EP2340690B1 - Circuit arrangement and method for operating a high pressure discharge lamp - Google Patents

Circuit arrangement and method for operating a high pressure discharge lamp Download PDF

Info

Publication number
EP2340690B1
EP2340690B1 EP08875223.3A EP08875223A EP2340690B1 EP 2340690 B1 EP2340690 B1 EP 2340690B1 EP 08875223 A EP08875223 A EP 08875223A EP 2340690 B1 EP2340690 B1 EP 2340690B1
Authority
EP
European Patent Office
Prior art keywords
lamp
pressure discharge
current
control unit
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08875223.3A
Other languages
German (de)
French (fr)
Other versions
EP2340690A1 (en
Inventor
Alois Braun
Walter Limmer
Maximilian Schmidl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2340690A1 publication Critical patent/EP2340690A1/en
Application granted granted Critical
Publication of EP2340690B1 publication Critical patent/EP2340690B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/292Arrangements for protecting lamps or circuits against abnormal operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/292Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2921Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2925Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal lamp operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps

Definitions

  • the invention is based on a method and a circuit arrangement for operating a high-pressure discharge lamp according to the preamble of the main claim and the independent claim, wherein the high-pressure discharge lamp is operated by an inverter with a rectangular lamp current having a positive phase with positive current flow and a negative phase with negative Has current flow, and the inverter is controlled by a control unit.
  • High pressure discharge lamps are often operated with a low frequency square wave current to simulate DC operation. This mode of operation is also referred to as 'shaky DC operation'.
  • the frequency of the square wave low frequency is higher by a maximum of one power than the input network frequency. In principle, therefore, there is a DC operation of the high-pressure discharge lamp, but the lamp current is reversed regularly in order to load the lamp electrodes evenly.
  • a power control is implemented to operate the high pressure discharge lamp.
  • there are sometimes asymmetries in the lamp voltage which can lead to undesirable power fluctuations. These fluctuations can be prevented by a correspondingly fast control.
  • a large time constant of the control is here meant a value which is clearly, e.g. by a power greater than the time constant of the underlying operating frequency of the rectangular lamp current.
  • the rectangular lamp current preferably has a frequency of less than 500 Hz, in particular less than 110 Hz. As a result, the lamp is almost rubbed with a direct current, and the electrode load is uniform and minimal.
  • the reference variable of a lamp power or the rectangular lamp current for the control unit is preferably the same for both phases. As a result, the lamp is regulated to the same power in each phase, resulting in a uniform electrode load.
  • the value for the control unit representing the lamp power or the rectangular lamp current is calculated from the input voltage of the inverter, the input current of the inverter, the voltage of the high-pressure discharge lamp and a correction factor, the complex lamp current measurement can be dispensed with, and nevertheless the lamp power can be calculated with sufficient accuracy.
  • a circuit arrangement for operating a high-pressure discharge lamp which has an inverter for operating the high-pressure discharge lamp which generates a low-frequency rectangular lamp current, wherein the rectangular lamp current has a positive current flow positive phase and a negative current flow negative phase and the inverter is controlled by a control unit, wherein the control unit controls the positive phase and the negative phase separately, wherein the control unit determines a value representing the lamp power or the rectangular lamp current individually in each phase, and a manipulated variable for each phase in a distance that is between 1 ms and a few seconds long, based on the measured value.
  • control unit can generate a sufficiently accurate control value specification for each phase with little effort.
  • the reference variable of a lamp power or the rectangular lamp current for the control unit is preferably the same for both phases. As a result, the lamp is regulated to the same power in each phase, resulting in a uniform electrode load.
  • control unit preferably measures the input voltage of the inverter, the input current of the inverter and the voltage of the high-pressure discharge lamp, and calculates a value representing the lamp power or the rectangular lamp current from these variables with the aid of a correction factor and the reference variable.
  • control unit preferably stores in each case a value representing the lamp power or the rectangular lamp current in separate memory cells belonging to the two phases.
  • the control unit now preferably uses the stored values for each phase to generate a manipulated variable input, which is then output to the inverter.
  • the control unit preferably generates the manipulated variable specifications at a distance which is between 5 ms and 50 ms long. Thus, a slow and inexpensive control can be realized, the low Flickerne Trent in Operation shows.
  • the frequency of the manipulated variable specifications is preferably at least one power less than the frequency of the rectangular lamp current.
  • the control unit preferably has a digital controller with a microcontroller. Since a microcontroller is implemented in many modern circuit arrangements for operating discharge lamps, the control unit according to the invention can be implemented as pure software, which saves costs.
  • Fig. 1 shows a schematic circuit diagram of a circuit arrangement, which carries out the inventive method.
  • the circuitry has an inverter 30 with all parts needed for normal operation. Additional components, such as ignition choke, ignition capacitor, driver circuits, etc., which are necessary for starting a high-pressure discharge lamp 5 and imaginable other operating states, have been omitted for reasons of clarity.
  • the inverter 30 consists of a full bridge with 2 parallel half bridges 33 and 35, each having two switching transistors Q1, Q2 and Q3, Q4.
  • the switching transistors Q1-Q4 have antiparallel freewheeling diodes D1-D4. Between the centers of the two half bridges 33, 35, a series circuit of the high pressure discharge lamp 5 and a lamp inductor L 1 is connected.
  • a capacitor C 2 is connected between the connection point of the high-pressure discharge lamp 5 and the lamp inductor L 1 and the connection point of the lower full-bridge transistors Q2 and Q4, which is referred to as point 7, a capacitor C 2 is connected. Between the upper input E1, which is at the same potential as point 6, and the lower input E2, which is at the same potential as point 8, an input capacitor C1 is connected. Between point 8 and point 7, a current measuring resistor R s is connected.
  • the inverter 30 is controlled by a control unit 20 while carrying out the method according to the invention.
  • the control unit 20 measures the input voltage of the inverter 30, so the voltage between point 6 and point 7. This is a strong RC filtering used to hide disturbances and short-term fluctuations of the input voltage of the inverter 30.
  • the control unit 20 also measures the voltage across the current sense resistor R s , which is equivalent to the current through the inverter 30. This value is measured individually in the positive phase of the rectangular lamp current and in the negative phase of the rectangular lamp current. Since the full bridge of the inverter 30, as will be explained later, has deep-set properties, the rectangular lamp current is a factor of the current through the full bridge. For each measurement, the control unit 20 stores the current value in separate memory cells 210, 211 belonging to the individual phases.
  • the control unit 20 now calculates the power of the inverter 30 individually with the aid of the stored current values for each phase and outputs a respective set value for Q1 and Q2.
  • the control values are not recalculated for each low-frequency full wave, but are recalculated only at every nth low-frequency full wave. n can assume a value between 5 and several hundred.
  • the manipulated variable settings are thus output to the inverter at a time interval of 1 ms to a few seconds.
  • the manipulated variable specification can under certain circumstances also be output only every 2-3 seconds. Because of the regulation between a positive half-wave and negative half-wave and these half-waves are controlled separately, a very slow and therefore cost-effective control can be used without operating the lamp asymmetrically. A DC component in the lamp current is thus safely avoided.
  • the control of the inverter 30 is made so that the transistors of the full bridge are driven with a low-frequency square-wave voltage.
  • a high-frequency drive voltage is superposed in the first half-bridge 33 of the low-frequency drive voltage of the transistors Q1 and Q2.
  • the second half bridge 35 of the full bridge 30 is driven only with a low square wave voltage.
  • the high-frequency superposition may be a pulse width modulation or another suitable control.
  • a low-frequency operation here is the operation with a frequency considered, which is generally a maximum of one power above the input network frequency.
  • the frequency of the low-frequency operation is preferably between 50 Hz and 900 Hz.
  • the operation is thus considered to have a frequency which is at least one power higher than the frequency of the low-frequency operation.
  • the frequency of the high-frequency operation is preferably between 3 kHz and 120 kHz
  • the drivers for the upper transistors Q1 and Q3 and the high-frequency drives for the half-bridge 33 are shown in the schematic representation of FIG Fig. 1 Not shown.
  • Fig. 2 shows the schematic drive voltages of the switching transistors Q1-Q4 of the inverter 30, which are controlled by the control unit 20.
  • the transistors Q3 and Q4 of the half-bridge 35 are driven with a low-frequency voltage, so that they are in each case completely switched through in each half-wave.
  • the transistors are complementarily switched to produce a positive and a negative current phase through the high pressure discharge lamp.
  • the transistors Q1 and Q2 of the half bridge 33 are also operated by a low frequency voltage. This low-frequency voltage is also superimposed on a high-frequency square-wave voltage, as from the Fig. 2 is apparent.
  • the high-frequency superimposition or drive voltage can be generated by a pulse width modulation or another suitable method.
  • the rectangular lamp current can be adapted to any asymmetry of the high-pressure discharge lamp 5 that is present. Because the lamp current is regulated individually in each phase, the frequency of the superimposition or drive voltage or the duty cycle of this voltage can also differ from the positive to the negative phase, resulting in a different lamp current in the positive and in the negative phase , Together with the unbalanced Lamp voltage results from this a completely symmetrical power consumption in both phases, which has a uniform electrode stress of the high pressure discharge lamp 5 result, and thus extends the life of the high pressure discharge lamp.

Description

Technisches GebietTechnical area

Die Erfindung geht aus von einem Verfahren und einer Schaltungsanordnung zum Betreiben einer Hochdruckentladungslampe nach der Gattung des Hauptanspruchs und des nebengeordneten Anspruchs, wobei die Hochdruckentladungslampe von einem Wechselrichter mit einem rechteckförmigen Lampenstrom betrieben wird, der eine positive Phase mit positivem Stromfluss und eine negative Phase mit negativen Stromfluss aufweist, und der Wechselrichter von einer Steuereinheit geregelt wird.The invention is based on a method and a circuit arrangement for operating a high-pressure discharge lamp according to the preamble of the main claim and the independent claim, wherein the high-pressure discharge lamp is operated by an inverter with a rectangular lamp current having a positive phase with positive current flow and a negative phase with negative Has current flow, and the inverter is controlled by a control unit.

Stand der TechnikState of the art

Hochdruckentladungslampen werden oftmals mit einem Rechteckstrom niederer Frequenz betrieben, um einen Gleichstrombetrieb zu simulieren. Dieser Betriebsmodus wird auch als 'wackelnder Gleichstrombetrieb' bezeichnet. Die Frequenz des Rechteckstroms niederer Frequenz ist dabei um maximal eine Potenz höher als die Eingangsnetzfrequenz. Im Prinzip findet also ein Gleichstrombetrieb der Hochdruckentladungslampe statt, der Lampenstrom wird aber regelmäßig umgepolt, um die Lampenelektroden gleichmäßig zu belasten.High pressure discharge lamps are often operated with a low frequency square wave current to simulate DC operation. This mode of operation is also referred to as 'shaky DC operation'. The frequency of the square wave low frequency is higher by a maximum of one power than the input network frequency. In principle, therefore, there is a DC operation of the high-pressure discharge lamp, but the lamp current is reversed regularly in order to load the lamp electrodes evenly.

Dabei wird im Allgemeinen eine Leistungsregelung implementiert, um die Hochdruckentladungslampe zu betreiben. Bei alten Lampen treten mitunter Asymmetrien in der Lampenspannung auf, die zu unerwünschten Leistungsschwankungen führen können. Diese Schwankungen können durch eine entsprechend schnelle Regelung unterbunden werden.In general, a power control is implemented to operate the high pressure discharge lamp. In the case of old lamps, there are sometimes asymmetries in the lamp voltage, which can lead to undesirable power fluctuations. These fluctuations can be prevented by a correspondingly fast control.

Aus der DE 100 51 139 A1 ist ein Elektronisches Vorschaltgerät mit einer Vollbrückenschaltung bekannt, welches für jede Brückendiagonale eine eigene Regelung des Lampenstromes aufweist, um Asymmetrien ausgleichen zu können.From the DE 100 51 139 A1 is an electronic ballast with a full bridge circuit is known, which has its own regulation of the lamp current for each bridge diagonal to compensate for asymmetries can.

Aus der US 2004/0263089 A1 ist ein Elektronisches Vorschaltgerät für Niederdruckentladungslampen mit einer Halbbrückenschaltung bekannt, welches eine Stromregelung mit Überstromerkennung und eine Erkennung von Fehlzuständen der Niederdruckentladungslampe aufweist.From the US 2004/0263089 A1 An electronic ballast for low-pressure discharge lamps with a half-bridge circuit is known, which has a current control with overcurrent detection and detection of false states of the low-pressure discharge lamp.

Schnelle Regelungen mit einer kleinen Zeitkonstante weisen aber den Nachteil einer erhöhten Flickerneigung beim Betrieb der Hochdruckentladungslampe auf. Weist die Regelung eine sehr große Zeitkonstante auf, ist die Flickerneigung klein, die Asymmetrien können aber aufgrund der großen Zeitkonstante der Regelung nicht ausgeglichen werden.However, fast controls with a small time constant have the disadvantage of an increased flickering tendency during operation of the high-pressure discharge lamp. If the control has a very large time constant, the flickering tendency is small, but the asymmetries can not be compensated due to the large time constant of the control.

Unter einer großen Zeitkonstante der Regelung ist hier ein Wert zu verstehen, der deutlich, z.B. um eine Potenz größer ist als die Zeitkonstante der zugrundeliegenden Betriebsfrequenz des rechteckförmigen Lampenstroms.By a large time constant of the control is here meant a value which is clearly, e.g. by a power greater than the time constant of the underlying operating frequency of the rectangular lamp current.

Aufgabetask

Es ist Aufgabe der Erfindung, ein Verfahren zum Betreiben einer Hochdruckentladungslampe anzugeben, wobei die Hochdruckentladungslampe von einem Wechselrichter mit einem rechteckförmigen Lampenstrom betrieben wird, der eine positive Phase mit positivem Stromfluss und eine negative Phase mit negativen Stromfluss aufweist, und der Wechselrichter von einer Steuereinheit geregelt wird, die mit einer sehr langsamen Regelung mit einer großen Zeitkonstante arbeitet, und die eventuell auftretende Asymmetrien in der Lampenspannung ausregelt.It is an object of the invention to provide a method for operating a high-pressure discharge lamp, wherein the high-pressure discharge lamp is operated by an inverter with a rectangular lamp current having a positive phase positive current flow and a negative negative current flow, and the inverter controlled by a control unit is working with a very slow control with a large time constant, and corrects any occurring asymmetries in the lamp voltage.

Darstellung der ErfindungPresentation of the invention

Die Lösung der Aufgabe bezüglich des Verfahrens wird durch ein Verfahren zum Betreiben einer Hochdruckentladungslampe bewerkstelligt, bei dem die Hochdruckentladungslampe von einem Wechselrichter mit einem rechteckförmigen Lampenstrom betrieben wird, der eine positive Phase mit positivem Stromfluss und eine negative Phase mit negativen Stromfluss aufweist, und der Wechselrichter von einer Steuereinheit geregelt wird, das durch folgende Schritte gekennzeichnet ist:

  • messen eines die Lampenleistung oder den rechteckförmigen Lampenstrom repräsentierenden Wertes für den positiven Stromfluss,
  • messen eines die Lampenleistung oder den rechteckförmigen Lampenstrom repräsentierenden Wertes für den negativen Stromfluss,
  • berechnen einer Stellwertvorgabe aus je einer Führungsgröße einer Lampenleistung oder des rechteckförmigen Lampenstromes und des gemessenen Wertes für die Phase mit positivem Stromfluss,
  • berechnen einer Stellwertvorgabe aus je einer Führungsgröße einer Lampenleistung oder des rechteckförmigen Lampenstromes und des gemessenen Wertes für die Phase mit negativem Stromfluss,
  • ausgeben der beiden Stellwertvorgaben an den Wechselrichter.
The solution of the object with respect to the method is achieved by a method for operating a high-pressure discharge lamp, in which the high-pressure discharge lamp is operated by an inverter with a rectangular lamp current, which is a positive Phase with positive current flow and a negative phase with negative current flow, and the inverter is controlled by a control unit, which is characterized by the following steps:
  • measuring a value representing the lamp power or the rectangular lamp current for the positive current flow,
  • measuring a value representing the lamp power or the rectangular lamp current for the negative current flow,
  • calculate a manipulated value specification from in each case a reference variable of a lamp power or the rectangular lamp current and the measured value for the phase with positive current flow,
  • calculate a manipulated variable specification from in each case a reference variable of a lamp power or the rectangular lamp current and the measured value for the phase with a negative current flow,
  • output the two manipulated variable specifications to the inverter.

Der rechteckförmige Lampenstrom weist dabei vorzugsweise eine Frequenz kleiner 500Hz, insbesondere kleiner 110Hz auf. Dadurch wird die Lampe quasi mit einem Gleichstrom berieben, und die Elektrodenbelastung ist gleichmäßig und minimal.The rectangular lamp current preferably has a frequency of less than 500 Hz, in particular less than 110 Hz. As a result, the lamp is almost rubbed with a direct current, and the electrode load is uniform and minimal.

Die Führungsgröße einer Lampenleistung oder des rechteckförmigen Lampenstromes für die Steuereinheit ist dabei bevorzugt für beide Phasen gleich. Dadurch wird die Lampe in jeder Phase auf die gleiche Leistung geregelt, was eine gleichmäßige Elektrodenbelastung zur Folge hat.The reference variable of a lamp power or the rectangular lamp current for the control unit is preferably the same for both phases. As a result, the lamp is regulated to the same power in each phase, resulting in a uniform electrode load.

Wird der die Lampenleistung oder den rechteckförmigen Lampenstrom repräsentierende Wert für die Steuereinheit aus der Eingangsspannung des Wechselrichters, dem Eingangsstrom des Wechselrichters, der Spannung der Hochdruckentladungslampe sowie einem Korrekturfaktor berechnet, so kann die aufwändige Lampenstrommessung entfallen, und trotzdem die Lampenleistung mit ausreichender Genauigkeit berechnet werden.If the value for the control unit representing the lamp power or the rectangular lamp current is calculated from the input voltage of the inverter, the input current of the inverter, the voltage of the high-pressure discharge lamp and a correction factor, the complex lamp current measurement can be dispensed with, and nevertheless the lamp power can be calculated with sufficient accuracy.

Zwischen den folgenden Stellwertvorgaben beider Phasen eine Zeitspanne liegt dabei erfindungsgemäß eine Zeitspanne, die zwischen 1ms und wenigen Sekunden, vorzugsweise zwischen 5ms und 50ms lang ist. Damit kann eine langsame und kostengünstige Regelung realisiert werden, die geringe Flickerneigung im Betrieb zeigt.According to the invention, a time interval between 1 ms and a few seconds, preferably between 5 ms and 50 ms, lies between the following control value specifications of both phases. This allows a slow and cost-effective control can be realized, the low Flickerneigung shows in operation.

Die Lösung der Aufgabe bezüglich der Schaltungsanordnung wird durch eine Schaltungsanordnung zum Betreiben einer Hochdruckentladungslampe bewerkstelligt, die einen Wechselrichter zum Betreiben der Hochdruckentladungslampe aufweist, der einen niederfrequenten rechteckförmigen Lampenstrom erzeugt, wobei der rechteckförmige Lampenstrom eine positive Phase mit positivem Stromfluss und eine negative Phase mit negativen Stromfluss aufweist, und der Wechselrichter von einer Steuereinheit geregelt wird, wobei die Steuereinheit die positive Phase und die negative Phase getrennt voneinander regelt, wobei die Steuereinheit einen die Lampenleistung oder den rechteckförmigen Lampenstrom repräsentierenden Wert in jeder Phase einzeln bestimmt, und eine Stellwertvorgabe für jede Phase in einem Abstand, der zwischen 1ms und wenigen Sekunden lang ist, aufgrund des gemessenen Wertes erzeugt.The solution of the object with respect to the circuit arrangement is accomplished by a circuit arrangement for operating a high-pressure discharge lamp which has an inverter for operating the high-pressure discharge lamp which generates a low-frequency rectangular lamp current, wherein the rectangular lamp current has a positive current flow positive phase and a negative current flow negative phase and the inverter is controlled by a control unit, wherein the control unit controls the positive phase and the negative phase separately, wherein the control unit determines a value representing the lamp power or the rectangular lamp current individually in each phase, and a manipulated variable for each phase in a distance that is between 1 ms and a few seconds long, based on the measured value.

Damit kann die Steuereinheit mit wenig Aufwand eine ausreichend genaue Stellwertvorgabe für jede Phase erzeugen.Thus, the control unit can generate a sufficiently accurate control value specification for each phase with little effort.

Die Führungsgröße einer Lampenleistung oder des rechteckförmigen Lampenstromes für die Steuereinheit ist dabei bevorzugt für beide Phasen gleich. Dadurch wird die Lampe in jeder Phase auf die gleiche Leistung geregelt, was eine gleichmäßige Elektrodenbelastung zur Folge hat.The reference variable of a lamp power or the rectangular lamp current for the control unit is preferably the same for both phases. As a result, the lamp is regulated to the same power in each phase, resulting in a uniform electrode load.

Vorzugsweise misst die Steuereinheit dabei die Eingangsspannung des Wechselrichters, den Eingangsstrom des Wechselrichters und die Spannung der Hochdruckentladungslampe, und berechnet einen die Lampenleistung oder den rechteckförmigen Lampenstrom repräsentierenden Wert aus diesen Größen unter Zuhilfenahme eines Korrekturfaktors und der Führungsgröße. Durch diese Maßnahme kann die aufwändige Lampenstrommessung entfallen, und trotzdem die Lampenleistung mit ausreichender Genauigkeit berechnet werden.In this case, the control unit preferably measures the input voltage of the inverter, the input current of the inverter and the voltage of the high-pressure discharge lamp, and calculates a value representing the lamp power or the rectangular lamp current from these variables with the aid of a correction factor and the reference variable. By this measure, the complex lamp current measurement can be omitted, and nevertheless the lamp power can be calculated with sufficient accuracy.

Um die Verarbeitung zu vereinfachen speichert die Steuereinheit dabei bevorzugt jeweils einen die Lampenleistung oder den rechteckförmigen Lampenstrom repräsentierenden Wert in voneinander getrennten, den beiden Phasen zugehörigen Speicherzellen ab. Die Steuereinheit erzeugt nun vorzugsweise mittels der abgespeicherten Werte für jede Phase einzeln eine Stellwertvorgabe, die dann an den Wechselrichter ausgegeben wird.In order to simplify the processing, the control unit preferably stores in each case a value representing the lamp power or the rectangular lamp current in separate memory cells belonging to the two phases. The control unit now preferably uses the stored values for each phase to generate a manipulated variable input, which is then output to the inverter.

Die Steuereinheit erzeugt die Stellwertvorgaben bevorzugt in einem Abstand, der zwischen 5ms und 50ms lang ist. Damit kann eine langsame und kostengünstige Regelung realisiert werden, die geringe Flickerneigung im Betrieb zeigt. Die Frequenz der Stellwertvorgaben ist dabei bevorzugt um mindestens eine Potenz geringer als die Frequenz des rechteckförmigen Lampenstromes.The control unit preferably generates the manipulated variable specifications at a distance which is between 5 ms and 50 ms long. Thus, a slow and inexpensive control can be realized, the low Flickerneigung in Operation shows. The frequency of the manipulated variable specifications is preferably at least one power less than the frequency of the rectangular lamp current.

Die Steuereinheit weist dabei vorzugsweise einen digitalen Regler mit einem Mikrocontroller auf. Da in vielen modernen Schaltungsanordnungen zum Betreiben von Entladungslampen ein Mikrocontroller implementiert ist, kann die erfindungsgemäße Steuereinheit als reine Software implementiert werden, was Kosten spart.The control unit preferably has a digital controller with a microcontroller. Since a microcontroller is implemented in many modern circuit arrangements for operating discharge lamps, the control unit according to the invention can be implemented as pure software, which saves costs.

Weitere vorteilhafte Weiterbildungen und Ausgestaltungen des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Schaltungsanordnung zum Betreiben einer Hochdruckentladungslampe ergeben sich aus weiteren abhängigen Ansprüchen und aus der folgenden Beschreibung.Further advantageous developments and refinements of the method according to the invention and of the circuit arrangement according to the invention for operating a high-pressure discharge lamp are evident from further dependent claims and from the following description.

Kurze Beschreibung der Zeichnung(en)Short description of the drawing (s)

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich anhand der nachfolgenden Beschreibung von Ausführungsbeispielen sowie anhand der Zeichnungen, in welchen gleiche oder funktionsgleiche Elemente mit identischen Bezugszeichen versehen sind. Dabei zeigen:

  • Fig. 1 eine schematische Darstellung einer Schaltungsanordnung, die das erfindungsgemäße Verfahren ausführt.
  • Fig. 2 Die schematisierten Ansteuerspannungen der Schalttransistoren der Vollbrücke, die von der Steuereinheit angesteuert werden.
Further advantages, features and details of the invention will become apparent from the following description of exemplary embodiments and with reference to the drawings, in which the same or functionally identical elements are provided with identical reference numerals. Showing:
  • Fig. 1 a schematic representation of a circuit arrangement, which carries out the inventive method.
  • Fig. 2 The schematic drive voltages of the switching transistors of the full bridge, which are controlled by the control unit.

Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

Fig. 1 zeigt ein schematisches Schaltbild einer Schaltungsanordnung, die das erfindungsgemäße Verfahren ausführt. Die Schaltungsanordnung weist einen Wechselrichter 30 mit allen Teilen, die für den Normalbetrieb benötigt werden, auf. Zusätzliche Bauteile, wie Zünddrossel, Zündkondensator, Treiberschaltungen etc., die für einen Start einer Hochdruckentladungslampe 5 und für vorstellbare andere Betriebszustände notwendig sind, wurden aus Gründen der Übersichtlichkeit weggelassen. Die Der Wechselrichter 30 besteht aus einer Vollbrücke mit 2 parallel geschalteten Halbbrücken 33 und 35, die jeweils je zwei Schalttransistoren Q1, Q2 sowie Q3, Q4 aufweisen. Die Schalttransistoren Q1-Q4 besitzen antiparallele Freilaufdioden D1-D4. Zwischen die Mittelpunkte der beiden Halbbrücken 33, 35 ist eine Serienschaltung der Hochdruckentladungslampe 5 und einer Lampendrossel L1 geschaltet. Zwischen dem Verbindungspunkt der Hochdruckentladungslampe 5 und der Lampendrossel L1 und dem Verbindungspunkt der unteren Vollbrückentransistoren Q2 und Q4, der im weiteren als Punkt 7 bezeichnet wird, ist ein Kondensator C2 geschaltet. Zwischen dem oberen Eingang E1, der auf dem gleichen Potential wie Punkt 6 liegt, und dem unteren Eingang E2, der auf dem gleichen Potential wie Punkt 8 liegt, ist ein Eingangskondensator C1 geschaltet. Zwischen Punkt 8 und Punkt 7 ist ein Strommesswiderstand Rs geschaltet. Fig. 1 shows a schematic circuit diagram of a circuit arrangement, which carries out the inventive method. The circuitry has an inverter 30 with all parts needed for normal operation. Additional components, such as ignition choke, ignition capacitor, driver circuits, etc., which are necessary for starting a high-pressure discharge lamp 5 and imaginable other operating states, have been omitted for reasons of clarity. The inverter 30 consists of a full bridge with 2 parallel half bridges 33 and 35, each having two switching transistors Q1, Q2 and Q3, Q4. The switching transistors Q1-Q4 have antiparallel freewheeling diodes D1-D4. Between the centers of the two half bridges 33, 35, a series circuit of the high pressure discharge lamp 5 and a lamp inductor L 1 is connected. Between the connection point of the high-pressure discharge lamp 5 and the lamp inductor L 1 and the connection point of the lower full-bridge transistors Q2 and Q4, which is referred to as point 7, a capacitor C 2 is connected. Between the upper input E1, which is at the same potential as point 6, and the lower input E2, which is at the same potential as point 8, an input capacitor C1 is connected. Between point 8 and point 7, a current measuring resistor R s is connected.

Der Wechselrichter 30 wird von einer Steuereinheit 20 unter Ausführung des erfindungsgemäßen Verfahrens gesteuert. Die Steuereinheit 20 misst die Eingangsspannung des Wechselrichters 30, also die Spannung zwischen Punkt 6 und Punkt 7. Dabei wird eine starke RC-Filterung verwendet, um Störungen und Kurzzeitschwankungen der Eingangsspannung des Wechselrichters 30 auszublenden.The inverter 30 is controlled by a control unit 20 while carrying out the method according to the invention. The control unit 20 measures the input voltage of the inverter 30, so the voltage between point 6 and point 7. This is a strong RC filtering used to hide disturbances and short-term fluctuations of the input voltage of the inverter 30.

Die Steuereinheit 20 misst ebenfalls die Spannung über dem Strommesswiderstand Rs, die ein Äquivalent zum Strom durch den Wechselrichter 30 ist. Dieser Wert wird in der positiven Phase des rechteckförmigen Lampenstroms und in der negativen Phase des rechteckförmigen Lampenstroms einzeln gemessen. Da die Vollbrücke des Wechselrichters 30, wie später noch erläutert wird, tiefsetzende Eigenschaften aufweist, ist der rechteckförmige Lampenstrom ein Faktor des Stroms durch die Vollbrücke. Für jede Messung speichert die Steuereinheit 20 den Stromwert in voneinander getrennten, den einzelnen Phasen zugehörigen Speicherzellen 210, 211 ab.The control unit 20 also measures the voltage across the current sense resistor R s , which is equivalent to the current through the inverter 30. This value is measured individually in the positive phase of the rectangular lamp current and in the negative phase of the rectangular lamp current. Since the full bridge of the inverter 30, as will be explained later, has deep-set properties, the rectangular lamp current is a factor of the current through the full bridge. For each measurement, the control unit 20 stores the current value in separate memory cells 210, 211 belonging to the individual phases.

Die Steuereinheit 20 errechnet nun unter Zuhilfenahme der gespeicherten Stromwerte für jede Phase einzeln die Leistung des Wechselrichters 30 und gibt je einen Stellwert für Q1 und Q2 aus. Damit spielen Asymmetrien der Lampe oder verschiedene Impedanzen in den verschiedenen Phasen oder verschiedene Treiberlaufzeiten nun keine Rolle mehr, da die positive Phase und die negative Phase des Stromes je einen 'eigenen' Stellwert bekommen. Die Stellwerte werden dabei nicht für jede niederfrequente Vollwelle neu ausgerechnet, sondern sie werden lediglich bei jeder n-ten niederfrequenten Vollwelle neu ausgerechnet. n kann dabei einen Wert zwischen 5 und mehreren hundert annehmen. Die Stellwertvorgaben werden also in einem zeitlichen Abstand von 1ms bis zu einigen Sekunden an den Wechselrichter ausgegeben. Die Stellwertvorgabe kann unter Umständen also auch nur alle 2-3 Sekunden ausgegeben werden. Dadurch, dass die Regelung zwischen positiver Halbwelle und negativer Halbwelle unterscheidet und diese Halbwellen getrennt geregelt werden, kann eine sehr langsame und damit kostengünstige Regelung verwendet werden, ohne die Lampe asymmetrisch zu betreiben. Ein Gleichstromanteil im Lampenstrom wird so sicher vermieden.The control unit 20 now calculates the power of the inverter 30 individually with the aid of the stored current values for each phase and outputs a respective set value for Q1 and Q2. As a result, asymmetries of the lamp or different impedances in the different phases or different drive delays no longer play a role, since the positive phase and the negative phase of the current each have their own control value. The control values are not recalculated for each low-frequency full wave, but are recalculated only at every nth low-frequency full wave. n can assume a value between 5 and several hundred. The manipulated variable settings are thus output to the inverter at a time interval of 1 ms to a few seconds. The manipulated variable specification can under certain circumstances also be output only every 2-3 seconds. Because of the regulation between a positive half-wave and negative half-wave and these half-waves are controlled separately, a very slow and therefore cost-effective control can be used without operating the lamp asymmetrically. A DC component in the lamp current is thus safely avoided.

Die Ansteuerung des Wechselrichters 30 wird dabei so vorgenommen, dass die Transistoren der Vollbrücke mit einer niederfrequenten Rechteckspannung angesteuert werden. Dabei wird in der ersten Halbbrücke 33 der niederfrequenten Ansteuerspannung der Transistoren Q1 und Q2 eine hochfrequente Ansteuerspannung überlagert. Die zweite Halbbrücke 35 der Vollbrücke 30 wird dabei lediglich mit einer niederen Rechteckspannung angesteuert. Die hochfrequente Überlagerung kann dabei eine Pulsweitenmodulation sein oder eine andere geeignete Ansteuerung. Als niederfrequenter Betrieb wird hier der Betrieb mit einer Frequenz angesehen, die allgemein maximal eine Potenz über der Eingangsnetzfrequenz liegt. Die Frequenz des niederfrequenten Betriebs liegt vorzugsweise zwischen 50 Hz und 900 Hz. Als hochfrequenter Betrieb wird demzufolge der Betrieb mit einer Frequenz angesehen, die mindestens um eine Potenz höher liegt als die Frequenz des niederfrequenten Betriebs. Die Frequenz des hochfrequenten Betriebs liegt vorzugsweise zwischen 3 kHz und 120 kHzThe control of the inverter 30 is made so that the transistors of the full bridge are driven with a low-frequency square-wave voltage. In this case, a high-frequency drive voltage is superposed in the first half-bridge 33 of the low-frequency drive voltage of the transistors Q1 and Q2. The second half bridge 35 of the full bridge 30 is driven only with a low square wave voltage. The high-frequency superposition may be a pulse width modulation or another suitable control. As a low-frequency operation here is the operation with a frequency considered, which is generally a maximum of one power above the input network frequency. The frequency of the low-frequency operation is preferably between 50 Hz and 900 Hz. As a high-frequency operation, the operation is thus considered to have a frequency which is at least one power higher than the frequency of the low-frequency operation. The frequency of the high-frequency operation is preferably between 3 kHz and 120 kHz

Die Treiber für die oberen Transistoren Q1 und Q3 sowie die Hochfrequenzansteuerungen für die Halbbrücke 33 sind der Übersichtlichkeit halber in der schematischen Darstellung der Fig. 1 nicht gezeigt.The drivers for the upper transistors Q1 and Q3 and the high-frequency drives for the half-bridge 33 are shown in the schematic representation of FIG Fig. 1 Not shown.

Fig. 2 zeigt die schematisierten Ansteuerspannungen der Schalttransistoren Q1-Q4 des Wechselrichters 30, die von der Steuereinheit 20 angesteuert werden. Die Transistoren Q3 und Q4 der Halbbrücke 35 werden mit einer niederfrequenten Spannung angesteuert, so dass sie in jeder Halbwelle jeweils komplett durchgeschaltet sind. Die Transistoren werden komplementär geschaltet, um eine positive und eine negative Stromphase durch die Hochdruckentladungslampe zu erzeugen. Die Transistoren Q1 und Q2 der Halbbrücke 33 werden ebenfalls von einer niederfrequenten Spannung betrieben. Dieser niederfrequenten Spannung ist zusätzlich eine hochfrequente Rechteckspannung überlagert, wie aus der Fig. 2 ersichtlich ist. Die hochfrequente Überlagerungs- beziehungsweise Ansteuerspannung kann durch eine Pulsweitenmodulation oder ein anderes geeignetes Verfahren erzeugt werden. Während also Q3 durchgeschaltet ist, wird Q2 mit einer hochfrequenten Spannung angesteuert. Q1 und Q4 sind ausgeschaltet. Während Q4 durchgeschaltet ist, wird Q1 mit einer hochfrequenten Spannung angesteuert. Während dieser Zeit sind Q2 und Q3 ausgeschaltet. Fig. 2 shows the schematic drive voltages of the switching transistors Q1-Q4 of the inverter 30, which are controlled by the control unit 20. The transistors Q3 and Q4 of the half-bridge 35 are driven with a low-frequency voltage, so that they are in each case completely switched through in each half-wave. The transistors are complementarily switched to produce a positive and a negative current phase through the high pressure discharge lamp. The transistors Q1 and Q2 of the half bridge 33 are also operated by a low frequency voltage. This low-frequency voltage is also superimposed on a high-frequency square-wave voltage, as from the Fig. 2 is apparent. The high-frequency superimposition or drive voltage can be generated by a pulse width modulation or another suitable method. Thus, while Q3 is turned on, Q2 is driven by a high frequency voltage. Q1 and Q4 are off. While Q4 is on, Q1 is driven by a high frequency voltage. During this time, Q2 and Q3 are off.

Durch diese hochfrequente Ansteuerspannung kann der rechteckförmige Lampenstrom auf eine eventuell vorhandene Unsymmetrie der Hochdruckentladungslampe 5 angepasst werden. Dadurch, dass der Lampenstrom in jeder Phase einzeln geregelt wird, kann sich auch die Frequenz der Überlagerungs- beziehungsweise Ansteuerspannung beziehungsweise das Tastverhältnis dieser Spannung von der positiven zur negativen Phase unterscheiden, was einen unterschiedlichen Lampenstrom in der positiven wie in der negativen Phase zur Folge hat. Zusammen mit der unsymmetrischen Lampenspannung ergibt sich hieraus eine vollkommen symmetrische Leistungsaufnahme in beiden Phasen, die eine gleichmäßige Elektrodenbeanspruchung der Hochdruckentladungslampe 5 zur Folge hat, und die Lebensdauer der Hochdruckentladungslampe somit verlängert.As a result of this high-frequency drive voltage, the rectangular lamp current can be adapted to any asymmetry of the high-pressure discharge lamp 5 that is present. Because the lamp current is regulated individually in each phase, the frequency of the superimposition or drive voltage or the duty cycle of this voltage can also differ from the positive to the negative phase, resulting in a different lamp current in the positive and in the negative phase , Together with the unbalanced Lamp voltage results from this a completely symmetrical power consumption in both phases, which has a uniform electrode stress of the high pressure discharge lamp 5 result, and thus extends the life of the high pressure discharge lamp.

Claims (13)

  1. Method for operating a high-pressure discharge lamp (5), wherein the high-pressure discharge lamp (5) is operated by an inverter (30) with a rectangular-waveform lamp current having a positive phase with positive current flow and a negative phase with negative current flow, and the inverter (30) is regulated by a control unit (20), comprising the following steps:
    - measuring a value representing the lamp power or the rectangular-waveform lamp current for the positive current flow,
    - measuring a value representing the lamp power or the rectangular-waveform lamp current for the negative current flow,
    - calculating a manipulated variable predefinition from a respective reference variable of a lamp power or the rectangular-waveform lamp current and the measured value for the phase with positive current flow,
    - calculating a manipulated variable predefinition from a respective reference variable of a lamp power or the rectangular-waveform lamp current and the measured value for the phase with negative current flow,
    - outputting the two manipulated variable predefinitions to the inverter, characterized in that
    - between the following manipulated variable predefinitions of both phases there is a time period having a length of between 1 ms and a few seconds.
  2. Method for operating a high-pressure discharge lamp (5) according to Claim 1, characterized in that the rectangular-waveform lamp current has a frequency of less than 500 Hz, in particular less than 110 Hz.
  3. Method for operating a high-pressure discharge lamp (5) according to Claim 1, characterized in that the reference variable of a lamp power or of the rectangular-waveform lamp current for the control unit (20) is identical for both phases.
  4. Method for operating a high-pressure discharge lamp (5) according to Claim 1, characterized in that the value representing the lamp power or the rectangular-waveform lamp current for the control unit (20) is calculated from the input voltage of the inverter (30), the input current of the inverter (30), the voltage of the high-pressure discharge lamp (5) and a correction factor.
  5. Method for operating a high-pressure discharge lamp (5) according to any of the preceding claims, characterized in that between the following manipulated variable predefinitions of both phases there is a time period having a length of between 5 ms and 50 ms.
  6. Circuit arrangement for operating a high-pressure discharge lamp (5), configured to operate the high-pressure discharge lamp (5) by an inverter (30) with a rectangular-waveform lamp current having a positive phase with positive current flow and a negative phase with negative current flow, and configured to regulate the inverter (30) by means of a control unit (20), wherein the control unit (20) regulates the positive phase and the negative phase separately from one another, and the control unit (20) determines a value representing the lamp power or the rectangular-waveform lamp current individually in each phase and generates a manipulated variable predefinition for each phase on the basis of the measured value and a respective reference variable of a lamp power or of the rectangular-waveform lamp current, characterized in that the control unit (20) generates the manipulated variable predefinitions at an interval having a length of between 1 ms and a few seconds.
  7. Circuit arrangement for operating a high-pressure discharge lamp (5) according to Claim 6, characterized in that a reference variable for the control unit (20) is identical for the positive phase and for the negative phase.
  8. Circuit arrangement for operating a high-pressure discharge lamp (5) according to Claim 6 or 7, characterized in that the control unit (20) measures the input voltage of the inverter (30), the input current of the inverter (30) and the voltage of the high-pressure discharge lamp (5) and calculates a value representing the lamp power or the rectangular-waveform lamp current for the control unit (20) from these variables with the aid of a correction factor and the reference variable.
  9. Circuit arrangement for operating a high-pressure discharge lamp (5) according to any of Claims 6 to 8, characterized in that the control unit (20) in each case stores a value representing the lamp power or the rectangular-waveform lamp current in mutually separate memory cells (210, 211) associated with the two phases.
  10. Circuit arrangement for operating a high-pressure discharge lamp (5) according to Claim 9, characterized in that the control unit (20) generates by means of the stored values for each phase individually a manipulated variable predefinition, which is then output to the inverter (30).
  11. Circuit arrangement for operating a high-pressure discharge lamp (5) according to Claim 10, characterized in that the control unit (20) generates the manipulated variable predefinitions at an interval having a length of between 5 ms and 50 ms.
  12. Circuit arrangement for operating a high-pressure discharge lamp (5) according to any of the preceding Claims 6-11, characterized in that the frequency of the manipulated variable predefinitions is lower than the frequency of the rectangular-waveform lamp current by at least one power.
  13. Circuit arrangement for operating a high-pressure discharge lamp (5) according to any of the preceding Claims 6-12, characterized in that the control unit (20) comprises a digital regulator with a microcontroller.
EP08875223.3A 2008-10-23 2008-10-23 Circuit arrangement and method for operating a high pressure discharge lamp Not-in-force EP2340690B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2008/064394 WO2010045980A1 (en) 2008-10-23 2008-10-23 Circuit arrangement and method for operating a high pressure discharge lamp

Publications (2)

Publication Number Publication Date
EP2340690A1 EP2340690A1 (en) 2011-07-06
EP2340690B1 true EP2340690B1 (en) 2017-10-04

Family

ID=40707819

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08875223.3A Not-in-force EP2340690B1 (en) 2008-10-23 2008-10-23 Circuit arrangement and method for operating a high pressure discharge lamp

Country Status (6)

Country Link
US (1) US8760069B2 (en)
EP (1) EP2340690B1 (en)
KR (1) KR20110079905A (en)
CN (1) CN102197710B (en)
TW (1) TW201023689A (en)
WO (1) WO2010045980A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484933B (en) * 2009-10-30 2014-06-18 三菱电机株式会社 Discharge lamp lighting apparatus
CN108337795B (en) * 2018-02-07 2024-02-06 深圳市朗文科技实业有限公司 Two-stage low-frequency square wave electronic ballast
EP4203294A1 (en) * 2021-12-23 2023-06-28 FRONIUS INTERNATIONAL GmbH Method for operating an inverter assembly and inverter assembly for executing the method
DE102022200430A1 (en) 2022-01-17 2023-07-20 Osram Gmbh CONTROL METHOD FOR CONTINUOUS AND PULSE-FORM OUTPUTS AND RELATED CIRCUIT ARRANGEMENTS

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240009A (en) * 1978-02-27 1980-12-16 Paul Jon D Electronic ballast
US4170747A (en) * 1978-09-22 1979-10-09 Esquire, Inc. Fixed frequency, variable duty cycle, square wave dimmer for high intensity gaseous discharge lamp
EP0017408A1 (en) * 1979-04-06 1980-10-15 BOC Limited Apparatus for mixing fluids comprising fluid-flow restricting device
US4734624A (en) * 1985-07-25 1988-03-29 Matsushita Electric Works, Ltd. Discharge lamp driving circuit
US4686428A (en) 1985-08-28 1987-08-11 Innovative Controls, Incorporated High intensity discharge lamp self-adjusting ballast system with current limiters and a current feedback loop
AU738151B2 (en) 1997-12-23 2001-09-13 Tridonic Bauelemente Gmbh Process and device for the detection of the rectifier effect appearing in a gas discharge lamp
JP2000113995A (en) * 1998-02-25 2000-04-21 Mitsubishi Electric Corp Lighting control device for discharge lamp, and h bridge circuit used for the device
TW512376B (en) 2000-08-17 2002-12-01 Koninkl Philips Electronics Nv Switching device
DE10051139A1 (en) 2000-10-16 2002-04-25 Tridonic Bauelemente Electronic voltage adapter has full bridge circuit with both diagonals having regulated constant current source for regulating the gas discharge lamp current
US6593703B2 (en) * 2001-06-15 2003-07-15 Matsushita Electric Works, Ltd. Apparatus and method for driving a high intensity discharge lamp
US6670779B2 (en) * 2001-12-05 2003-12-30 Koninklijke Philips Electronics N.V. High power factor electronic ballast with lossless switching
US7154232B2 (en) 2003-06-24 2006-12-26 International Rectifier Corporation Ballast control IC with multi-function feedback sense
US7382101B2 (en) * 2004-04-23 2008-06-03 Matsushita Electric Industrial Co., Ltd. Lighting system
CN101077039A (en) * 2004-09-27 2007-11-21 皇家飞利浦电子股份有限公司 Driver circuit for driving gas discharge lamp and method of calibrating driver circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20110221357A1 (en) 2011-09-15
US8760069B2 (en) 2014-06-24
KR20110079905A (en) 2011-07-11
CN102197710A (en) 2011-09-21
WO2010045980A1 (en) 2010-04-29
EP2340690A1 (en) 2011-07-06
TW201023689A (en) 2010-06-16
CN102197710B (en) 2015-02-11

Similar Documents

Publication Publication Date Title
DE602005003598T2 (en) Device for operating a discharge lamp
DE602005002987T2 (en) Discharge lamp device for a plurality of gas discharge lamps
DE19531966C2 (en) Power supply circuit for a high-pressure discharge lamp
EP2340690B1 (en) Circuit arrangement and method for operating a high pressure discharge lamp
DE10201852A1 (en) A discharge lamp lighting device
DE602004002648T2 (en) Discharge lamp lighting device
DE10200004A1 (en) Electronic circuit and method for operating a high pressure lamp
EP1465465B1 (en) Electronic ballast with a full-bridge circuit
EP2952060B1 (en) Circuit configuration and method for operating and dimming of at least one led
DE102005028417A1 (en) Device for providing a sinusoidally amplitude-modulated operating voltage, illumination system and method for generating an amplitude-modulated voltage
EP1696713B1 (en) Electronic ballast with current measuring means for high-pressure discharge lamps
DE112009002495T5 (en) Lighting device for vehicle light source
DE102012224346A1 (en) Circuit arrangement for operating n parallel-connected strings with at least one semiconductor light source
EP1531544B1 (en) Method to operate a by PWM controlled electromotor
DE10206175A1 (en) Discharge lamp lighting circuit
DE60112941T2 (en) CIRCUIT
WO2006079463A1 (en) Device for smoothing a current supplied to a consumer
DE60216814T2 (en) METHOD AND DEVICE FOR DIMMING HID LAMPS
DE60113842T2 (en) CIRCUIT
EP1355517B1 (en) Switched converter with acoustic switching frequency
WO2009115260A1 (en) Power regulation of gas discharge lamps in half bridge and full bridge circuits
WO2007003171A1 (en) Device and method for operating a high-pressure discharge lamp
WO2007096253A1 (en) Circuit arrangement and method for operating a high-pressure discharge lamp
DE60225818T2 (en) CIRCUIT
EP1851849A1 (en) Method and circuit arrangement for recording a current of a pulse-width modulation-controlled electric motor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMIDL, MAXIMILIAN

Inventor name: LIMMER, WALTER

Inventor name: BRAUN, ALOIS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM AG

17Q First examination report despatched

Effective date: 20120808

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170512

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 935180

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008015660

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171004

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180204

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008015660

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171023

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

26N No opposition filed

Effective date: 20180705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 935180

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181019

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181023

Year of fee payment: 11

Ref country code: GB

Payment date: 20181019

Year of fee payment: 11

Ref country code: IT

Payment date: 20181024

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008015660

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191023

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191023

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031