EP2349724B1 - Inkjet nozzle assembly having moving roof structure and sealing bridge - Google Patents
Inkjet nozzle assembly having moving roof structure and sealing bridge Download PDFInfo
- Publication number
- EP2349724B1 EP2349724B1 EP08878343.6A EP08878343A EP2349724B1 EP 2349724 B1 EP2349724 B1 EP 2349724B1 EP 08878343 A EP08878343 A EP 08878343A EP 2349724 B1 EP2349724 B1 EP 2349724B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nozzle assembly
- nozzle
- seal member
- moving portion
- roof
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000007789 sealing Methods 0.000 title description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 15
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 14
- 238000000429 assembly Methods 0.000 claims description 8
- 230000000712 assembly Effects 0.000 claims description 8
- -1 polydimethylsiloxane Polymers 0.000 claims description 7
- 230000002209 hydrophobic effect Effects 0.000 claims description 3
- 238000005452 bending Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000007641 inkjet printing Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- 239000004642 Polyimide Substances 0.000 description 9
- 229920001721 polyimide Polymers 0.000 description 9
- 229910052681 coesite Inorganic materials 0.000 description 8
- 229910052906 cristobalite Inorganic materials 0.000 description 8
- 229910052682 stishovite Inorganic materials 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 229910052905 tridymite Inorganic materials 0.000 description 8
- 239000004411 aluminium Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 229920001600 hydrophobic polymer Polymers 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000004380 ashing Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 235000009508 confectionery Nutrition 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- PTXMVOUNAHFTFC-UHFFFAOYSA-N alumane;vanadium Chemical compound [AlH3].[V] PTXMVOUNAHFTFC-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000708 deep reactive-ion etching Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 238000007648 laser printing Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/14—Structure thereof only for on-demand ink jet heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1648—Production of print heads with thermal bend detached actuators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/1626—Manufacturing processes etching
- B41J2/1628—Manufacturing processes etching dry etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/1631—Manufacturing processes photolithography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/1635—Manufacturing processes dividing the wafer into individual chips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/1637—Manufacturing processes molding
- B41J2/1639—Manufacturing processes molding sacrificial molding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/164—Manufacturing processes thin film formation
- B41J2/1643—Manufacturing processes thin film formation thin film formation by plating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/16—Production of nozzles
- B41J2/1621—Manufacturing processes
- B41J2/164—Manufacturing processes thin film formation
- B41J2/1645—Manufacturing processes thin film formation thin film formation by spincoating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/315—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
- B41J2/32—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
- B41J2/335—Structure of thermal heads
- B41J2/33505—Constructional details
- B41J2/3351—Electrode layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/315—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
- B41J2/32—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
- B41J2/335—Structure of thermal heads
- B41J2/33545—Structure of thermal heads characterised by dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/315—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
- B41J2/32—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
- B41J2/335—Structure of thermal heads
- B41J2/3355—Structure of thermal heads characterised by materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/315—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
- B41J2/32—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
- B41J2/335—Structure of thermal heads
- B41J2/33555—Structure of thermal heads characterised by type
- B41J2/3357—Surface type resistors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/315—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
- B41J2/32—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
- B41J2/335—Structure of thermal heads
- B41J2/3359—Manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/315—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
- B41J2/32—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
- B41J2/345—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads characterised by the arrangement of resistors or conductors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/315—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
- B41J2/32—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
- B41J2/335—Structure of thermal heads
- B41J2/3354—Structure of thermal heads characterised by geometry
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/14—Structure thereof only for on-demand ink jet heads
- B41J2/14427—Structure of ink jet print heads with thermal bend detached actuators
- B41J2002/14435—Moving nozzle made of thermal bend detached actuator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2202/00—Embodiments of or processes related to ink-jet or thermal heads
- B41J2202/01—Embodiments of or processes related to ink-jet heads
- B41J2202/15—Moving nozzle or nozzle plate
Definitions
- the present invention relates to the field of printers and particularly inkjet printheads. It has been developed primarily to improve print quality and reliability in high resolution printheads.
- Ink Jet printers themselves come in many different types.
- the utilization of a continuous stream of ink in ink jet printing appears to date back to at least 1929 wherein US Patent No. 1,941,001 by Hansell discloses a simple form of continuous stream electro-static ink jet printing.
- Piezoelectric ink jet printers are also one form of commonly utilized ink jet printing device. Piezoelectric systems are disclosed by Kyser et. al. in US Patent No. 3,946,398 (1970 ) which utilizes a diaphragm mode of operation, by Zolten in US Patent 3,683,212 (1970 ) which discloses a squeeze mode of operation of a piezoelectric crystal, Stemme in US Patent No. 3,747,120 (1972 ) discloses a bend mode of piezoelectric operation, Howkins in US Patent No. 4,459,601 discloses a piezoelectric push mode actuation of the inkjet stream and Fischbeck in US 4,584,590 which discloses a shear mode type of piezoelectric transducer element.
- the ink jet printing techniques include those disclosed by Endo et al in GB 2,007,162 (1979 ) and Vaught et al in US Patent 4,490,728 . Both the aforementioned references disclosed ink jet printing techniques that rely upon the activation of an electrothermal actuator which results in the creation of a bubble in a constricted space, such as a nozzle, which thereby causes the ejection of ink from an aperture connected to the confined space onto a relevant print media.
- Printing devices utilizing the electro-thermal actuator are manufactured by manufacturers such as Canon and Hewlett Packard.
- a printing technology should have a number of desirable attributes. These include inexpensive construction and operation, high speed operation, safe and continuous long term operation etc. Each technology may have its own advantages and disadvantages in the areas of cost, speed, quality, reliability, power usage, simplicity of construction operation, durability and consumables.
- a MEMS inkjet printhead may comprise a nozzle plate having moving portions. Each moving portion typically has a nozzle opening defined therein so that actuation of the moving portion results in ejection of ink from the printhead.
- An advantage of this type of printhead is that the energy required to eject a droplet of ink is small compared with, for example, traditional thermal bubble-forming printheads.
- the Applicant has previously described how specific actuator designs and complementary actuation methods provide highly efficient drop ejection from such printheads (see, for example, US Application Nos. 11/607,976 and 12/239,814 ).
- a problem with 'moving nozzle' printheads is that they require a good fluidic seal between the moving portion and the stationary portion of the printhead. Ink should only be ejected through the nozzle opening and should not leak out of seals. If the distance between the moving portion and the stationary portion is small, then surface tension may retain ink inside nozzle chambers. However, the use of ink surface tension as a fluidic seal is problematic and usually cannot provide a reliable seal, especially if the ink inside nozzle chambers experiences pressure surges.
- US 2008/225083 relates to a nozzle assembly for an inkjet printhead.
- the nozzle assembly comprises a nozzle chamber having a roof, the roof having a moving portion moveable relative to a static portion and a nozzle opening defined in the roof, such that movement of the moving portion relative to the static portion causes ejection of ink through the nozzle opening.
- the nozzle assembly also comprises an actuator for moving the moving portion relative to the static portion, and a mechanical seal interconnecting the moving portion and the static portion.
- the mechanical seal comprises a polymeric material selected from the group comprising: polymerized siloxanes and fluorinated polyolefins.
- the present invention provides a nozzle assembly for an inkjet printhead according to claim 1.
- said polymeric material is comprised of polydimethylsiloxane (PDMS).
- PDMS polydimethylsiloxane
- said seal member is absent from a space between said moving portion and said stationary portion.
- said seal member comprises at least one ridge and/or at least one furrow in profile.
- said seal member comprises a crown portion, said crown portion standing proud of a first end of said seal member connected to said moving portion and a second end of said seal member connected to said stationary portion.
- said seal member is corrugated.
- said nozzle opening is defined in said moving portion.
- said nozzle opening is defined in said stationary portion.
- said actuator is a thermal bend actuator comprising:
- said first and second elements are cantilever beams.
- said thermal bend actuator defines at least part of the moving portion of said roof.
- the polymeric material is coated on a substantial part of said roof, such that an ink ejection face of said printhead is hydrophobic.
- Figures 1 to 16 shows a sequence of MEMS fabrication steps for an inkjet nozzle assembly 100 described in our earlier US Application No. 11/763,440 .
- the completed inkjet nozzle assembly 100 shown in Figures 15 and 16 utilizes thermal bend actuation, whereby a moving portion of a roof bends towards a substrate resulting in ink ejection.
- the starting point for MEMS fabrication is a standard CMOS wafer having CMOS drive circuitry formed in an upper portion of a silicon wafer. At the end of the MEMS fabrication process, this wafer is diced into individual printhead integrated circuits (ICs), with each IC comprising drive circuitry and plurality of nozzle assemblies.
- ICs printhead integrated circuits
- a substrate 1 has an electrode 2 formed in an upper portion thereof.
- the electrode 2 is one of a pair of adjacent electrodes (positive and earth) for supplying power to an actuator of the inkjet nozzle 100.
- the electrodes receive power from CMOS drive circuitry (not shown) in upper layers of the substrate 1.
- the other electrode 3 shown in Figures 1 and 2 is for supplying power to an adjacent inkjet nozzle.
- the drawings shows MEMS fabrication steps for a nozzle assembly, which is one of an array of nozzle assemblies. The following description focuses on fabrication steps for one of these nozzle assemblies. However, it will of course be appreciated that corresponding steps are being performed simultaneously for all nozzle assemblies that are being formed on the wafer. Where an adjacent nozzle assembly is partially shown in the drawings, this can be ignored for the present purposes. Accordingly, the electrode 3 and all features of the adjacent nozzle assembly will not be described in detail herein. Indeed, in the interests of clarity, some MEMS fabrication steps will not be shown on adjacent nozzle assemblies.
- an 8 micron layer of silicon dioxide is initially deposited onto the substrate 1.
- the depth of silicon dioxide defines the depth of a nozzle chamber 5 for the inkjet nozzle.
- the nozzle chamber 5 is then filled with photoresist or polyimide 6, which acts as a sacrificial scaffold for subsequent deposition steps.
- the polyimide 6 is spun onto the wafer using standard techniques, UV cured and/or hardbaked, and then subjected to chemical mechanical planarization (CMP) stopping at the top surface of the SiO 2 wall 4.
- CMP chemical mechanical planarization
- a roof member 7 of the nozzle chamber 5 is formed as well as highly conductive connector posts 8 extending down to the electrodes 2.
- a 1.7 micron layer of SiO 2 is deposited onto the polyimide 6 and wall 4. This layer of SiO 2 defines a roof 7 of the nozzle chamber 5.
- a pair of vias are formed in the wall 4 down to the electrodes 2 using a standard anisotropic DRIE. This etch exposes the pair of electrodes 2 through respective vias.
- the vias are filled with a highly conductive metal, such as copper, using electroless plating.
- the deposited copper posts 8 are subjected to CMP, stopping on the SiO 2 roof member 7 to provide a planar structure. It can be seen that the copper connector posts 8, formed during the electroless copper plating, meet with respective electrodes 2 to provide a linear conductive path up to the roof member 7.
- metal pads 9 are formed by initially depositing a 0.3 micron layer of aluminium onto the roof member 7 and connector posts 8. Any highly conductive metal (e.g . aluminium, titanium etc .) may be used and should be deposited with a thickness of about 0.5 microns or less so as not to impact too severely on the overall planarity of the nozzle assembly. The metal pads 9 are positioned over the connector posts 8 and on the roof member 7 in predetermined 'bend regions' of the thermoelastic active beam member.
- Any highly conductive metal e.g . aluminium, titanium etc .
- the metal pads 9 are positioned over the connector posts 8 and on the roof member 7 in predetermined 'bend regions' of the thermoelastic active beam member.
- thermoelastic active beam member 10 is formed over the SiO 2 roof 7.
- part of the SiO 2 roof member 7 functions as a lower passive beam member 16 of a mechanical thermal bend actuator, which is defined by the active beam 10 and the passive beam 16.
- the thermoelastic active beam member 10 may be comprised of any suitable thermoelastic material, such as titanium nitride, titanium aluminium nitride and aluminium alloys.
- vanadium-aluminium alloys are a preferred material, because they combine the advantageous properties of high thermal expansion, low density and high Young's modulus.
- the active beam member 10 a 1.5 micron layer of active beam material is initially deposited by standard PECVD. The beam material is then etched using a standard metal etch to define the active beam member 10. After completion of the metal etch and as shown in Figures 9 and 10 , the active beam member 10 comprises a partial nozzle opening 11 and a beam element 12, which is electrically connected at each end to positive and ground electrodes 2 via the connector posts 8.
- the planar beam element 12 extends from a top of a first (positive) connector post and bends around 180 degrees to return to a top of a second (ground) connector post.
- the metal pads 9 are positioned to facilitate current flow in regions of potentially higher resistance.
- One metal pad 9 is positioned at a bend region of the beam element 12, and is sandwiched between the active beam member 10 and the passive beam member 16.
- the other metal pads 9 are positioned between the top of the connector posts 8 and the ends of the beam element 12.
- the SiO 2 roof member 7 is then etched to define fully a nozzle opening 13 and a moving portion 14 of the roof.
- the moving portion 14 comprises a thermal bend actuator 15, which is itself comprised of the active beam member 10 and the underlying passive beam member 16.
- the nozzle opening 13 is defined in the moving portion 14 of the roof so that the nozzle opening moves with the actuator during actuation. Configurations whereby the nozzle opening 13 is stationary with respect to the moving portion 14, as described in Applicant's US Application No. 11/607,976 are also possible.
- a perimeter space or gap 17 around the moving portion 14 of the roof separates the moving portion from a stationary portion 18 of the roof. This gap 17 allows the moving portion 14 to bend into the nozzle chamber 5 and towards the substrate 1 upon actuation of the actuator 15.
- a layer of photopatternable hydrophobic polymer 19 is then deposited over the entire nozzle assembly, and photopatterned to re-define the nozzle opening 13.
- the hydrophobic polymer is polydimethylsiloxane (PDMS) or perfluorinated polyethylene (PFPE).
- PDMS polydimethylsiloxane
- PFPE perfluorinated polyethylene
- the exact ordering of MEMS fabrication steps, incorporating the hydrophobic polymer is relatively flexible. For example, it is perfectly feasible to etch the nozzle opening 13 after deposition of the hydrophobic polymer 19, and use the polymer as a mask for the nozzle etch. It will appreciated that variations on the exact ordering of MEMS fabrication steps are well within the ambit of the skilled person, and, moreover, are included within the scope of the present invention.
- the hydrophobic polymer layer 19 performs several functions. Firstly, it fills the gap 17 to provide a mechanical seal between the moving portion 14 and stationary portion 18 of the roof 7. Provided that the polymer has a sufficiently low Young's modulus, the actuator can still bend towards the substrate 1, whilst preventing ink from escaping through the gap 17 during actuation. Secondly, the polymer has a high hydrophobicity, which minimizes the propensity for ink to flood out of the relatively hydrophilic nozzle chambers and onto an ink ejection face 21 of the printhead. Thirdly, the polymer functions as a protective layer, which facilitates printhead maintenance.
- an ink supply channel 20 is etched through to the nozzle chamber 5 from a backside of the substrate 1.
- the ink supply channel 20 is shown aligned with the nozzle opening 13 in Figure 15 and 16 , it could, of course, be positioned offset from the nozzle opening.
- the polyimide 6, which filled the nozzle chamber 5 is removed by ashing (either frontside ashing or backside ashing) using, for example, an O 2 plasma to provide the nozzle assembly 100.
- a metal film e.g . titanium or aluminium
- the protective metal film is deposited onto the polymer layer 19 prior to etching the nozzle opening 13. After all etching and oxidative photoresist removal steps ("ashing steps") have been completed, the protective metal film may be removed using a simple HF or H 2 O 2 rinse.
- the polymer layer 19 fills the gap between the moving portion 14 and the stationary portion 18 of the roof 7.
- Figures 17 to 22 there is shown schematically an alternative sequence of fabrication steps, which results in an improved sealing member bridging between the moving portion 14 and stationary portion 18.
- the schematic illustrations in Figures 17 to 22 do not show detailed features of the actuator.
- Figure 17 which is the starting point for this alternative sequence of fabrication steps, is schematically representative of the partially-formed nozzle assembly shown in Figures 9 and 10 .
- like reference numerals will be used to refer to corresponding features in the nozzle assembly.
- FIG. 17 there is shown a partially-formed nozzle assembly having a nozzle chamber 5 filled with polyimide 6.
- a roof 7 comprising a thermal bend actuator (not shown in Figure 17 ) forms a cover over the nozzle chamber 5.
- a via is etched into the roof 7.
- the via defines the gap 17 between the moving portion 14 and the stationary portion 18 of the roof 7.
- the gap 17 is filled with a plug 30 of sacrificial material, such as photoresist.
- the plug 30 serves as a sacrificial scaffold for deposition of a polymeric seal member in a subsequent step.
- an upper surface of the plug 30 defines a profile of the seal member.
- the configuration of the plug 30 and the profile of its upper surface may be controlled by conventional photolithographic techniques. For example, sloped sidewalls of the plug 30 may be formed by adjusting a focusing parameter during exposure of the photoresist.
- the partially-formed nozzle assembly is then coated with a layer 19 of flexible polymeric material.
- the polymeric material is polydimethylsiloxane (PDMS).
- PDMS polydimethylsiloxane
- a protective aluminium film 31 is subsequently deposited over the PDMS layer 19.
- the aluminium film 31 protects the PDMS layer 19 from an oxidative plasma used for removal of the polyimide 6 ( Figure 22 ).
- the nozzle opening 13 is then defined by etching through the aluminium film 31, the PDMS layer 19 and the roof 7. This etch may require different etch chemistries at different stages in order to etch through all three layers.
- the nozzle assembly is subjected to an oxidative plasma (e.g . O 2 plasma), which removes the polyimide 6 and photoresist plug 30.
- an oxidative plasma e.g . O 2 plasma
- the protective aluminium layer 31 is removed by washing in HF or H 2 O 2 .
- the completed nozzle assembly 200 shown in Figure 22 has a seal member 32 bridging across the gap 17 between the moving portion 14 and the stationary portion 18 of the roof 7. Significantly, the seal member 32 does not fill the gap 17 and is, indeed, wholly absent from the space between the moving portion 14 and the stationary portion 18.
- the seal member 32 has the profile of a bridge, where one end is connected to the moving portion 14 and the other end is connected to the stationary portion 18. Furthermore, the bridge substantially takes the form of a single-arch bridge, having a ridge or crown portion 33 standing proud of each end of the bridge. Of course, the seal member may alternatively take the form of a simple beam bridge spanning between the moving portion 14 and stationary portion 18, depending on the profile of the upper surface of the plug 30.
- the seal member 32 has a number of advantages over the embodiment shown in Figures 15 and 16 , where the gap 17 is completely filled with the polymeric material 19. Firstly, by reducing the overall volume of polymer between the moving portion 14 and the stationary portion 18, there is much less impedance to downward motion of the moving portion 14 towards the substrate 1. In addition, the profile of the seal member is specifically adapted to facilitate downward motion of the moving portion 14. Since the seal member 32 takes the form of a flexible bridge, having a length which is longer than the distance between the moving portion 14 and the stationary portion 18, any downward motion of the moving portion 14 during actuation can be readily accommodated by the bridge structure with minimal flexing or extension of the polymer material.
- the seal member 32 provides minimal impedance to movement of the moving portion 14, whilst still providing an excellent seal.
- the overall efficiency of the nozzle assembly 200, and printheads comprising such nozzle assemblies, is improved.
- the seal member 32 may be a corrugated structure 40 having a plurality of ridges 41 and furrows 42. It will be appreciated that the corrugated structure 40 can readily accommodate movement of the moving portion 14
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Description
- The present invention relates to the field of printers and particularly inkjet printheads. It has been developed primarily to improve print quality and reliability in high resolution printheads.
- Many different types of printing have been invented, a large number of which are presently in use. The known forms of print have a variety of methods for marking the print media with a relevant marking media. Commonly used forms of printing include offset printing, laser printing and copying devices, dot matrix type impact printers, thermal paper printers, film recorders, thermal wax printers, dye sublimation printers and ink jet printers both of the drop on demand and continuous flow type. Each type of printer has its own advantages and problems when considering cost, speed, quality, reliability, simplicity of construction and operation etc.
- In recent years, the field of ink jet printing, wherein each individual pixel of ink is derived from one or more ink nozzles has become increasingly popular primarily due to its inexpensive and versatile nature.
- Many different techniques on ink jet printing have been invented. For a survey of the field, reference is made to an article by J Moore, "Non-Impact Printing: Introduction and Historical Perspective", Output Hard Copy Devices, Editors R Dubeck and S Sherr, pages 207-220 (1988).
- Ink Jet printers themselves come in many different types. The utilization of a continuous stream of ink in ink jet printing appears to date back to at least 1929 wherein
US Patent No. 1,941,001 by Hansell discloses a simple form of continuous stream electro-static ink jet printing. -
US Patent 3,596,275 by Sweet also discloses a process of a continuous inkjet printing including the step wherein the ink jet stream is modulated by a high frequency electro-static field so as to cause drop separation. This technique is still utilized by several manufacturers including Elmjet and Scitex (see alsoUS Patent No. 3,373,437 by Sweet et al ) - Piezoelectric ink jet printers are also one form of commonly utilized ink jet printing device. Piezoelectric systems are disclosed by
Kyser et. al. in US Patent No. 3,946,398 (1970 ) which utilizes a diaphragm mode of operation, byZolten in US Patent 3,683,212 (1970 ) which discloses a squeeze mode of operation of a piezoelectric crystal,Stemme in US Patent No. 3,747,120 (1972 ) discloses a bend mode of piezoelectric operation,Howkins in US Patent No. 4,459,601 discloses a piezoelectric push mode actuation of the inkjet stream andFischbeck in US 4,584,590 which discloses a shear mode type of piezoelectric transducer element. - Recently, thermal ink jet printing has become an extremely popular form of ink jet printing. The ink jet printing techniques include those disclosed by
Endo et al in GB 2,007,162 (1979 Vaught et al in US Patent 4,490,728 . Both the aforementioned references disclosed ink jet printing techniques that rely upon the activation of an electrothermal actuator which results in the creation of a bubble in a constricted space, such as a nozzle, which thereby causes the ejection of ink from an aperture connected to the confined space onto a relevant print media. Printing devices utilizing the electro-thermal actuator are manufactured by manufacturers such as Canon and Hewlett Packard. - As can be seen from the foregoing, many different types of printing technologies are available. Ideally, a printing technology should have a number of desirable attributes. These include inexpensive construction and operation, high speed operation, safe and continuous long term operation etc. Each technology may have its own advantages and disadvantages in the areas of cost, speed, quality, reliability, power usage, simplicity of construction operation, durability and consumables.
- The present Applicant has described a plethora of inkjet printheads, which are constructed utilizing micro-electromechanical systems (MEMS) techniques. As described in the Applicant's earlier
US Application Nos. 11/685,084 11/763,443 11/763,440 - An advantage of this type of printhead is that the energy required to eject a droplet of ink is small compared with, for example, traditional thermal bubble-forming printheads. The Applicant has previously described how specific actuator designs and complementary actuation methods provide highly efficient drop ejection from such printheads (see, for example,
US Application Nos. 11/607,976 12/239,814 - However, a problem with 'moving nozzle' printheads is that they require a good fluidic seal between the moving portion and the stationary portion of the printhead. Ink should only be ejected through the nozzle opening and should not leak out of seals. If the distance between the moving portion and the stationary portion is small, then surface tension may retain ink inside nozzle chambers. However, the use of ink surface tension as a fluidic seal is problematic and usually cannot provide a reliable seal, especially if the ink inside nozzle chambers experiences pressure surges.
- In the Applicant's earlier Application Nos.
11/685,084 11/763,443 11/763,440 - It would be desirable to provide improved mechanical seals for inkjet printheads having moving nozzles. It would be particularly desirable to provide efficacious mechanical scals, which have minimal impact on the overall efficiency of the printhead.
-
US 2008/225083 relates to a nozzle assembly for an inkjet printhead. The nozzle assembly comprises a nozzle chamber having a roof, the roof having a moving portion moveable relative to a static portion and a nozzle opening defined in the roof, such that movement of the moving portion relative to the static portion causes ejection of ink through the nozzle opening. The nozzle assembly also comprises an actuator for moving the moving portion relative to the static portion, and a mechanical seal interconnecting the moving portion and the static portion. The mechanical seal comprises a polymeric material selected from the group comprising: polymerized siloxanes and fluorinated polyolefins. - In a first aspect the present invention provides a nozzle assembly for an inkjet printhead according to
claim 1. - Optionally, said polymeric material is comprised of polydimethylsiloxane (PDMS).
- Optionally, said seal member is absent from a space between said moving portion and said stationary portion.
- Optionally, said seal member comprises at least one ridge and/or at least one furrow in profile.
- Optionally, said seal member comprises a crown portion, said crown portion standing proud of a first end of said seal member connected to said moving portion and a second end of said seal member connected to said stationary portion.
- Optionally, said seal member is corrugated.
- Optionally, said nozzle opening is defined in said moving portion.
- Optionally, said nozzle opening is defined in said stationary portion.
- Optionally, said actuator is a thermal bend actuator comprising:
- a first active element for connection to drive circuitry; and
- a second passive element mechanically cooperating with the first element, such that when a current is passed through the first element, the first element expands relative to the second element, resulting in bending of the actuator.
- Optionally, said first and second elements are cantilever beams.
- Optionally, said thermal bend actuator defines at least part of the moving portion of said roof.
- Optionally, the polymeric material is coated on a substantial part of said roof, such that an ink ejection face of said printhead is hydrophobic.
- Optional embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings, in which:
-
Figure 1 is a side-sectional view of a partially-fabricated inkjet nozzle assembly after a first sequence of steps in which nozzle chamber sidewalls are formed; -
Figure 2 is a perspective view of the partially-fabricated inkjet nozzle assembly shown inFigure 4 ; -
Figure 3 is a side-sectional view of a partially-fabricated inkjet nozzle assembly after a second sequence of steps in which the nozzle chamber is filled with polyimide; -
Figure 4 is a perspective view of the partially-fabricated inkjet nozzle assembly shown inFigure 3 ; -
Figure 5 is a side-sectional view of a partially-fabricated inkjet nozzle assembly after a third sequence of steps in which connector posts are formed up to a chamber roof; -
Figure 6 is a perspective view of the partially-fabricated inkjet nozzle assembly shown inFigure 5 ; -
Figure 7 is a side-sectional view of a partially-fabricated inkjet nozzle assembly after a fourth sequence of steps in which conductive metal plates are formed; -
Figure 8 is a perspective view of the partially-fabricated inkjet nozzle assembly shown inFigure 7 ; -
Figure 9 is a side-sectional view of a partially-fabricated inkjet nozzle assembly after a fifth sequence of steps in which an active beam member of a thermal bend actuator is formed; -
Figure 10 is a perspective view of the partially-fabricated inkjet nozzle assembly shown inFigure 9 ; -
Figure 11 is a side-sectional view of a partially-fabricated inkjet nozzle assembly after a sixth sequence of steps in which a moving roof portion comprising the thermal bend actuator is formed; -
Figure 12 is a perspective view of the partially-fabricated inkjet nozzle assembly shown inFigure 11 ; -
Figure 13 is a side-sectional view of a partially-fabricated inkjet nozzle assembly after a seventh sequence of steps in which hydrophobic polymer layer is deposited and photopatterned; -
Figure 14 is a perspective view of the partially-fabricated inkjet nozzle assembly shown inFigure 13 ; -
Figure 15 is a side-sectional view of an fully formed inkjet nozzle assembly; -
Figure 16 is a cutaway perspective view of the inkjet nozzle assembly shown inFigure 15 ; -
Figure 17 is a schematic side-sectional view of the partially-fabricated inkjet nozzle assembly shown inFigures 9 and 10 ; -
Figure 18 is a schematic side-sectional view of the partially-fabricated inkjet nozzle shown inFigure 17 after etching a via to define moving and stationary portions of a chamber roof; -
Figure 19 is a schematic side-sectional view of the partially-fabricated inkjet nozzle shown inFigure 18 after filling the via with a plug of photoresist; -
Figure 20 is a schematic side-sectional view of the partially-fabricated inkjet nozzle shown inFigure 19 after deposition of a polymer layer and a protective metal layer; -
Figure 21 is a schematic side-sectional view of the partially-fabricated inkjet nozzle shown inFigure 20 after etching a nozzle opening; -
Figure 22 is a schematic side-sectional view of an inkjet nozzle assembly according to the present invention; and -
Figure 23 is a schematic side-sectional view of an alternative seal member. -
Figures 1 to 16 shows a sequence of MEMS fabrication steps for aninkjet nozzle assembly 100 described in our earlierUS Application No. 11/763,440 inkjet nozzle assembly 100 shown inFigures 15 and16 utilizes thermal bend actuation, whereby a moving portion of a roof bends towards a substrate resulting in ink ejection. - The starting point for MEMS fabrication is a standard CMOS wafer having CMOS drive circuitry formed in an upper portion of a silicon wafer. At the end of the MEMS fabrication process, this wafer is diced into individual printhead integrated circuits (ICs), with each IC comprising drive circuitry and plurality of nozzle assemblies.
- As shown in
Figures 1 and 2 , asubstrate 1 has anelectrode 2 formed in an upper portion thereof. Theelectrode 2 is one of a pair of adjacent electrodes (positive and earth) for supplying power to an actuator of theinkjet nozzle 100. The electrodes receive power from CMOS drive circuitry (not shown) in upper layers of thesubstrate 1. - The
other electrode 3 shown inFigures 1 and 2 is for supplying power to an adjacent inkjet nozzle. In general, the drawings shows MEMS fabrication steps for a nozzle assembly, which is one of an array of nozzle assemblies. The following description focuses on fabrication steps for one of these nozzle assemblies. However, it will of course be appreciated that corresponding steps are being performed simultaneously for all nozzle assemblies that are being formed on the wafer. Where an adjacent nozzle assembly is partially shown in the drawings, this can be ignored for the present purposes. Accordingly, theelectrode 3 and all features of the adjacent nozzle assembly will not be described in detail herein. Indeed, in the interests of clarity, some MEMS fabrication steps will not be shown on adjacent nozzle assemblies. - In the sequence of steps shown in
Figures 1 and 2 , an 8 micron layer of silicon dioxide is initially deposited onto thesubstrate 1. The depth of silicon dioxide defines the depth of anozzle chamber 5 for the inkjet nozzle. After deposition of the SiO2 layer, it is etched to definewalls 4, which will become sidewalls of thenozzle chamber 5, shown most clearly inFigure 2 . - As shown in
Figures 3 and 4 , thenozzle chamber 5 is then filled with photoresist orpolyimide 6, which acts as a sacrificial scaffold for subsequent deposition steps. Thepolyimide 6 is spun onto the wafer using standard techniques, UV cured and/or hardbaked, and then subjected to chemical mechanical planarization (CMP) stopping at the top surface of the SiO2 wall 4. - In
Figures 5 and 6 , aroof member 7 of thenozzle chamber 5 is formed as well as highly conductive connector posts 8 extending down to theelectrodes 2. Initially, a 1.7 micron layer of SiO2 is deposited onto thepolyimide 6 andwall 4. This layer of SiO2 defines aroof 7 of thenozzle chamber 5. Next, a pair of vias are formed in thewall 4 down to theelectrodes 2 using a standard anisotropic DRIE. This etch exposes the pair ofelectrodes 2 through respective vias. Next, the vias are filled with a highly conductive metal, such as copper, using electroless plating. The deposited copper posts 8 are subjected to CMP, stopping on the SiO2 roof member 7 to provide a planar structure. It can be seen that the copper connector posts 8, formed during the electroless copper plating, meet withrespective electrodes 2 to provide a linear conductive path up to theroof member 7. - In
Figures 7 and 8 ,metal pads 9 are formed by initially depositing a 0.3 micron layer of aluminium onto theroof member 7 and connector posts 8. Any highly conductive metal (e.g. aluminium, titanium etc.) may be used and should be deposited with a thickness of about 0.5 microns or less so as not to impact too severely on the overall planarity of the nozzle assembly.
Themetal pads 9 are positioned over the connector posts 8 and on theroof member 7 in predetermined 'bend regions' of the thermoelastic active beam member. - In
Figures 9 and 10 , a thermoelasticactive beam member 10 is formed over the SiO2 roof 7. By virtue of being fused to theactive beam member 10, part of the SiO2 roof member 7 functions as a lowerpassive beam member 16 of a mechanical thermal bend actuator, which is defined by theactive beam 10 and thepassive beam 16. The thermoelasticactive beam member 10 may be comprised of any suitable thermoelastic material, such as titanium nitride, titanium aluminium nitride and aluminium alloys. As explained in the Applicant's earlierUS Application No. 11/607,976 filed on 4 December 2002 - To form the
active beam member 10, a 1.5 micron layer of active beam material is initially deposited by standard PECVD. The beam material is then etched using a standard metal etch to define theactive beam member 10. After completion of the metal etch and as shown inFigures 9 and 10 , theactive beam member 10 comprises a partial nozzle opening 11 and abeam element 12, which is electrically connected at each end to positive andground electrodes 2 via the connector posts 8. Theplanar beam element 12 extends from a top of a first (positive) connector post and bends around 180 degrees to return to a top of a second (ground) connector post. - Still referring to
Figures 9 and 10 , themetal pads 9 are positioned to facilitate current flow in regions of potentially higher resistance. Onemetal pad 9 is positioned at a bend region of thebeam element 12, and is sandwiched between theactive beam member 10 and thepassive beam member 16. Theother metal pads 9 are positioned between the top of the connector posts 8 and the ends of thebeam element 12. - Referring to
Figures 11 and 12 , the SiO2 roof member 7 is then etched to define fully anozzle opening 13 and a movingportion 14 of the roof. The movingportion 14 comprises athermal bend actuator 15, which is itself comprised of theactive beam member 10 and the underlyingpassive beam member 16. Thenozzle opening 13 is defined in the movingportion 14 of the roof so that the nozzle opening moves with the actuator during actuation. Configurations whereby thenozzle opening 13 is stationary with respect to the movingportion 14, as described in Applicant'sUS Application No. 11/607,976 - A perimeter space or
gap 17 around the movingportion 14 of the roof separates the moving portion from astationary portion 18 of the roof. Thisgap 17 allows the movingportion 14 to bend into thenozzle chamber 5 and towards thesubstrate 1 upon actuation of theactuator 15. - Referring to
Figures 13 and 14 , a layer of photopatternablehydrophobic polymer 19 is then deposited over the entire nozzle assembly, and photopatterned to re-define thenozzle opening 13. - The use of photopatternable polymers to coat arrays of nozzle assemblies was described extensively in our earlier
US Application Nos. 11/685,084 filed on 12 March 2007 11/740,925 filed on 27 April 2007 - As explained in the above-mentioned US Applications, the exact ordering of MEMS fabrication steps, incorporating the hydrophobic polymer, is relatively flexible. For example, it is perfectly feasible to etch the
nozzle opening 13 after deposition of thehydrophobic polymer 19, and use the polymer as a mask for the nozzle etch. It will appreciated that variations on the exact ordering of MEMS fabrication steps are well within the ambit of the skilled person, and, moreover, are included within the scope of the present invention. - The
hydrophobic polymer layer 19 performs several functions. Firstly, it fills thegap 17 to provide a mechanical seal between the movingportion 14 andstationary portion 18 of theroof 7. Provided that the polymer has a sufficiently low Young's modulus, the actuator can still bend towards thesubstrate 1, whilst preventing ink from escaping through thegap 17 during actuation. Secondly, the polymer has a high hydrophobicity, which minimizes the propensity for ink to flood out of the relatively hydrophilic nozzle chambers and onto an ink ejection face 21 of the printhead. Thirdly, the polymer functions as a protective layer, which facilitates printhead maintenance. - Finally, and as shown in
Figures 15 and16 , anink supply channel 20 is etched through to thenozzle chamber 5 from a backside of thesubstrate 1. Although theink supply channel 20 is shown aligned with thenozzle opening 13 inFigure 15 and16 , it could, of course, be positioned offset from the nozzle opening. - Following the ink supply channel etch, the
polyimide 6, which filled thenozzle chamber 5, is removed by ashing (either frontside ashing or backside ashing) using, for example, an O2 plasma to provide thenozzle assembly 100. - Although not described above, a metal film (e.g. titanium or aluminium) may be used to protect the
polymer layer 19 during final stage MEMS processing, as described in our earlierUS Application Nos. 11/740,925 11/946,840 polymer layer 19 prior to etching thenozzle opening 13. After all etching and oxidative photoresist removal steps ("ashing steps") have been completed, the protective metal film may be removed using a simple HF or H2O2 rinse. - In the
nozzle assembly 100 described above, thepolymer layer 19 fills the gap between the movingportion 14 and thestationary portion 18 of theroof 7. Although this provides a good mechanical seal and can be readily manufactured, the configuration of the seal inevitably impacts on the overall performance and efficiency of the nozzle assembly. - Turning to
Figures 17 to 22 , there is shown schematically an alternative sequence of fabrication steps, which results in an improved sealing member bridging between the movingportion 14 andstationary portion 18. In the interests of simplicity, the schematic illustrations inFigures 17 to 22 do not show detailed features of the actuator. However, it will be appreciated thatFigure 17 , which is the starting point for this alternative sequence of fabrication steps, is schematically representative of the partially-formed nozzle assembly shown inFigures 9 and 10 . In the interests of clarity, like reference numerals will be used to refer to corresponding features in the nozzle assembly. - Referring then to
Figure 17 , there is shown a partially-formed nozzle assembly having anozzle chamber 5 filled withpolyimide 6. Aroof 7 comprising a thermal bend actuator (not shown inFigure 17 ) forms a cover over thenozzle chamber 5. - In
Figure 18 , a via is etched into theroof 7. The via defines thegap 17 between the movingportion 14 and thestationary portion 18 of theroof 7. - Referring next to
Figure 19 , thegap 17 is filled with aplug 30 of sacrificial material, such as photoresist. Theplug 30 serves as a sacrificial scaffold for deposition of a polymeric seal member in a subsequent step. Specifically, an upper surface of theplug 30 defines a profile of the seal member. The configuration of theplug 30 and the profile of its upper surface may be controlled by conventional photolithographic techniques. For example, sloped sidewalls of theplug 30 may be formed by adjusting a focusing parameter during exposure of the photoresist. - Following formation of the
plug 30, the partially-formed nozzle assembly is then coated with alayer 19 of flexible polymeric material. Typically, the polymeric material is polydimethylsiloxane (PDMS). As shown inFigure 20 , thePDMS layer 19 conforms to the profile of an upper surface of the nozzle assembly. - A
protective aluminium film 31 is subsequently deposited over thePDMS layer 19. Thealuminium film 31 protects thePDMS layer 19 from an oxidative plasma used for removal of the polyimide 6 (Figure 22 ). - Referring now to
Figure 21 , thenozzle opening 13 is then defined by etching through thealuminium film 31, thePDMS layer 19 and theroof 7. This etch may require different etch chemistries at different stages in order to etch through all three layers. - Finally, and referring to
Figure 22 , the nozzle assembly is subjected to an oxidative plasma (e.g. O2 plasma), which removes thepolyimide 6 andphotoresist plug 30. Following oxidative removal of thepolyimide 6 and plug 30, theprotective aluminium layer 31 is removed by washing in HF or H2O2. - The completed
nozzle assembly 200 shown inFigure 22 has aseal member 32 bridging across thegap 17 between the movingportion 14 and thestationary portion 18 of theroof 7. Significantly, theseal member 32 does not fill thegap 17 and is, indeed, wholly absent from the space between the movingportion 14 and thestationary portion 18. - The
seal member 32 has the profile of a bridge, where one end is connected to the movingportion 14 and the other end is connected to thestationary portion 18. Furthermore, the bridge substantially takes the form of a single-arch bridge, having a ridge orcrown portion 33 standing proud of each end of the bridge. Of course, the seal member may alternatively take the form of a simple beam bridge spanning between the movingportion 14 andstationary portion 18, depending on the profile of the upper surface of theplug 30. - The
seal member 32 has a number of advantages over the embodiment shown inFigures 15 and16 , where thegap 17 is completely filled with thepolymeric material 19. Firstly, by reducing the overall volume of polymer between the movingportion 14 and thestationary portion 18, there is much less impedance to downward motion of the movingportion 14 towards thesubstrate 1. In addition, the profile of the seal member is specifically adapted to facilitate downward motion of the movingportion 14. Since theseal member 32 takes the form of a flexible bridge, having a length which is longer than the distance between the movingportion 14 and thestationary portion 18, any downward motion of the movingportion 14 during actuation can be readily accommodated by the bridge structure with minimal flexing or extension of the polymer material. Hence, theseal member 32 provides minimal impedance to movement of the movingportion 14, whilst still providing an excellent seal. By minimizing impedance to movement of the movingportion 14, the overall efficiency of thenozzle assembly 200, and printheads comprising such nozzle assemblies, is improved. - Of course, other configurations of the
seal member 32 are within the ambit of the present invention. For example, as shown inFigure 23 , theseal member 32 may be acorrugated structure 40 having a plurality ofridges 41 and furrows 42. It will be appreciated that thecorrugated structure 40 can readily accommodate movement of the movingportion 14 - It will be appreciated by ordinary workers in this field that numerous variations and/or modifications may be made to the present invention as shown in the specific embodiments without departing from the scope of the claims. The present embodiments are, therefore, to be considered in all respects to be illustrative and not restrictive.
Claims (14)
- A nozzle assembly (200) for an inkjet printhead, said nozzle assembly comprising:a nozzle chamber (5) comprising a roof (7) having a nozzle opening (13) defined therein, said roof comprising a moving portion (14) moveable relative to a stationary portion (18), such that movement of said moving portion relative to said stationary portion causes ejection of ink through the nozzle opening;an actuator (15) for moving said moving portion relative to said stationary portion; anda seal member (32) configured as a bridge spanning between said moving portion and said stationary portion,characterized in that:said seal member (32) has a non-planar profile configured for facilitating movement of said moving portion.
- The nozzle assembly of claim 1, wherein said seal member (32) is comprised of a polymeric material.
- The nozzle assembly of claim 1 or claim 2, wherein said polymeric material is comprised of polydimethylsiloxane (PDMS).
- The nozzle assembly of any one of the preceding claims, wherein said seal member (32) is absent from a space between said moving portion (14) and said stationary portion (18).
- The nozzle assembly of any one of the preceding claims, wherein said seal member (32) comprises at least one ridge (41) and/or at least one furrow (42) in profile.
- The nozzle assembly of any one of the preceding claims, wherein said seal member (32) comprises a crown portion (33), said crown portion standing proud of a first end of said seal member connected to said moving portion (14) and a second end of said seal member connected to said stationary portion (18).
- The nozzle assembly of any one of the preceding claims, wherein said seal member (32) is corrugated.
- The nozzle assembly of any one of the preceding claims, wherein said nozzle opening (13) is defined in said moving portion (14).
- The nozzle assembly of any one of claims 1 to 7, wherein said nozzle opening (13) is defined in said stationary portion (18).
- The nozzle assembly of any one of the preceding claims, wherein said actuator (15) is a thermal bend actuator comprising:a first active element (10) for connection to drive circuitry; anda second passive element (16) mechanically cooperating with the first element, such that when a current is passed through the first element, the first element expands relative to the second element, resulting in bending of the actuator.
- The nozzle assembly of claim 10, wherein said first and second elements are cantilever beams.
- The nozzle assembly of claim 10 or claim 11, wherein said thermal bend actuator defines at least part of the moving portion (14) of said roof.
- The nozzle assembly of claim 2, wherein the polymeric material is coated on a substantial part of said roof, such that an ink ejection face of said printhead is hydrophobic.
- An inkjet printhead comprising a plurality of nozzle assemblies according to any one of the preceding claims.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/AU2008/001741 WO2010060129A1 (en) | 2008-11-26 | 2008-11-26 | Inkjet nozzle assembly having moving roof structure and sealing bridge |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2349724A1 EP2349724A1 (en) | 2011-08-03 |
EP2349724A4 EP2349724A4 (en) | 2012-05-16 |
EP2349724B1 true EP2349724B1 (en) | 2014-05-07 |
Family
ID=42225117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08878343.6A Not-in-force EP2349724B1 (en) | 2008-11-26 | 2008-11-26 | Inkjet nozzle assembly having moving roof structure and sealing bridge |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2349724B1 (en) |
JP (1) | JP2012506782A (en) |
KR (1) | KR101311281B1 (en) |
WO (1) | WO2010060129A1 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0882593A1 (en) * | 1997-06-05 | 1998-12-09 | Xerox Corporation | Method for forming a hydrophobic/hydrophilic front face of an ink jet printhead |
US6540332B2 (en) * | 1997-07-15 | 2003-04-01 | Silverbrook Research Pty Ltd | Motion transmitting structure for a nozzle arrangement of a printhead chip for an inkjet printhead |
US6464340B2 (en) * | 1998-03-25 | 2002-10-15 | Silverbrook Research Pty Ltd | Ink jet printing apparatus with balanced thermal actuator |
JP2004066652A (en) * | 2002-08-07 | 2004-03-04 | Ricoh Co Ltd | Liquid droplet jetting head, ink cartridge, and ink jet recorder |
JP2005104038A (en) * | 2003-09-30 | 2005-04-21 | Fuji Photo Film Co Ltd | Discharge head and liquid discharge device |
WO2006105581A1 (en) * | 2005-04-04 | 2006-10-12 | Silverbrook Research Pty Ltd | Printhead assembly suitable for redirecting ejected ink droplets |
US7976132B2 (en) | 2007-03-12 | 2011-07-12 | Silverbrook Research Pty Ltd | Printhead having moving roof structure and mechanical seal |
JP5205396B2 (en) * | 2007-03-12 | 2013-06-05 | ザムテック・リミテッド | Method for manufacturing a print head having a hydrophobic ink ejection surface |
-
2008
- 2008-11-26 EP EP08878343.6A patent/EP2349724B1/en not_active Not-in-force
- 2008-11-26 JP JP2011532466A patent/JP2012506782A/en active Pending
- 2008-11-26 WO PCT/AU2008/001741 patent/WO2010060129A1/en active Application Filing
- 2008-11-26 KR KR1020117009380A patent/KR101311281B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
EP2349724A4 (en) | 2012-05-16 |
JP2012506782A (en) | 2012-03-22 |
WO2010060129A1 (en) | 2010-06-03 |
KR20110055747A (en) | 2011-05-25 |
EP2349724A1 (en) | 2011-08-03 |
KR101311281B1 (en) | 2013-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7794613B2 (en) | Method of fabricating printhead having hydrophobic ink ejection face | |
US7669967B2 (en) | Printhead having hydrophobic polymer coated on ink ejection face | |
EP2129526B1 (en) | Metal film protection during printhead fabrication with minimum number of mems processing steps | |
US7976132B2 (en) | Printhead having moving roof structure and mechanical seal | |
US8672454B2 (en) | Ink printhead having ceramic nozzle plate defining movable portions | |
CA2675856C (en) | Method of fabricating printhead having hydrophobic ink ejection face | |
US8491803B2 (en) | Method of hydrophobizing and patterning frontside surface of integrated circuit | |
US8500247B2 (en) | Nozzle assembly having polymeric coating on moving and stationary portions of roof | |
US7862734B2 (en) | Method of fabricating nozzle assembly having moving roof structure and sealing bridge | |
EP2349724B1 (en) | Inkjet nozzle assembly having moving roof structure and sealing bridge | |
EP2490898B1 (en) | Printhead having polysilsesquioxane coating on ink ejection face | |
US7901054B2 (en) | Printhead including moving portions and sealing bridges | |
TWI460079B (en) | Inkjet nozzle assembly having moving roof structure and sealing bridge | |
TW201020124A (en) | Method of fabricating nozzle assembly having moving roof structure and sealing bridge | |
TW201020120A (en) | Printhead including moving portions and sealing bridges | |
KR20050019138A (en) | Ink jet printhead chip with predetermined micro-electromechanical systems height |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110420 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20120417 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B41J 2/14 20060101AFI20120411BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ZAMTEC LIMITED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602008032192 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B41J0002140000 Ipc: B41J0002335000 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ZAMTEC LIMITED |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B41J 2/345 20060101ALI20140205BHEP Ipc: B41J 2/335 20060101AFI20140205BHEP |
|
INTG | Intention to grant announced |
Effective date: 20140218 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 666311 Country of ref document: AT Kind code of ref document: T Effective date: 20140515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008032192 Country of ref document: DE Effective date: 20140618 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: MEMJET TECHNOLOLGY LIMITED |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 666311 Country of ref document: AT Kind code of ref document: T Effective date: 20140507 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: MEMJET TECHNOLOGY LIMITED |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140507 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140807 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140808 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602008032192 Country of ref document: DE Owner name: MEMJET TECHNOLOGY LIMITED, IE Free format text: FORMER OWNER: ZAMTEC LTD., DUBLIN, IE Effective date: 20141103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008032192 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008032192 Country of ref document: DE Effective date: 20150210 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008032192 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141130 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20081126 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140507 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20181126 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20211129 Year of fee payment: 14 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221126 |