EP2339278A1 - Device for enrichment of copper or nickel - Google Patents
Device for enrichment of copper or nickel Download PDFInfo
- Publication number
- EP2339278A1 EP2339278A1 EP09015674A EP09015674A EP2339278A1 EP 2339278 A1 EP2339278 A1 EP 2339278A1 EP 09015674 A EP09015674 A EP 09015674A EP 09015674 A EP09015674 A EP 09015674A EP 2339278 A1 EP2339278 A1 EP 2339278A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vertical
- boiler section
- section
- exhaust gas
- boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 36
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 18
- 239000010949 copper Substances 0.000 title claims abstract description 18
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 18
- 239000007789 gas Substances 0.000 claims abstract description 82
- 238000001816 cooling Methods 0.000 claims abstract description 54
- 239000002918 waste heat Substances 0.000 claims abstract description 40
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 238000003723 Smelting Methods 0.000 claims abstract 10
- 238000007664 blowing Methods 0.000 claims abstract 3
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 238000005339 levitation Methods 0.000 claims description 10
- 238000007667 floating Methods 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 230000000630 rising effect Effects 0.000 abstract 7
- 238000007599 discharging Methods 0.000 abstract 2
- 230000009969 flowable effect Effects 0.000 abstract 1
- 239000002826 coolant Substances 0.000 description 12
- 239000000543 intermediate Substances 0.000 description 12
- 230000005855 radiation Effects 0.000 description 11
- 239000012141 concentrate Substances 0.000 description 7
- 238000009835 boiling Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/001—Extraction of waste gases, collection of fumes and hoods used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0026—Pyrometallurgy
- C22B15/0028—Smelting or converting
- C22B15/0047—Smelting or converting flash smelting or converting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/02—Obtaining nickel or cobalt by dry processes
- C22B23/025—Obtaining nickel or cobalt by dry processes with formation of a matte or by matte refining or converting into nickel or cobalt, e.g. by the Oxford process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/10—Details, accessories, or equipment peculiar to hearth-type furnaces
- F27B3/26—Arrangements of heat-exchange apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/004—Systems for reclaiming waste heat
Definitions
- the invention relates to a device for the production or enrichment of copper or nickel, with a Schwebetationzofen and connected to the Schwebeschmelzofen waste heat boiler for the removal and cooling of exhaust gases from the Schwebefmelzofen.
- the levitation melting furnace is used for levitation melting of copper concentrates or nickel concentrates.
- a levitation melting furnace generally has a reaction shaft, a riser shaft and a hearth connecting the reaction shaft to the riser shaft.
- a copper-containing or nickel-containing melt is added.
- a horizontally arranged waste heat boiler is connected to the vertical riser shaft of the Schweehmmelzofens. The exhaust gas or process gas from the Schwebefmelzofen thus first flows through the riser vertically upwards, is then deflected by 90 ° and then flows through the horizontally oriented waste heat boiler.
- This horizontal waste heat boiler has on its walls by a cooling medium flow throughmérohe to cool the exhaust gas.
- the first part of the horizontal waste heat boiler consists of a chamber in which the cooling or the heat transfer takes place essentially by radiation (radiation part of the waste heat boiler). In this part of the radiation, the exhaust gas is cooled to a temperature of about 650 ° C to 750 ° C.
- the waste heat boiler has downstream of this chamber to a second chamber in which the cooling or the heat transfer by convection takes place (convection part of the waste heat boiler). After flowing through this convection part, the exhaust gas has a temperature of about 350 ° C.
- This known device has the disadvantage that it easily in the horizontal waste heat boiler to unwanted deposits from the exhaust gas in the transition riser / waste heat boiler to the cooling surfaces comes. However, such deposits significantly impair the heat transfer at the cooling surfaces.
- the cooling surfaces in the lower region of the first horizontal chamber are hardly affected by the exhaust gas and therefore these cooling surfaces have only a small proportion of the cooling of the exhaust gas.
- this waste heat boiler of the known device so only a relatively poor utilization of the cooling surfaces takes place.
- a flow obstacle in the form of a partition wall was installed in such waste heat boiler.
- the invention is the technical problem of providing a device of the type mentioned above, with which the above-described disadvantages can be effectively avoided or minimized.
- the invention teaches a device for recovering or enriching copper or nickel, with a Schwebeschmelzofen and connected to the Schwebeschmelzofen waste heat boiler for the removal and cooling of exhaust gases or process gases from the Schwebeschmelzofen, wherein the levitation melting furnace comprises a reaction shaft, a vertical riser and a hearth connecting the reaction shaft with the riser shaft for receiving a copper-containing or nickel-containing melt and wherein the waste heat boiler has a first vertically oriented or substantially vertically oriented one connected to the riser Boiler section has. - This boiler section is also referred to below as the first vertical boiler section.
- reaction shaft and riser shaft are oriented vertically and the hearth forms a horizontal connection of reaction shaft and riser shaft.
- copper concentrate or nickel concentrate is introduced into the reaction shaft and reacted with oxygen. Impurities such as sulfur and the like are separated in intermediates.
- the copper-containing or nickel-containing melt is absorbed. The exhaust gases or process gases from this process are extracted via the vertical riser shaft.
- a (first) vertically arranged boiler section of the waste heat boiler is connected to the vertical riser shaft.
- the hot exhaust gas or process gas rises vertically in the vertical riser shaft and then continues vertically upwards in the (first) vertically arranged boiler section.
- the first vertically oriented boiler section forms, as it were, the vertical extension of the vertical riser shaft.
- the hot exhaust gas or process gas passing from the riser shaft into the first vertically oriented boiler section has a temperature of 1100 ° C. to 1500 ° C., in particular a temperature of 1200 ° C. to 1400 ° C.
- this hot exhaust gas is cooled.
- cooling tubes through which a cooling medium flows are arranged on the inner walls of the waste heat boiler, or that the inner walls of the waste heat boiler are formed by cooling tubes through which a cooling medium flows.
- the cooling medium it is preferably boiling water.
- the boiling water has expediently a temperature higher 200 ° C.
- the first vertical boiler section is designed with the proviso that the exhaust gas to a temperature of 800 ° C to 1000 ° C, preferably to a temperature of 850 ° C to 950 ° C is cooled.
- the exhaust gas in the first vertical boiler section in particular to a temperature of about 900 ° C can be cooled.
- the temperatures indicated above are the temperature of the exhaust gas in the upper region of the first vertical boiler section, in particular before or in the region of a preferably provided and subsequently explained deflection or horizontal deflection of the exhaust gas. It is within the scope of the invention that the cooling of the exhaust gas or the heat transfer in the first vertical boiler section takes place at least substantially by thermal radiation.
- the first vertical boiler section expediently forms the first radiation part of the waste heat boiler.
- the cooling of the exhaust gas in the first vertical boiler section is recommended carried out by means of a cooling medium flowed through the cooling tubes on the inner walls of the boiler section.
- the cooling tubes form the walls or inner walls of the first vertical boiler section.
- boiling water is preferably used as the cooling medium.
- the first vertical boiler section has a height of 30 to 50m, preferably a height of 35 to 45m and more preferably a height of about 40m. Height means the vertical extent of the boiler section in the longitudinal direction.
- An embodiment of the invention which has proven particularly useful is characterized in that the first vertical boiler section has an internal cross-sectional area of 8 to 16m 2 , preferably 10 to 14m 2 and preferably 11 to 13m 2 .
- the vertical boiler section points For example, an internal cross-sectional area of 12m 2 or of about 12m 2 .
- Internal cross-sectional area means, moreover, the cross-sectional area formed by the inner walls of the boiler section.
- the above-specified internal cross-sectional areas have proven particularly effective in terms of effective cooling of the exhaust gas. - It is within the scope of the invention that the inner cross section of the first vertical boiler section is rectangular.
- a plurality of injection nozzles for injecting an oxygen-containing gas into the interior of the first boiler section is provided in the lower region of the first vertical boiler section.
- the injection nozzles are arranged in the boiler wall and preferably in opposite areas of the boiler wall.
- the injected oxygen-containing gas is in particular air.
- the oxygen-containing gas or the air is used as a post-combustion gas to promote the oxidation reactions.
- the invention is based on the finding that due to the inventive design of the device or the waste heat boiler optimal mixing and optimal afterburning takes place.
- the exhaust gas or process gas flows vertically upward in the vertical riser shaft of the levitation melting furnace and then vertically upward through the first vertical boiler portion.
- an interchangeable vertical intermediate piece is interposed between the vertical riser shaft of the levitation melting furnace and the first vertical boiler section.
- Vertical intermediate piece here means a transition part between the vertical riser and the first vertical boiler section, which is flowed through by the exhaust gas (also) vertically upwards.
- the vertical intermediate piece is designed with the proviso that the spatter at least substantially act on the inner walls or cooling surfaces of the vertical intermediate piece.
- the invention continues to be based on the finding that such a vertical intermediate piece is easier to replace than the first vertical boiler portion acted upon by melt injectors.
- the vertical spacer has a height of 1.5 to 8m, preferably from 2 to 7.5 m, and preferably a height of 2 to 6 m. Height refers to the vertical extent of the vertical intermediate piece in the installed state. It is within the scope of the invention that the vertical intermediate piece is cooled by a separate cooling circuit. This cooling circuit is expediently exchangeable independently of the cooling circuit of the first vertical boiler section and thus independently of the first vertical boiler section.
- the vertical spacer has a rectangular inner cross-section.
- a second vertical boiler section is connected to the first vertical boiler section and that the second vertical boiler section is flowed through by the exhaust gas vertically downwards.
- the second vertical boiler section also means that this second boiler section is oriented or arranged substantially vertically.
- the cooling of the exhaust gas takes place in the second vertical boiler section by means of cooling medium through which a cooling medium flows, which form the wall of the second vertical boiler section.
- the second vertical boiler section has a rectangular, in particular a square inner cross section.
- the second vertical boiler section is designed with the proviso that the exhaust gas therein to a temperature of 500 to 800 ° C, preferably to a temperature of 620 to 780 ° C and preferably to a temperature of 650 to 750 ° C. is coolable.
- This is the temperature of the exhaust gas in the lower region of the second vertical boiler section, in particular in front of or in the region of a preferably provided and subsequently explained diversion of the exhaust gas.
- the cooling of the exhaust gas or the heat transfer takes place in the second vertical boiler section expediently at least substantially via radiation.
- the second vertical boiler section then forms, as it were, the second radiation part of the waste heat boiler according to the invention.
- the first vertical boiler section is connected to the second vertical boiler section via a horizontal deflection section of the waste heat boiler.
- Horizontal deflection section here means that the exhaust gas flows through at least a portion of this deflection section horizontally or substantially horizontally.
- the exhaust gas cooled in the first vertical boiler section preferably has a temperature of 800 to 1000 ° C. and preferably a temperature of 850 to 950 ° C.
- a preferred embodiment of the invention is characterized in that in the lower region of the second vertical boiler section a horizontal boiler section is connected to the second vertical boiler section and that the exhaust gas is deflected from the second vertical boiler section into the horizontal boiler section.
- Horizontal boiler section means in particular also that the boiler section can be arranged substantially horizontally.
- the exhaust gas to be cooled thus flows vertically downwards in the second vertical boiler section and then becomes 90 ° or deflected by about 90 ° in the horizontal boiler section.
- the exhaust gas expediently has a temperature of 620 to 780 ° C, preferably a temperature of 640 to 760 ° C and preferably a temperature of 650 to 750 ° C.
- the exhaust gas in the horizontal boiler section is further cooled.
- the cooling of the exhaust gas is realized by means of cooling medium through which cooling medium flows. These cooling pipes form the wall of the horizontal boiler section.
- the cooling of the exhaust gas or the heat transfer in the horizontal boiler section is at least substantially by convection. Therefore, it is the horizontal boiler section as it were the convection part of the waste heat boiler according to the invention.
- the horizontal boiler section is designed with the proviso that a cooling of the exhaust gas to a temperature of 200 to 500 ° C, preferably to a temperature of 250 to 450 ° C and preferably to a temperature of 300 to 400 ° C. takes place.
- the exhaust gas is cooled in particular to a temperature of 350 ° C or to a temperature of about 350 ° C.
- the invention is based on the finding that with the device according to the invention and in particular with the waste heat boiler according to the invention disadvantageous deposits from the exhaust gas can be largely avoided or minimized on the cooling surfaces.
- disadvantageous deposits from the exhaust gas can be largely avoided or minimized on the cooling surfaces.
- the invention is in particular also based on the finding that the deflection of the exhaust gas provided in a preferred embodiment for a horizontal deflection section takes place only at a substantially lower temperature (for example 900 ° C.) than in the known devices and thus the risk of deposits can be avoided or minimized.
- the cooling surfaces in the waste heat boiler in particular the cooling surfaces in the first vertical boiler section can be dimensioned smaller with the same temperature reduction.
- the invention allows over the known devices, a saving of cooling surfaces and, accordingly, a saving of material and manufacturing costs. This also means a reduction of the plant operating costs, since current consumers such as pumps can be made smaller.
- the device according to the invention can also be realized with a lower construction volume with the same efficiency compared to the known devices. It should be emphasized in particular that the advantages explained above are achieved especially in devices which work with a levitation melting furnace for the recovery or enrichment of copper or nickel.
- the figures show a device for the enrichment of copper or nickel with a Schwebeschmelzofen 1 and connected to the Schwebeschmelzofen 1 waste heat boiler 2 for the removal and cooling of exhaust gases from the Schwebefmelzofen 1.
- the Schwebefmelzofen 1 has in itself known manner a vertically oriented reaction shaft 3, a vertically oriented riser 4 and the reaction shaft 3 with the riser shaft 4 connecting hearth 5 on.
- Copper concentrate or nickel concentrate is introduced into the reaction shaft 3, and the concentrate falling or floating in the reaction shaft is reacted with oxygen. By-products such as sulfur are separated. In the received in the hearth 5 melt copper or nickel is enriched. The resulting in this process exhaust gases and process gases escape via the vertical riser 4 in the waste heat boiler 2 and are cooled there.
- the wall of the waste heat boiler not shown in detail by a cooling medium flowed through cooling tubes. As a cooling medium boiling water is expediently used.
- the waste heat boiler 2 has a first vertically oriented boiler section 6 connected to the vertical riser shaft 4.
- This first vertically oriented boiler section 6 forms as it were a vertical extension of the vertical riser 4.
- the hot exhaust gas or process gas flows vertically upwards in the vertical riser 4 and enters the first vertically oriented boiler section at a temperature of up to about 1400 ° C 6 on.
- the exhaust gas is cooled in particular to a temperature of about 900 ° C. This is the temperature of the exhaust gas in the upper region 7 before or in the region of the deflection of the exhaust gas in the horizontal deflection section 8.
- the height h of the first vertical boiler section 6 may be 40m in the embodiment.
- the inner cross-sectional area of this first vertical boiler section 6 is approximately 12 m 2 in the exemplary embodiment. This inner cross section of the first vertical boiler section 6 is square in the embodiment.
- an interchangeable vertical intermediate piece 9 is interposed between the vertical riser shaft 4 of the levitation furnace 1 and the first vertical boiler section 6 of the waste heat boiler 2.
- This intermediate piece 9 may in the embodiment have a vertical height z of 3 to 5m.
- the interchangeable vertical intermediate piece 9 is cooled in a manner not shown by a cooling circuit, which is independent of the cooling circuit or of the cooling circuits of the waste heat boiler 2 and the first vertical boiler section 6. For this reason, the vertical intermediate piece 9 is independently or separately exchangeable from the first vertical boiler section 6.
- the vertical spacer 9 has a square cross-section.
- the exhaust gas rises vertically in the first vertical boiler section 6 and is then deflected via the horizontal deflection section 8 into the second vertical boiler section 10.
- the exhaust gas flows following the horizontal deflection section 8 via an obliquely arranged boiler section 11 in the second vertical boiler section 10.
- the exhaust gas flows vertically downwards and is in particular to a temperature of about 650 ° C. cooled to 750 ° C. This is the temperature of the exhaust gas before or in the region of the deflection in the horizontal boiler section 12.
- the exhaust gas is then cooled to a temperature of about 350 ° C.
- the cooling of the exhaust gas or the heat transfer takes place at least substantially by radiation.
- the first vertical boiler section 6 is therefore also the first radiation part and the second vertical boiler section 10 referred to as the second radiation part of the waste heat boiler 2.
- the cooling of the exhaust gas or the heat transfer takes place at least substantially by convection.
- This horizontal boiler section 12 is therefore also referred to as the convection part of the waste heat boiler 2.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zur Gewinnung bzw. zur Anreicherung von Kupfer oder Nickel, mit einem Schwebeschmelzofen und einem an den Schwebeschmelzofen angeschlossenen Abhitzekessel zur Abführung und zur Kühlung von Abgasen aus dem Schwebeschmelzofen.The invention relates to a device for the production or enrichment of copper or nickel, with a Schwebefehlzofen and connected to the Schwebeschmelzofen waste heat boiler for the removal and cooling of exhaust gases from the Schwebefmelzofen.
Derartige Vorrichtungen sind aus der Praxis grundsätzlich bekannt. Der Schwebeschmelzofen dient zum Schwebeschmelzen von Kupferkonzentraten oder Nickelkonzentraten. Ein solcher Schwebeschmelzofen weist in der Regel einen Reaktionsschacht, einen Steigschacht und einen den Reaktionsschacht mit dem Steigschacht verbindenden Herd auf. In dem Herd ist eine kupferhaltige oder nickelhaltige Schmelze aufgenommen. Bei diesen bekannten Vorrichtungen ist an den vertikalen Steigschacht des Schwebeschmelzofens ein horizontal angeordneter Abhitzekessel angeschlossen. Das Abgas bzw. Prozessgas aus dem Schwebeschmelzofen durchströmt also zunächst den Steigschacht vertikal nach oben, wird dann um 90° umgelenkt und durchströmt anschließend den horizontal orientierten Abhitzekessel. Dieser horizontale Abhitzekessel weist an seinen Wänden von einem Kühlmedium durchströmte Kühlrohe zur Abkühlung des Abgases auf. Der erste Teil des horizontalen Abhitzekessels besteht aus einer Kammer, in der die Abkühlung bzw. der Wärmeübergang im Wesentlichen durch Strahlung erfolgt (Strahlungsteil des Abhitzekessels). In diesem Strahlungsteil wird das Abgas auf eine Temperatur von ca. 650°C bis 750°C abgekühlt. Der Abhitzekessel weist stromabwärts dieser Kammer eine zweite Kammer auf, in der die Abkühlung bzw. der Wärmeübergang durch Konvektion erfolgt (Konvektionsteil des Abhitzekessels). Nach Durchströmen dieses Konvektionsteils hat das Abgas eine Temperatur von ca. 350°C. Diese bekannte Vorrichtung hat den Nachteil, dass es in dem horizontalen Abhitzekessel leicht zu unerwünschten Ablagerungen aus dem Abgas in dem Übergang Steigschacht / Abhitzekessel an den Kühlflächen kommt. Solche Ablagerungen verschlechtern aber den Wärmeübergang an den Kühlflächen maßgeblich. Außerdem werden insbesondere die Kühlflächen im unteren Bereich der ersten horizontalen Kammer (Strahlungsteil) kaum vom Abgas angeströmt und deshalb haben diese Kühlflächen nur einen geringen Anteil an der Abkühlung des Abgases. In diesem Abhitzekessel der bekannten Vorrichtung erfolgt also nur eine relativ schlechte Ausnutzung der Kühlflächen. Zur besseren Anströmung und Ausnutzung der Kühlflächen wurde bereits ein Strömungshindernis in Form einer Trennwand in solche Abhitzekessel eingebaut. Diese Maßnahmen sind aber relativ aufwendig. Im Ergebnis ist bei der bekannten Vorrichtung eine effektive Abkühlung des Abgases nur mit verhältnismäßig großen Kühlflächen möglich. Diese bedingen jedoch nachteilhaft hohe Material- und Herstellungskosten.Such devices are basically known from practice. The levitation melting furnace is used for levitation melting of copper concentrates or nickel concentrates. Such a levitation melting furnace generally has a reaction shaft, a riser shaft and a hearth connecting the reaction shaft to the riser shaft. In the stove a copper-containing or nickel-containing melt is added. In these known devices, a horizontally arranged waste heat boiler is connected to the vertical riser shaft of the Schweehmmelzofens. The exhaust gas or process gas from the Schwebefmelzofen thus first flows through the riser vertically upwards, is then deflected by 90 ° and then flows through the horizontally oriented waste heat boiler. This horizontal waste heat boiler has on its walls by a cooling medium flow through Kühlrohe to cool the exhaust gas. The first part of the horizontal waste heat boiler consists of a chamber in which the cooling or the heat transfer takes place essentially by radiation (radiation part of the waste heat boiler). In this part of the radiation, the exhaust gas is cooled to a temperature of about 650 ° C to 750 ° C. The waste heat boiler has downstream of this chamber to a second chamber in which the cooling or the heat transfer by convection takes place (convection part of the waste heat boiler). After flowing through this convection part, the exhaust gas has a temperature of about 350 ° C. This known device has the disadvantage that it easily in the horizontal waste heat boiler to unwanted deposits from the exhaust gas in the transition riser / waste heat boiler to the cooling surfaces comes. However, such deposits significantly impair the heat transfer at the cooling surfaces. In addition, in particular, the cooling surfaces in the lower region of the first horizontal chamber (radiation part) are hardly affected by the exhaust gas and therefore these cooling surfaces have only a small proportion of the cooling of the exhaust gas. In this waste heat boiler of the known device so only a relatively poor utilization of the cooling surfaces takes place. For better flow and utilization of the cooling surfaces already a flow obstacle in the form of a partition wall was installed in such waste heat boiler. These measures are relatively expensive. As a result, effective cooling of the exhaust gas is possible only with relatively large cooling surfaces in the known device. However, these cause disadvantageously high material and manufacturing costs.
Demgegenüber liegt der Erfindung das technische Problem zugrunde, eine Vorrichtung der eingangs genannten Art anzugeben, mit der die vorstehend erläuterten Nachteile wirksam vermieden bzw. minimiert werden können.In contrast, the invention is the technical problem of providing a device of the type mentioned above, with which the above-described disadvantages can be effectively avoided or minimized.
Zur Lösung dieses technischen Problems lehrt die Erfindung eine Vorrichtung zur Gewinnung bzw. zur Anreicherung von Kupfer oder Nickel, mit einem Schwebeschmelzofen und einem an den Schwebeschmelzofen angeschlossenen Abhitzekessel zur Abführung und Abkühlung von Abgasen bzw. Prozessgasen aus dem Schwebeschmelzofen,
wobei der Schwebeschmelzofen einen Reaktionsschacht, einen vertikalen Steigschacht und einen den Reaktionsschacht mit dem Steigschacht verbindenden Herd zur Aufnahme einer kupferhaltigen oder nickelhaltigen Schmelze aufweist
und wobei der Abhitzekessel einen ersten an den Steigschacht angeschlossenen vertikal orientierten bzw. im Wesentlichen vertikal orientierten Kesselabschnitt aufweist. - Dieser Kesselabschnitt wird nachfolgend auch kurz als erster vertikaler Kesselabschnitt bezeichnet.To solve this technical problem, the invention teaches a device for recovering or enriching copper or nickel, with a Schwebeschmelzofen and connected to the Schwebeschmelzofen waste heat boiler for the removal and cooling of exhaust gases or process gases from the Schwebeschmelzofen,
wherein the levitation melting furnace comprises a reaction shaft, a vertical riser and a hearth connecting the reaction shaft with the riser shaft for receiving a copper-containing or nickel-containing melt
and wherein the waste heat boiler has a first vertically oriented or substantially vertically oriented one connected to the riser Boiler section has. - This boiler section is also referred to below as the first vertical boiler section.
Zweckmäßigerweise wird für die erfindungsgemäße Vorrichtung ein an sich üblicher Schwebeschmelzofen mit Reaktionsschacht, Steigschacht und Herd eingesetzt. Vorzugsweise sind dabei Reaktionsschacht und Steigschacht vertikal orientiert und der Herd bildet eine horizontale Verbindung von Reaktionsschacht und Steigschacht. Es liegt im Rahmen der Erfindung, dass in dem Reaktionsschacht Kupferkonzentrat oder Nickelkonzentrat eingebracht und mit Sauerstoff zur Reaktion gebracht wird. Verunreinigungen wie Schwefel und dergleichen werden in Zwischenprodukten abgetrennt. Im Herd wird die kupferhaltige oder nickelhaltige Schmelze aufgenommen. Die Abgase bzw. Prozessgase aus diesem Prozess werden über den vertikalen Steigschacht abgesaugt.Conveniently, a per se conventional Schwebefehlzofen reaction shaft, riser and stove is used for the inventive device. Preferably, reaction shaft and riser shaft are oriented vertically and the hearth forms a horizontal connection of reaction shaft and riser shaft. It is within the scope of the invention that copper concentrate or nickel concentrate is introduced into the reaction shaft and reacted with oxygen. Impurities such as sulfur and the like are separated in intermediates. In the stove, the copper-containing or nickel-containing melt is absorbed. The exhaust gases or process gases from this process are extracted via the vertical riser shaft.
Erfindungsgemäß ist an den vertikalen Steigschacht ein (erster) vertikal angeordneter Kesselabschnitt des Abhitzekessels angeschlossen. Das heiße Abgas bzw. Prozessgas steigt im vertikalen Steigschacht vertikal nach oben und anschließend weiter im (ersten) vertikal angeordneten Kesselabschnitt vertikal nach oben. Der erste vertikal orientierte Kesselabschnitt bildet gleichsam die vertikale Verlängerung des vertikalen Steigschachtes.According to the invention, a (first) vertically arranged boiler section of the waste heat boiler is connected to the vertical riser shaft. The hot exhaust gas or process gas rises vertically in the vertical riser shaft and then continues vertically upwards in the (first) vertically arranged boiler section. The first vertically oriented boiler section forms, as it were, the vertical extension of the vertical riser shaft.
Es liegt im Rahmen der Erfindung, dass das aus dem Steigschacht in den ersten vertikal orientierten Kesselabschnitt übergehende heiße Abgas bzw. Prozessgas eine Temperatur von 1100°C bis 1500°C, insbesondere eine Temperatur von 1200°C bis 1400°C aufweist. In dem Abhitzekessel wird dieses heiße Abgas abgekühlt. Es empfiehlt sich, dass an den Innenwänden des Abhitzekessels von einem Kühlmedium durchströmte Kühlrohre angeordnet sind, bzw. dass die Innenwände des Abhitzekessels von Kühlrohren gebildet werden, die von einem Kühlmedium durchströmt werden. Bei dem Kühlmedium handelt es sich vorzugsweise um Siedewasser. Das Siedewasser hat zweckmäßigerweise eine Temperatur höher 200°C.It is within the scope of the invention that the hot exhaust gas or process gas passing from the riser shaft into the first vertically oriented boiler section has a temperature of 1100 ° C. to 1500 ° C., in particular a temperature of 1200 ° C. to 1400 ° C. In the waste heat boiler, this hot exhaust gas is cooled. It is recommended that cooling tubes through which a cooling medium flows are arranged on the inner walls of the waste heat boiler, or that the inner walls of the waste heat boiler are formed by cooling tubes through which a cooling medium flows. At the cooling medium it is preferably boiling water. The boiling water has expediently a temperature higher 200 ° C.
Nach besonders empfohlener Ausführungsform ist der erste vertikale Kesselabschnitt mit der Maßgabe ausgelegt, dass das Abgas auf eine Temperatur von 800°C bis 1000°C, bevorzugt auf eine Temperatur von 850°C bis 950°C abkühlbar ist. Das Abgas ist in dem ersten vertikalen Kesselabschnitt insbesondere auf eine Temperatur von ca. 900°C abkühlbar. Bei den vorstehend angegebenen Temperaturen handelt es sich um die Temperatur des Abgases im oberen Bereich des ersten vertikalen Kesselabschnittes, insbesondere vor bzw. im Bereich einer vorzugsweise vorgesehenen und nachfolgend noch erläuterten Umlenkung bzw. horizontalen Umlenkung des Abgases. Es liegt im Rahmen der Erfindung, dass die Abkühlung des Abgases bzw. der Wärmeübergang im ersten vertikalen Kesselabschnitt zumindest im Wesentlichen durch Wärmestrahlung erfolgt. Insoweit bildet der erste vertikale Kesselabschnitt zweckmäßigerweise den ersten Strahlungsteil des Abhitzekessels. Die Abkühlung des Abgases in dem ersten vertikalen Kesselabschnitt erfolgt empfohlenermaßen mittels von einem Kühlmedium durchströmten Kühlrohren an den Innenwänden des Kesselabschnittes. Zweckmäßigerweise bilden die Kühlrohre die Wände bzw. Innenwände des ersten vertikalen Kesselabschnittes. Wie oben bereits dargelegt wird bevorzugt Siedewasser als Kühlmedium eingesetzt.According to a particularly recommended embodiment, the first vertical boiler section is designed with the proviso that the exhaust gas to a temperature of 800 ° C to 1000 ° C, preferably to a temperature of 850 ° C to 950 ° C is cooled. The exhaust gas in the first vertical boiler section in particular to a temperature of about 900 ° C can be cooled. The temperatures indicated above are the temperature of the exhaust gas in the upper region of the first vertical boiler section, in particular before or in the region of a preferably provided and subsequently explained deflection or horizontal deflection of the exhaust gas. It is within the scope of the invention that the cooling of the exhaust gas or the heat transfer in the first vertical boiler section takes place at least substantially by thermal radiation. In that regard, the first vertical boiler section expediently forms the first radiation part of the waste heat boiler. The cooling of the exhaust gas in the first vertical boiler section is recommended carried out by means of a cooling medium flowed through the cooling tubes on the inner walls of the boiler section. Conveniently, the cooling tubes form the walls or inner walls of the first vertical boiler section. As already stated above, boiling water is preferably used as the cooling medium.
Gemäß einer besonders bevorzugten Ausführungsform der Erfindung weist der erste vertikale Kesselabschnitt eine Höhe von 30 bis 50m, vorzugsweise eine Höhe von 35 bis 45m und besonders bevorzugt eine Höhe von etwa 40m auf. Höhe meint dabei die vertikale Erstreckung des Kesselabschnittes in Längsrichtung. - Eine Ausführungsform der Erfindung die sich besonders bewährt hat ist dadurch gekennzeichnet, dass der erste vertikale Kesselabschnitt eine Innenquerschnittsfläche von 8 bis 16m2, vorzugweise von 10 bis 14m2 und bevorzugt von 11 bis 13m2 aufweist. Der vertikale Kesselabschnitt weist beispielsweise eine Innenquerschnittsfläche von 12m2 bzw. von etwa 12m2 auf. Innenquerschnittsfläche meint im Übrigen die Querschnittsfläche, die von den Innenwänden des Kesselabschnittes gebildet wird. Die vorstehend spezifizierten Innenquerschnittsflächen haben sich im Hinblick auf eine effektive Abkühlung des Abgases besonders bewährt. - Es liegt im Rahmen der Erfindung, dass der Innenquerschnitt des ersten vertikalen Kesselabschnittes rechteckig ausgebildet ist.According to a particularly preferred embodiment of the invention, the first vertical boiler section has a height of 30 to 50m, preferably a height of 35 to 45m and more preferably a height of about 40m. Height means the vertical extent of the boiler section in the longitudinal direction. An embodiment of the invention which has proven particularly useful is characterized in that the first vertical boiler section has an internal cross-sectional area of 8 to 16m 2 , preferably 10 to 14m 2 and preferably 11 to 13m 2 . The vertical boiler section points For example, an internal cross-sectional area of 12m 2 or of about 12m 2 . Internal cross-sectional area means, moreover, the cross-sectional area formed by the inner walls of the boiler section. The above-specified internal cross-sectional areas have proven particularly effective in terms of effective cooling of the exhaust gas. - It is within the scope of the invention that the inner cross section of the first vertical boiler section is rectangular.
Gemäß einer empfohlenen Ausführungsvariante der Erfindung ist im unteren Bereich des ersten vertikalen Kesselabschnittes eine Mehrzahl von Einblasdüsen zur Einblasung eines sauerstoffhaltigen Gases in den Innenraum des ersten Kesselabschnittes vorgesehen. Zweckmäßigerweise sind die Einblasdüsen in der Kesselwandung angeordnet und vorzugweise in gegenüberliegenden Bereichen der Kesselwandung. Bei dem eingeblasenen sauerstoffhaltigen Gas handelt es sich insbesondere um Luft. Das sauerstoffhaltige Gas bzw. die Luft wird als Nachverbrennungsgas zur Förderung der Oxidationsreaktionen eingesetzt. Der Erfindung liegt hier die Erkenntnis zugrunde, dass aufgrund der erfindungsgemäßen Ausbildung der Vorrichtung bzw. des Abhitzekessels eine optimale Durchmischung und eine optimale Nachverbrennung stattfindet.According to a recommended embodiment of the invention, a plurality of injection nozzles for injecting an oxygen-containing gas into the interior of the first boiler section is provided in the lower region of the first vertical boiler section. Conveniently, the injection nozzles are arranged in the boiler wall and preferably in opposite areas of the boiler wall. The injected oxygen-containing gas is in particular air. The oxygen-containing gas or the air is used as a post-combustion gas to promote the oxidation reactions. The invention is based on the finding that due to the inventive design of the device or the waste heat boiler optimal mixing and optimal afterburning takes place.
Wie oben bereits beschrieben strömt das Abgas bzw. Prozessgas in dem vertikalen Steigschacht des Schwebeschmelzofens vertikal aufwärts und dann durch den ersten vertikalen Kesselabschnitt vertikal aufwärts. Nach besonders bevorzugter Ausführungsform der Erfindung ist zwischen dem vertikalen Steigschacht des Schwebeschmelzofens und dem ersten vertikalen Kesselabschnitt ein auswechselbares vertikales Zwischenstück zwischengeschaltet. Vertikales Zwischenstück meint hier ein Übergangsteil zwischen dem vertikalen Steigschacht und dem ersten vertikalen Kesselabschnitt, das von dem Abgas (ebenfalls) vertikal nach oben durchströmt wird. Der Erfindung liegt die Erkenntnis zugrunde, dass beim Betrieb der Vorrichtung Spritzer bzw. Schmelzespritzer aus dem im Herd des Schwebeschmelzofens aufgenommenen Schmelzebad durch den vertikalen Steigschacht nach oben gelangen können. Diese Schmelzespritzer können an den Kühlflächen nachteilhafte Ablagerungen bilden, die den Wärmeübergang maßgeblich verschlechtern. Zweckmäßigerweise ist das vertikale Zwischenstück mit der Maßgabe ausgelegt, dass die Spritzer zumindest im Wesentlichen die Innenwandungen bzw. Kühlflächen des vertikalen Zwischenstückes beaufschlagen. Der Erfindung liegt insoweit weiterhin die Erkenntnis zugrunde, dass ein solches vertikales Zwischenstück einfacher auswechselbar ist, als der mit Schmelzespritzern beaufschlagte erste vertikale Kesselabschnitt. Empfohlenermaßen weist das vertikale Zwischenstück eine Höhe von 1,5 bis 8m, vorzugweise von 2 bis 7,5 m und bevorzugt eine Höhe von 2 bis 6 m auf. Höhe bezieht sich dabei auf die vertikale Erstreckung des vertikalen Zwischenstücks im eingebauten Zustand. Es liegt im Rahmen der Erfindung, dass das vertikale Zwischenstück von einem separaten Kühlkreislauf gekühlt wird. Dieser Kühlkreislauf ist zweckmäßigerweise unabhängig von dem Kühlkreislauf des ersten vertikalen Kesselabschnittes und somit unabhängig vom ersten vertikalen Kesselabschnitt austauschbar. Vorzugweise hat das vertikale Zwischenstück einen rechteckigen Innenquerschnitt.As described above, the exhaust gas or process gas flows vertically upward in the vertical riser shaft of the levitation melting furnace and then vertically upward through the first vertical boiler portion. According to a particularly preferred embodiment of the invention, an interchangeable vertical intermediate piece is interposed between the vertical riser shaft of the levitation melting furnace and the first vertical boiler section. Vertical intermediate piece here means a transition part between the vertical riser and the first vertical boiler section, which is flowed through by the exhaust gas (also) vertically upwards. The invention is the Understanding that during operation of the device spatter or melt spray from the recorded in the hearth of the Schweehmmelzofens melt bath can pass through the vertical riser shaft upwards. These melt spatters can form disadvantageous deposits on the cooling surfaces, which significantly impair the heat transfer. Conveniently, the vertical intermediate piece is designed with the proviso that the spatter at least substantially act on the inner walls or cooling surfaces of the vertical intermediate piece. In this respect, the invention continues to be based on the finding that such a vertical intermediate piece is easier to replace than the first vertical boiler portion acted upon by melt injectors. Empfohlenermaßen, the vertical spacer has a height of 1.5 to 8m, preferably from 2 to 7.5 m, and preferably a height of 2 to 6 m. Height refers to the vertical extent of the vertical intermediate piece in the installed state. It is within the scope of the invention that the vertical intermediate piece is cooled by a separate cooling circuit. This cooling circuit is expediently exchangeable independently of the cooling circuit of the first vertical boiler section and thus independently of the first vertical boiler section. Preferably, the vertical spacer has a rectangular inner cross-section.
Es liegt im Rahmen der Erfindung, dass ein zweiter vertikaler Kesselabschnitt an den ersten vertikalen Kesselabschnitt angeschlossen ist und dass der zweite vertikale Kesselabschnitt von dem Abgas vertikal nach unten durchströmt wird. Zweiter vertikaler Kesselabschnitt meint insbesondere auch, dass dieser zweite Kesselabschnitt im Wesentlichen vertikal orientiert bzw. angeordnet ist. Zweckmäßigerweise erfolgt die Abkühlung des Abgases in dem zweiten vertikalen Kesselabschnitt mittels von einem Kühlmedium durchströmten Kühlrohren, die die Wand des zweiten vertikalen Kesselabschnittes bilden. Empfohlenermaßen weist der zweite vertikale Kesselabschnitt einen rechteckigen, insbesondere einen quadratischen Innenquerschnitt auf. Es empfiehlt sich, dass der zweite vertikale Kesselabschnitt mit der Maßgabe ausgelegt ist, dass das Abgas darin auf eine Temperatur von 500 bis 800°C, vorzugsweise auf eine Temperatur von 620 bis 780°C und bevorzugt auf eine Temperatur von 650 bis 750°C abkühlbar ist. Dabei handelt es sich um die Temperatur des Abgases im unteren Bereich des zweiten vertikalen Kesselabschnittes, insbesondere vor bzw. im Bereich einer vorzugsweise vorgesehenen und nachfolgend noch erläuterten Umlenkung des Abgases. Die Abkühlung des Abgases bzw. der Wärmeübergang erfolgt im zweiten vertikalen Kesselabschnitt zweckmäßigerweise zumindest im Wesentlichen über Strahlung. Der zweite vertikale Kesselabschnitt bildet dann gleichsam den zweiten Strahlungsteil des erfindungsgemäßen Abhitzekessels.It is within the scope of the invention that a second vertical boiler section is connected to the first vertical boiler section and that the second vertical boiler section is flowed through by the exhaust gas vertically downwards. In particular, the second vertical boiler section also means that this second boiler section is oriented or arranged substantially vertically. Appropriately, the cooling of the exhaust gas takes place in the second vertical boiler section by means of cooling medium through which a cooling medium flows, which form the wall of the second vertical boiler section. Empfohlenermaßen, the second vertical boiler section has a rectangular, in particular a square inner cross section. It is recommended that the second vertical boiler section is designed with the proviso that the exhaust gas therein to a temperature of 500 to 800 ° C, preferably to a temperature of 620 to 780 ° C and preferably to a temperature of 650 to 750 ° C. is coolable. This is the temperature of the exhaust gas in the lower region of the second vertical boiler section, in particular in front of or in the region of a preferably provided and subsequently explained diversion of the exhaust gas. The cooling of the exhaust gas or the heat transfer takes place in the second vertical boiler section expediently at least substantially via radiation. The second vertical boiler section then forms, as it were, the second radiation part of the waste heat boiler according to the invention.
Zweckmäßigerweise ist der erste vertikale Kesselabschnitt über einen horizontalen Umlenkungsabschnitt des Abhitzekessels an den zweiten vertikalen Kesselabschnitt angeschlossen. Horizontaler Umlenkungsabschnitt meint hier, dass das Abgas zumindest einen Bereich dieses Umlenkungsabschnittes horizontal bzw. im Wesentlichen horizontal durchströmt. Das in dem ersten vertikalen Kesselabschnitt abgekühlte Abgas weist im Bereich der Umlenkung vorzugsweise eine Temperatur von 800 bis 1000°C und bevorzugt eine Temperatur von 850 bis 950°C auf.Conveniently, the first vertical boiler section is connected to the second vertical boiler section via a horizontal deflection section of the waste heat boiler. Horizontal deflection section here means that the exhaust gas flows through at least a portion of this deflection section horizontally or substantially horizontally. In the region of the deflection, the exhaust gas cooled in the first vertical boiler section preferably has a temperature of 800 to 1000 ° C. and preferably a temperature of 850 to 950 ° C.
Eine bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass im unteren Bereich des zweiten vertikalen Kesselabschnittes ein horizontaler Kesselabschnitt an den zweiten vertikalen Kesselabschnitt angeschlossen ist und dass das Abgas von dem zweiten vertikalen Kesselabschnitt in den horizontalen Kesselabschnitt umgelenkt wird. Horizontaler Kesselabschnitt meint hier insbesondere auch, dass der Kesselabschnitt im Wesentlichen horizontal angeordnet sein kann. Das abzukühlende Abgas strömt also im zweiten vertikalen Kesselabschnitt vertikal nach unten und wird dann um 90° bzw. um etwa 90° in den horizontalen Kesselabschnitt umgelenkt. Bei dieser Umlenkung weist das Abgas zweckmäßigerweise eine Temperatur von 620 bis 780°C auf, vorzugsweise eine Temperatur von 640 bis 760°C und bevorzugt eine Temperatur von 650 bis 750°C. Es liegt im Rahmen der Erfindung, dass das Abgas in dem horizontalen Kesselabschnitt weiter abgekühlt wird. Zweckmäßigerweise wird die Abkühlung des Abgases mittels von einem Kühlmedium durchströmter Kühlrohre verwirklicht. Diese Kühlrohre bilden die Wand des horizontalen Kesselabschnittes. Es liegt fernerhin im Rahmen der Erfindung, dass die Abkühlung des Abgases bzw. der Wärmeübergang in dem horizontalen Kesselabschnitt zumindest im Wesentlichen durch Konvektion erfolgt. Von daher handelt es sich bei dem horizontalen Kesselabschnitt gleichsam um den Konvektionsteil des erfindungsgemäßen Abhitzekessels. Es empfiehlt sich, dass der horizontale Kesselabschnitt mit der Maßgabe ausgelegt ist, dass eine Abkühlung des Abgases auf eine Temperatur von 200 bis 500°C, vorzugsweise auf eine Temperatur von 250 bis 450°C und bevorzugt auf eine Temperatur von 300 bis 400°C stattfindet. Das Abgas wird insbesondere auf eine Temperatur von 350°C bzw. auf eine Temperatur von ca. 350°C abgekühlt.A preferred embodiment of the invention is characterized in that in the lower region of the second vertical boiler section a horizontal boiler section is connected to the second vertical boiler section and that the exhaust gas is deflected from the second vertical boiler section into the horizontal boiler section. Horizontal boiler section means in particular also that the boiler section can be arranged substantially horizontally. The exhaust gas to be cooled thus flows vertically downwards in the second vertical boiler section and then becomes 90 ° or deflected by about 90 ° in the horizontal boiler section. In this deflection, the exhaust gas expediently has a temperature of 620 to 780 ° C, preferably a temperature of 640 to 760 ° C and preferably a temperature of 650 to 750 ° C. It is within the scope of the invention that the exhaust gas in the horizontal boiler section is further cooled. Expediently, the cooling of the exhaust gas is realized by means of cooling medium through which cooling medium flows. These cooling pipes form the wall of the horizontal boiler section. It is further within the scope of the invention that the cooling of the exhaust gas or the heat transfer in the horizontal boiler section is at least substantially by convection. Therefore, it is the horizontal boiler section as it were the convection part of the waste heat boiler according to the invention. It is recommended that the horizontal boiler section is designed with the proviso that a cooling of the exhaust gas to a temperature of 200 to 500 ° C, preferably to a temperature of 250 to 450 ° C and preferably to a temperature of 300 to 400 ° C. takes place. The exhaust gas is cooled in particular to a temperature of 350 ° C or to a temperature of about 350 ° C.
Der Erfindung liegt die Erkenntnis zugrunde, dass mit der erfindungsgemäßen Vorrichtung und insbesondere mit dem erfindungsgemäßen Abhitzekessel nachteilhafte Ablagerungen aus dem Abgas auf den Kühlflächen weitgehend vermieden bzw. minimiert werden können. Somit kann im Gegensatz zu den eingangs beschriebenen aus dem Stand der Technik bekannten Vorrichtungen quasi an allen Kühlflächen, insbesondere im ersten vertikalen Kesselabschnitt aber auch in den anderen Kesselabschnitten ein optimaler Wärmeübergang sichergestellt werden. Der Erfindung liegt insbesondere auch die Erkenntnis zugrunde, dass die nach bevorzugter Ausführungsform vorgesehene Umlenkung des Abgases in einen horizontalen Umlenkungsabschnitt erst bei einer wesentlich geringeren Temperatur (beispielsweise 900°C) stattfindet, als bei den bekannten Vorrichtungen und dadurch die Gefahr von Ablagerungen vermieden bzw. minimiert werden kann. Weiterhin werden bei der erfindungsgemäßen Vorrichtung bzw. bei dem erfindungsgemäßen Abhitzekessel quasi alle Kühlflächen gleichmäßig angeströmt bzw. genutzt und somit ergibt sich im Rahmen der Erfindung eine optimale Ausnutzung der Kühlflächen. Deshalb können im Vergleich zu den bekannten Vorrichtungen die Kühlflächen im Abhitzekessel, insbesondere die Kühlflächen in dem ersten vertikalen Kesselabschnitt bei gleichem Temperaturabbau geringer bemessen sein. Mit anderen Worten ermöglicht die Erfindung gegenüber den bekannten Vorrichtungen eine Einsparung von Kühlflächen und dementsprechend eine Einsparung von Material- und Herstellungskosten. Auch bedeutet dies eine Verringerung der Anlagenbetriebskosten, da Stromverbraucher wie z.B. Pumpen kleiner dimensioniert werden können. Die erfindungsgemäße Vorrichtung kann auch im Vergleich zu den bekannten Vorrichtungen bei gleicher Effizienz mit einem geringeren Bauvolumen realisiert sein. Hervorzuheben ist insbesondere, dass die vorstehend erläuterten Vorteile speziell bei Vorrichtungen erreicht werden, die mit einem Schwebeschmelzofen zur Gewinnung bzw. zur Anreicherung von Kupfer oder Nickel arbeiten.The invention is based on the finding that with the device according to the invention and in particular with the waste heat boiler according to the invention disadvantageous deposits from the exhaust gas can be largely avoided or minimized on the cooling surfaces. Thus, in contrast to the devices described above known from the prior art quasi all cooling surfaces, in particular in the first vertical boiler section but also in the other boiler sections optimum heat transfer can be ensured. The invention is in particular also based on the finding that the deflection of the exhaust gas provided in a preferred embodiment for a horizontal deflection section takes place only at a substantially lower temperature (for example 900 ° C.) than in the known devices and thus the risk of deposits can be avoided or minimized. Furthermore, in the device according to the invention or in the waste heat boiler according to the invention virtually all the cooling surfaces are uniformly flowed or used and thus results in the invention optimal utilization of the cooling surfaces. Therefore, in comparison with the known devices, the cooling surfaces in the waste heat boiler, in particular the cooling surfaces in the first vertical boiler section can be dimensioned smaller with the same temperature reduction. In other words, the invention allows over the known devices, a saving of cooling surfaces and, accordingly, a saving of material and manufacturing costs. This also means a reduction of the plant operating costs, since current consumers such as pumps can be made smaller. The device according to the invention can also be realized with a lower construction volume with the same efficiency compared to the known devices. It should be emphasized in particular that the advantages explained above are achieved especially in devices which work with a levitation melting furnace for the recovery or enrichment of copper or nickel.
Nachfolgend wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert. Es zeigen in schematischer Darstellung:
- Fig. 1
- einen Schnitt durch eine erfindungsgemäße Vorrichtung und
- Fig. 2
- einen Schnitt B-B durch den Gegenstand gemäß
Fig. 1 .
- Fig. 1
- a section through a device according to the invention and
- Fig. 2
- a section BB through the object according to
Fig. 1 ,
Die Figuren zeigen eine Vorrichtung zur Anreicherung von Kupfer oder Nickel mit einem Schwebeschmelzofen 1 und einem an den Schwebeschmelzofen 1 angeschlossenen Abhitzekessel 2 zur Abführung und Abkühlung von Abgasen aus dem Schwebeschmelzofen 1. Der Schwebeschmelzofen 1 weist in an sich bekannter Weise einen vertikal orientierten Reaktionsschacht 3, einen vertikal orientierten Steigschacht 4 und einen den Reaktionsschacht 3 mit dem Steigschacht 4 verbindenden Herd 5 auf.The figures show a device for the enrichment of copper or nickel with a Schwebeschmelzofen 1 and connected to the Schwebeschmelzofen 1 waste heat boiler 2 for the removal and cooling of exhaust gases from the Schwebefmelzofen 1. The Schwebefmelzofen 1 has in itself known manner a vertically oriented
In den Reaktionsschacht 3 wird Kupferkonzentrat oder Nickelkonzentrat eingeführt und das in dem Reaktionsschacht herabfallende bzw. schwebende Konzentrat wird mit Sauerstoff zur Reaktion gebracht. Nebenprodukte wie Schwefel werden dabei abgetrennt. In der im Herd 5 aufgenommenen Schmelze wird Kupfer oder Nickel angereichert. Die bei diesem Prozess entstehenden Abgase bzw. Prozessgase entweichen über den vertikalen Steigschacht 4 in den Abhitzekessel 2 und werden dort abgekühlt. Dazu weist die Wand des Abhitzekessels nicht näher dargestellte von einem Kühlmedium durchströmte Kühlrohre auf. Als Kühlmedium wird dabei zweckmäßigerweise Siedewasser eingesetzt.Copper concentrate or nickel concentrate is introduced into the
Erfindungsgemäß weist der Abhitzekessel 2 einen ersten an den vertikalen Steigschacht 4 angeschlossenen vertikal orientierten Kesselabschnitt 6 auf. Dieser erste vertikal orientierte Kesselabschnitt 6 bildet gleichsam eine vertikale Verlängerung des vertikalen Steigschachtes 4. Das heiße Abgas bzw. Prozessgas strömt in dem vertikalen Steigschacht 4 vertikal nach oben und tritt mit einer Temperatur von bis zu ca. 1400°C in den ersten vertikal orientierten Kesselabschnitt 6 ein. In diesem ersten vertikalen Kesselabschnitt 6 wird das Abgas insbesondere auf eine Temperatur von ca. 900°C abgekühlt. Dabei handelt es sich um die Temperatur des Abgases im oberen Bereich 7 vor der bzw. im Bereich der Umlenkung des Abgases in den horizontalen Umlenkungsabschnitt 8. Die Höhe h des ersten vertikalen Kesselabschnittes 6 mag im Ausführungsbeispiel 40m betragen. Die Innenquerschnittsfläche dieses ersten vertikalen Kesselabschnittes 6 beträgt im Ausführungsbeispiel ca. 12 m2. Dieser Innenquerschnitt des ersten vertikalen Kesselabschnittes 6 ist im Ausführungsbeispiel quadratisch ausgebildet.According to the invention, the waste heat boiler 2 has a first vertically oriented
Nach besonders bevorzugter Ausführungsform und im Ausführungsbeispiel nach den Figuren ist zwischen dem vertikalen Steigschacht 4 des Schwebeschmeizofens 1 und dem ersten vertikalen Kesselabschnitt 6 des Abhitzekessels 2 ein auswechselbares vertikales Zwischenstück 9 zwischengeschaltet. Dieses Zwischenstück 9 mag im Ausführungsbeispiel eine vertikale Höhe z von 3 bis 5m aufweisen. Das austauschbare vertikale Zwischenstück 9 wird in nicht näher dargestellter Weise von einem Kühlkreislauf gekühlt, der von dem Kühlkreislauf bzw. von den Kühlkreisläufen des Abhitzekessels 2 bzw. des ersten vertikalen Kesselabschnittes 6 unabhängig ist. Aus diesem Grund ist das vertikale Zwischenstück 9 unabhängig bzw. separat von dem ersten vertikalen Kesselabschnitt 6 austauschbar. Zweckmäßigerweise hat auch das vertikale Zwischenstück 9 einen quadratischen Querschnitt.According to a particularly preferred embodiment and in the embodiment of the figures, an interchangeable vertical
Das Abgas steigt im ersten vertikalen Kesselabschnitt 6 vertikal aufwärts und wird dann über den horizontalen Umlenkungsabschnitt 8 in den zweiten vertikalen Kesselabschnitt 10 umgelenkt. Im Ausführungsbeispiel strömt das Abgas dabei im Anschluss an den horizontalen Umlenkungsabschnitt 8 über einen schräg angeordneten Kesselabschnitt 11 in den zweiten vertikalen Kesselabschnitt 10. In dem zweiten vertikalen Kesselabschnitt 10 strömt das Abgas vertikal abwärts und wird dabei insbesondere auf eine Temperatur von ca. 650°C bis 750°C abgekühlt. Hierbei handelt es sich um die Temperatur des Abgases vor bzw. im Bereich der Umlenkung in den horizontalen Kesselabschnitt 12. In dem horizontalen Kesselabschnitt 12 wird das Abgas dann auf eine Temperatur von ca. 350°C abgekühlt.The exhaust gas rises vertically in the first
Sowohl im ersten vertikalen Kesselabschnitt 6 als auch im zweiten vertikalen Kesselabschnitt 10 erfolgt die Abkühlung des Abgases bzw. der Wärmeübergang zumindest im Wesentlichen durch Strahlung. Der erste vertikale Kesselabschnitt 6 wird deshalb auch als erster Strahlungsteil und der zweite vertikale Kesselabschnitt 10 als zweiter Strahlungsteil des Abhitzekessels 2 bezeichnet. In dem horizontalen Kesselabschnitt 12 erfolgt die Abkühlung des Abgases bzw. der Wärmeübergang zumindest im Wesentlichen durch Konvektion. Dieser horizontale Kesselabschnitt 12 wird deshalb auch als Konvektionsteil des Abhitzekessels 2 bezeichnet.Both in the first
Claims (14)
wobei der Schwebeschmelzofen (1) einen Reaktionsschacht (3), einen vertikalen Steigschacht (4) und einen den Reaktionsschacht (3) mit dem Steigschacht (4) verbindenden Herd (5) zur Aufnahme einer kupferhaltigen oder nickelhaltigen Schmelze aufweist und
wobei der Abhitzekessel (2) einen (ersten) an den Steigschacht (4) angeschlossenen vertikal orientierten bzw. im Wesentlichen vertikal orientierten Kesselabschnitt (6) aufweist.Apparatus for recovering or enriching copper or nickel, comprising a levitation melting furnace (1) and a waste heat boiler (2) connected to the levitation melting furnace (1) for removing and cooling off exhaust gases from the levy melting furnace (1),
wherein the floating smelting furnace (1) has a reaction shaft (3), a vertical riser (4) and a hearth (5) connecting the reaction shaft (3) with the riser (4) for receiving a copper-containing or nickel-containing melt, and
wherein the waste heat boiler (2) has a (first) connected to the riser shaft (4) vertically oriented or substantially vertically oriented boiler section (6).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09015674.6A EP2339278B1 (en) | 2009-12-18 | 2009-12-18 | Use of a device for enrichment of copper or nickel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09015674.6A EP2339278B1 (en) | 2009-12-18 | 2009-12-18 | Use of a device for enrichment of copper or nickel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2339278A1 true EP2339278A1 (en) | 2011-06-29 |
EP2339278B1 EP2339278B1 (en) | 2017-02-15 |
Family
ID=42102651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09015674.6A Not-in-force EP2339278B1 (en) | 2009-12-18 | 2009-12-18 | Use of a device for enrichment of copper or nickel |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2339278B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3904764A1 (en) * | 2020-04-29 | 2021-11-03 | Christof Global Impact Limited | Boiler system for treating waste gases |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4475947A (en) * | 1982-10-13 | 1984-10-09 | Outokumpu Oy | Method for recovering heat from dust-bearing gases produced in smelting sulphide concentrates and means herefor |
DE3715394A1 (en) * | 1986-05-09 | 1987-11-12 | Outokumpu Oy | METHOD AND DEVICE FOR REDUCING DUST ATTACHMENTS WHEN TREATING GASES IN A MELTING FURNACE |
JPH108156A (en) * | 1996-06-18 | 1998-01-13 | Nikko Kinzoku Kk | Flash smelting furnace for smelting copper, copper-refining apparatus and method for recovering waste heat |
JP2007139321A (en) * | 2005-11-18 | 2007-06-07 | Mitsubishi Materials Corp | Uptake and furnace |
EP1818610A1 (en) * | 2006-01-31 | 2007-08-15 | Oschatz Gmbh | Waste heat recovery boiler with deflection partitions |
WO2009077652A1 (en) * | 2007-12-17 | 2009-06-25 | Outotec Oyj | Method and arrangement for treating exhaust gases from a suspension smelting furnace |
-
2009
- 2009-12-18 EP EP09015674.6A patent/EP2339278B1/en not_active Not-in-force
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4475947A (en) * | 1982-10-13 | 1984-10-09 | Outokumpu Oy | Method for recovering heat from dust-bearing gases produced in smelting sulphide concentrates and means herefor |
DE3715394A1 (en) * | 1986-05-09 | 1987-11-12 | Outokumpu Oy | METHOD AND DEVICE FOR REDUCING DUST ATTACHMENTS WHEN TREATING GASES IN A MELTING FURNACE |
JPH108156A (en) * | 1996-06-18 | 1998-01-13 | Nikko Kinzoku Kk | Flash smelting furnace for smelting copper, copper-refining apparatus and method for recovering waste heat |
JP2007139321A (en) * | 2005-11-18 | 2007-06-07 | Mitsubishi Materials Corp | Uptake and furnace |
EP1818610A1 (en) * | 2006-01-31 | 2007-08-15 | Oschatz Gmbh | Waste heat recovery boiler with deflection partitions |
WO2009077652A1 (en) * | 2007-12-17 | 2009-06-25 | Outotec Oyj | Method and arrangement for treating exhaust gases from a suspension smelting furnace |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3904764A1 (en) * | 2020-04-29 | 2021-11-03 | Christof Global Impact Limited | Boiler system for treating waste gases |
Also Published As
Publication number | Publication date |
---|---|
EP2339278B1 (en) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1496043A1 (en) | Method and device for the production of glass | |
EP0293545A2 (en) | Method for the economical melting of glass and a glass melting furnace used therefor | |
EP0638525B1 (en) | Method for melting glass in a tank furnace and tank furnace used therefor | |
DE69815755T2 (en) | Reduction of NOx emissions in glass melting furnaces | |
DE2058159C3 (en) | Process for the production of a nozzle head which can be connected to a water-cooled blowing lance | |
DE2639977C3 (en) | Process for melting glass in a burner-heated tank and glass melting furnace for carrying out the process | |
EP0237604B1 (en) | Energy-saving method for melting glass | |
DE2914728A1 (en) | GLASS SPINNING DEVICE | |
DE3715394C2 (en) | Method and device for reducing dust deposits which form on heating surfaces which are exposed to flue gases containing sulfur dioxide | |
EP2339278B1 (en) | Use of a device for enrichment of copper or nickel | |
EP1772692A1 (en) | Apparatus for cooling waste gases | |
DE3031419A1 (en) | COMBUSTION CHAMBER FOR FLUIDIZED BURN COMBUSTION | |
DE10327201B4 (en) | Method and apparatus for refining a glass melt in a vacuum refining chamber | |
DE1170307B (en) | Rust cooler for cement clinker or the like and method for its operation | |
DE69002880T2 (en) | Method and device for producing a uniform temperature in the forehead of glass production. | |
DE3729192A1 (en) | METHOD FOR COOLING GASES AND / OR STEAMS FROM PLANTS FOR TREATING NON-FERROUS METALS AND DEVICE FOR IMPLEMENTING THEM | |
DE4411177C2 (en) | Device for increasing the efficiency of a waste heat boiler | |
DE2935394A1 (en) | OVEN PLANT, ESPECIALLY FOR MELTING ORE CONCENTRATE | |
DE202019100870U1 (en) | Melting tank and glass melting plant | |
EP3904764B1 (en) | Boiler system for treating waste gases | |
EP0104326A2 (en) | Double circuit lance for refining molten metals | |
DE2103050C3 (en) | Oxygen lance for a steel melting unit | |
DE3322464A1 (en) | DUESENSTOCK | |
DE3650309T2 (en) | Process for producing molten glass. | |
EP1712319A1 (en) | Installation for manufacturing brazed structures with a continuous furnace and a static cooling zone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20110804 |
|
17Q | First examination report despatched |
Effective date: 20111201 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160727 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 868149 Country of ref document: AT Kind code of ref document: T Effective date: 20170315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009013641 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170515 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170615 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009013641 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20171116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502009013641 Country of ref document: DE Representative=s name: ANDREJEWSKI HONKE PATENT- UND RECHTSANWAELTE P, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502009013641 Country of ref document: DE Representative=s name: ANDREJEWSKI - HONKE PATENT- UND RECHTSANWAELTE, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502009013641 Country of ref document: DE Owner name: OSCHATZ ENERGY AND ENVIRONMENT GMBH, DE Free format text: FORMER OWNER: OSCHATZ GMBH, 45143 ESSEN, DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171218 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171218 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171218 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171218 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 868149 Country of ref document: AT Kind code of ref document: T Effective date: 20171218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170615 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20221222 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009013641 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240702 |