant supérieure à 100 mètres.To do this, the invention relates to a wind detection and measurement device embedded in an aircraft, comprising a lidar for the cyclic measurement of wind speeds in at least a pair of measuring points located at the same distance, said distance measurement, the nose of the aircraft. The device according to the invention is characterized in that it is adapted to measure at each cycle, using said lidar, wind speeds in a plurality of pairs of measuring points located at different measurement distances, the difference between the largest measurement distance and the smallest measurement distance being greater than 100 meters.
L'invention s'étend au procédé de détection et de mesure exécuté par le dispositif selon l'invention. L'invention concerne également un procédé de détection et de mesure de vent mis en œuvre dans un aéronef, dans lequel on mesure de façon cyclique, à l'aide d'un lidar, des vitesses de vent en au moins un couple de points de mesure situés à une même distance, dite distance de mesure, du nez de l'aéronef. Le procédé selon l'invention est caractérisé en ce qu'on mesure à chaque cycle, à l'aide dudit lidar, des vitesses de vent en une pluralité de couples de points de mesure situés à différentes distances de mesure, la différence entre la distance de mesure la plus grande et la distance de mesure la plus petite étant supérieure à 100 mètres.The invention extends to the detection and measurement method performed by the device according to the invention. The invention also relates to a wind detection and measurement method implemented in an aircraft, in which cyclic measurements, using a lidar, wind speeds in at least a couple of points of measured at the same distance, the so-called measuring distance, from the nose of the aircraft. The method according to the invention is characterized in that wind speeds are measured at each cycle by means of said lidar at a plurality of pairs of measuring points situated at different measurement distances, the difference between the distance the largest measurement and the smallest measurement distance being greater than 100 meters.
Avantageusement, la différence entre la distance de mesure la plus grande et la distance de mesure la plus petite (c'est-à-dire la distance séparant le couple de mesure le plus éloigné et le couple de mesure le plus proche de
l'aéronef) est supérieure à 200 mètres, préférentiellement supérieure à 500 mètres, voire supérieure à 800 mètres.Advantageously, the difference between the largest measurement distance and the smallest measurement distance (i.e., the distance between the farmost measurement torque and the nearest measurement torque of the aircraft) is greater than 200 meters, preferably greater than 500 meters, or even greater than 800 meters.
Avantageusement, on mesure des vitesses de vent à au moins trois, préférentiellement au moins six, distances de mesure à chaque cycle, et le dispositif selon l'invention est adapté pour ce faire.Advantageously, wind speeds of at least three, preferably at least six, measurement distances are measured at each cycle, and the device according to the invention is adapted for this purpose.
La mesure du vent à différentes distances du nez de l'aéronef et sur un intervalle de mesure supérieur à au moins 100 mètres permet de gagner considérablement en précision. En effet, on sait que la précision d'un lidar décroît avec la distance. Grâce à l'invention, la mesure du vent en un endroit initialement situé à une grande distance de l'aéronef peut être affinée au fur et à mesure que l'aéronef se rapproche de cet endroit. En outre, les dispositifs antérieurs prennent tous comme hypothèse que le vent est stationnaire sur la durée d/V (où "d" est la distance de visée du lidar et V la vitesse de déplacement de l'aéronef). Cette hypothèse s'éloigne d'autant plus de la réalité que la distance "d" est grande et/ou que les turbulences sont importantes. Le dispositif selon l'invention permet d'obtenir une pluralité de mesures en un même endroit donné de l'atmosphère au fur et à mesure que l'aéronef se déplace. A noter que le terme "endroit" désigne ici un point de l'atmosphère (défini dans un référentiel non lié à l'aéronef, par exemple un référentiel terrestre, contrairement aux points de mesure qui sont définis dans le référentiel aéronef) ou une zone de dimension limitée autour d'un point de l'atmosphère, les diverses mesures successives ayant lieu précisément en ce point ou à proximité immédiate de celui-ci. Le dispositif selon l'invention permet donc de prendre en compte les variations du vent, en un endroit donné, qui surviennent entre la première mesure effectuée en cet endroit et le moment où l'aéronef arrive audit endroit.The measurement of the wind at different distances from the nose of the aircraft and over a measurement interval greater than at least 100 meters makes it possible to gain considerably in precision. Indeed, we know that the precision of a lidar decreases with distance. Thanks to the invention, the measurement of the wind at a location initially located at a great distance from the aircraft can be refined as the aircraft approaches this location. In addition, the prior devices all assume that the wind is stationary over the duration d / V (where "d" is the sighting distance of the lidar and V the speed of movement of the aircraft). This hypothesis is further removed from reality because the distance "d" is large and / or the turbulence is important. The device according to the invention makes it possible to obtain a plurality of measurements at the same given location of the atmosphere as the aircraft moves. Note that the term "location" here means a point of the atmosphere (defined in a reference not linked to the aircraft, for example a terrestrial reference, unlike the measurement points that are defined in the aircraft reference) or a zone of limited size around a point of the atmosphere, the various successive measurements taking place precisely at this point or in the immediate vicinity thereof. The device according to the invention thus makes it possible to take into account the variations of the wind, at a given location, which occur between the first measurement made at this location and the moment when the aircraft arrives at said location.
Dans une version préférée, le dispositif selon l'invention est adapté pour construire à chaque cycle au moins un signal, dit signal de profil du vent selon une direction dite direction d'excitation, à partir d'une pluralité de mesures comprenant la dernière ou éventuellement l'avant-dernière mesure effectuée à chacune des distances de mesure pour au moins un couple de points de mesure alignés selon la direction d'excitation, ledit signal de profil du vent représentant à un instant donné dans un référentiel aéronef la composante, selon ladite direction d'excitation, de la vitesse du vent à l'avant de l'aéronef en fonction de la distance "x" selon la direction longitudinale (cette distance étant exprimée par rapport au
nez de l'aéronef). Dans le procédé selon l'invention, on construit avantageusement à chaque cycle au moins un signal de profil du vent tel que précédemment défini.In a preferred version, the device according to the invention is adapted to construct at each cycle at least one signal, said wind profile signal in a direction said direction of excitation, from a plurality of measurements including the last or optionally the penultimate measurement made at each of the measurement distances for at least a pair of measurement points aligned in the direction of excitation, said wind profile signal representing at a given moment in an aircraft reference system the component, according to said direction of excitation, the wind speed at the front of the aircraft as a function of the distance "x" in the longitudinal direction (this distance being expressed relative to the nose of the aircraft). In the process according to the invention, at least one wind profile signal as previously defined is advantageously constructed at each cycle.
A noter que le nombre de couples de points de mesure pris en compte pour la construction d'un signal de profil du vent peut éventuellement varier d'un signal à un autre (comme expliqué plus loin).It should be noted that the number of measurement point pairs taken into account for the construction of a wind profile signal may possibly vary from one signal to another (as explained below).
De préférence, le dispositif selon l'invention est adapté pour construire :Preferably, the device according to the invention is adapted to construct:
- un signal de profil du vent selon la direction verticale dans un plan longitudinal vertical médian (plan de symétrie) de l'aéronef, ledit signal représentant à un instant donné la composante verticale de la vitesse du vent dans ce plan médian ; il est établi à partir de mesures de vitesse de vent en un couple de points de mesure appartenant audit plan médian, à chaque distance de mesure pour laquelle un tel couple est acquis,a wind profile signal in the vertical direction in a median vertical longitudinal plane (plane of symmetry) of the aircraft, said signal representing at a given moment the vertical component of the wind speed in this median plane; it is established from measurements of wind speed in a pair of measurement points belonging to said median plane, at each measurement distance for which such a pair is acquired,
- au moins un signal de profil du vent selon la direction verticale dans un plan bâbord de l'aéronef, ledit signal représentant à un instant donné la composante verticale de la vitesse du vent dans un plan vertical en regard de l'aile bâbord de l'aéronef ; il est établi à partir de mesures de vitesse de vent en un couple de points de mesure appartenant audit plan bâbord, à chaque distance de mesure pour laquelle un tel couple est acquis,at least one wind profile signal in the vertical direction in a port plane of the aircraft, said signal representing at a given moment the vertical component of the wind speed in a vertical plane facing the port wing of the aircraft; aircraft; it is established from measurements of wind speed in a pair of measuring points belonging to said port plane, at each measurement distance for which such a pair is acquired,
- au moins un signal de profil du vent selon la direction verticale dans un plan tribord de l'aéronef, ledit signal représentant à un instant donné la composante verticale de la vitesse du vent dans un plan vertical en regard de l'aile tribord de l'aéronef ; il est établi à partir de mesures de vitesse de vent en un couple de points de mesure appartenant audit plan tribord, à chaque distance de mesure pour laquelle un tel couple est acquis, - au moins un signal de profil du vent selon la direction transversale, représentant à un instant donné la composante transversale de la vitesse du vent dans un plan, dit plan horizontal, orthogonal à la direction verticale ; ce signal est établi à partir de mesures de vitesse de vent en un couple de points de mesure appartenant audit plan horizontal, à chaque distance de mesure pour laquelle un tel couple est acquis.at least one wind profile signal in the vertical direction in a starboard plane of the aircraft, said signal representing at a given moment the vertical component of the wind speed in a vertical plane facing the starboard wing of the aircraft. aircraft; it is established from measurements of wind speed in a pair of measuring points belonging to said starboard plane, at each measurement distance for which such a pair is acquired, - at least one wind profile signal in the transverse direction, representing at a given moment the transverse component of the wind speed in a plane, called a horizontal plane, orthogonal to the vertical direction; this signal is established from measurements of wind speed in a pair of measurement points belonging to said horizontal plane, at each measurement distance for which such a pair is acquired.
Pour au moins un -et de préférence pour chaque- signal de profil du vent construit, le dispositif selon l'invention est également de préférence adapté pour traiter ce signal de profil du vent de façon à en déterminer un contenu fréquentiel.
La fréquence, à une distance x donnée, d'un tel signal de profil du vent est représentative de la fréquence à laquelle l'aéronef sera excité selon la direction d'excitation (dudit profil) lorsqu'il parviendra à l'endroit de l'atmosphère correspondant à cette distance x donnée. La détermination du contenu fréquentiel de ce signal permet donc d'estimer les fréquences auxquelles l'aéronef est susceptible d'être excité au fur et à mesure de son déplacement. Or cette information, qu'aucun dispositif antérieur connu n'est apte à fournir, s'avère extrêmement utile dans le choix des surfaces de contrôle à actionner et des paramètres d'actionnement correspondants. En particulier, il est désormais possible de savoir, par exemple, si l'aéronef est susceptible d'être excité selon un mode propre rigide ou un mode souple de sa structure. En pratique, la détermination du contenu fréquentiel est donc de préférence orientée en fonction des fréquences que l'on souhaite déceler (c'est-à-dire en fonction d'un ou de plusieurs modes propres de l'aéronef). Avantageusement, le dispositif de détection et de mesure de vent selon l'invention est adapté pour traiter un signal de profil du vent de façon à déterminer si celui-ci ou une partie de celui-ci comporte au moins une fréquence comprise dans au moins une plage de fréquences prédéfinie. De préférence, le dispositif est adapté pour : - traiter le signal de profil du vent de façon à déterminer si celui-ci ou une partie de celui-ci comporte au moins une fréquence proche d'un mode propre rigide de l'aéronef. Par exemple, dans le cas d'un signal de profil du vent selon la direction verticale, le dispositif est avantageusement adapté pour traiter ledit signal de façon à déterminer si celui-ci ou une partie de celui-ci comporte au moins une fréquence proche d'un mode propre rigide de l'aéronef connu sous le nom de fréquence d'oscillation d'incidence ; le traitement est ainsi avantageusement adapté pour permettre de déterminer si le signal de profil du vent comporte au moins une fréquence inférieure à 0,5Hz (la fréquence d'oscillation d'incidence d'un aéronef étant généralement de l'ordre de 0,2Hz à 0,4Hz) ;For at least one and preferably for each wind profile signal constructed, the device according to the invention is also preferably adapted to process this wind profile signal so as to determine a frequency content. The frequency, at a given distance x, of such a wind profile signal is representative of the frequency at which the aircraft will be excited according to the direction of excitation (of said profile) when it reaches the position of the wind. atmosphere corresponding to this given distance x. The determination of the frequency content of this signal therefore makes it possible to estimate the frequencies at which the aircraft is likely to be excited as it moves. However, this information, which no prior known device is able to provide, is extremely useful in the choice of control surfaces to actuate and corresponding actuation parameters. In particular, it is now possible to know, for example, whether the aircraft is likely to be excited in a rigid eigen mode or a flexible mode of its structure. In practice, the determination of the frequency content is therefore preferably oriented according to the frequencies that it is desired to detect (that is to say according to one or more eigen modes of the aircraft). Advantageously, the wind detection and measurement device according to the invention is adapted to process a wind profile signal so as to determine whether it or a part thereof comprises at least one frequency included in at least one predefined frequency range. Preferably, the device is adapted to: - treat the wind profile signal so as to determine whether it or a part thereof comprises at least a frequency close to a rigid eigenmode of the aircraft. For example, in the case of a wind profile signal in the vertical direction, the device is advantageously adapted to process said signal so as to determine whether it or a part thereof comprises at least a frequency close to a rigid eigenmode of the aircraft known as incidence oscillation frequency; the treatment is thus advantageously adapted to make it possible to determine whether the wind profile signal comprises at least one frequency less than 0.5 Hz (the incidence oscillation frequency of an aircraft being generally of the order of 0.2 Hz at 0.4Hz);
- en variante ou de préférence en combinaison, traiter le signal de profil du vent de façon à déterminer si celui-ci ou une partie de celui-ci comporte au moins une fréquence proche d'un mode propre souple de l'aéronef et notamment de sa voilure, de son fuselage ou encore de ses empennages (vertical
et horizontal). Par exemple, dans le cas d'un signal de profil du vent selon la direction verticale et pour un aéronef dont la voilure présente un mode propre d'oscillation en flexion de l'ordre de 0,6Hz à 0,7Hz, le traitement est avantageusement adapté pour permettre de déterminer si une partie du signal de profil du vent correspondant à la plage de distances [0 ; 400m] ou [0 ; 2s] comporte au moins une fréquence supérieure à 0,5Hz. Selon un autre exemple, pour un aéronef dont la voilure présente un mode propre d'oscillation en flexion de l'ordre de 1 ,1 Hz à 1 ,5Hz, le traitement est avantageusement adapté pour permettre de déterminer si une partie du signal de profil du vent selon la direction verticale correspondant à la plage de distances [0 ; 200m] ou [0 ; 1s] -ou éventuellement [200m ; 400m] ou [1s ; 2s]- comporte au moins une fréquence supérieure ou égale à 1 Hz. Selon autre exemple, et afin d'évaluer les risques encourus par le fuselage de l'aéronef, le traitement est avantageusement adapté pour permettre de déterminer si une partie du signal de profil du vent selon la direction verticale correspondant à la plage de distances [0 ; 200m] ou [0 ; 1s] - voire [0 ; 100m] ou [0 ; 0,5s] ou encore [100m ; 200m] ou [0,5s ; 1s]- comporte au moins une fréquence supérieure ou égale à 2,5Hz (voire supérieure ou égale à 3Hz selon l'aéronef).alternatively or preferably in combination, processing the wind profile signal so as to determine whether it or a part thereof comprises at least a frequency close to a flexible eigen mode of the aircraft and in particular of its wing, its fuselage or its empennages (vertical and horizontal). For example, in the case of a wind profile signal in the vertical direction and for an aircraft whose wing has a natural mode of oscillation in bending of the order of 0.6 Hz to 0.7 Hz, the treatment is advantageously adapted to make it possible to determine whether a part of the wind profile signal corresponding to the range of distances [0; 400m] or [0; 2s] has at least one frequency greater than 0.5 Hz. According to another example, for an aircraft whose wing has a natural mode of oscillation in bending of the order of 1.1 Hz to 1.5 Hz, the treatment is advantageously adapted to make it possible to determine whether a part of the profile signal wind in the vertical direction corresponding to the range of distances [0; 200m] or [0; 1s] -or optionally [200m; 400m] or [1s; 2s] - comprises at least one frequency greater than or equal to 1 Hz. According to another example, and in order to evaluate the risks incurred by the fuselage of the aircraft, the treatment is advantageously adapted to make it possible to determine whether a part of the signal of wind profile in the vertical direction corresponding to the range of distances [0; 200m] or [0; 1s] - even [0; 100m] or [0; 0.5s] or [100m; 200m] or [0.5s; 1s] - comprises at least one frequency greater than or equal to 2.5 Hz (or even greater than or equal to 3 Hz depending on the aircraft).
La puissance d'un lidar détermine usuellement sa distance de visée. Le lidar du dispositif selon l'invention est donc de préférence choisi en fonction de la distance de mesure maximale souhaitée. Toutefois, si cette distance maximale est très grande, il est aussi possible d'utiliser un lidar de puissance inférieure à celle requise et apte à compenser son manque de puissance en délivrant des impulsions lumineuses incidentes groupées par paquet. On limite ainsi la puissance embarquée nécessaire au fonctionnement du dispositif selon l'invention.The power of a lidar usually determines its range of sight. The lidar of the device according to the invention is therefore preferably chosen as a function of the desired maximum measurement distance. However, if this maximum distance is very large, it is also possible to use a lidar power less than that required and able to compensate for its lack of power by delivering incident light pulses grouped by packet. This limits the on-board power required for the operation of the device according to the invention.
Dans une version préférée, le dispositif selon l'invention est adapté pour mesurer des vitesses de vent en une pluralité de points de mesure situés sur une même direction de visée, à différentes distances de mesure, à partir d'une même impulsion lumineuse incidente ou d'un même paquet d'impulsions lumineuses incidentes groupées. A cette fin, son lidar comprend par exemple un télescope équipé d'un obturateur commandé de façon à pouvoir s'ouvrir successivement à des temps différents correspondant aux différentes distances de mesure après chaque impulsion lumineuse incidente ou chaque paquet délivré. Il est à noter,
dans cette version préférée, que le dispositif selon l'invention peut être adapté pour acquérir, à partir d'une même impulsion lumineuse incidente ou d'un même paquet d'impulsions groupées, tous les points de mesure situés sur une même distance de visée ou seulement une partie de ces points de mesure. Dans ce deuxième cas, le dispositif est par ailleurs adapté pour délivrer plusieurs impulsions lumineuses incidentes ou plusieurs paquets d'impulsions groupées pour chaque direction de visée.In a preferred version, the device according to the invention is suitable for measuring wind speeds at a plurality of measurement points located on the same direction of view, at different measurement distances, from the same incident light pulse or of the same packet of incident light pulses grouped. For this purpose, its lidar comprises for example a telescope equipped with a shutter controlled so as to be able to open successively at different times corresponding to the different measurement distances after each incident light pulse or each delivered packet. Note, in this preferred version, that the device according to the invention can be adapted to acquire, from one and the same incident light pulse or from the same group of grouped pulses, all measurement points located on the same sighting distance or only a part of these measuring points. In this second case, the device is also adapted to deliver several incident light pulses or several packets of pulses grouped for each direction of sight.
Cette version préférée n'exclut pas la possibilité de prévoir un dispositif de détection et de mesure de vent adapté pour délivrer une impulsion lumineuse incidente (ou le cas échéant un paquet d'impulsions groupées) pour chaque point de mesure. Dans ce cas, le dispositif présente de préférence une puissance variable et des moyens pour ajuster la puissance, à chaque impulsion lumineuse incidente délivrée, en fonction de la distance de mesure du point de mesure correspondant. Il est également possible d'utiliser un lidar de puissance fixe, de préférence choisie en fonction de la distance de mesure maximale, ce qui a pour avantage de diminuer l'erreur de mesure pour les petites distances de mesure - c'est-à-dire lorsqu'on se rapproche de l'aéronef-.This preferred version does not exclude the possibility of providing a wind detection and measurement device adapted to deliver an incident light pulse (or possibly a group of pulsed pulses) for each measurement point. In this case, the device preferably has a variable power and means for adjusting the power, at each incident light pulse delivered, depending on the measurement distance of the corresponding measurement point. It is also possible to use a fixed power lidar, preferably chosen as a function of the maximum measurement distance, which has the advantage of reducing the measurement error for small measurement distances - that is, say when getting closer to the aircraft-.
Avantageusement, le dispositif selon l'invention est adapté pour permettre de définir chaque distance de mesure non seulement en unité de longueur, par exemple en mètre ou en pied, mais aussi en unité de temps, de préférence en seconde. A cette fin, il comprend avantageusement des moyens de calcul aptes à calculer la distance (exprimée en unité de longueur) entre le lidar et chaque point de mesure, à partir de la distance de mesure exprimée en temps et de données représentatives de la vitesse de vol de l'aéronef, fournies en temps réel par une unité de traitement de l'aéronef. Ces moyens de calcul peuvent être intégrés dans ladite unité de traitement de l'aéronef ou dans une unité de traitement propre au lidar.Advantageously, the device according to the invention is adapted to make it possible to define each measurement distance not only in unit of length, for example in meters or feet, but also in units of time, preferably in seconds. To this end, it advantageously comprises calculation means able to calculate the distance (expressed in unit length) between the lidar and each measurement point, from the measurement distance expressed in time and data representative of the speed of measurement. flight of the aircraft, provided in real time by a processing unit of the aircraft. These calculation means may be integrated in said processing unit of the aircraft or in a processing unit specific to lidar.
Avantageusement, le dispositif selon l'invention est adapté pour mesurer des vitesses de vent jusqu'à des distances de mesure atteignant 4 secondes ou 800 mètres, ou même 5 secondes ou 1000 mètres, voire éventuellement 7 secondes ou 1400 mètres. En pratique, la distance de mesure maximale du dispositif selon l'invention est choisie en fonction de la plus petite fréquence que l'on souhaite déceler.Advantageously, the device according to the invention is suitable for measuring wind speeds up to measurement distances of up to 4 seconds or 800 meters, or even 5 seconds or 1000 meters, or possibly even 7 seconds or 1400 meters. In practice, the maximum measurement distance of the device according to the invention is chosen as a function of the smallest frequency that one wishes to detect.
Avantageusement, le dispositif selon l'invention est adapté pour
mesurer des vitesses de vent en au moins six points de mesure à chaque distance de mesure, lesquels points forment -à chaque distance de mesure- trois couples, dits couples verticaux, de points de mesure alignés selon la direction verticale et au moins un couple, dit couple transversal, de points de mesure alignés selon la direction transversale. De préférence, à chaque distance de mesure ou à certaines d'entre elles seulement, le dispositif selon l'invention est adapté pour mesurer des vitesses de vent en au moins dix points de mesure formant cinq couples verticaux de points de mesure.Advantageously, the device according to the invention is adapted for measuring wind speeds in at least six measuring points at each measurement distance, which points form, at each measurement distance, three pairs, called vertical pairs, of measuring points aligned in the vertical direction and at least one pair, said transverse torque, measuring points aligned in the transverse direction. Preferably, at each measurement distance or at only some of them, the device according to the invention is suitable for measuring wind speeds in at least ten measurement points forming five vertical pairs of measuring points.
Avantageusement, le dispositif selon l'invention est adapté pour mesurer des vitesses de vent à au moins une distance de mesure proche de l'aéronef, par exemple inférieure à 250ms ou à 50m et de préférence inférieure à 150ms ou à 30m, afin d'offrir un dispositif alternatif à l'anémomètre de l'aéronef.Advantageously, the device according to the invention is adapted to measure wind speeds at least a measurement distance close to the aircraft, for example less than 250ms or 50m and preferably less than 150ms or 30m, in order to offer an alternative device to the anemometer of the aircraft.
Avantageusement, le dispositif selon l'invention est adapté pour mesurer des vitesses de vent à des distances de mesure de plus en plus rapprochées les unes des autres en direction de l'aéronef, ou autrement dit de plus en plus éloignées les unes des autres au fur et à mesure que l'on s'éloigne de l'aéronef. En d'autres termes, si "x" désigne la distance de mesure et "Δx" désigne la distance entre deux distances de mesure successives, Δx croît avantageusement avec x. Par exemple, Δx croît de façon exponentielle. Avantageusement, le dispositif de détection et de mesure de vent selon l'invention est relié à une unité de traitement de l'aéronef elle-même reliée à des capteurs de l'aéronef choisis parmi : une centrale inertielle apte à mesurer la vitesse verticale Vz de l'aéronef par rapport au sol, l'angle Φ d'inclinaison des ailes de l'aéronef par rapport à l'horizontale, l'assiette θ de l'aéronef et sa vitesse de tangage q ; une sonde anémométrique, usuellement utilisée pour mesurer la vitesse Vtas de l'aéronef par rapport à la masse d'air dans laquelle évolue l'aéronef ; une sonde d'incidence, usuellement utilisée pour mesurer l'angle d'incidence α de l'aéronef ; une sonde de dérapage, usuellement utilisée pour mesurer l'angle de dérapage β de l'aéronef. Le dispositif selon l'invention et l'un ou plusieurs des capteurs précités peuvent alors avantageusement être utilisés pour réaliser une hybridation du signal en vue d'améliorer la précision de la mesure.Advantageously, the device according to the invention is suitable for measuring wind speeds at measurement distances that are closer and closer to each other in the direction of the aircraft, or that are more and more distant from each other at the same time. as one moves away from the aircraft. In other words, if "x" denotes the measurement distance and "Δx" denotes the distance between two successive measuring distances, Δx advantageously increases with x. For example, Δx grows exponentially. Advantageously, the wind detection and measurement device according to the invention is connected to a processing unit of the aircraft itself connected to sensors of the aircraft chosen from: an inertial unit able to measure the vertical speed Vz of the aircraft with respect to the ground, the angle Φ of inclination of the wings of the aircraft relative to the horizontal, the attitude θ of the aircraft and its pitching speed q; an airspeed sensor, usually used to measure the speed Vtas of the aircraft relative to the air mass in which the aircraft operates; an incidence probe, usually used to measure the angle of incidence α of the aircraft; a skid probe, usually used to measure the skid angle β of the aircraft. The device according to the invention and one or more of the aforementioned sensors can then advantageously be used to hybridize the signal in order to improve the accuracy of the measurement.
L'invention s'étend à un aéronef comprenant au moins un -et de préférence un unique- dispositif de détection et de mesure de vent selon l'invention.
D'autres détails et avantages de la présente invention apparaîtront à la lecture de la description suivante, qui se réfère aux dessins schématiques annexés et porte sur un mode de réalisation préférentiel, fourni à titre d'exemple non limitatif. Sur ces dessins : - la figure 1 est une vue schématique en perspective d'un aéronef et de l'environnement à l'avant de celui-ci, sur laquelle sont matérialisés des points de mesure visés par un dispositif selon l'invention,The invention extends to an aircraft comprising at least one and preferably a single device for detecting and measuring wind according to the invention. Other details and advantages of the present invention will appear on reading the following description, which refers to the attached schematic drawings and relates to a preferred embodiment, provided by way of non-limiting example. In these drawings: FIG. 1 is a diagrammatic perspective view of an aircraft and of the environment at the front thereof, on which measurement points targeted by a device according to the invention are shown,
- la figure 2 est un diagramme représentant un signal de profil du vent construit à l'aide d'un dispositif selon l'invention. L'aéronef illustré sur la figure 1 est équipé d'un dispositif de détection et de mesure de vent qui, selon l'invention, comprend un lidar et est adapté pour mesurer des vitesses de vent en une pluralité de couples de points de mesure situés à différentes distances, dites distances de mesure, du nez de l'aéronef. Avantageusement, ce dispositif comprend un unique lidar et présente donc un poids et un encombrement limités. De façon usuelle, ce lidar comprend un laser apte à émettre des impulsions lumineuses incidentes dirigées, séparées ou groupées par paquets, un télescope qui recueille l'onde rétrodiffusée par les particules rencontrées par le faisceau incident.- Figure 2 is a diagram showing a wind profile signal constructed using a device according to the invention. The aircraft illustrated in FIG. 1 is equipped with a wind detection and measurement device which, according to the invention, comprises a lidar and is adapted to measure wind speeds at a plurality of pairs of measuring points located at different distances, called measurement distances, from the nose of the aircraft. Advantageously, this device comprises a single lidar and therefore has a limited weight and bulk. Conventionally, this lidar comprises a laser capable of emitting incident light pulses directed, separated or grouped in packets, a telescope which collects the wave backscattered by the particles encountered by the incident beam.
Le dispositif selon l'invention comprend par ailleurs des moyens de traitement informatiques (logiciels et matériels) à microprocesseur(s).The device according to the invention further comprises computer processing means (software and hardware) microprocessor (s).
Le télescope et les moyens de traitement sont avantageusement adaptés pour recueillir, à chaque impulsion lumineuse incidente ou à chaque paquet d'impulsions groupées émis par le laser, l'onde rétrodiffusée à différents temps tn à compter de l'émission de l'impulsion lumineuse incidente, chaque temps tn correspondant à une distance de mesure Xn selon la relation tn = 2xn/c (où c désigne la vitesse de la lumière). De préférence, la distance Δx entre deux distances de mesure consécutives augmente avec x, par exemple de façon exponentielle. Le laser possède avantageusement une longueur d'ondes située dans l'ultraviolet, qui offre une bonne résolution. Il dispose par ailleurs d'une puissance adaptée pour permettre de mesurer des vitesses de vent à une distance de mesure maximale comprise entre 500m et 1500m, par exemple de l'ordre de 1000m ou 5s. Il peut toutefois disposer d'une puissance inférieure et délivrer dans ce cas des impulsions lumineuses incidentes groupées par paquets, afin de compenser une puissance a priori insuffisante (pour les grandes distances
de mesure).The telescope and the processing means are advantageously adapted to collect, at each incident light pulse or at each packet of group pulses emitted by the laser, the backscattered wave at different times t n from the moment the pulse is transmitted. incident light, each time t n corresponding to a measurement distance X n according to the relationship t n = 2x n / c (where c denotes the speed of light). Preferably, the distance Δx between two consecutive measurement distances increases with x, for example exponentially. The laser advantageously has a wavelength located in the ultraviolet, which offers a good resolution. It also has a power adapted to measure wind speeds at a maximum measurement distance between 500m and 1500m, for example of the order of 1000m or 5s. However, it may have a lower power and in this case deliver incident light pulses grouped in packets, in order to compensate for a power that is a priori insufficient (for long distances measurement).
Le dispositif selon l'invention comprend de plus des moyens d'ajustement de la direction de visée de son lidar, permettant de modifier la direction de visée entre deux impulsions lumineuses incidentes émises (ou entre deux paquets). En l'exemple illustré, le dispositif est programmé de façon à émettre des impulsions lumineuses incidentes selon douze directions de visée. En d'autres termes, au moins pour certaines distances de mesure Xn, le dispositif est apte à mesurer des vitesses de vent en douze points de mesure 1 à 12.The device according to the invention furthermore comprises means for adjusting the aiming direction of its lidar, making it possible to modify the aiming direction between two transmitted incident light pulses (or between two packets). In the illustrated example, the device is programmed to emit incident light pulses along twelve viewing directions. In other words, at least for certain measuring distances X n , the device is able to measure wind speeds in twelve measuring points 1 to 12.
Les points de mesure situés à la même distance de mesure appartiennent à une même sphère centrée sur le lidar dans le référentiel aéronef.The measuring points located at the same measurement distance belong to the same sphere centered on the lidar in the aircraft reference system.
Par approximation, ils sont représentés sur la figure 1 comme appartenant à un même plan, dit plan de mesure, orthogonal à la direction longitudinale L de l'aéronef et situé à une distance du nez de l'aéronef égale à la distance de mesure. Par souci de clarté, seuls trois plans de mesure, situés aux distances de mesure xp-2, xp-i et xp, ont été représentés sur la figure 1 ; ils ont été de surcroît volontairement écartés les uns des autres pour une plus grande lisibilité.By approximation, they are represented in FIG. 1 as belonging to the same plane, called the measuring plane, orthogonal to the longitudinal direction L of the aircraft and located at a distance from the nose of the aircraft equal to the measurement distance. For the sake of clarity, only three measurement planes, located at the measurement distances x p-2 , x p-1 and x p , have been represented in FIG. 1; In addition, they have been voluntarily separated from each other for greater readability.
Dans le plan de mesure illustré situé à la distance de mesure xp :In the illustrated measurement plane located at the measurement distance x p :
- les points de mesure 1 et 11 forment un couple vertical de points de mesure fournissant, par différence vectorielle des vitesses mesurées en ces points, une évaluation de la composante verticale WZ A de la vitesse du vent en un endroit de l'atmosphère situé en regard -selon la direction longitudinale- d'une portion centrale ou distale (c'est-à-dire proche du bout) de l'aile tribord de l'aéronef,the measurement points 1 and 11 form a vertical pair of measuring points providing, by vectorial difference of the speeds measured at these points, an evaluation of the vertical component W Z A of the wind speed at a point in the atmosphere located facing the longitudinal direction of a central or distal portion (that is to say close to the end) of the starboard wing of the aircraft,
- les points de mesure 2 et 10 forment un couple vertical de points de mesure fournissant, par différence vectorielle, une évaluation de la composante verticale WZ B de la vitesse du vent en un endroit de l'atmosphère situé en regard -selon la direction longitudinale- d'une portion proximale (c'est-à- dire proche de l'emplanture) ou centrale de l'aile tribord de l'aéronef,the measurement points 2 and 10 form a vertical pair of measuring points providing, by vectorial difference, an evaluation of the vertical component W Z B of the wind speed at a location in the opposite atmosphere - according to the direction longitudinal-a proximal portion (that is to say close to the root) or central portion of the starboard wing of the aircraft,
- les points de mesure 3 et 9 forment un couple vertical de points de mesure fournissant, par différence vectorielle, une évaluation de la composante verticale Wz c de la vitesse du vent en un endroit de l'atmosphère situé sur un axe longitudinal central de l'aéronef, c'est-à-dire en regard -selon la direction longitudinale- du nez et du fuselage de l'aéronef,the measurement points 3 and 9 form a vertical pair of measuring points providing, by vectorial difference, an evaluation of the vertical component W z c of the wind speed at a point in the atmosphere situated on a central longitudinal axis of the aircraft, that is to say facing the longitudinal direction of the nose and the fuselage of the aircraft,
- les points de mesure 4 et 8 forment un couple vertical de
points de mesure fournissant, par différence vectorielle, une évaluation de la composante verticale WZ D de la vitesse du vent en un endroit de l'atmosphère situé en regard -selon la direction longitudinale- d'une portion proximale (c'est-à- dire proche de l'emplanture) ou centrale de l'aile bâbord de l'aéronef, - les points de mesure 5 et 7 forment un couple vertical de points de mesure fournissant, par différence vectorielle, une évaluation de la composante verticale WZ E de la vitesse du vent en un endroit de l'atmosphère situé en regard -selon la direction longitudinale- d'une portion centrale ou distale (c'est-à-dire proche du bout) de l'aile bâbord de l'aéronef, - les points de mesure 1 et 5, ou les points de mesure 2 et 4, forment un couple transversal de points de mesure fournissant, par différence vectorielle, une évaluation de la composante transversale Wt A de la vitesse du vent en un endroit de l'atmosphère situé dans un plan longitudinal vertical médian (plan de symétrie) de l'aéronef, au-dessus de l'axe longitudinal central de l'aéronef,the measuring points 4 and 8 form a vertical pair of measuring points providing, by vectorial difference, an evaluation of the vertical component W Z D of the wind speed at a location of the atmosphere located opposite the longitudinal direction of a proximal portion (ie - say close to the root) or central port wing of the aircraft, - the measuring points 5 and 7 form a vertical pair of measuring points providing, by vector difference, an evaluation of the vertical component W Z E of the wind speed at a location in the atmosphere opposite - in the longitudinal direction - a central or distal portion (that is, near the tip) of the port wing of the aircraft - measuring points 1 and 5, or measuring points 2 and 4, form a transverse pair of measuring points providing, by vectorial difference, an evaluation of the transverse component W t A of the wind speed in one place of the atmosphere located in a vertical longitudinal plane year (plane of symmetry) of the aircraft, above the central longitudinal axis of the aircraft,
- les points de mesure 6 et 12 forment un couple transversal de points de mesure fournissant, par différence vectorielle, une évaluation de la composante transversale Wt B de la vitesse du vent en un endroit de l'atmosphère situé sur l'axe longitudinal central de l'aéronef, c'est-à-dire en regard du nez et du fuselage de l'aéronef,the measurement points 6 and 12 form a transverse pair of measuring points providing, by vectorial difference, an evaluation of the transverse component W t B of the wind speed at a location of the atmosphere situated on the central longitudinal axis of the aircraft, that is to say, facing the nose and the fuselage of the aircraft,
- les points de mesure 11 et 7, ou les points de mesure 10 et 8, forment un couple transversal de points de mesure fournissant, par différence vectorielle, une évaluation de la composante transversale Wt c de la vitesse du vent en un endroit de l'atmosphère situé dans le plan longitudinal vertical médian de l'aéronef, au-dessous de l'axe longitudinal central de l'aéronef.the measurement points 11 and 7, or the measuring points 10 and 8, form a transverse pair of measuring points providing, by vectorial difference, an evaluation of the transverse component W t c of the wind speed at a location of the atmosphere located in the median vertical longitudinal plane of the aircraft, below the central longitudinal axis of the aircraft.
Les points de mesure 1 des différents plans de mesure sont alignés selon une première direction de visée du lidar ; ils forment une première série de points de mesure. De même, les points de mesure 2 des différents plans de mesure sont alignés selon une deuxième direction de visée du lidar et forment une deuxième série de points de mesure, et ainsi de suite. De préférence, chaque série de points de mesure comprend au moins quatre points de mesure répartis sur la plage de distances [0 ; 200m] ou [0 ; 1s] et au moins trois autres points de mesure répartis sur la plage de distances [200m ; 1000m] ou [1s ; 5s]. Le nombre de points de mesure par série et leur répartition peut varier d'une série à une
autre. Par exemple, les séries de points de mesure 3 et 9, qui fournissent des évaluations de la composante verticale W2 C de la vitesse du vent en regard du fuselage de l'aéronef, comprennent avantageusement un nombre de points de mesure relativement élevé, dont au moins huit (et de préférence au moins 16) points de mesure répartis sur la plage de distances [0 ; 200m] ou [0 ; 1s] et au moins six (et de préférence au moins douze) autres points de mesure répartis sur la plage de distances [200m ; 1000m] ou [1s ; 5s]. En revanche, les séries de points de mesure 2, 10, 4 et 8 par exemple peuvent comprendre un nombre de points de mesure inférieur, notamment dans la plage de distances [200m ; 1000m] ou [1s ; 5s].The measurement points 1 of the different measurement planes are aligned in a first viewing direction of the lidar; they form a first series of measurement points. Similarly, the measurement points 2 of the different measurement planes are aligned in a second direction of view of the lidar and form a second series of measurement points, and so on. Preferably, each series of measurement points comprises at least four measurement points distributed over the range of distances [0; 200m] or [0; 1s] and at least three other measuring points distributed over the range of distances [200m; 1000m] or [1s; 5s]. The number of measurement points per series and their distribution may vary from one series to one other. For example, the series of measurement points 3 and 9, which provide evaluations of the vertical component W 2 C of the wind speed opposite the fuselage of the aircraft, advantageously comprise a relatively large number of measurement points, of which at least eight (and preferably at least 16) measuring points distributed over the range of distances [0; 200m] or [0; 1s] and at least six (and preferably at least twelve) other measuring points distributed over the range of distances [200m; 1000m] or [1s; 5s]. On the other hand, the series of measuring points 2, 10, 4 and 8 for example may comprise a smaller number of measuring points, in particular in the range of distances [200m; 1000m] or [1s; 5s].
Le dispositif selon l'invention fonctionne de préférence comme suit. Une première impulsion lumineuse est émise selon la première direction de visée passant par les points de mesure 1 ; cette impulsion permet d'acquérir la fréquence de l'onde rétrodiffusée au point de mesure 1 pour chaque distance de mesure (de la série), et de mesurer ainsi la vitesse du vent selon la première direction de visée en chaque point de mesure 1. Les moyens d'ajustement sont ensuite actionnés pour modifier la direction de visée du lidar, de façon à ce que celui-ci pointe sur les points de mesure 2. Une deuxième impulsion lumineuse est alors émise selon la deuxième direction de visée (passant par les points de mesure 2) ; cette impulsion permet d'acquérir la fréquence de l'onde rétrodiffusée pour la série des points de mesure 2, et de mesurer ainsi la vitesse du vent selon la deuxième direction de visée pour chacun desdits points de mesure 2. Les moyens d'ajustement sont alors actionnés pour modifier la direction de visée du lidar, de façon à ce que celui-ci pointe sur les points de mesure 3, puis une troisième impulsion lumineuse est émise selon cette nouvelle -troisième- direction de visée, et ainsi de suite pour toutes les directions de visée.The device according to the invention preferably operates as follows. A first light pulse is emitted in the first direction of view passing through the measuring points 1; this pulse makes it possible to acquire the frequency of the backscattered wave at the measurement point 1 for each measurement distance (of the series), and thus to measure the wind speed according to the first direction of sight at each measuring point 1. The adjustment means are then actuated to change the aiming direction of the lidar, so that it points to the measuring points 2. A second light pulse is then emitted in the second direction of view (passing through the measuring points 2); this pulse makes it possible to acquire the frequency of the backscattered wave for the series of measurement points 2, and thus to measure the wind speed according to the second direction of sight for each of said measurement points 2. The adjustment means are then actuated to change the sighting direction of the lidar, so that it points to the measuring points 3, then a third light pulse is emitted according to this new -third-direction of sight, and so on for all the sighting directions.
L'acquisition de mesures pour les douze séries de points de mesure constitue un cycle de mesure, qui est répété indéfiniment de façon itérative. A titre d'exemple, le dispositif selon l'invention est avantageusement adapté pour réaliser un cycle de mesure complet en moins de 60ms.The acquisition of measurements for the twelve series of measurement points constitutes a measurement cycle, which is repeated indefinitely iteratively. For example, the device according to the invention is advantageously adapted to perform a complete measurement cycle in less than 60ms.
Durant et pour chaque cycle de mesure, les moyens de traitement du dispositif de détection et de mesure de vent calculent, par différence vectorielle, la composante verticale WZ A de la vitesse du vent dans chaque plan de mesure à partir des vitesses mesurées pour les points de mesure 1 et 11 dudit plan de
mesure. Sont calculées de façon analogue la composante verticale W2 B de la vitesse du vent dans chaque plan de mesure à partir des vitesses mesurées pour les points de mesure 2 et 10 dudit plan de mesure, et ainsi de suite pour l'ensemble des composantes verticales W2 0 à WZ E. Les moyens de traitement calculent également, par différence vectorielle, la composante transversale Wt A de la vitesse du vent dans chaque plan de mesure à partir des vitesses mesurées pour les points de mesure 1 et 5 (ou 2 et 4) dudit plan de mesure, de même que la composante transversale Wt B -respectivement Wt c -de la vitesse du vent dans chaque plan de mesure à partir des vitesses mesurées pour les points de mesure 12 et 6 -respectivement 11 et 7 (ou 10 et 8)- dudit plan de mesure.During and for each measuring cycle, the wind sensor and wind measurement processing means calculate, by vector difference, the vertical component W Z A of the wind speed in each measurement plane from the measured speeds for measuring points 1 and 11 of said plane of measured. The vertical component W 2 B of the wind speed in each measurement plane is calculated analogously from the speeds measured for the measuring points 2 and 10 of said measurement plane, and so on for all the vertical components. W 2 0 to W Z E. The processing means also calculate, by vector difference, the transverse component W t A of the wind speed in each measurement plane from the speeds measured for the measuring points 1 and 5 (or 2 and 4) of said measurement plane , as well as the transverse component W t B - respectively W t c - of the wind speed in each measurement plane from the speeds measured for the measurement points 12 and 6 - respectively 11 and 7 (or 10 and 8) - of said measurement plan.
En variante ou en combinaison, les moyens de traitement du dispositif de détection et de mesure de vent peuvent éventuellement calculer des composantes de vitesse du vent à partir de vitesses mesurées pour des cycles de mesure différents (successifs ou non) et/ou pour des points de mesure situés à des distances de mesure différentes (consécutives ou non), et ce afin de tenir compte de la distance parcourue par l'aéronef dans le référentiel terrestre au cours d'un cycle de mesure. Par exemple, les moyens de traitement peuvent être programmés pour calculer la composante verticale WZ A de la vitesse du vent à une distance Xj pour le cycle j à partir, d'une part de la vitesse mesurée pour le point de mesure 11 à la distance Xj pour le cycle j-1 , et d'autre part de la vitesse mesurée pour le point de mesure 1 à la distance Xj pour le cycle j (sous réserve que le sens de "rotation" du cycle de mesure soit celui décrit plus haut). Selon un autre exemple, notamment dans le cas où la vitesse de l'aéronef est importante et est par exemple supérieure à une valeur seuil prédéfinie, les moyens de traitement peuvent être programmés pour calculer la composante verticale Wz c de la vitesse du vent à une distance Xj pour le cycle j à partir, d'une part de la vitesse mesurée pour le point de mesure 3 à la distance Xj+i pour le cycle j-1 , et d'autre part de la vitesse mesurée pour le point de mesure 9 à la distance Xj pour le cycle j.As a variant or in combination, the means for processing the wind detection and measurement device may optionally calculate wind speed components from measured speeds for different measurement cycles (successive or otherwise) and / or for points measured at different measurement distances (consecutive or not), in order to take into account the distance traveled by the aircraft in the terrestrial reference system during a measurement cycle. For example, the processing means can be programmed to calculate the vertical component W Z A of the wind speed at a distance Xj for the cycle j from, on the one hand, of the speed measured for the measuring point 11 on the distance Xj for the cycle j-1, and secondly from the speed measured for the measuring point 1 to the distance Xj for the cycle j (provided that the direction of "rotation" of the measuring cycle is the one described more high). According to another example, especially in the case where the speed of the aircraft is large and is for example greater than a predefined threshold value, the processing means can be programmed to calculate the vertical component W z c of the wind speed at a distance Xj for the cycle j from, on the one hand, the speed measured for the measuring point 3 to the distance Xj + i for the cycle j-1, and on the other hand the speed measured for the point of measure 9 at the distance Xj for the cycle j.
Certaines ou la totalité des composantes verticales WZ A à WZ E et transversales Wt A à Wt c ainsi calculées sont utilisées, par les moyens de traitement, pour construire un ou plusieurs signaux de profil du vent. Chaque signal de profil du vent représente à un instant donné la composante selon une direction d'excitation (verticale ou transversale) de la vitesse du vent à l'avant de l'aéronef en fonction de la distance x.
Par exemple, l'ensemble des composantes Wz c calculées pour les différentes distances de mesure et pour un même cycle de mesure est utilisé pour construire un signal de profil du vent selon la direction verticale dans le plan médian de l'aéronef. La figure 2 illustre ce signal qui, en l'exemple, est un signal continu (qui peut cependant être par paliers) obtenu par interpolation à partir des composantes Wz c calculées. Ce signal permet de prédire les excitations en tangage de l'aéronef.Some or all of the vertical components W Z A to W Z E and transverse W t A to W t c thus calculated are used by the processing means to construct one or more wind profile signals. Each wind profile signal represents at a given instant the component in a direction of excitation (vertical or transverse) of the wind speed at the front of the aircraft as a function of the distance x. For example, the set of components W z c calculated for the different measurement distances and for the same measurement cycle is used to construct a wind profile signal in the vertical direction in the median plane of the aircraft. FIG. 2 illustrates this signal which, in the example, is a continuous signal (which may however be in steps) obtained by interpolation from the calculated components W z c . This signal makes it possible to predict the pitching excitations of the aircraft.
De façon analogue, l'ensemble des composantes WZ B calculées pour les différentes distances de mesure et pour un même cycle de mesure peut être utilisé pour construire un signal de profil du vent selon la direction verticale dans un plan tribord de l'aéronef. L'ensemble des composantes WZ D calculées pour les différentes distances de mesure et pour un même cycle de mesure peut être utilisé pour construire un signal de profil du vent selon la direction verticale dans un plan bâbord de l'aéronef. Ces deux signaux sont utiles à la détermination des moments de roulis que va subir l'aéronef.Similarly, the set of components W Z B calculated for the different measurement distances and for the same measurement cycle can be used to construct a wind profile signal in the vertical direction in a starboard plane of the aircraft. The set of components W Z D calculated for the different measurement distances and for the same measurement cycle can be used to construct a wind profile signal in the vertical direction in a port plane of the aircraft. These two signals are useful for determining the moments of roll that will undergo the aircraft.
Enfin, l'ensemble des composantes Wt B calculées pour les différentes distances de mesure et pour un même cycle de mesure peut être utilisé pour construire un signal de profil du vent selon la direction transversale dans un plan horizontal de l'aéronef coupant son fuselage. Ce signal permet d'évaluer les risques de dérapage de l'aéronef.Finally, all the components W t B calculated for the different measurement distances and for the same measurement cycle can be used to construct a wind profile signal in the transverse direction in a horizontal plane of the aircraft cutting its fuselage. . This signal makes it possible to evaluate the risk of skidding of the aircraft.
Les autres composantes de vitesse calculées peuvent être utilisées de façon analogue pour construire d'autres signaux de profil du vent si nécessaire, ou pour affiner les précédents signaux dans certaines situations.The other calculated velocity components can be used in a similar way to construct other wind profile signals if necessary, or to refine the previous signals in certain situations.
Chaque signal de profil du vent ainsi construit caractérise l'environnement atmosphérique de l'aéronef à un instant donné et est réactualisé en permanence au moins toutes les 60ms (durée d'un cycle de mesure).Each wind profile signal thus constructed characterizes the atmospheric environment of the aircraft at a given moment and is updated continuously at least every 60 ms (duration of a measurement cycle).
Les moyens de traitement du dispositif selon l'invention sont de plus avantageusement adaptés pour traiter au moins un signal de profil du vent, et par exemple le signal de profil du vent Wz c, de façon à en déterminer un contenu fréquentiel. Il est à noter que les traitements appliqués pour déterminer ce contenu fréquentiel dépendent des fréquences recherchées et donc de la direction d'excitation concernée, c'est-à-dire du signal de profil du vent analysé. La description qui suit concerne le signal Wz c (direction d'excitation verticale, vent dans le plan médian de l'aéronef).
Ce signal de profil du vent Wz c permet notamment de déceler si des phénomènes de tangage de l'aéronef (qui génèrent un grand inconfort pour les personnes) sont susceptibles de se produire. A cette fin, les moyens de traitement sont adaptés pour rechercher si le signal de profil du vent Wz c comporte au moins une fréquence proche de la fréquence d'oscillation d'incidence de l'aéronef. Une telle fréquence d'oscillation d'incidence est généralement de l'ordre de 0,3Hz. Pour pouvoir observer une telle fréquence, il convient de disposer d'un signal couvrant une période d'au moins 3,4s, et par exemple de l'ordre de 4s. C'est pourquoi d'une part le lidar présente de préférence une distance de visée maximale de quelques 5s ou 1000m, et d'autre part sont prévus au moins quatre -et de préférence au moins huit- points de mesure sur la plage de distances [0 ; 5s] ou [0 ; 1000m] ou, pour les raisons évoquées ci-après, sur la plage de distances [1s ; 5s] ou [200m ; 100Om]. Les phénomènes de tangage sont avantageusement contrés à l'aide d'une ou plusieurs surfaces mobiles de contrôle de la queue de l'aéronef. De telles surfaces mobiles ont un effet indirect sur les charges subies par le fuselage et la voilure de l'aéronef. Il est donc préférable de détecter les turbulences correspondantes le plus tôt possible, c'est-à-dire à grande distance du nez de l'aéronef. Par conséquent, on analyse de préférence la partie du signal de profil du vent correspondant à la plage de distances [1s ; 5s] ou [200m ; 100Om]. En pratique, les moyens de traitement traitent avantageusement la totalité du signal Wz c ou la partie de signal susmentionnée de façon à déterminer si celui-ci ou celle-ci comporte des fréquences inférieures à 0,5Hz.The processing means of the device according to the invention are also advantageously adapted to process at least one wind profile signal, and for example the wind profile signal W z c , so as to determine a frequency content. It should be noted that the treatments applied to determine this frequency content depend on the frequencies sought and therefore on the excitation direction concerned, that is to say on the profile of the wind profile analyzed. The following description relates to the signal W z c (direction of vertical excitation, wind in the median plane of the aircraft). This wind profile signal W z c makes it possible, in particular, to detect whether pitching phenomena of the aircraft (which generate great discomfort for persons) are likely to occur. For this purpose, the processing means are adapted to look for whether the wind profile signal W z c comprises at least one frequency close to the incidence oscillation frequency of the aircraft. Such an incidence oscillation frequency is generally of the order of 0.3 Hz. To observe such a frequency, it is necessary to have a signal covering a period of at least 3.4s, and for example of the order of 4s. Therefore, on the one hand, the lidar preferably has a maximum sighting distance of some 5s or 1000m, and on the other hand at least four and preferably at least eight measuring points are provided over the range of distances. [0; 5s] or [0; 1000m] or, for the reasons given below, over the range of distances [1s; 5s] or [200m; 100Om]. The pitching phenomena are advantageously countered using one or more mobile control surfaces of the tail of the aircraft. Such moving surfaces have an indirect effect on the loads experienced by the fuselage and wing of the aircraft. It is therefore preferable to detect the corresponding turbulence as soon as possible, that is to say at a great distance from the nose of the aircraft. Therefore, the part of the wind profile signal corresponding to the range of distances [1s; 5s] or [200m; 100Om]. In practice, the processing means advantageously process the whole of the signal W z c or the above-mentioned signal part so as to determine whether the latter or this comprises frequencies lower than 0.5 Hz.
Le signal de profil du vent Wz c permet aussi de détecter la présence de turbulences susceptibles de mettre en péril la structure de l'aéronef, et en particulier sa voilure. A cette fin, les moyens de traitement du dispositif selon l'invention sont avantageusement adaptés pour rechercher si le signal de profil du vent Wz c comporte au moins une fréquence proche d'un mode propre d'oscillation en flexion de la voilure. Le premier mode propre en flexion de la voilure d'un aéronef se situe en général entre 1 ,1 Hz et 1 ,5Hz. Pour observer une telle fréquence, il suffit d'analyser le signal de profil du vent sur une période de 0,67s à 1s. Par ailleurs, les effets d'une telle turbulence sont avantageusement contrés à l'aide d'une ou plusieurs surfaces mobiles de contrôle de la voilure. De telles surfaces mobiles ont des vitesses de braquage relativement importantes et, surtout, un effet direct et immédiat sur les charges subies par la voilure. Ii peut
donc être prévu d'analyser le signal de profil du vent à proximité du nez de l'aéronef, zone où le signal obtenu est plus précis. En pratique, les moyens de traitement traitent donc de préférence la partie du signal de profil du vent Wz c correspondant à la plage de distances [0 ; 1s] ou [0 ; 200m] de façon à déterminer si celle-ci comporte des fréquences supérieures à 1 Hz.The wind profile signal W z c also makes it possible to detect the presence of turbulence likely to endanger the structure of the aircraft, and in particular its wing. To this end, the processing means of the device according to the invention are advantageously adapted to investigate whether the wind profile signal W z c comprises at least a frequency close to a natural mode of oscillation in bending of the wing. The first natural bending mode of the wing of an aircraft is generally between 1.1 Hz and 1.5 Hz. To observe such a frequency, it suffices to analyze the wind profile signal over a period of 0.67s to 1s. Moreover, the effects of such turbulence are advantageously countered using one or more movable wing control surfaces. Such moving surfaces have relatively high steering speeds and, most importantly, a direct and immediate effect on the loads experienced by the wing. He can so be expected to analyze the wind profile signal near the nose of the aircraft, area where the signal obtained is more accurate. In practice, the processing means therefore preferably treat the part of the wind profile signal W z c corresponding to the range of distances [0; 1s] or [0; 200m] so as to determine if it has frequencies greater than 1 Hz.
Il est à noter que la voilure de certains aéronefs présente un mode propre en flexion compris entre 0,6 et 0,7Hz. Pour ces aéronefs, les moyens de traitement sont avantageusement adaptés pour traiter la partie du signal de profil du vent correspondant à la plage de distances [0 ; 2s] ou [0 ; 400m] de façon à déterminer si celle-ci comporte des fréquences supérieures à 0,5Hz.It should be noted that the wing of some aircraft has a clean bending mode between 0.6 and 0.7 Hz. For these aircraft, the processing means are advantageously adapted to process the part of the wind profile signal corresponding to the range of distances [0; 2s] or [0; 400m] so as to determine if it has frequencies greater than 0.5Hz.
Les traitements de signal précédemment décrits peuvent être réalisés de diverses façons.The previously described signal treatments can be realized in various ways.
Selon un premier mode de réalisation, les moyens de traitement comprennent au moins un filtre passe-bas et au moins un filtre passe-haut. Le filtre passe-bas permet d'atténuer voire éliminer les fréquences hautes et donc de déceler les fréquences basses ; le filtre passe-haut permet à l'inverse de déceler les fréquences hautes. Lesdits filtres sont choisis en fonction des plages de fréquences recherchées. En l'exemple, on utilise avantageusement, d'une part un filtre passe-bas dont la fréquence de coupure (fréquence au-dessus de laquelle les fréquences sont atténuées ou éliminées) est sejisiblement égale à 0,5Hz, et d'autre part un filtre passe-haut dont la fréquence de coupure (fréquence en dessous de laquelle les fréquences sont atténuées ou éliminées) est sensiblement égale à 0,5Hz ou à 1 Hz.According to a first embodiment, the processing means comprise at least one low-pass filter and at least one high-pass filter. The low-pass filter makes it possible to attenuate or even eliminate the high frequencies and thus to detect the low frequencies; the high-pass filter allows reverse to detect high frequencies. Said filters are chosen according to the desired frequency ranges. In the example, it is advantageous to use firstly a low-pass filter whose cutoff frequency (frequency above which the frequencies are attenuated or eliminated) is equal to 0.5Hz, and secondly a high-pass filter whose cutoff frequency (frequency below which the frequencies are attenuated or eliminated) is substantially equal to 0.5 Hz or 1 Hz.
Selon un deuxième mode de réalisation, les moyens de traitement sont adaptés pour évaluer une période moyenne du signal de profil du vent sur la partie de signal à traiter (c'est-à-dire sur l'intervalle [0 ; 400m] ou [0 ; 2s], ou l'intervalle [0 ; 200m] ou [0 ; 1s], ou la totalité du signal, selon la plage de fréquences recherchée), en fonction du nombre de passages dudit signal par la valeur zéro sur cette partie. L'inverse de cette période moyenne ainsi évaluée fournit une fréquence moyenne du signal sur la partie traitée.According to a second embodiment, the processing means are adapted to evaluate an average period of the wind profile signal on the part of signal to be processed (that is to say on the interval [0; 400m] or [ 0; 2s], or the interval [0; 200m] or [0; 1s], or the whole of the signal, depending on the desired frequency range), as a function of the number of passages of said signal by the value zero on this part . The inverse of this average period thus evaluated provides an average frequency of the signal on the treated part.
Selon un troisième mode de réalisation, les moyens de traitement sont adaptés pour estimer un écart type moyen du signal de profil du vent sur la partie de signal à traiter, à partir de l'amplitude maximale du signal sur cette partie et d'un coefficient constant prédéterminé de façon empirique et statistique, lequel
coefficient représente le rapport moyen entre l'écart type et l'amplitude maximale d'un signal de profil du vent. Ils sont de plus adaptés pour comparer l'écart type ainsi estimé à une plage d'écarts types correspondant à la plage de fréquences recherchée, laquelle plage d'écarts types est préalablement déterminée par intégration d'une partie d'un spectre de Von Karman ou de Kolmogorov qui représente une densité d'énergie en fonction de la fréquence spatiale et est préétabli de façon empirique et statistique.According to a third embodiment, the processing means are adapted to estimate an average standard deviation of the wind profile signal on the part of the signal to be processed, based on the maximum amplitude of the signal on this part and a coefficient constant predetermined empirically and statistically, which coefficient represents the average ratio between the standard deviation and the maximum amplitude of a wind profile signal. They are also adapted to compare the estimated standard deviation with a range of standard deviations corresponding to the desired frequency range, which range of standard deviations is previously determined by integrating a part of a Von Karman spectrum. or Kolmogorov, which represents a density of energy as a function of spatial frequency and is empirically and statistically predefined.
Les moyens de traitement peuvent être adaptés pour traiter de façon similaire d'autres signaux de profil du vent. L'invention peut faire l'objet de nombreuses variantes par rapport au mode de réalisation illustré, dès lors que ces variantes entrent dans le cadre délimité par les revendications.
The processing means may be adapted to similarly process other wind profile signals. The invention may be subject to numerous variations with respect to the illustrated embodiment, provided that these variants fall within the scope delimited by the claims.
Claims
1. Dispositif de détection et de mesure de vent embarqué dans un aéronef, comprenant un lidar pour la mesure cyclique de vitesses de vent en au moins un couple de points de mesure situés à une même distance, dite distance de mesure, du nez de l'aéronef, caractérisé en ce qu'il est adapté pour mesurer à chaque cycle, à l'aide dudit lidar, des vitesses de vent en une pluralité de couples de points de mesure1. Device for detecting and measuring wind onboard an aircraft, comprising a lidar for the cyclic measurement of wind speeds in at least a pair of measuring points situated at the same distance, referred to as the measurement distance, from the nose of the aircraft. aircraft, characterized in that it is adapted to measure with each cycle, using said lidar, wind speeds in a plurality of pairs of measuring points
(1-12) situés à différentes distances de mesure (xp-2, xp-i, xp), la différence entre la distance de mesure la plus grande et la distance de mesure la plus petite étant supérieure à 100 mètres.(1-12) located at different measurement distances (x p -2, x p -i, x p ), the difference between the largest measurement distance and the smallest measuring distance being greater than 100 meters.
2. Dispositif selon la revendication 1 , caractérisé en ce que la différence entre la distance de mesure la plus grande et la distance de mesure la plus petite est supérieure à 500 mètres. 2. Device according to claim 1, characterized in that the difference between the largest measurement distance and the smallest measurement distance is greater than 500 meters.
3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce qu'il est adapté pour mesurer des vitesses de vent à plus de trois distances de mesure à chaque cycle.3. Device according to one of claims 1 or 2, characterized in that it is adapted to measure wind speeds at more than three measurement distances in each cycle.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce qu'il est adapté pour construire à chaque cycle au moins un signal (Wzc), dit signal de profil du vent selon une direction dite direction d'excitation, à partir d'une pluralité de mesures comprenant la dernière ou éventuellement l'avant-dernière mesure effectuée à chacune des distances de mesure pour au moins un couple de points de mesure (3, 9) alignés selon la direction d'excitation, ledit signal de profil du vent représentant à un instant donné dans un référentiel aéronef la composante, selon ladite direction d'excitation, de la vitesse du vent à l'avant de l'aéronef en fonction de la distance "x" selon une direction longitudinale (L) de l'aéronef.4. Device according to one of claims 1 to 3, characterized in that it is adapted to construct at each cycle at least one signal (Wz c ), said wind profile signal in a direction said direction of excitation, from a plurality of measurements comprising the last or possibly the penultimate measurement made at each of the measurement distances for at least a pair of measuring points (3, 9) aligned in the direction of excitation, said signal of profile of the wind representing at a given moment in an aircraft reference system the component, according to said direction of excitation, of the wind speed at the front of the aircraft as a function of the distance "x" in a longitudinal direction (L ) of the aircraft.
5. Dispositif selon la revendication 4, caractérisé en ce que, pour au moins un signal de profil du vent construit, il est adapté pour traiter ce signal de profil du vent de façon à en déterminer un contenu fréquentiel.5. Device according to claim 4, characterized in that, for at least one wind profile signal constructed, it is adapted to process this wind profile signal so as to determine a frequency content.
6. Dispositif selon la revendication 5, caractérisé en ce qu'il est adapté pour traiter ledit signal de profil du vent de façon à déterminer si celui-ci ou une partie de celui-ci comporte au moins une fréquence comprise dans au moins une plage de fréquences prédéfinie. 6. Device according to claim 5, characterized in that it is adapted to treat said wind profile signal so as to determine whether it or a part thereof comprises at least one frequency included in at least one range preset frequencies.
7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce qu'il est adapté pour mesurer des vitesses de vent en une pluralité de points de mesure situés sur une même direction de visée à différentes distances de mesure à partir d'une même impulsion lumineuse incidente ou d'un même paquet d'impulsions lumineuses incidentes groupées.7. Device according to one of claims 1 to 6, characterized in that it is adapted to measure wind speeds at a plurality of measurement points located on the same direction of view at different measurement distances from the same incident light pulse or the same group of incident light pulses grouped together.
8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce qu'il est adapté pour mesurer des vitesses de vent en au moins six points de mesure (1 , 3, 5, 7, 9, 11) à chaque distance de mesure, lesquels points forment trois couples, dits couples verticaux, de points de mesure alignés selon la direction verticale et au moins un couple, dit couple transversal, de points de mesure alignés selon la direction transversale.8. Device according to one of claims 1 to 7, characterized in that it is adapted to measure wind speeds in at least six measuring points (1, 3, 5, 7, 9, 11) at each distance measuring points, which points form three pairs, said vertical couples, measurement points aligned in the vertical direction and at least one pair, said transverse torque, measuring points aligned in the transverse direction.
9. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce qu'il est adapté pour mesurer des vitesses de vent jusqu'à des distances de mesure atteignant 4 secondes ou 800 mètres. 9. Device according to one of claims 1 to 8, characterized in that it is adapted to measure wind speeds up to measuring distances up to 4 seconds or 800 meters.
10. Dispositif selon l'une des revendications 1 à 9, caractérisé en ce qu'il est adapté pour mesurer des vitesses de vent à des distances de mesure de plus en plus rapprochées les uns des autres en direction de l'aéronef.10. Device according to one of claims 1 to 9, characterized in that it is adapted to measure wind speeds at measurement distances closer and closer to each other in the direction of the aircraft.
11. Aéronef caractérisé en ce qu'il comprend un dispositif de détection et de mesure de vent selon l'une des revendications 1 à 10. 11. Aircraft characterized in that it comprises a device for detecting and measuring wind according to one of claims 1 to 10.
12. Procédé de détection et de mesure de vent mis en œuvre dans un aéronef, dans lequel on mesure de façon cyclique à l'aide d'un lidar des vitesses de vent en au moins un couple de points de mesure situés à une même distance, dite distance de mesure, du nez de l'aéronef, caractérisé en ce qu'on mesure à chaque cycle, à l'aide dudit lidar, des vitesses de vent en une pluralité de couples de points de mesure (1-12) situés à différentes distances de mesure (xp-2l xp-i, xp), la différence entre la distance de mesure la plus grande et la distance de mesure la plus petite étant supérieure à 100 mètres.12. A wind detection and measurement method implemented in an aircraft, in which cyclic measurements using a lidar wind speeds in at least a pair of measuring points located at the same distance , said measurement distance, from the nose of the aircraft, characterized in that each cycle, using said lidar, measures wind speeds in a plurality of pairs of measuring points (1-12) situated at different measurement distances (x p - 2l x p -i, x p ), the difference between the largest measurement distance and the smallest measuring distance being greater than 100 meters.
13. Procédé selon la revendication 12, caractérisé en ce que la différence entre la distance de mesure la plus grande et la distance de mesure la plus petite est supérieure à 500 mètres.13. The method of claim 12, characterized in that the difference between the largest measurement distance and the smallest measurement distance is greater than 500 meters.
14. Procédé selon l'une des revendications 12 ou 13, caractérisé en ce qu'on construit à chaque cycle au moins un signal (Wzc), dit signal de profil du vent selon une direction dite direction d'excitation, à partir d'une pluralité de mesures comprenant la dernière ou éventuellement l'avant-dernière mesure effectuée à chacune des distances de mesure pour au moins un couple de points de mesure (3, 9) alignés selon la direction d'excitation, ledit signal de profil du vent représentant à un instant donné dans un référentiel aéronef la composante, selon ladite direction d'excitation, de la vitesse du vent à l'avant de l'aéronef en fonction de la distance "x" selon une direction longitudinale (L) de l'aéronef.14. Method according to one of claims 12 or 13, characterized in that constructed at each cycle at least one signal (Wz c ), said wind profile signal in a direction said direction of excitation, from 'a plurality of measurements comprising the last or possibly the penultimate measurement performed at each of the measurement distances for at least a pair of measuring points (3, 9) aligned in the direction of excitation, said wind profile signal representing a given instant in an aircraft reference system the component, according to said direction of excitation, of the wind speed at the front of the aircraft as a function of the distance "x" in a longitudinal direction (L) of the aircraft.
15. Procédé selon la revendication 14, caractérisé en ce que, pour au moins un signal de profil du vent construit, on traite ce signal de profil du vent de façon à en déterminer un contenu fréquentiel. 15. Method according to claim 14, characterized in that, for at least one wind profile signal constructed, this wind profile signal is processed so as to determine a frequency content.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0806157A FR2938075B1 (en) | 2008-11-05 | 2008-11-05 | DEVICE AND METHOD FOR DETECTING AND MEASURING WIND FOR AIRCRAFT |
FR2009001262 | 2009-10-30 | ||
PCT/FR2009/001269 WO2010052385A1 (en) | 2008-11-05 | 2009-11-02 | Device and method for detecting and measuring wind for an aircraft |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2353031A1 true EP2353031A1 (en) | 2011-08-10 |
Family
ID=41479376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09753146A Withdrawn EP2353031A1 (en) | 2008-11-05 | 2009-11-02 | Device and method for detecting and measuring wind for an aircraft |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2353031A1 (en) |
WO (1) | WO2010052385A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2970083B1 (en) * | 2011-01-05 | 2013-02-15 | Leosphere | METHOD AND DEVICE FOR DETERMINING THE MOVEMENTS OF A FLUID FROM DISTANCE MEASUREMENTS OF RADIAL SPEEDS. |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5724125A (en) | 1994-06-22 | 1998-03-03 | Ames; Lawrence L. | Determination of wind velocity using a non-vertical LIDAR scan |
DE10316762B4 (en) * | 2003-04-10 | 2007-01-25 | Eads Deutschland Gmbh | Method for detecting wind speeds with a Doppler-Lidar system, in particular on board aircraft, and Doppler Lidar system |
GB0316241D0 (en) | 2003-07-11 | 2003-08-13 | Qinetiq Ltd | Wind speed measurement apparatus and method |
GB0411097D0 (en) * | 2004-05-19 | 2004-06-23 | Qinetiq Ltd | Laser radar device and method |
FR2870942B1 (en) | 2004-05-25 | 2006-08-25 | Airbus France Sas | ANTICIPATED MEASUREMENT SYSTEM FOR TURBULENCE UPSTREAM OF AN AIRCRAFT |
FR2883983B1 (en) | 2005-03-31 | 2007-05-11 | Airbus France Sas | METHOD AND DEVICE FOR MEASURING AIR TURBULENCE IN THE ENVIRONMENT OF AN AIRCRAFT |
-
2009
- 2009-11-02 WO PCT/FR2009/001269 patent/WO2010052385A1/en active Application Filing
- 2009-11-02 EP EP09753146A patent/EP2353031A1/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2010052385A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2010052385A1 (en) | 2010-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1864157B1 (en) | Method and device for measuring air turbulence in the surroundings of an aircraft | |
EP2671103B1 (en) | Atmospheric measurement system and method | |
EP2156217B1 (en) | Method for radar monitoring of wake turbulence | |
WO2006016075A1 (en) | System for measurement of projected turbulence downwind of an aircraft | |
FR2988618A1 (en) | ALTITUDE ESTIMER FOR MULTI-ROTOR ROTOR SAIL DRONE | |
FR3023368A1 (en) | METHOD AND DEVICE FOR AIDING THE LANDING OF AN AIRCRAFT | |
EP3754341B1 (en) | Method for determining the vertical profile of the wind speed upstream of a wind turbine provided with a laser remote detection sensor | |
EP2939050B1 (en) | Method for determining the speed of a rotocraft relative to the surrounding air | |
FR2938075A1 (en) | On-board wind detecting and measuring device for aircraft, has lidar measuring speed of wind at set of measured points located at different measure distances, where device generates wind profile signal | |
EP0703468B1 (en) | Method and system for the determination of anemometric, barometric and clinometric parameters on board an aircraft | |
FR2903964A1 (en) | METHOD AND DEVICE FOR DETECTING AIR TURBULENCE IN THE ENVIRONMENT OF AN AIRCRAFT | |
EP2353053B1 (en) | Method and device for attenuating the effects of turbulence on an aircraft | |
FR2938924A1 (en) | METHOD AND DEVICE FOR DETERMINING ANEMOMETRIC PARAMETERS OF AN AIRCRAFT | |
EP2353031A1 (en) | Device and method for detecting and measuring wind for an aircraft | |
FR3084485A1 (en) | MOTORIZED FLYING MACHINE FOR MEASURING THE RELIEF OF SURFACES OF A PREDETERMINED OBJECT AND METHOD FOR CONTROLLING SUCH A MACHINE | |
EP3333539A1 (en) | Electronic control device for controlling a drone, related drone, controlling method and computer program | |
EP4172648B1 (en) | Method for determining wind velocity components by means of a laser remote sensor and by means of a temporal coherence | |
EP0389305A2 (en) | Procedure to determine average windspeed relative to the ground in a flying aircraft | |
FR2938922A1 (en) | METHOD AND DEVICE FOR OPTIMIZING THE ORIENTATION OF A LASER ANEMOMETER ON AN AIRCRAFT | |
FR2971343A1 (en) | Airborne telemetry device for use in land survey system to survey predetermined area of ground surface to be airborne by aircraft in topography field, has unit for determining information representing distance between device and position | |
Doddi | Insitu Sensing and Analysis of Turbulence-Investigation to Enhance Fine-Structure Turbulence Observation Capabilities of Autonomous Aircraft Systems | |
FR3110985A1 (en) | HUMAN-MACHINE INTERFACE OF AN AIRCRAFT IN THE TAKE-OFF OR LANDING PHASE | |
FR2545613A1 (en) | APPARATUS FOR MEASURING THE SPEED OF AN OBJECT, IN PARTICULAR AN AIRCRAFT | |
Dmitrovic et al. | High Spectral Resolution Lidar–generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation | |
ZHANG et al. | Stratospheric airship airborne velocity measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110603 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20120823 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140503 |