EP2329210B1 - Method for operating an oven - Google Patents

Method for operating an oven Download PDF

Info

Publication number
EP2329210B1
EP2329210B1 EP09809296.8A EP09809296A EP2329210B1 EP 2329210 B1 EP2329210 B1 EP 2329210B1 EP 09809296 A EP09809296 A EP 09809296A EP 2329210 B1 EP2329210 B1 EP 2329210B1
Authority
EP
European Patent Office
Prior art keywords
furnace
volumetric
flow
temperature
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09809296.8A
Other languages
German (de)
French (fr)
Other versions
EP2329210A1 (en
Inventor
Frank Rheker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Deutschland GmbH
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide Deutschland GmbH
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Deutschland GmbH, Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide Deutschland GmbH
Priority to EP09809296.8A priority Critical patent/EP2329210B1/en
Priority to PL09809296T priority patent/PL2329210T3/en
Publication of EP2329210A1 publication Critical patent/EP2329210A1/en
Application granted granted Critical
Publication of EP2329210B1 publication Critical patent/EP2329210B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/006Starting from ores containing non ferrous metallic oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • C21B13/023Making spongy iron or liquid steel, by direct processes in shaft furnaces wherein iron or steel is obtained in a molten state
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/08Making spongy iron or liquid steel, by direct processes in rotary furnaces
    • C21B13/085Making spongy iron or liquid steel, by direct processes in rotary furnaces wherein iron or steel is obtained in a molten state
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0084Obtaining aluminium melting and handling molten aluminium
    • C22B21/0092Remelting scrap, skimmings or any secondary source aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/003Dry processes only remelting, e.g. of chips, borings, turnings; apparatus used therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/10Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples
    • F23N5/102Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/26Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/42Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0028Devices for monitoring the level of the melt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2300/00Process aspects
    • C21B2300/04Modeling of the process, e.g. for control purposes; CII
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C2005/5288Measuring or sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0018Monitoring the temperature of the atmosphere of the kiln
    • F27D2019/0021Monitoring the temperature of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0034Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
    • F27D2019/004Fuel quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0034Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
    • F27D2019/004Fuel quantity
    • F27D2019/0043Amount of air or O2 to the burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/125Fuels from renewable energy sources, e.g. waste or biomass

Definitions

  • the present invention relates to a method for operating a furnace, in particular a furnace for melting metal, such as scrap iron.
  • the melting of metals is one of the energy-intensive processes in which large amounts of energy must be used to achieve the desired result.
  • Corresponding methods for operating a furnace are z. B. from the US 6,247,416 known. Due to the soaring costs of energy and the debate about carbon dioxide emissions, it is desirable to make the melting process of metals energetically more favorable.
  • the present invention has for its object to provide a method for operating a furnace, in which the energy requirement to be used is reduced.
  • An abrupt increase or reduction of a volume flow is understood to mean the delay-free change of the volume flow by at least 3%, preferably by at least 5%. So it is a sudden change to a discontinuous change in the manner of a jump.
  • the change in the exhaust gas temperature is monitored by monitoring the exhaust gas temperature in a measuring point. By comparing the detected exhaust gas temperatures, the change in the exhaust gas temperature can be determined.
  • the burner is preferably designed so that the flame of the burner strikes the starting material during operation and / or sweeps it over and / or sweeps it.
  • the starting material usually comprises meltable metal and optionally additives such as, for example, coal and / or carbonaceous additives or compounds.
  • a post-combustion zone is understood to mean a region in which afterburning of the exhaust gases can take place after leaving the furnace.
  • a post-combustion zone is downstream of a means for supplying air downstream of the furnace, which can be formed in particular as an air gap.
  • the metal to be melted may comprise, for example, scrap iron or aluminum.
  • Other additives in the starting material are also impurities or by the nature of the goods to be melted contingent shares.
  • engines have impurities in the form of lubricant or gear oil during melting.
  • Many industrial goods have plastic components, components and / or coatings during melting.
  • Operation of the furnace will result in operating conditions where suddenly a greater amount of carbon or carbonaceous material will be available for oxidation. This is the case, for example, when melting metal in a rotary kiln with the addition of carbon and / or carbonaceous additives, such as coke and / or graphite or plastic parts when rotating the rotary kiln coal or carbon in larger quantities with the corresponding oxidant in Contact is coming.
  • carbon and / or carbonaceous additives such as coke and / or graphite or plastic parts when rotating the rotary kiln coal or carbon in larger quantities with the corresponding oxidant in Contact is coming.
  • Beverage cans or other coated or painted metallic objects it comes in contact with the oxidizing agent or upon reaching the corresponding flash point of the coating or coating for the oxidation of the corresponding coating or paint.
  • the strong temperature rise in the exhaust gas which occurs with a release of carbon monoxide, is detected and subsequently a predefinable sudden reduction of the fuel volume flow to a reduced volume flow is subsequently undertaken.
  • This reduction volume flow differs significantly from the nominal fuel volume flow, for example by 10% or more.
  • the Oxidansvolumenstrom is kept constant.
  • the carbon monoxide is oxidized, compared with the situation with a substantially constant fuel volume flow, a significant reduction in the exhaust gas temperature, which is still high due to the oxidation of the carbon monoxide release.
  • the material of the exhaust pipe is less thermally stressed and thus has a longer service life.
  • the Oxidansvolumenstrom can be increased suddenly to a predetermined increase volume flow. As a result, the oxidation of the carbon monoxide release already targeted in the oven, so that a higher melting performance can be achieved. This makes the melting process more effective.
  • Natural gas are used as fuel in particular organic compounds such as hydrocarbon, for example. Natural gas are used.
  • the limit value is selected so that the limit value is at least a factor of two, preferably at least three, greater than usual measured value fluctuations.
  • customary variations in measured values are understood to mean the usual scattering of the experimentally determined temperature values, as well as slight temperature changes not attributable to a release of carbon monoxide.
  • the limit value is selected such that it corresponds to the edge of a temperature rise due to carbon monoxide release in the furnace.
  • limit value is selected such that only when the temperature rises significantly does the operating state of the furnace change from the standard operating state to the reduction operating state.
  • the limit value is at least 4 Kelvin / sec.
  • the limit is at least 10 Kelvin / sec. lies. These strong, rapid increases in temperature can be attributed almost exclusively to carbon monoxide releases. Normal temperature increases due to the heating cycle and the measured value fluctuations are significantly lower. Consequently, a limit value of at least 5 Kelvin / sec. and in particular at least 10 Kelvin / sec. or even at least 20 Kelvin / sec. advantageous, since such a reliable detection of carbon monoxide release can be ensured.
  • the reduction period is selected so that it corresponds to the duration of a temperature rise by carbon monoxide release in the oven.
  • the reduction time is at least 20 sec.
  • the reduction volume flow is so dimensioned that the difference between the desired fuel volume flow and reduction volume flow multiplied by the reduction duration corresponds to a fuel volume whose calorific value corresponds to the average calorific value of the oxidation of a carbon monoxide release to carbon dioxide in the furnace.
  • increasing volume flow can be dimensioned so that a complete oxidation of the carbon monoxide release can take place.
  • the calorific value here means the amount of energy which is released thermally during the corresponding process. It is known, for example, that in the oxidation of 1 m 3 carbon monoxide to carbon dioxide an amount of energy of about 3.5 kWh (kilowatt hours) is released. Since the exhaust gas volume flow is usually known or can be determined by an exhaust gas analysis and also the usual carbon monoxide concentration in the exhaust gas is known or can be determined, can be calculated as how much carbon monoxide is converted in a carbon monoxide release to carbon dioxide. From this it can then be calculated how far the fuel input can be reduced. This is achieved by reducing the fuel volume flow and the reduction time. Alternatively or additionally, the increase volume flow can be dimensioned so that a complete oxidation of the carbon monoxide release can take place.
  • These quotients advantageously allow a corresponding utilization of the thermal energy of the oxidation of the carbon monoxide release to carbon dioxide. It should be pointed out once again that there is a sudden reduction in the fuel volume flow and / or increase in the Oxidansvolumenstroms the transition from the desired operating condition in the reduction mode. Preference is given to a reduction of the fuel volume flow and / or an increase of the oxidant volume flow by 10 to 50%.
  • oxidant so pure oxygen or ambient air, and mixtures thereof can be used.
  • Preferred is an oxidant in which the oxygen content is up to 100%.
  • the increasing volume flow is such that it is sufficient for the complete oxidation of a conventional carbon monoxide release.
  • the starting material comprises carbon
  • the carbon can be present either in compounds as a paint, oil, grease, for example as a lubricating oil, transmission oil in the melting of engines or the like, or in pure form, for example in the form of anthracite.
  • the elements can occur in connections, especially in the recycling of industrial goods such as motors, batteries or solder.
  • the method according to the invention can particularly preferably be used for melting iron scrap. Due to the high amount of energy required there, a high energy saving can be achieved by the method according to the invention due to the high melting point.
  • the use of the method according to the invention for operating a rotary kiln is advantageous because carbon monoxide emissions often occur due to the constant mixing of the starting material in the kiln during rotation.
  • the release of carbon monoxide occurs when, after burning through a carbon layer, the starting material sags in the cupola.
  • an apparatus for carrying out the method according to the invention comprising a control means which is suitable and intended for carrying out the method according to the invention and a temperature sensor for detecting the temperature of the exhaust gas of the furnace.
  • an exhaust pipe is formed, with which the exhaust gas of the furnace can be removed, which has an angled portion, wherein the temperature sensor is formed downstream of the angled portion.
  • the angled section of the exhaust pipe prevents parts of the starting material, for example larger scrap parts, from reaching the temperature sensor and damaging it.
  • the exhaust pipe may also have a portion with a slope, wherein the temperature sensor is preferably formed in a region which is increased compared to the furnace outlet, so as to achieve protection of the temperature sensor.
  • FIG. 1 schematically shows an embodiment of the device 1 according to the invention for operating a furnace 2.
  • the furnace 2 is a rotary furnace in which at least one metallic element comprehensive starting material such as. Iron scrap is melted with additives such as coal.
  • the furnace 2 comprises an inlet 3 with a burner 4. Through the burner 4, an oxidant such as oxygen, air or oxygen-enriched air and a fuel such as natural gas are introduced into the furnace 2.
  • the furnace 2 comprises an outlet 5, through which the exhaust gases of the combustion and oxidation processes in the furnace 2 are transferred into an exhaust pipe 6.
  • the exhaust pipe 6 comprises an angled portion 7, which is connected via a bent portion 8 with a straight portion 9. Via a suction device 10, the exhaust gas from the furnace 2 can be sucked through the exhaust pipe 6.
  • filter means 11 may be formed in the exhaust pipe 6, which effect a filtering and / or at least partially chemical reaction of the exhaust gas.
  • the bent portion 8 of the exhaust pipe 6 and the inside of the furnace 2 are lined with a refractory material 12 to achieve a resistance to the high temperature of the exhaust gas, the molten metal and the resulting slag.
  • the inlet region 13 of the straight section 9 is widened, its inner diameter being larger than the corresponding outlet 5 of the furnace 2. Furthermore, the inlet region 13 is formed at a distance 14 spaced from the outlet 5 of the furnace 2. By this distance 14, which serves as an air gap, ambient air 15 can be mixed with the exhaust gas, whereby it is cooled. The entering ambient air 15 can lead to the oxidation of carbon monoxide to carbon dioxide, so that the distance 14 serves as a means for supplying air. This oxidation of carbon monoxide to carbon dioxide is called post-combustion. This can take place in the afterburning zone 27 if the corresponding reaction conditions are present.
  • the device 1 comprises a temperature sensor 16 for determining the temperature of the exhaust gas of the furnace 2.
  • This temperature sensor 16 is formed at a measuring point 17 in the exhaust pipe downstream of an afterburning zone 27 in the angled portion 7 of the exhaust pipe 6, that is, downstream of the bent portion 8 ,
  • the temperature sensor 16 is connected via a data line 18 to a control means 19.
  • the control means 19 the fuel volume flow is controlled via a fuel line 20 and the Oxidansvolumenstrom via an oxidant 21 to the burner 4.
  • the control means 19 detects the temperature of the exhaust gas at the measuring point 17. This temperature is recorded at predeterminable time intervals, the recorded temperature values are compared with each other and the temporal change of the temperature is calculated.
  • the measuring point 17 is formed downstream of the afterburning zone 27 of the exhaust pipe 6, in which an afterburning can take place, if the corresponding reaction conditions are present, in particular if carbon monoxide is present in the exhaust gas, which can react with atmospheric oxygen, which can enter through the air gap forming a distance 14 ,
  • the furnace 2 is put into a reduction operating state.
  • a predeterminable limit value for example 5 ° C./sec.
  • the furnace 2 is put into a reduction operating state. This means that the fuel volume flow is abruptly reduced from a desired fuel volume flow to a reduction volume flow, that is, the reduction volume flow is at least 5% below the desired fuel volume flow, preferably even at least 10% below the desired fuel volume flow.
  • the reduction operating state is maintained for a predefinable reduction period. During this reduction period no further changes in the fuel volume flow are made, this remains constant.
  • the duration and the difference between the desired fuel volume flow and the reduction volume flow are such that they correspond to a reduced fuel supply in a calorific value of the order of magnitude that carbon monoxide release in the furnace 2 contributes to the energy introduced into the furnace.
  • An increase in the Oxidansvolumenstrom is not necessary, since the direct consumption of the oxidant decreases due to the reduced fuel supply and so still available oxidizing agent such as.
  • Oxygen can be used for the oxidation of carbon monoxide to carbon dioxide.
  • the resulting thermal energy is used to further heat the starting material in the furnace 2.
  • the carbon monoxide releases occur whenever larger amounts of carbonaceous material such as coal come in contact with a sufficiently large amount of oxidant and / or reach a corresponding flame temperature. This may be the case, for example, in a rotary kiln, when iron scrap is melted with coal, such as anthracite coal, and larger amounts of coal come into contact with the oxidant as the kiln 2 is rotated. Then carbon monoxide is released from unoxidized carbon. This carbon monoxide release is further oxidized by contact with oxidant at a correspondingly high temperature to carbon dioxide. This process is exothermic. Without withdrawal of the fuel supply, there is a sharp increase in the temperature of the exhaust gas, often several hundred ° C, for example.
  • FIG. 2 shows an experimentally determined temperature profile 22 of the exhaust gas temperature and an experimentally determined carbon monoxide path 23 of the carbon monoxide content in the exhaust gas of a rotary furnace. It can be seen that whenever the carbon monoxide curve 23 increases, so does the Temperature curve 22 increases. By carbon monoxide release 24 is meant a corresponding peak in the carbon monoxide pathway 23. Experimental measurements have shown that a corresponding peak in the course of the carbon monoxide practically corresponds at the same time to a corresponding peak in the corresponding temperature curve 22.
  • FIG. 3 schematically shows a section of the temperature profile 22 from FIG. 2 ,
  • the temperature profile 22 shows a steep rise.
  • the furnace 2 is set from the standard operating state to the reduction operating state, if it is not already in the reduction operating state. After the predetermined reduction period, the furnace 2 is operated again in the standard operating condition.
  • Fig. 4 shows a corresponding temperature profile 22 in the exhaust gas using the method according to the invention.
  • the inventive method and apparatus advantageously allow the operation of a furnace 2 for melting, for example.
  • a furnace 2 for melting for example.
  • scrap iron With high energy savings potential compared to known from the prior art method, since a sudden and significant reduction of the fuel flow occurs when a strong change the temperature indicative of release and further reaction of a significant amount of carbon monoxide occurs.
  • the heat generated in the combustion of carbon monoxide to carbon dioxide can be used for further heating of the starting material.
  • the thermal loads of the furnace 2 and the exhaust pipe 6 are reduced in an advantageous manner and thus increases the service life of these devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Betrieb eines Ofens, insbesondere eines Ofens zum Einschmelzen von Metall wie bspw. von Eisenschrott.The present invention relates to a method for operating a furnace, in particular a furnace for melting metal, such as scrap iron.

Das Einschmelzen von Metallen zählt zu den energieintensiven Prozessen, bei denen große Energiemengen zum Erreichen des gewünschten Erfolges eingesetzt werden müssen. Entsprechende Verfahren zum Betrieb eines Ofens sind z. B. aus der US 6,247,416 bekannt. Aufgrund der stark steigenden Kosten für Energie und die Debatte um Kohlendioxidemissionen ist es erwünscht, den Einschmelzvorgang von Metallen energetisch günstiger zu gestalten.The melting of metals is one of the energy-intensive processes in which large amounts of energy must be used to achieve the desired result. Corresponding methods for operating a furnace are z. B. from the US 6,247,416 known. Due to the soaring costs of energy and the debate about carbon dioxide emissions, it is desirable to make the melting process of metals energetically more favorable.

Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren zum Betrieb eines Ofens anzugeben, bei dem der einzusetzende Energiebedarf verringert ist.On this basis, the present invention has for its object to provide a method for operating a furnace, in which the energy requirement to be used is reduced.

Diese Aufgabe wird gelöst mit den Merkmalen des unabhängigen Anspruchs 1.This object is achieved with the features of independent claim 1.

Abhängige Ansprüche sind auf vorteilhafte Weiterbildungen gerichtet.Dependent claims are directed to advantageous developments.

Das erfindungsgemäße Verfahren zum Betrieb eines Ofens, bei dem ein zumindest ein metallisches Element umfassender Ausgangsstoff aufgeschmolzen wird, indem der Ausgangsstoff durch mindestens einen Brenner erwärmt wird, der mit einem Brennstoffvolumenstrom eines Brennstoffs und einem Oxidansvolumenstrom eines Oxidans betrieben wird, wobei eine Abgastemperatur des Ofens in einer Abgasleitung in mindestens einem Messpunkt stromabwärts einer Nachverbrennungszone überwacht wird, wobei in einem Standardbetriebszustand dem Brenner ein Sollbrennstoffvolumenstrom und ein Solloxidansvolumenstrom zugeführt wird, wobei eine Änderung der Abgastemperatur in vorgebbaren Zeitabständen aufgenommen und mit einem vorgebbaren Grenzwert verglichen wird, zeichnet sich dadurch aus, dass dann, wenn die Änderung der Abgastemperatur pro Zeiteinheit größer als der Grenzwert ist, der Brenner für eine Reduktionsdauer in einen Reduktionsbetriebszustand versetzt wird, in dem der Quotient von Brennstoffvolumenstrom zu Oxidansvolumenstrom durch mindestens eine der folgenden Maßnahmen:

  1. A) eine vorgebbare sprunghafte Reduktion des Brennstoffvolumenstroms auf einen Reduktionsvolumenstrom und
  2. B) eine vorgebbare sprunghafte Erhöhung des Oxidansvolumenstroms auf einen Erhöhungsvolumenstrom
    erniedrigt und nach Ablauf der Reduktionsdauer in den Standardbetriebszustand zurückversetzt wird, wobei die Änderung des Volumenstroms mindestens 3% beträgt und verzögerungsfrei ist.
The inventive method for operating a furnace, in which a starting material comprising at least one metallic element is melted by the starting material is heated by at least one burner, which is operated with a fuel volume flow of a fuel and a Oxidansvolumenstrom an oxidant, wherein an exhaust gas temperature of the furnace in an exhaust gas line is monitored in at least one measuring point downstream of a post-combustion zone, wherein in a standard operating state the burner, a desired fuel volume flow and a Solloxidansvolumenstrom is supplied, wherein a change in the exhaust gas temperature in predeterminable time intervals and is compared with a predeterminable limit, characterized in that when the change in the exhaust gas temperature per unit time is greater than the limit value, the burner is placed for a reduction period in a reduction operating state in which the quotient of fuel flow to Oxidant flow rate by at least one of the following measures:
  1. A) a predetermined jumpable reduction of the fuel volume flow to a reduction volume flow and
  2. B) a predeterminable jump increase of the Oxidansvolumenstroms to an increasing volume flow
    is lowered and returned to the standard operating state at the end of the reduction period, wherein the change in the volume flow is at least 3% and is instantaneous.

Unter einer sprunghaften Erhöhung oder Reduktion eines Volumenstroms wird die verzögerungsfreie Änderung des Volumenstroms um mindestens 3% verstanden, bevorzugt um mindestens 5%. Es handelt sich also bei einer sprunghaften Änderung um eine unstetige Änderung nach Art eines Sprungs. Die Änderung der Abgastemperatur wird durch eine Überwachung der Abgastemperatur in einem Messpunkt überwacht. Durch Vergleich der erfassten Abgastemperaturen kann die Änderung der Abgastemperatur ermittelt werden. Der Brenner ist bevorzugt so ausgebildet, dass die Flamme des Brenners im Betrieb auf den Ausgangsstoff trifft und/oder diesen über- und/oder bestreicht. Der Ausgangsstoff umfasst üblicherweise aufzuschmelzendes Metall und ggf. Zusatzstoffe wie bspw. Kohle und/oder kohlenstoffhaltige Zusatzstoffe oder Verbindungen. Unter einer Nachverbrennungszone wird ein Bereich verstanden, in dem eine Nachverbrennung der Abgase nach Verlassen des Ofens erfolgen kann. Insbesondere liegt eine solche Nachverbrennungszone stromabwärts eines Mittel zur Luftzufuhr stromabwärts des Ofens, welches insbesondere als Luftspalt ausgebildet werden kann.An abrupt increase or reduction of a volume flow is understood to mean the delay-free change of the volume flow by at least 3%, preferably by at least 5%. So it is a sudden change to a discontinuous change in the manner of a jump. The change in the exhaust gas temperature is monitored by monitoring the exhaust gas temperature in a measuring point. By comparing the detected exhaust gas temperatures, the change in the exhaust gas temperature can be determined. The burner is preferably designed so that the flame of the burner strikes the starting material during operation and / or sweeps it over and / or sweeps it. The starting material usually comprises meltable metal and optionally additives such as, for example, coal and / or carbonaceous additives or compounds. A post-combustion zone is understood to mean a region in which afterburning of the exhaust gases can take place after leaving the furnace. In particular, such a post-combustion zone is downstream of a means for supplying air downstream of the furnace, which can be formed in particular as an air gap.

Das aufzuschmelzende Metall kann bspw. Eisenschrott oder Aluminium umfassen. Weitere Zusatzstoffe im Ausgangsstoff stellen auch Verunreinigungen oder durch die Beschaffenheit der aufzuschmelzenden Güter bedingte Anteile dar. Bspw. weisen aufzuschmelzende Getränkedosen Verunreinigungen in Form der Lackierung oder Inhaltsreste auf. Beispielsweise weisen Motoren beim Aufschmelzen Verunreinigungen in Form von Schmier oder Getriebeöl auf. Viele Industriegüter weisen beim Aufschmelzen Kunststoffanteile, -komponenten und/oder -beschichtungen auf.The metal to be melted may comprise, for example, scrap iron or aluminum. Other additives in the starting material are also impurities or by the nature of the goods to be melted contingent shares. For example. have to be melted beverage cans impurities in the form of paint or leftovers on. For example, engines have impurities in the form of lubricant or gear oil during melting. Many industrial goods have plastic components, components and / or coatings during melting.

Beim Betrieb des Ofens kommt es zu Betriebszuständen, bei denen plötzlich eine größere Menge Kohlenstoff oder kohlenstoffhaltiges Material zur Oxidation zur Verfügung steht. Dies ist bspw. dann der Fall, wenn bei einem Aufschmelzen von Metall in einem Rotationsofen unter Zugabe von Kohle und/oder kohlenstoffhaltigen Zusatzstoffen, beispielsweise Koks und/oder Graphit oder Kunststoffteile beim Rotieren des Rotationsofens Kohle oder Kohlenstoff in größerer Menge mit dem entsprechenden Oxidans in Kontakt kommt. Beim Aufschmelzen bspw. von Getränkedosen oder anderen beschichteten oder lackierten metallischen Gegenständen kommt es bei Kontakt mit dem Oxidationsmittel oder beim Erreichen des entsprechenden Flammpunktes der Beschichtung oder Lackierung zur Oxidation der entsprechenden Beschichtung oder des Lacks. Bei solchen Gelegenheiten entsteht aufgrund des Brennstoffvolumenstroms und des Oxidansvolumenstroms eine Situation, bei der eine relativ große Menge von Kohlenmonoxid entsteht. Dies wird im Weiteren als Kohlenmonoxidfreisetzung bezeichnet. Dieses Kohlenmonoxid kann bei weiterem Kontakt mit Oxidans weiter zu Kohlendioxid oxidieren. Dieser Prozess ist exotherm. Bei dieser Kohlenmonoxidfreisetzung und der daran anschließenden Oxidation des Kohlenmonoxids zu Kohlendioxid kommt es zu einem signifikanten, schnellen Anstieg der Temperatur des Abgases, da im Abgas oft Umgebungsluft zur Abkühlung des Abgases zugeführt wird, wenn weiterhin die Betriebsbedingungen des Ofens nicht oder nur geringfügig geändert werden. Dies ist bspw. dann der Fall, wenn die Brennstoffzufuhr, also der Brennstoffvolumenstrom oder der Oxidansvolumenstrom nur geringfügig in kleinen Schritten geändert werden. Dann kommt es zu einem starken Anstieg der Abgastemperatur beim Inkontaktreten mit Frischluft als sogenannte Nachverbrennung bspw. um 300 °C oder mehr. Dies ist ein Temperaturanstieg, der grundsätzlich zum Aufschmelzen des Ausgangsstoffes nicht zur Verfügung steht, da er im Abgassystem erfolgt. Allerdings führt der Temperaturanstieg zu einer stärkeren Belastung des Abgassystems, insbesondere von feuerfesten Auskleidungen desselben.Operation of the furnace will result in operating conditions where suddenly a greater amount of carbon or carbonaceous material will be available for oxidation. This is the case, for example, when melting metal in a rotary kiln with the addition of carbon and / or carbonaceous additives, such as coke and / or graphite or plastic parts when rotating the rotary kiln coal or carbon in larger quantities with the corresponding oxidant in Contact is coming. When melting, for example. Beverage cans or other coated or painted metallic objects it comes in contact with the oxidizing agent or upon reaching the corresponding flash point of the coating or coating for the oxidation of the corresponding coating or paint. On such occasions, due to the fuel volume flow and the oxidant volume flow, a situation arises in which a relatively large amount of carbon monoxide is produced. This is referred to below as carbon monoxide release. This carbon monoxide may further oxidize to carbon dioxide upon further contact with oxidant. This process is exothermic. In this carbon monoxide release and the subsequent oxidation of carbon monoxide to carbon dioxide, there is a significant, rapid increase in the temperature of the exhaust gas, since in the exhaust gas often ambient air for cooling the exhaust gas is supplied, further, the operating conditions of the furnace are not or only slightly changed. This is the case, for example, when the fuel supply, that is to say the fuel volume flow or the oxidant volume flow, is changed only slightly in small steps. Then there is a sharp increase in the exhaust gas temperature when Inkontaktreten with fresh air as so-called afterburning, for example. By 300 ° C or more. This is a rise in temperature, which is basically not available for melting the starting material, as it is in the exhaust system he follows. However, the increase in temperature leads to a greater load on the exhaust system, in particular of refractory linings thereof.

Gemäß der vorliegenden Erfindung wird der starke Temperaturanstieg im Abgas, der mit einer Kohlenmonoxidfreisetzung auftritt detektiert und daran anschließend umgehend eine vorgebbare sprunghafte Reduktion des Brennstoffvolumenstroms auf einen reduzierten Volumenstrom vorgenommen. Dieser Reduktionsvolumenstrom unterscheidet sich deutlich vom Sollbrennstoffvolumenstrom bspw. um 10 % und mehr. Es erfolgt also eine sprunghafte Erniedrigung der Zufuhr des Brennstoffs, während der Oxidansvolumenstrom konstant gehalten wird. Da weiterhin das Kohlenmonoxid oxidiert wird, erfolgt im Vergleich zur Situation mit im Wesentlichen konstantem Brennstoffvolumenstrom eine deutliche Absenkung der Abgastemperatur, die jedoch durch die Oxidation der Kohlenmonoxidfreisetzung immer noch hoch ist. Hierdurch wird das Material der Abgasleitung weniger thermisch belastet und weist damit höhere Standzeiten auf.According to the present invention, the strong temperature rise in the exhaust gas, which occurs with a release of carbon monoxide, is detected and subsequently a predefinable sudden reduction of the fuel volume flow to a reduced volume flow is subsequently undertaken. This reduction volume flow differs significantly from the nominal fuel volume flow, for example by 10% or more. Thus, there is a sudden decrease in the supply of fuel, while the Oxidansvolumenstrom is kept constant. Further, since the carbon monoxide is oxidized, compared with the situation with a substantially constant fuel volume flow, a significant reduction in the exhaust gas temperature, which is still high due to the oxidation of the carbon monoxide release. As a result, the material of the exhaust pipe is less thermally stressed and thus has a longer service life.

Alternativ oder zusätzlich kann der Oxidansvolumenstrom sprunghaft auf einen vorgebbaren Erhöhungsvolumenstrom erhöht werden. Hierdurch erfolgt die Oxidation der Kohlenmonoxidfreisetzung bereits gezielt im Ofen, so dass eine höhere Schmelzleistung erreicht werden kann. Hierdurch wird der Schmelzprozess effektiver.Alternatively or additionally, the Oxidansvolumenstrom can be increased suddenly to a predetermined increase volume flow. As a result, the oxidation of the carbon monoxide release already targeted in the oven, so that a higher melting performance can be achieved. This makes the melting process more effective.

Grundsätzlich führt die Reduktion des Quotienten von Brennstoffvolumenstrom zu Oxidansvolumenstrom auf sprunghafte Weise zu einer effektiveren Verfahrensführung bei ggf. geringerer Belastung des Ofenmaterials.In principle, the reduction of the quotient of the fuel volume flow to the oxidant volume flow leads in an abrupt manner to a more effective process control with possibly lower load on the furnace material.

Als Brennstoff kommen insbesondere organische Verbindungen wie Kohlenwasserstoff, bspw. Erdgas zum Einsatz.As fuel in particular organic compounds such as hydrocarbon, for example. Natural gas are used.

Gemäß einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird der Grenzwert so gewählt, dass der Grenzwert mindestens um einen Faktor zwei, bevorzugt mindestens drei, größer ist als übliche Messwertschwankungen.According to an advantageous embodiment of the method according to the invention, the limit value is selected so that the limit value is at least a factor of two, preferably at least three, greater than usual measured value fluctuations.

Unter üblichen Messwertschwankungen wird dabei die übliche Streuung der experimentell ermittelten Temperaturwerte, sowie leichte nicht auf eine Kohlenmonoxidfreisetzung zurückzuführende Temperaturänderung verstanden. Durch den Faktor von mindestens zwei zwischen dem Grenzwert und den üblichen Messwertschwankungen kann erreicht werden, dass ein unbeabsichtigter und unnötiger Betrieb im Reduktionsbetriebszustand vermieden werden kann.In this case, customary variations in measured values are understood to mean the usual scattering of the experimentally determined temperature values, as well as slight temperature changes not attributable to a release of carbon monoxide. By the factor of at least two between the limit value and the usual measured value fluctuations, it can be achieved that unintentional and unnecessary operation in the reduction operating state can be avoided.

Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird der Grenzwert so gewählt, dass dieser der Flanke eines Temperaturanstieges durch Kohlenmonoxidfreisetzung im Ofen entspricht.According to a further advantageous embodiment of the method according to the invention, the limit value is selected such that it corresponds to the edge of a temperature rise due to carbon monoxide release in the furnace.

Dies bedeutet, dass der Grenzwert so gewählt wird, dass nur bei signifikanten Anstiegen der Temperatur eine Änderung des Betriebszustandes des Ofens vom Standardbetriebszustand in den Reduktionsbetriebszustand erfolgt.This means that the limit value is selected such that only when the temperature rises significantly does the operating state of the furnace change from the standard operating state to the reduction operating state.

Gemäß einer weiteren vorteilhaften Ausgestaltung liegt der Grenzwert bei mindestens 4 Kelvin/sec.According to a further advantageous embodiment, the limit value is at least 4 Kelvin / sec.

Besonders bevorzugt ist eine Ausgestaltung, bei der der Grenzwert bei mindestens 10 Kelvin/sec. liegt. Diese starken schnellen Anstiege der Temperatur lassen sich praktisch ausschließlich auf Kohlenmonoxidfreisetzungen zurückführen. Übliche Temperaturanstiege aufgrund des Heizzyklus sowie die Messwertschwankungen liegen deutlich tiefer. Folglich ist eine Grenzwertsetzung von mindestens 5 Kelvin/sec. und insbesondere mindestens 10 Kelvin/sec. oder sogar mindestens 20 Kelvin/sec. vorteilhaft, da so eine sichere Erkennung der Kohlenmonoxidfreisetzung gewährleistet werden kann.Particularly preferred is an embodiment in which the limit is at least 10 Kelvin / sec. lies. These strong, rapid increases in temperature can be attributed almost exclusively to carbon monoxide releases. Normal temperature increases due to the heating cycle and the measured value fluctuations are significantly lower. Consequently, a limit value of at least 5 Kelvin / sec. and in particular at least 10 Kelvin / sec. or even at least 20 Kelvin / sec. advantageous, since such a reliable detection of carbon monoxide release can be ensured.

Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird die Reduktionsdauer so gewählt, dass diese der Dauer eines Temperaturanstieges durch Kohlenmonoxidfreisetzung im Ofen entspricht.According to a further advantageous embodiment of the method according to the invention, the reduction period is selected so that it corresponds to the duration of a temperature rise by carbon monoxide release in the oven.

Bei einem bestimmten Ofen sind sowohl die Dauer als auch die Höhe der Temperaturanstiege durch Kohlenmonoxidfreisetzung bekannt oder messbar, da diese Öfen üblicherweise mit bestimmten Zusammensetzungen von Ausgangsstoffen also bspw. bestimmten Mengen Eisenschrott und bestimmten Mengen zugeführter Kohle betrieben werden. Von daher kann dieses Wissen dazu benutzt werden, sowohl den Grenzwert als auch die Reduktionsdauer und/oder den Reduktionsvolumenstrom und/oder den Erhöhungsvolumenstrom festzulegen. Dies führt ofenabhängig zu einer bestmöglichen Verringerung des nötigen Energieeinsatzes oder einer entsprechenden Steigerung der Offeneffizienz.In a given furnace both the duration and the level of temperature increases by carbon monoxide release are known or measurable, since these ovens are usually operated with certain compositions of starting materials so for example. Certain amounts of scrap iron and certain amounts of coal supplied. Therefore, this knowledge can be used to set both the limit value and the reduction duration and / or the reduction volume flow and / or the increase volume flow. Depending on the oven, this leads to the best possible reduction of the necessary energy input or a corresponding increase in the open efficiency.

Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens beträgt die Reduktionsdauer mindestens 20 sec.According to a further advantageous embodiment of the method according to the invention, the reduction time is at least 20 sec.

Übliche Kohlenmonoxidfreisetzungen bewirken Temperaturanstiege, so genannte Peaks, die mindestens 20 sec. lang sind. Von daher kann durch eine Festsetzung der Reduktionsdauer auf mindestens 20 sec. besonders vorteilhaft eine Reduktion des Energieeinsatzes erreicht werden.Conventional carbon monoxide releases cause temperature increases, so-called peaks, which are at least 20 sec. Long. Therefore, by setting the reduction period to at least 20 sec., A reduction of the energy input can be achieved particularly advantageously.

Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens ist der Reduktionsvolumenstrom so bemessen, dass die Differenz aus Sollbrennstoffvolumenstrom und Reduktionsvolumenstrom multipliziert mit der Reduktionsdauer einem Brennstoffvolumen entspricht, dessen Brennwert dem mittleren Brennwert der Oxidation einer Kohlenmonoxidfreisetzung zu Kohlendioxid im Ofen entspricht. Alternativ oder zusätzlich kann Erhöhungsvolumenstrom so bemessen, dass eine vollständige Oxidation der Kohlenmonoxidfreisetzung erfolgen kann.According to a further advantageous embodiment of the method according to the invention, the reduction volume flow is so dimensioned that the difference between the desired fuel volume flow and reduction volume flow multiplied by the reduction duration corresponds to a fuel volume whose calorific value corresponds to the average calorific value of the oxidation of a carbon monoxide release to carbon dioxide in the furnace. Alternatively or additionally, increasing volume flow can be dimensioned so that a complete oxidation of the carbon monoxide release can take place.

Unter Brennwert wird hierbei die Energiemenge verstanden, die bei dem entsprechenden Prozess thermisch freigesetzt wird. Es ist bspw. bekannt, dass bei der Oxidation von 1 m3 Kohlenmonoxid zu Kohlendioxid eine Energiemenge von etwa 3,5 kWh (Kilowattstunden) freigesetzt wird. Da der Abgasvolumenstrom üblicherweise bekannt ist oder durch eine Abgasanalyse ermittelbar ist und auch die übliche Kohlenomonoxidkonzentration im Abgas bekannt oder ermittelbar ist, kann so berechnet werden, wie viel Kohlenmonoxid in einer Kohlenmonoxidfreisetzung zu Kohlendioxid umgesetzt wird. Hieraus lässt dann berechnen, wie weit der Brennstoffeinsatz zu reduzieren ist. Dies wird durch Reduktion des Brennstoffvolumenstroms und der Reduktionsdauer erreicht. Alternativ oder zusätzlich kann der Erhöhungsvolumenstrom so bemessen sein, dass eine vollständige Oxidation der Kohlenmonoxidfreisetzung erfolgen kann.The calorific value here means the amount of energy which is released thermally during the corresponding process. It is known, for example, that in the oxidation of 1 m 3 carbon monoxide to carbon dioxide an amount of energy of about 3.5 kWh (kilowatt hours) is released. Since the exhaust gas volume flow is usually known or can be determined by an exhaust gas analysis and also the usual carbon monoxide concentration in the exhaust gas is known or can be determined, can be calculated as how much carbon monoxide is converted in a carbon monoxide release to carbon dioxide. From this it can then be calculated how far the fuel input can be reduced. This is achieved by reducing the fuel volume flow and the reduction time. Alternatively or additionally, the increase volume flow can be dimensioned so that a complete oxidation of the carbon monoxide release can take place.

Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens liegt der Quotient aus Reduktionsvolumenstrom und Sollbrennstoffvolumenstrom im Bereich von 0,3 bis 0,9 und/oder der Quotient aus Solloxidansvolumenstrom und Erhöhungsvolumenstrom im Bereich von 0,3 bis 0,9. Diese Quotienten erlauben in vorteilhafter Weise eine entsprechende Ausnutzung der thermischen Energie der Oxidation der Kohlenmonoxidfreisetzung zu Kohlendioxid. Es ist nochmals darauf hinzuweisen, dass es beim Übergang vom Sollbetriebszustand in den Reduktionsbetriebszustand zu einer schlagartigen Reduktion des Brennstoffvolumenstroms und/oder Erhöhung des Oxidansvolumenstroms kommt. Bevorzugt ist eine Reduktion des Brennstoffvolumenstroms und/oder eine Erhöhung des Oxidansvolumenstroms um 10 bis zu 50 %.According to a further advantageous embodiment of the method according to the invention, the quotient of reduction volume flow and nominal fuel volume flow in the range of 0.3 to 0.9 and / or the quotient of Solloxidansvolumenstrom and increasing volume flow in the range of 0.3 to 0.9. These quotients advantageously allow a corresponding utilization of the thermal energy of the oxidation of the carbon monoxide release to carbon dioxide. It should be pointed out once again that there is a sudden reduction in the fuel volume flow and / or increase in the Oxidansvolumenstroms the transition from the desired operating condition in the reduction mode. Preference is given to a reduction of the fuel volume flow and / or an increase of the oxidant volume flow by 10 to 50%.

Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens umfasst das Oxidans mindestens einen der folgenden Stoffe:

  1. a) Luft und
  2. b) Sauerstoff.
According to a further advantageous embodiment of the method according to the invention, the oxidant comprises at least one of the following substances:
  1. a) air and
  2. b) oxygen.

Als Oxidans können also reiner Sauerstoff oder Umgebungsluft, sowie Mischungen derselben zum Einsatz kommen. Bevorzugt ist ein Oxidans, bei dem der Sauerstoffanteil bis zu 100 % vorliegt.As oxidant so pure oxygen or ambient air, and mixtures thereof can be used. Preferred is an oxidant in which the oxygen content is up to 100%.

Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens ist der Erhöhungsvolumenstrom so bemessen, dass er zur vollständigen Oxidation einer üblichen Kohlenmonoxidfreisetzung ausreicht.According to a further advantageous embodiment of the method according to the invention, the increasing volume flow is such that it is sufficient for the complete oxidation of a conventional carbon monoxide release.

Bei bekannten Betriebsbedingungen sind auch üblicherweise die Kohlenmonoxidkonzentrationen in Kohlenmonoxidfreisetzungen bekannt oder messbar, so dass eine Einstellung des Erhöhungsvolumenstroms bei bekannter Reduktionsdauer erfolgen kann.Under known operating conditions also usually the carbon monoxide concentrations in carbon monoxide releases are known or measurable, so that an adjustment of the increase in volume flow can take place at a known reduction time.

Gemäß einer weiteren vorteilhaften Ausgestaltung umfasst der Ausgangsstoff Kohlenstoff.According to a further advantageous embodiment, the starting material comprises carbon.

Hierbei kann der Kohlenstoff entweder in Verbindungen als Lack, Öl, Fett, beispielsweise als Schmieröl, Getriebeöl beim Aufschmelzen von Motoren oder ähnliches oder in reiner Form, beispielsweise in Form von Anthrazitkohle vorliegen.Here, the carbon can be present either in compounds as a paint, oil, grease, for example as a lubricating oil, transmission oil in the melting of engines or the like, or in pure form, for example in the form of anthracite.

Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens umfasst der Ausgangsstoff mindestens eines der folgenden metallischen Elemente:

  1. a) Eisen;
  2. b) Aluminium;
  3. c) Mangan;
  4. d) Zinn;
  5. e) Zink; und
  6. f) Blei.
According to a further advantageous embodiment of the method according to the invention, the starting material comprises at least one of the following metallic elements:
  1. a) iron;
  2. b) aluminum;
  3. c) manganese;
  4. d) tin;
  5. e) zinc; and
  6. f) lead.

Die Elemente können in Verbindungen auftreten, insbesondere beim Recyclen von Industriegütern wie beispielsweise Motoren, Batterien oder Lötzinn. Besonders bevorzugt lässt sich das erfindungsgemäße Verfahren beim Aufschmelzen von Eisenschrott einsetzen. Hierbei kann aufgrund der dort notwenigen hohen Energiemenge aufgrund des hohen Schmelzpunktes eine große Energieeinsparung durch das erfindungsgemäße Verfahren erzielt werden.The elements can occur in connections, especially in the recycling of industrial goods such as motors, batteries or solder. The method according to the invention can particularly preferably be used for melting iron scrap. Due to the high amount of energy required there, a high energy saving can be achieved by the method according to the invention due to the high melting point.

Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens ist der Ofen ein Ofen einer der folgenden Arten:

  1. a) ein Rotationsofen;
  2. b) ein Kupolofen;
  3. c) ein Drehofen;
  4. d) ein Kippofen;
  5. e) ein Schmelz/Gießofen; und
  6. f) ein Wannenofen.
According to a further advantageous embodiment of the method according to the invention, the furnace is an oven of one of the following types:
  1. a) a rotary kiln;
  2. b) a cupola furnace;
  3. c) a rotary kiln;
  4. d) a tilting furnace;
  5. e) a melting / casting furnace; and
  6. f) a furnace.

Insbesondere der Einsatz des erfindungsgemäßen Verfahrens zum Betrieb eines Rotationsofens ist vorteilhaft, da durch die stete Durchmischung des Ausgangsstoffes im Ofen bei der Rotation es oft zu Kohlenmonoxidfreisetzungen kommt. Bei einem Kupolofen kommt es bspw. zur Kohlenmonoxidfreisetzung, wenn nach Durchbrennen einer Kohleschicht ein Absacken des Ausgangsstoffes im Kupolofen erfolgt.In particular, the use of the method according to the invention for operating a rotary kiln is advantageous because carbon monoxide emissions often occur due to the constant mixing of the starting material in the kiln during rotation. In the case of a cupola, for example, the release of carbon monoxide occurs when, after burning through a carbon layer, the starting material sags in the cupola.

Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird im Standardbetriebszustand mindestens eine der folgenden Größen:

  1. a) der Sollbrennstoffvolumenstrom und
  2. b) der Solloxidansvolumenstrom
in Abhängigkeit von der Temperaturänderung kontinuierlich verändert.According to a further advantageous embodiment of the method according to the invention, in the standard operating state, at least one of the following variables is obtained:
  1. a) the desired fuel volume flow and
  2. b) Solloxidansvolumenstrom
continuously changed depending on the temperature change.

Dies tritt folglich für Situationen zu, bei denen die Änderung der Temperatur unterhalb des Grenzwertes liegt. In solchen Betriebszuständen erfolgt eine Veränderung insbesondere des Sollbrennstoffvolumenstroms um sehr kleine Werte, nicht sprunghaft auf den Reduktionsvolumenstrom. Der Sollbrennstoffvolumenstrom und/oder der Solloxidansvolumenstrom ist somit kontinuierlich aber nicht sprunghaft anpassbar.This therefore occurs in situations where the change in temperature is below the threshold. In such operating states, a change in particular of the desired fuel volume flow by very small values, not abruptly on the reduction volume flow. The desired fuel volume flow and / or the Solloxidansvolumenstrom is thus continuously but not abruptly adaptable.

Es wird eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens vorgeschlagen, umfassend ein Steuermittel, welches geeignet und bestimmt zur Durchführung des erfindungsgemäßen Verfahrens ist und ein Temperaturfühler zur Erfassung der Temperatur des Abgases des Ofens.It is proposed an apparatus for carrying out the method according to the invention, comprising a control means which is suitable and intended for carrying out the method according to the invention and a temperature sensor for detecting the temperature of the exhaust gas of the furnace.

In einer bevorzugten Ausgestaltung der Vorrichtung ist eine Abgasleitung ausgebildet, mit der das Abgas des Ofens abgeführt werden kann, die einen abgewinkelten Abschnitt aufweist, wobei der Temperaturfühler stromabwärts des abgewinkelten Abschnitts ausgebildet ist.In a preferred embodiment of the device, an exhaust pipe is formed, with which the exhaust gas of the furnace can be removed, which has an angled portion, wherein the temperature sensor is formed downstream of the angled portion.

Durch den abgewinkelten Abschnitt der Abgasleitung wird verhindert, dass Teile des Ausgangsstoffes bspw. größere Schrottteile den Temperaturfühler erreichen und diesen schädigen können. Alternativ oder zusätzlich kann die Abgasleitung auch einen Abschnitt mit einer Steigung aufweisen, wobei der Temperaturfühler bevorzugt in einem Bereich ausgebildet ist, der im Vergleich zum Ofenausgang erhöht ist, um so einen Schutz des Temperaturfühlers zu erreichen.The angled section of the exhaust pipe prevents parts of the starting material, for example larger scrap parts, from reaching the temperature sensor and damaging it. Alternatively or additionally, the exhaust pipe may also have a portion with a slope, wherein the temperature sensor is preferably formed in a region which is increased compared to the furnace outlet, so as to achieve protection of the temperature sensor.

Die für das erfindungsgemäße Verfahren offenbarten Details und Vorteile sind auf die Vorrichtung anwend- und übertragbar und umgekehrt. Im Folgenden wird die Erfindung anhand der beigefügten Zeichnung näher erläutert, ohne auf die dort gezeigten Details und Ausführungsbeispiele beschränkt zu sein. Es zeigen schematisch:

Fig. 1:
einen nach dem erfindungsgemäßen Verfahren betreibbaren Ofen;
Fig. 2:
einen Verlauf der Temperatur und des Kohlenmonoxidgehalts ohne Einsatz des erfindungsgemäßen Verfahrens;
Fig. 3:
einen Ausschnitt des Temperaturverlaufs ohne Einsatz des erfindungsgemäßen Verfahrens; und
Fig. 4
einen Ausschnitt des Temperaturverlaufs mit Einsatz des erfindungsgemäßen Verfahrens.
The details and advantages disclosed for the method according to the invention are applicable to the device and transferable and vice versa. In the following the invention will be explained in more detail with reference to the accompanying drawing, without being limited to the details and exemplary embodiments shown there. They show schematically:
Fig. 1:
a furnace operable by the process according to the invention;
Fig. 2:
a course of the temperature and the carbon monoxide content without the use of the method according to the invention;
3:
a section of the temperature profile without use of the method according to the invention; and
Fig. 4
a section of the temperature profile with use of the method according to the invention.

Figur 1 zeigt schematisch ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung 1 zum Betrieb eines Ofens 2. Der Ofen 2 ist ein Rotationsofen, in dem ein zumindest ein metallisches Element umfassender Ausgangsstoff wie bspw. Eisenschrott mit Zusatzstoffen wie beispielsweise Kohle aufgeschmolzen wird. Der Ofen 2 umfasst einen Einlass 3 mit einem Brenner 4. Durch den Brenner 4 werden ein Oxidans wie bspw. Sauerstoff, Luft oder sauerstoffangereicherte Luft und ein Brennstoff wie bspw. Erdgas in den Ofen 2 eingebracht. Weiterhin umfasst der Ofen 2 einen Auslass 5, durch den die Abgase der Verbrennungs- und Oxidationsprozesse im Ofen 2 in eine Abgasleitung 6 überführt werden. Die Abgasleitung 6 umfasst einen abgewinkelten Abschnitt 7, der über einen gebogenen Abschnitt 8 mit einem geraden Abschnitt 9 verbunden ist. Über eine Absaugvorrichtung 10 kann das Abgas aus dem Ofen 2 durch die Abgasleitung 6 abgesaugt werden. Hierbei können Filtermittel 11 in der Abgasleitung 6 ausgebildet sein, die eine Filterung und/oder zumindest teilweise chemische Umsetzung des Abgases bewirken. Insbesondere der gebogene Abschnitt 8 der Abgasleitung 6 und das Innere des Ofens 2 (hier nicht gezeigt) ist mit einem feuerfesten Material 12 ausgekleidet, um eine Widerstandskraft gegenüber der hohen Temperatur des Abgases, der Metallschmelze und der entstehenden Schlacke zu erreichen. FIG. 1 schematically shows an embodiment of the device 1 according to the invention for operating a furnace 2. The furnace 2 is a rotary furnace in which at least one metallic element comprehensive starting material such as. Iron scrap is melted with additives such as coal. The furnace 2 comprises an inlet 3 with a burner 4. Through the burner 4, an oxidant such as oxygen, air or oxygen-enriched air and a fuel such as natural gas are introduced into the furnace 2. Furthermore, the furnace 2 comprises an outlet 5, through which the exhaust gases of the combustion and oxidation processes in the furnace 2 are transferred into an exhaust pipe 6. The exhaust pipe 6 comprises an angled portion 7, which is connected via a bent portion 8 with a straight portion 9. Via a suction device 10, the exhaust gas from the furnace 2 can be sucked through the exhaust pipe 6. Here, filter means 11 may be formed in the exhaust pipe 6, which effect a filtering and / or at least partially chemical reaction of the exhaust gas. Specifically, the bent portion 8 of the exhaust pipe 6 and the inside of the furnace 2 (not shown here) are lined with a refractory material 12 to achieve a resistance to the high temperature of the exhaust gas, the molten metal and the resulting slag.

Der Einlassbereich 13 des geraden Abschnittes 9 ist aufgeweitet ausgebildet, wobei dessen innerer Durchmesser größer ist als der entsprechende Auslass 5 des Ofens 2. Weiterhin ist der Einlassbereich 13 in einem Abstand 14 beabstandet zum Auslass 5 des Ofens 2 ausgebildet. Durch diesen Abstand 14, der als Luftspalt dient, kann Umgebungsluft 15 dem Abgas beigemischt werden, wodurch dieses abgekühlt wird. Durch die zutretende Umgebungsluft 15 kann es zur Oxidation von Kohlenmonoxid zu Kohlendioxid kommen, so dass der Abstand 14 als ein Mittel zur Luftzufuhr dient. Diese Oxidaton von Kohlenmonoxid zu Kohlendioxid wird als Nachverbrennung bezeichnet. Diese kann in der Nachverbrennungszone 27 ablaufen, wenn die entsprechenden Reaktionsbedingungen vorliegen.The inlet region 13 of the straight section 9 is widened, its inner diameter being larger than the corresponding outlet 5 of the furnace 2. Furthermore, the inlet region 13 is formed at a distance 14 spaced from the outlet 5 of the furnace 2. By this distance 14, which serves as an air gap, ambient air 15 can be mixed with the exhaust gas, whereby it is cooled. The entering ambient air 15 can lead to the oxidation of carbon monoxide to carbon dioxide, so that the distance 14 serves as a means for supplying air. This oxidation of carbon monoxide to carbon dioxide is called post-combustion. This can take place in the afterburning zone 27 if the corresponding reaction conditions are present.

Die Vorrichtung 1 umfasst einen Temperatursensor 16 zur Bestimmung der Temperatur des Abgases des Ofens 2. Dieser Temperatursensor 16 ist an einem Messpunkt 17 in der Abgasleitung und zwar stromabwärts einer Nachverbrennungszone 27 im abgewinkelten Abschnitt 7 der Abgasleitung 6, das heißt stromabwärts des gebogenen Abschnitts 8 ausgebildet. Der Temperaturmessfühler 16 ist über eine Datenleitung 18 mit einem Steuermittel 19 verbunden. In dem Steuermittel 19 wird der Brennstoffvolumenstrom über eine Brennstoffleitung 20 und der Oxidansvolumenstrom über eine Oxidansleitung 21 zum Brenner 4 gesteuert. Das Steuermittel 19 erfasst die Temperatur des Abgases im Messpunkt 17. Diese Temperatur wird in vorgebbaren Zeitabständen aufgezeichnet, die aufgezeichneten Temperaturwerte werden miteinander verglichen und die zeitliche Änderung der Temperatur berechnet. Der Messpunkt 17 ist stromabwärts der Nachverbrennungszone 27 der Abgasleitung 6 ausgebildet, in der eine Nachverbrennung erfolgen kann, wenn die entsprechenden Reaktionsbedingungen vorliegen, insbesondere wenn Kohlenmonoxid im Abgas vorliegt, welches mit Luftsauerstoff, die durch den einen Luftspalt bildenden Abstand 14 eintreten kann, reagieren kann.The device 1 comprises a temperature sensor 16 for determining the temperature of the exhaust gas of the furnace 2. This temperature sensor 16 is formed at a measuring point 17 in the exhaust pipe downstream of an afterburning zone 27 in the angled portion 7 of the exhaust pipe 6, that is, downstream of the bent portion 8 , The temperature sensor 16 is connected via a data line 18 to a control means 19. In the control means 19, the fuel volume flow is controlled via a fuel line 20 and the Oxidansvolumenstrom via an oxidant 21 to the burner 4. The control means 19 detects the temperature of the exhaust gas at the measuring point 17. This temperature is recorded at predeterminable time intervals, the recorded temperature values are compared with each other and the temporal change of the temperature is calculated. The measuring point 17 is formed downstream of the afterburning zone 27 of the exhaust pipe 6, in which an afterburning can take place, if the corresponding reaction conditions are present, in particular if carbon monoxide is present in the exhaust gas, which can react with atmospheric oxygen, which can enter through the air gap forming a distance 14 ,

Übersteigt die Änderung der Temperatur einen vorgebbaren Grenzwert, bspw. 5 °C/sec., so wird der Ofen 2 in einen Reduktionsbetriebszustand versetzt. Dies bedeutet, dass der Brennstoffvolumenstrom von einem Sollbrennstoffvolumenstrom auf einen Reduktionsvolumenstrom schlagartig erniedrigt wird, das heißt, der Reduktionsvolumenstrom liegt mindestens 5 % unterhalb des Sollbrennstoffvolumenstroms, bevorzugt sogar mindestens 10 % unter dem Sollbrennstoffvolumenstrom. Der Reduktionsbetriebszustand wird für eine vorgebbare Reduktionsdauer aufrechterhalten. Während dieser Reduktionsdauer werden keine weiteren Veränderungen des Brennstoffvolumenstroms vorgenommen, dieser bleibt konstant.If the change in temperature exceeds a predeterminable limit value, for example 5 ° C./sec., The furnace 2 is put into a reduction operating state. This means that the fuel volume flow is abruptly reduced from a desired fuel volume flow to a reduction volume flow, that is, the reduction volume flow is at least 5% below the desired fuel volume flow, preferably even at least 10% below the desired fuel volume flow. The reduction operating state is maintained for a predefinable reduction period. During this reduction period no further changes in the fuel volume flow are made, this remains constant.

Dauer und Differenz zwischen Sollbrennstoffvolumenstrom und Reduktionsvolumenstrom sind so bemessen, dass diese einer verringerten Brennstoffzufuhr in mit einem Brennwert der Größenordnung entsprechen, den eine Kohlenmonoxidfreisetzung im Ofen 2 zur in den Ofen eingebrachten Energie beiträgt. Eine Erhöhung des Oxidansvolumenstrom ist nicht notwendig, da der direkte Verbrauch des Oxidans durch die verminderte Brennstoffzufuhr sinkt und das so weiterhin zur Verfügung stehende Oxidationsmittel wie bspw. Sauerstoff zur Oxidation des Kohlenmonoxids zu Kohlendioxid benutzt werden kann. Die dabei entstehende thermische Energie wird zur weiteren Aufheizung des Ausgangsstoffs im Ofen 2 benutzt.The duration and the difference between the desired fuel volume flow and the reduction volume flow are such that they correspond to a reduced fuel supply in a calorific value of the order of magnitude that carbon monoxide release in the furnace 2 contributes to the energy introduced into the furnace. An increase in the Oxidansvolumenstrom is not necessary, since the direct consumption of the oxidant decreases due to the reduced fuel supply and so still available oxidizing agent such as. Oxygen can be used for the oxidation of carbon monoxide to carbon dioxide. The resulting thermal energy is used to further heat the starting material in the furnace 2.

Die Kohlenmonoxidfreisetzungen erfolgen immer dann, wenn größere Mengen kohlenstoffhaltigen Materials wie bspw. Kohle in Kontakt mit einer genügend großen Menge Oxidans kommen und/oder eine entsprechende Flammentemperatur erreichen. Dies kann bspw. in einem Rotationsofen dann der Fall sein, wenn Eisenschrott mit Kohle wie bspw. Anthrazitkohle aufgeschmolzen wird und beim Drehen des Ofens 2 größere Chargen Kohle mit dem Oxidans in Kontakt kommen. Dann entsteht eine Kohlenmonoxidfreisetzung von nicht durchoxidiertem Kohlenstoff. Diese Kohlenmonoxidfreisetzung wird durch Kontakt mit Oxidans bei entsprechend hoher Temperatur weiter zu Kohlendioxid oxidiert. Dieser Prozess ist exotherm. Ohne Rücknahme der Brennstoffzufuhr kommt es zu einem starken Anstieg der Temperatur des Abgases, um oftmals mehrere Hundert °C, bspw. um 350 °C und mehr. Diese Aufheizung des Abgases und folglich auch des Ausgangsmaterials im Ofen und des Ofens ist unerwünscht, das sie zur Aufschmelzung des Ausgangsstoffes nicht notwendig ist und eine hohe thermische Belastung des Ofens und insbesondere dessen Innenwand und der Abgasleitung 6 bedeutet. Durch die erfindungsgemäße Verfahrensführung wird nun dieser Temperaturanstieg deutlich reduziert. Dies führt einerseits zu einer erheblichen Energieeinsparung indem Brennstoff eingespart wird und andererseits zu einer deutlich geringeren thermischen Belastung des Ofens 2 und der Abgasleitung 6. Auch das Filtermittel 11 wird einem geringeren thermischen Stress ausgesetzt.The carbon monoxide releases occur whenever larger amounts of carbonaceous material such as coal come in contact with a sufficiently large amount of oxidant and / or reach a corresponding flame temperature. This may be the case, for example, in a rotary kiln, when iron scrap is melted with coal, such as anthracite coal, and larger amounts of coal come into contact with the oxidant as the kiln 2 is rotated. Then carbon monoxide is released from unoxidized carbon. This carbon monoxide release is further oxidized by contact with oxidant at a correspondingly high temperature to carbon dioxide. This process is exothermic. Without withdrawal of the fuel supply, there is a sharp increase in the temperature of the exhaust gas, often several hundred ° C, for example. By 350 ° C and more. This heating of the exhaust gas and consequently of the starting material in the furnace and the furnace is undesirable, that it is not necessary for melting the starting material and means a high thermal load on the furnace and in particular its inner wall and the exhaust pipe 6. Due to the process control according to the invention, this temperature rise is now significantly reduced. On the one hand, this leads to a considerable energy saving by saving fuel and, on the other hand, to a significantly lower thermal load on the furnace 2 and the exhaust gas line 6. The filter medium 11 is also exposed to a lower thermal stress.

Figur 2 zeigt einen experimentell bestimmten Temperaturverlauf 22 der Abgastemperatur und einen experimentell bestimmten Kohlenmonoxidverlauf 23 des Kohlenmonoxidgehalts im Abgas eines Rotationsofens. Es ist zu erkennen, dass immer dann, wenn die Kohlenmonoxidverlaufskurve 23 ansteigt auch die Temperaturverlaufkurve 22 ansteigt. Mit einer Kohlenmonoxidfreisetzung 24 ist ein entsprechender Peak im Kohlenmonoxidverlauf 23 gemeint. Experimentelle Messungen haben ergeben, dass einem entsprechenden Peak im Kohlenmonoxidverlauf praktisch zeitgleich ein entsprechender Peak im entsprechenden Temperaturverlauf 22 entspricht. FIG. 2 shows an experimentally determined temperature profile 22 of the exhaust gas temperature and an experimentally determined carbon monoxide path 23 of the carbon monoxide content in the exhaust gas of a rotary furnace. It can be seen that whenever the carbon monoxide curve 23 increases, so does the Temperature curve 22 increases. By carbon monoxide release 24 is meant a corresponding peak in the carbon monoxide pathway 23. Experimental measurements have shown that a corresponding peak in the course of the carbon monoxide practically corresponds at the same time to a corresponding peak in the corresponding temperature curve 22.

Figur 3 zeigt schematisch einen Ausschnitt des Temperaturverlaufs 22 aus Figur 2. Der Temperaturverlauf 22 zeigt einen steilen Anstieg. Beim Vergleich mit dem vorgebbaren Grenzwert 25 wird festgestellt, dass die Änderung 26 der Temperatur größer ist als der vorgegebene Grenzwert 25. In diesem Falle wird der Ofen 2 vom Standardbetriebszustand in den Reduktionsbetriebszustand versetzt, sofern er sich nicht bereits im Reduktionsbetriebszustand befindet. Nach Ablauf der vorgegebenen Reduktionsdauer wird der Ofen 2 wieder im Standardbetriebszustand betrieben. FIG. 3 schematically shows a section of the temperature profile 22 from FIG. 2 , The temperature profile 22 shows a steep rise. When compared with the predeterminable limit value 25, it is determined that the change 26 of the temperature is greater than the predetermined limit value 25. In this case, the furnace 2 is set from the standard operating state to the reduction operating state, if it is not already in the reduction operating state. After the predetermined reduction period, the furnace 2 is operated again in the standard operating condition.

Fig. 4 zeigt einen entsprechenden Temperaturverlauf 22 im Abgas unter Einsatz des erfindungsgemäßen Verfahrens. Die Kohlenmonoxidfreisetzungen führen zu einem deutlich verringerten Temperaturanstieg, die thermische Energie der Oxidation des Kohlenmonoxid zu Kohlendioxid wird besser ausgenutzt. Der Kohlenmonoxidverlauf 23 im Abgas zeigt deutlich geringere Peaks. Fig. 4 shows a corresponding temperature profile 22 in the exhaust gas using the method according to the invention. The carbon monoxide releases lead to a significantly reduced temperature increase, the thermal energy of the oxidation of carbon monoxide to carbon dioxide is better utilized. The carbon monoxide course 23 in the exhaust gas shows significantly lower peaks.

Das erfindungsgemäße Verfahren und die Vorrichtung erlauben in vorteilhafter Weise den Betrieb eines Ofens 2 zum Aufschmelzen bspw. von Eisenschrott mit hohem Energieeinsparungspotential im Vergleich zu aus dem Stand der Technik bekannten Verfahren, da hier eine schlagartige und signifikante Reduktion des Brennstoffvolumenstroms erfolgt, wenn eine starke Änderung der Temperatur, die auf Freisetzung und weitere Umsetzung einer signifikanten Menge von Kohlenmonoxid schließen lässt, erfolgt. So kann die bei der Verbrennung von Kohlenmonoxid zu Kohlendioxid erzeugte Wärme zur weiteren Aufheizung des Ausgangsstoffes genutzt werden. Weiterhin werden in vorteilhafter Weise die thermischen Belastungen des Ofens 2 und der Abgasleitung 6 reduziert und damit die Standzeit dieser Geräte erhöht.The inventive method and apparatus advantageously allow the operation of a furnace 2 for melting, for example. Of scrap iron with high energy savings potential compared to known from the prior art method, since a sudden and significant reduction of the fuel flow occurs when a strong change the temperature indicative of release and further reaction of a significant amount of carbon monoxide occurs. Thus, the heat generated in the combustion of carbon monoxide to carbon dioxide can be used for further heating of the starting material. Furthermore, the thermal loads of the furnace 2 and the exhaust pipe 6 are reduced in an advantageous manner and thus increases the service life of these devices.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Vorrichtung zum Betrieb eines OfensApparatus for operating a furnace
22
Ofenoven
33
Einlassinlet
44
Brennerburner
55
Auslassoutlet
66
Abgasleitungexhaust pipe
77
abgewinkelter Abschnittangled section
88th
gebogener Abschnittcurved section
99
gerader Abschnittstraight section
1010
Absaugvorrichtungsuction
1111
Filtermittelfilter means
1212
feuerfestes Materialrefractory material
1313
Einlassbereichinlet area
1414
Abstanddistance
1515
Umgebungsluftambient air
1616
TemperaturmessfühlerTemperature sensor
1717
Messpunktmeasuring point
1818
Datenleitungdata line
1919
Steuermittelcontrol means
2020
Brennstoffleitungfuel line
2121
OxidansleitungOxidansleitung
2222
Temperaturverlauftemperature curve
2323
Kohlenmonoxidverlaufcarbon monoxide history
2424
KohlenmonoxidfreisetzungCarbon monoxide release
2525
Grenzwertlimit
2626
Änderung der TemperaturChange of temperature
2727
Nachverbrennungszonereburn

Claims (11)

  1. Method for operating a furnace (2), wherein a starting material comprising at least one metal element is molten, wherein the starting material is heated by at least one burner (4) that is operated with a volumetric fuel flow of a fuel and a volumetric oxidant flow of an oxidant, wherein an exhaust gas temperature of the furnace (2) is monitored in an exhaust gas line (6) at least at one measuring point (17) downstream of a post combustion zone, wherein in a standard operating state a target volumetric fuel flow and a target volumetric oxidant flow is fed to the burner (4), wherein a change (26) of the exhaust gas temperature is recorded at predeterminable time intervals and is compared to a predeterminable threshold value (25), characterised in that when the change (26) of the exhaust gas temperature per unit time is greater than the threshold value (25), the burner (4) is put into a reduction operating state for a predetermined reduction period, wherein the ratio of volumetric fuel flow to volumetric oxidant flow is lowered by at least one of the following actions:
    A) a predeterminable sudden reduction of the volumetric fuel flow to a reduced volumetric flow and
    B) a predeterminable sudden increase of the volumetric oxidant flow to an increased volumetric flow,
    said ratio being reset to the standard operating state after expiry of the reduction period, wherein the change of the volumetric flow has a value of at least 3% and is instantaneous.
  2. Method according to claim 1, wherein the threshold value (25) is selected so as to be greater than the usual measured value fluctuations by at least a factor of two.
  3. Method according to one of the preceding claims, wherein the threshold value (25) is selected so as to correspond with the slope of a temperature increase due to carbon monoxide release in the furnace (2).
  4. Method according to one of the preceding claims, wherein the threshold value (25) is at least 4 K/s.
  5. Method according to one of the preceding claims, wherein the reduction period is selected so as to correspond with the period of a temperature increase due to carbon monoxide release in the furnace (2).
  6. Method according to one of the preceding claims, wherein the reduction period is at least 20 seconds.
  7. Method according to one of the preceding claims, wherein a ratio of the reduced volumetric flow and target volumetric fuel flow and/or the ratio of target volumetric oxidant flow and increased volumetric flow is in the region of 0.3 to 0.9.
  8. Method according to one of the preceding claims, wherein the starting material comprises carbon.
  9. Method according to one of the preceding claims, wherein the starting material comprises at least one of the following metallic elements:
    a) iron;
    b) aluminium;
    c) manganese;
    d) tin;
    e) zinc; and
    f) lead.
  10. Method according to one of the preceding claims, wherein the furnace (2) is a furnace (2) of one of the following types:
    a) a rotary furnace;
    b) a cupola furnace;
    c) a rotary kiln;
    d) a tilting furnace;
    e) a smelting/casting furnace; and
    f) a tank furnace.
  11. Method according to one of the preceding claims, wherein, in the standard operating state, at least one of the following variables:
    a) the target volumetric fuel flow and
    b) the target volumetric oxidant flow
    is continuously changed depending on the change in temperature.
EP09809296.8A 2008-08-29 2009-08-28 Method for operating an oven Active EP2329210B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09809296.8A EP2329210B1 (en) 2008-08-29 2009-08-28 Method for operating an oven
PL09809296T PL2329210T3 (en) 2008-08-29 2009-08-28 Method for operating an oven

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20080163347 EP2159525A1 (en) 2008-08-29 2008-08-29 Method for operating an oven and device for carrying out the method
EP09809296.8A EP2329210B1 (en) 2008-08-29 2009-08-28 Method for operating an oven
PCT/EP2009/006249 WO2010022964A1 (en) 2008-08-29 2009-08-28 Method for operating a furnace and device for carrying out the method

Publications (2)

Publication Number Publication Date
EP2329210A1 EP2329210A1 (en) 2011-06-08
EP2329210B1 true EP2329210B1 (en) 2019-08-07

Family

ID=40039770

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20080163347 Withdrawn EP2159525A1 (en) 2008-08-29 2008-08-29 Method for operating an oven and device for carrying out the method
EP09809296.8A Active EP2329210B1 (en) 2008-08-29 2009-08-28 Method for operating an oven

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20080163347 Withdrawn EP2159525A1 (en) 2008-08-29 2008-08-29 Method for operating an oven and device for carrying out the method

Country Status (10)

Country Link
US (1) US8721764B2 (en)
EP (2) EP2159525A1 (en)
JP (1) JP5813506B2 (en)
CN (1) CN102138051B (en)
BR (1) BRPI0917173B1 (en)
CA (1) CA2734933C (en)
ES (1) ES2743413T3 (en)
PL (1) PL2329210T3 (en)
RU (1) RU2507461C2 (en)
WO (1) WO2010022964A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021106951A1 (en) 2021-03-22 2022-09-22 Vaillant Gmbh Method and arrangement for observing flames in a heating device that can be operated with hydrogen or fuel gas containing hydrogen

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959298B1 (en) 2010-04-23 2012-09-21 Air Liquide FLAME OVEN AND METHOD FOR CONTROLLING COMBUSTION IN A FLAME OVEN
US9797023B2 (en) 2013-12-20 2017-10-24 Grede Llc Shaft furnace and method of operating same
AT517642B1 (en) * 2015-09-02 2018-07-15 Primetals Technologies Austria GmbH Blast furnace with energy self-sufficient observation of carbon injection
CN107067126B (en) * 2016-11-25 2020-11-03 中国南方电网有限责任公司 Thermal stability key power transmission channel identification method based on power flow transfer ratio
JP7308392B2 (en) * 2019-08-02 2023-07-14 日本エア・リキード合同会社 Furnace control system, furnace control method and furnace comprising the control system
JP2021025882A (en) 2019-08-06 2021-02-22 日本エア・リキード合同会社 Method for controlling furnace, and analyzer for implementing the same
CN111121872B (en) 2019-12-27 2022-07-15 液化空气(中国)投资有限公司 Device and method capable of monitoring and adjusting combustion condition in furnace in real time
EP4033149A1 (en) 2021-01-22 2022-07-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Monitoring combustible matter in a gaseous stream
EP4202297A1 (en) 2021-12-21 2023-06-28 L'Air Liquide, société anonyme pour l'Étude et l'Exploitation des procédés Georges Claude Combustion process
CN114543509B (en) * 2022-01-13 2023-11-28 洛阳豫新工程技术股份有限公司 Rotary furnace control method and system
DE102022103263A1 (en) 2022-02-11 2023-08-17 Air Liquide Deutschland Gmbh Smart oxygen lance technology for post-combustion of combustible load buildup in melting furnaces

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3579357D1 (en) * 1984-05-03 1990-10-04 Vaillant Joh Gmbh & Co CONTROL DEVICE FOR THE FUEL-AIR RATIO OF A HEAT SOURCE.
DE4202827A1 (en) * 1992-01-31 1993-08-05 Linde Ag REGULATED OPERATION OF INDUSTRIAL OVENS
RU2082763C1 (en) * 1993-03-12 1997-06-27 Оскольский электрометаллургический комбинат Method of control of process of melting of iron-rich pellets in electric arc furnace
JPH06313542A (en) * 1993-04-30 1994-11-08 Sanyo Electric Co Ltd Warm-air heater
FR2777075B1 (en) 1998-04-02 2000-05-19 Air Liquide METHOD FOR OPERATING AN OVEN AND DEVICE FOR IMPLEMENTING THE METHOD
FR2832732B1 (en) * 2001-11-29 2004-02-13 Air Liquide USE OF FUME ANALYSIS IN ALUMINUM OVENS
CH695870A5 (en) * 2002-09-23 2006-09-29 R & D Carbon Ltd Optimizing the pitch steam combustion in a kiln for carbon electrodes.
FR2859283B1 (en) * 2003-09-01 2007-08-17 Air Liquide METHOD OF MEASURING GAS SPECIES BY DERIVATION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021106951A1 (en) 2021-03-22 2022-09-22 Vaillant Gmbh Method and arrangement for observing flames in a heating device that can be operated with hydrogen or fuel gas containing hydrogen

Also Published As

Publication number Publication date
CN102138051B (en) 2013-11-06
RU2011111732A (en) 2012-10-10
BRPI0917173A2 (en) 2015-11-24
CN102138051A (en) 2011-07-27
RU2507461C2 (en) 2014-02-20
US20110154949A1 (en) 2011-06-30
JP2012500959A (en) 2012-01-12
PL2329210T3 (en) 2019-12-31
CA2734933C (en) 2016-11-29
BRPI0917173B1 (en) 2020-11-10
EP2159525A1 (en) 2010-03-03
WO2010022964A1 (en) 2010-03-04
CA2734933A1 (en) 2010-03-04
ES2743413T3 (en) 2020-02-19
US8721764B2 (en) 2014-05-13
JP5813506B2 (en) 2015-11-17
EP2329210A1 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
EP2329210B1 (en) Method for operating an oven
DE60222173T2 (en) PROCESS FOR MELTING ALUMINUM USING ANALYSIS OF OVEN GAS
EP1243663B1 (en) Method and apparatus for melting aluminium scrap
DE10297306T5 (en) U-shaped melting chamber combustion boiler and method for operating the boiler
DE102011014996A1 (en) Air-oxygen mixing burner in the pan furnace
AT409269B (en) METHOD FOR SALTLESS AND OXIDATION-FREE REMELING OF ALUMINUM
DE2608279A1 (en) METHOD OF MELTING STEEL FROM SCRAP IN THE ELECTRIC FURNACE
EP0553632B1 (en) Controlled operation of an industrial furnace
EP2843340B1 (en) Method for detecting a combustible gas in a furnace and furnace
DE102011114292A1 (en) Thermal post-combustion system and method for operating such
EP2853610B1 (en) Device and method for electro-slag remelting
DE102010029648A1 (en) Method for melting e.g. aluminum scrap or glass, for heat treatment of steel in hearth furnace, involves operating burners of furnace using radiant flame, and supplying oxygen to combustion air flow to enrich air on pressure side of blower
DE202005007538U1 (en) Metal melting Rotary furnace
AT511806B1 (en) METHOD AND DEVICE FOR INFLUENCING THE GENERATION OF REACTION GASES IN A METALLURGICAL VESSEL
EP3456850A1 (en) Method and device for controlling a combustion and furnace
DD206421A1 (en) DEVICE FOR DRYING AND PLUMBING OF METAL LENGTHS
DE1946629A1 (en) Automatic metal feeding and dosing device
DE3106859C2 (en) cupola
DE102013012831A1 (en) Process for melting contaminated aluminum
DE2849121A1 (en) Drying and heating small metallic particles - in reducing atmos. prior to briquetting for remelting

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130723

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009015916

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F27D0019000000

Ipc: F27B0001260000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22B 7/00 20060101ALI20190226BHEP

Ipc: F23N 5/10 20060101ALI20190226BHEP

Ipc: F27B 1/26 20060101AFI20190226BHEP

Ipc: F27D 21/00 20060101ALI20190226BHEP

Ipc: C21B 13/02 20060101ALI20190226BHEP

Ipc: C21B 13/00 20060101ALI20190226BHEP

Ipc: F27D 19/00 20060101ALI20190226BHEP

Ipc: F23N 1/02 20060101ALI20190226BHEP

Ipc: F27B 3/28 20060101ALI20190226BHEP

Ipc: C21B 13/08 20060101ALI20190226BHEP

Ipc: C22B 21/00 20060101ALI20190226BHEP

Ipc: F23N 5/02 20060101ALI20190226BHEP

Ipc: F27B 7/42 20060101ALI20190226BHEP

INTG Intention to grant announced

Effective date: 20190313

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1164522

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009015916

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2743413

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190828

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009015916

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190828

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1164522

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090828

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230821

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230825

Year of fee payment: 15

Ref country code: IT

Payment date: 20230822

Year of fee payment: 15

Ref country code: GB

Payment date: 20230822

Year of fee payment: 15

Ref country code: BG

Payment date: 20230823

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230818

Year of fee payment: 15

Ref country code: FR

Payment date: 20230824

Year of fee payment: 15

Ref country code: DE

Payment date: 20230821

Year of fee payment: 15

Ref country code: BE

Payment date: 20230821

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231027

Year of fee payment: 15