EP2321538A1 - Microfluid device - Google Patents

Microfluid device

Info

Publication number
EP2321538A1
EP2321538A1 EP09775618A EP09775618A EP2321538A1 EP 2321538 A1 EP2321538 A1 EP 2321538A1 EP 09775618 A EP09775618 A EP 09775618A EP 09775618 A EP09775618 A EP 09775618A EP 2321538 A1 EP2321538 A1 EP 2321538A1
Authority
EP
European Patent Office
Prior art keywords
channel
inlet
channels
fluid
dispensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09775618A
Other languages
German (de)
French (fr)
Other versions
EP2321538B1 (en
Inventor
Andreas Rigler
Michael Vellekoop
Bernhard Lendl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Wien
Original Assignee
Technische Universitaet Wien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Wien filed Critical Technische Universitaet Wien
Publication of EP2321538A1 publication Critical patent/EP2321538A1/en
Application granted granted Critical
Publication of EP2321538B1 publication Critical patent/EP2321538B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31422Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations in the axial direction only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers

Definitions

  • the present invention relates to microfluidic devices for dispensing fluids or fluid mixtures.
  • Well-mixed fluid mixtures are useful in laminar flow systems, e.g. In microfluidic systems, it is difficult to produce since, especially due to lack of turbulence, but also due to short path lengths, no adequate mixing of the supplied fluids, in particular in the case of liquids, can occur.
  • the mixing between different fluid streams flowing in a channel is thus almost exclusively limited to diffusion processes.
  • cable routing is problematic because of the difficult-to-use third dimension.
  • EP 1 187 671 B1 discloses the introduction of several fluids via inlet channels with correspondingly different tapering cross sections into a mixing chamber of a "micromixer".
  • the taper of the channels extends longitudinally, ie towards the mixing chamber, and the surface of the inlet openings is normal to the longitudinal axis thereof.
  • the channels cross each other without contact and form a common outlet cross section at the mixing chamber. This pressure losses are compensated in the supply lines.
  • the problem that with lateral supply of fluids due to pressure losses in the transverse direction of a mixing channel different amounts of fluid in these are introduced does not occur in this embodiment of a microfluidic device and therefore remains unmentioned.
  • Fig. 1 An example of E. Kauffmann, N.C. Damton, R.H. Austin, C. Blatt and K. Gerwert in "Lifetimes of intermediates in the /? -Heet to ⁇ -helical transition of / Mactoglobulin by using a diffusional IR mixer", PNAS 98, 6646-6649 (2001), is presented in Fig. 1 shown schematically.
  • Several fluid streams are introduced via supply channels in a (horizontal in the figure) mixing channel.
  • the feed channels lead from one side of the mixing channel to this and open at the bottom in a row in this one, wherein the cross section of the inlets at the mouth points rectangular, i. is slit-shaped.
  • the object of the present invention was to provide a microfluidic device, with the above problems in terms of pressure loss and supply line can be solved.
  • a microfluidic device for dispensing a fluid or fluid mixture comprising: an output channel, at least one main fluid supply channel, each into at least one secondary supply channel substantially in the plane of the dispensing channel and laterally thereof which in turn merges into an inlet channel located above or below the discharge channel, which opens into the discharge channel from at least one inlet opening from above or below, with the characteristic that the at least one inlet channel has a cross-sectional shape which changes in its longitudinal direction and / or the at least one inlet opening tion has a changing in the transverse direction of the output channel opening width.
  • the inlet channel Due to this cross-sectional shape of the inlet channel, which changes in its longitudinal direction, and / or the width of the inlet opening (s) in the transverse direction of the outlet channel, varying amounts of fluid can be introduced from it into the outlet channel at different points in the inlet channel. Depending on the shape, locally variable pressure conditions are created, and thus the flow rate and consequently the amount of fluid over the width of the discharge channel are established. For example, the unequal amount of fluid delivered into the dispensing channel due to the pressure difference between the two ends of the inlet channel (s) may be compensated for by widening the inlet channel to the farther end so that there is a larger interface between Inlet and outlet channel for fluid transfer is available.
  • a uniformly thick fluid layer over the width of the discharge channel can be introduced into the latter.
  • smaller or larger amounts of fluid e.g. a fluid gradient can be introduced into it, which can be useful not only for mixing purposes, but also, for example, for chemical reactions in this channel.
  • the fluid (s) is / are not specifically limited. These may be any flowable materials or mixtures thereof.
  • the invention is used in connection with liquids or liquid / gas mixtures, since the advantages of the invention are particularly effective here.
  • one or more inlet openings may be provided in the discharge channel for each inlet channel.
  • the single inlet opening can be formed from the upper edges of the inlet channel, which is completely open towards the outlet channel, and thus occupies the entire interface between the inlet channel and the outlet channel. This simplifies the manufacture of such microfluidic devices, as will be described later.
  • the shapes of the inlet channels and the respective inlet openings may be the same or different from each other in all embodiments of the invention, which enables a targeted adjustment of the amount of fluid entering the zone across the width of the outlet channel.
  • the inlet channel in the region of the junction for example, wedge-shaped, taper or widen
  • the inlet opening for example, has a regular rectangular shape.
  • a plurality of openings for example slot-shaped or circular or even oval, can be provided per single-channel (which sometimes has a changing cross-section), etc.
  • the cross-sectional shape of the at least one inlet channel or the shape of the at least one inlet opening changes is not particularly limited and can be adapted to the respective applications of the device.
  • the cross-sectional shape changes linearly, so that the pressure loss over the length of the channel can be well balanced and a uniform distribution of the fluids or fluid mixtures in the transverse direction of the discharge channel is ensured.
  • the resulting fluid flow behavior can be well simulated and optimized by means of computer programs. Because the pressure drop in the channels is exponential, for purely physical considerations, a corresponding exponential change in cross-section would be a potentially even better solution to this problem.
  • Such courses are in practice - at least in the current production techniques - but only at significantly higher cost feasible and therefore currently not preferred.
  • the width of the at least one inlet channel increases in the transverse direction of the dispensing channel, ie at the end there is a larger area available for the fluid transition from the respective inlet channel to the dispensing channel so as to compensate for the pressure drop.
  • the width of the inlet channel can increase both at its upper and lower edges and at only one of them. That is, the inlet duct does not necessarily have to have side walls normal to the plane of the discharge duct, as will be explained later.
  • a variable depth of the channels affects the feed into the dispensing channel, however, a depression of the inlet channels towards the end thereof tends to be an enhancement of the latter due to the larger cross-sectional area
  • Pressure drop causes, while by decreasing depth (and thus associated smaller cross-sectional area) again the pressure drop can be compensated.
  • Channels as well as the shape of the channels - e.g. forming round or square branches - the flow rate of the fluid to the inlet ports can be determined.
  • these agents can be used both instead of and in combination with other, for example, mechanical control agents, e.g. Micropumps, valves, etc. are used.
  • all inlet ports are on the same side of the dispensing channel, i. above or below the same, arranged, as shown schematically in the later discussed in more detail Fig. 3 and 5, where all inlet channels are shown from below the discharge channel in this merging. This arrangement is easier to produce in the manufacture of microfluidic devices.
  • the main supply channels merge into a plurality of sub-supply and associated intake ports, and also preferably, a plurality of main supply ports are provided.
  • These preferably comprise one or more first main feed channels for introducing a first fluid and one or more a plurality of second main supply channels for introducing a second fluid. This makes it possible to introduce several layers of fluids, also in each case several layers of several fluids, one above the other into the output channel, which improves and accelerates the mixing of two or more fluids, since more than one interface between the fluids for diffusion is available.
  • the sub-feed and associated multi-fluid inlet channels preferably lead from opposite sides to the dispensing channel because, due to the difficult-to-use third dimension, superposition of the channels in microfluidic devices is hardly possible.
  • a plurality of first secondary supply and inlet channels and a plurality of second secondary supply and inlet channels "comb-shaped" from opposite sides (as will be explained in more detail below) interlock with the dispensing channel or open into it.
  • the device according to the invention also makes it possible to combine immiscible liquids, so that a solute can diffuse from one phase into the immiscible other phase.
  • the device does not serve as a mixer but as a micro-extractor.
  • the device according to the invention a well controllable mixing by diffusion of two or more layers of miscible fluids is possible. This achieves a reproducible diffusion mixing time behavior whose behavior depends on the properties of the fluids used (inter alia the diffusion coefficient), the flow rate and the layer thicknesses. In this way, a higher mixing quality is achieved compared to the prior art.
  • the invention relates to the use of a just described device for dispensing a plurality of fluids, which are preferably dispensed in the form of layers.
  • the layers can be the same or have different layer thicknesses, since this can be determined over the cross section of the inlet channels and / or the inlet openings.
  • the fluids are at least partially mixed during delivery due to diffusion at the interfaces between the layers.
  • FIG. 1 is a schematic representation of a micromixer according to the prior art described above.
  • FIG. 2 is a schematic representation of an embodiment of the device according to the invention for introducing a fluid into a dispensing channel via a main feed channel branching into two secondary feed and inlet channels.
  • Fig. 3 is a longitudinal sectional view of the embodiment of Fig. 2 along the line A-A.
  • FIG. 4 is a cross-sectional view of three possible embodiments of the apparatus of FIG. 2 taken along line B-B.
  • FIG. 4 is a cross-sectional view of three possible embodiments of the apparatus of FIG. 2 taken along line B-B.
  • Fig. 5 is a schematic representation of an embodiment of the device according to the invention for introducing two fluids via "comb-shaped" intermeshing inlet channels in an output channel.
  • FIG. 6 is a cross-sectional view of the embodiment of FIG. 5.
  • FIG. 7 is a schematic detail view of various embodiments of an intake passage having a varying cross section.
  • FIG. 8 is a schematic detail view of various embodiments of intake ports in the intake ports.
  • Fig. 9 is a longitudinal sectional view of alternative embodiments of the apparatus of Fig. 2 taken along line A-A.
  • Fig. 1 shows, as mentioned, a known embodiment of a microfluidic device according to the prior art.
  • this apparatus three separate feed channels 2, 2 ', 2 "for liquids in a row in a, here horizontally extending mixing channel 5.
  • a stream of a liquid sample is passed between each buffer stream in the channel, In order to mix these in.
  • the feeding of the three streams takes place from the same side of the mixing channel 5 - in Fig. 1, in
  • microfluidics are defined differently in the literature, for the purposes of the present invention, devices are to be understood as having dimensions such that the cross-sectional area of the channels is on the order of a square millimeter or less.
  • One of the problems of such and similar devices solved by the invention is that the amount of fluid entering the mixing channel at both ends of the respective inlet channel is different due to the pressure drop from one end to the other.
  • FIG. 2 shows a simple embodiment of a microfluidic device according to the invention, which serves mainly to illustrate the principle of the invention.
  • a microfluidic device could not be used as a micromixer but, for example, as a connector between two (micro) lines extending in different spatial directions or as a single channel for fluid (especially liquid) delivery, e.g. in inkjet printers, serve.
  • a fluid in the device shown in Fig. 2, a fluid can be passed into an output channel 5, as indicated by the arrows.
  • the fluid is via a main supply channel 1, which branches into two secondary supply channels 2, 2 ', which in turn pass into two inlet channels 3, 3' to the output channel 5 and through - in the figures consistently dotted - inlet openings 4, 4 'introduced into this ,
  • the present invention makes it possible to compensate for the pressure losses occurring in the case of elongated line junctions and the different quantities of fluid delivered in connection therewith, wherein the cross-sectional shapes of the inlet channels or inlet openings can be adapted precisely to the respective conditions.
  • those in the transverse direction where, for example, round, oval or polygonal cross-sections can be used, are essential, so that not necessarily parallel vertical side walls of the channels must be present. This also affects the pressure ratios in the respective sections of the channels.
  • Two exemplary embodiments of inlet channels with non-parallel sidewalls are shown in FIG. 9 and will be described in more detail later. However, the main and secondary supply channels can also have such non-parallel walls.
  • the cross-section of the respective inlet channel that of the associated inlet opening (s) or even both may change.
  • a "wedge-shaped" i. linear variation of the cross sections are shown, whose course is also the same at the inlet channel and opening, as indicated by the parallelism of the lines.
  • arbitrary combinations of different cross-sectional shapes can be used as long as the flow behavior of the fluid or fluids in the device according to the invention is thereby advantageously influenced.
  • any other shapes, with curves, waves, corners, edges, teeth and the like, are possible, all of which are intended to be within the scope of the present invention.
  • inlet openings can also be provided per inlet channel, which in turn can have any desired shapes.
  • a sequence of slit or circular openings-in the longitudinal and / or transverse direction- is thinkable and feasible, through which the openings in the inlet channel are admitted. led fluid enters the dispense channel at multiple, discrete locations.
  • an inlet channel with linear, e.g. wedge-shaped or conical, or curved tapered cross-section and extending in the longitudinal direction of the inlet channel, slot-shaped inlet opening with a regular rectangular cross-section.
  • the tapering cross-section of the channel then equalizes the pressure drop toward the farther end of the opening so that in turn equal amounts of fluid can enter the discharge channel at both ends of the opening.
  • the cross-section of the inlet or inlet channel upstream of the junction can also change in order to influence pressure differences in the supply lines. This can be done in known manner, i. As in the above-mentioned EP 118.767 B1, by tapering design of the channels 1 and / or 2 or 2 'to the output channel 5 through out. In this way, it can be ensured that the same amount of fluid is delivered to all inlet channels in the case of a main feed channel branching into a plurality of secondary feed and corresponding inlet channels, which results in equal layer thicknesses of the fluid in the output channel.
  • FIG. 3 shows a schematic longitudinal sectional view of the embodiment of Fig. 2 along the line AA, from which it appears that both inlet channels 3 and 3 'from the same side, namely from below, open into the outlet channel 5. This is contrary to the manufacturing technology of microfluidic devices. In addition, the side walls of the inlet channels 3 and 3 'are formed in parallel. Alternatives will be described later in connection with FIG. Fig. 4 shows schematically three possible cross-sectional views of the embodiment of Fig. 2 along the line BB. It can be seen that the cross-section of the inlet channel 3 1 can not only - as shown in FIG.
  • Fig. 4c shows an embodiment with a constant depth of the inlet channel 3 ', which represents a presently preferred embodiment due to the ease of manufacture.
  • Fig. 5 shows an embodiment of the device according to the invention, in which two fluids are supplied from opposite sides of the discharge channel 5 to this.
  • a first fluid is analogous to the embodiment of Figure 2 via a main supply channel 1, which branches into two secondary supply channels 2 and 2 1 and in the sequence in two inlet channels 3 and 3 1 , introduced.
  • a second fluid via the analog components 10, 20/20 'and 30/30'.
  • the cross-sectional shapes that change in the mouth region can be combined again as desired. For clarity, wedge-shaped cross sections are again shown.
  • two layers of the two fluids are alternately introduced into the output channel, whereby a total of three interfaces for the diffusion between the two fluids are available.
  • this effect can be further enhanced. This significantly speeds up mass transfer between the fluids, such that such devices are excellent micromixers or, in the case of immiscible liquids, micro-extractors.
  • a profile of the device according to the invention with an aspect ratio of 1:10 for the inlet channels and / or the inlet opening is used for many-in particular aqueous-fluids.
  • an aspect ratio (width difference: length) of 1:10 an expansion of the (eg wedge-shaped) Channel of, for example, 10.0 microns at the beginning of the inlet channel to 20.0 microns at its end over a length of the inlet channel of 100.0 microns understood.
  • a readily reproducible time behavior of the mixing is achieved by diffusion of two or more fluids, the quality of the mixing also being decisively influenced by the mixing behavior (diffusion coefficients) of the fluids and the flow velocities.
  • FIG. 5 like the previously discussed embodiment of FIGS. 2 to 4, eliminates the problem of pressure differences in the inlet region into the outlet channel.
  • the supply of two different fluids from opposite sides is a new and advantageous solution to the problem of routing in microfluidic devices. Because of the difficult-to-use third dimension, intersecting lines are virtually impossible to manufacture, so that several supply channels - and not merely inlet channels - were required for alternately supplying a plurality of streams of the same fluid, as explained in connection with FIG.
  • FIG. 6 shows a longitudinal sectional view of the embodiment from FIG. 5 along the line AA from FIG. 5. From this it can be seen that all the inlet channels 3, 3 ", 30 and 30 'enter the outlet channel 5 from the same side, again from below This again counteracts the fabrication technique of microfluidic devices where the channels are etched into an existing substrate, cut, etc. Since the line AA in Fig.
  • the thickness of the inlet channel pairs is 3
  • the walls of the inlet ducts need not necessarily be perpendicular, ie normal to the plane of the discharge duct, as shown in FIG
  • the quantity of fluid passing from the respective inlet channel into the outlet channel and thus the layer thickness can likewise be increased the fluid can be controlled at this point of the output channel.
  • Such a change in cross section of the inlet channels is also within the scope of the present invention. 7 shows by way of example schematically different embodiments of the cross-sectional changes of the inlet channels in the plane of the discharge channel.
  • FIG. 8 shows various embodiments of the shapes of the inlet openings, wherein the sake of clarity, the inlet channels are plotted without changing cross-section. In fact, however, any combination of the embodiments shown in FIGS. 7 and 8 and any other embodiments are possible since the invention is by no means limited to the embodiments shown or discussed herein.
  • FIG. 9 shows alternative embodiments of the inlet channels 3 and 3 'from FIG. 3 with non-parallel side walls, which can also be combined with any of the previously described channel cross-section changes and aperture shapes.
  • Channel 3 is here exemplarily with oval cross-section, i. with bulged side walls, represented;
  • Channel 3 ' however, with a downwardly tapered cross-section.
  • additional measures may also be taken on the channel sidewalls, such as e.g. Grooves, grooves, grooves, corrugations and the like in order to influence and optimize the flow behavior of the fluids in the channels.
  • the present invention is a valuable resource. Advances in the state of the art in the field of microfluidics, since it solves existing problems in a relatively simple manner by providing devices that are inexpensive and can be produced by known methods. Accordingly, there is no doubt about the industrial applicability of the invention.

Abstract

The invention relates to a microfluid device for dispensing a fluid or a fluid mixture, said device comprising a dispensing channel (5), at least one main fluid delivery channel (1, 10) which lies substantially in the plane of the dispensing channel (5) and runs laterally thereto and merges into at least one subsidiary delivery channel (2, 2', 20, 20') that in turn opens into an inlet channel (3, 3', 30, 30') lying above or below the dispensing channel (5), which inlet channel (3, 3', 30, 30') opens into the dispensing channel (5) from above or below via at least one inlet opening (4, 4', 40, 40'), characterized in that the at least one inlet channel (3, 3', 30, 30') has a cross-sectional shape that changes in the longitudinal direction thereof and/or the at least one inlet opening (4, 4', 40, 40') has an opening width that changes in the transverse direction of the dispensing channel (5).

Description

MIKROFLUIDVORRICHTUNG MICRO FLUID DEVICE
Die vorliegende Erfindung betrifft Mikrofluidikvorrichtungen zur Abgabe von Fluids oder Fluidgemischen.The present invention relates to microfluidic devices for dispensing fluids or fluid mixtures.
Gut durchmischte Fluidgemische sind bei mit laminaren Strömungen arbeitenden Systemen, wie z.B. in Mikrofluidiksystemen, schwer herzustellen, da es - vor allem aufgrund fehlender Turbulenzen, aber auch aufgrund kurzer Weglängen - zu keiner ausreichenden Vermischung der zugeführten Fluids, insbesondere im Falle von Flüs- sigkeiten, kommen kann. Die Durchmischung zwischen verschiedenen in einem Kanal fließenden Fluidströmen ist somit nahezu ausschließlich auf Diffusionsvorgänge beschränkt. Darüber hinaus ist in Mikrofluidik-Anwendungen aufgrund der schwer nutzbaren dritten Dimension die Leitungsführung problematisch.Well-mixed fluid mixtures are useful in laminar flow systems, e.g. In microfluidic systems, it is difficult to produce since, especially due to lack of turbulence, but also due to short path lengths, no adequate mixing of the supplied fluids, in particular in the case of liquids, can occur. The mixing between different fluid streams flowing in a channel is thus almost exclusively limited to diffusion processes. In addition, in microfluidic applications, cable routing is problematic because of the difficult-to-use third dimension.
Ein Ansatz zur Lösung dieser Probleme wird beispielsweise in DE 19604289 C2 offenbart, wo in einem so genannten Mikromischer zwei Fluidströme beiderseits einer Trennwand in eine Mischkammer eingeleitet und erst danach zusammengeführt werden, um dazwischen eine Grenzfläche auszubilden, an der Diffusion erfolgen kann.One approach to solving these problems is disclosed, for example, in DE 19604289 C2, where in a so-called micromixer two fluid streams are introduced into a mixing chamber on either side of a dividing wall and are thereafter joined together to form an interface therebetween at which diffusion can occur.
Die Problematik der Leitungsführung sowie des Druckverlusts in den Zuleitungen und an der Einmündungsstelle derselben in den Mischkanal werden in diesem Dokument nicht angesprochen.The problem of the wiring and the pressure loss in the supply lines and at the junction point of the same in the mixing channel are not addressed in this document.
In Bezug auf den Ausgleich von Druckverlusten offenbart EP 1.187.671 B1 das Ein- leiten mehrerer Fluids über Einlasskanäle mit sich entsprechend unterschiedlich verjüngenden Querschnitten in eine Mischkammer eines "Mikrovermischers". Die Verjüngung der Kanäle verläuft in Längsrichtung, d.h. zur Mischkammer hin, und die Fläche der Einlassöffnungen steht normal auf die Längsachse derselben. Die Kanäle kreuzen einander berührungslos und bilden an der Mischkammer einen gemeinsa- men Austrittsquerschnitt. Dabei werden Druckverluste in den Zuleitungen ausgeglichen. Das Problem, dass bei seitlicher Zuleitung von Fluids aufgrund von Druckverlusten in Querrichtung eines Mischkanals unterschiedliche Fluidmengen in diesen eingeleitet werden, tritt bei dieser Ausführungsform einer Mikrofluidikvorrichtung gar nicht auf und bleibt daher unerwähnt. With regard to the compensation of pressure losses, EP 1 187 671 B1 discloses the introduction of several fluids via inlet channels with correspondingly different tapering cross sections into a mixing chamber of a "micromixer". The taper of the channels extends longitudinally, ie towards the mixing chamber, and the surface of the inlet openings is normal to the longitudinal axis thereof. The channels cross each other without contact and form a common outlet cross section at the mixing chamber. This pressure losses are compensated in the supply lines. The problem that with lateral supply of fluids due to pressure losses in the transverse direction of a mixing channel different amounts of fluid in these are introduced does not occur in this embodiment of a microfluidic device and therefore remains unmentioned.
Ein von E. Kauffmann, N.C. Damton, R.H. Austin, C. Blatt und K. Gerwert in "Lifetimes of intermediates in the /?-sheet to α-helix transition of /Mactoglobulin by using a diffusional IR mixer", PNAS 98, 6646-6649 (2001), vorgestellter Mikromixer ist in Fig. 1 schematisch dargestellt. Mehrere Fluidströme werden über Zufuhrkanäle in einen (in der Figur: waagrechten) Mischkanal eingeführt. Die Zufuhrkanäle führen von einer Seite des Mischkanals zu diesem hin und münden an der Unterseite hintereinander in diesen ein, wobei der Querschnitt der Einlasse an den Mündungsstellen rechteckig, d.h. schlitzförmig ist. Auf diese Weise werden im Mischkanal mehrere laminar übereinander fließende Fluidströme, und zwar je ein Strom pro Zufuhrkanal, erzeugt, zwischen denen es im weiteren Verlauf des Mischkanals zu Diffusion kommt. Druckverluste werden in dieser Ausführungsform eines Mikromischers nicht ausgeglichen, so dass die zugeführte Fluidmenge in Querrichtung des Mischkanals variiert. Das heißt, am von der Zuleitung weiter entfernten (in der Figur: oberen) Ende der Einlassöffnung tritt zwangsläufig weniger Fluid in den Mischkanal ein als am näher gelege- nen (unteren) Ende. Da dies für jedes der zugeführten Fluids der Fall ist, ist die Qualität der Durchmischung mangelhaft.An example of E. Kauffmann, N.C. Damton, R.H. Austin, C. Blatt and K. Gerwert in "Lifetimes of intermediates in the /? -Heet to α-helical transition of / Mactoglobulin by using a diffusional IR mixer", PNAS 98, 6646-6649 (2001), is presented in Fig. 1 shown schematically. Several fluid streams are introduced via supply channels in a (horizontal in the figure) mixing channel. The feed channels lead from one side of the mixing channel to this and open at the bottom in a row in this one, wherein the cross section of the inlets at the mouth points rectangular, i. is slit-shaped. In this way, a plurality of laminar fluid streams flowing one above the other are generated in the mixing channel, namely one stream per supply channel, between which diffusion occurs in the further course of the mixing channel. Pressure losses are not compensated in this embodiment of a micromixer, so that the supplied amount of fluid varies in the transverse direction of the mixing channel. That is, at the end of the inlet opening farther from the supply line (in the figure: upper end), less fluid inevitably enters the mixing channel than at the closer (lower) end. Since this is the case for each of the supplied fluids, the quality of mixing is poor.
Vor diesem Hintergrund bestand die Aufgabe der vorliegenden Erfindung darin, eine Mikrofluidikvorrichtung bereitzustellen, mit der die obigen Probleme hinsichtlich Druckverlust und Zuleitungsführung gelöst werden können.Against this background, the object of the present invention was to provide a microfluidic device, with the above problems in terms of pressure loss and supply line can be solved.
OFFENBARUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION
Erfindungsgemäß wird diese Aufgabe gelöst, indem eine Mikrofluidikvorrichtung zur Abgabe eines Fluids oder Fluidgemischs bereitgestellt wird, die Folgendes umfasst: einen Ausgabekanal, zumindest einen Fluid-Hauptzufuhrkanal, der jeweils in zumindest einen im Wesentlichen in der Ebene des Ausgabekanals liegenden und seitlich zu diesem hinführenden Nebenzufuhrkanal übergeht, der seinerseits in einen ober- oder unterhalb des Ausgabekanals liegenden Einlasskanal übergeht, der über zumin- dest eine Einlassöffnung von oben oder unten in den Ausgabekanal mündet, mit dem Kennzeichen, dass der zumindest eine Einlasskanal eine sich in seiner Längsrichtung verändernde Querschnittsform aufweist und/oder die zumindest eine Einlassöff- nung eine sich in Querrichtung des Ausgabekanals ändernde Öffnungsweite aufweist.According to the invention, this object is achieved by providing a microfluidic device for dispensing a fluid or fluid mixture, comprising: an output channel, at least one main fluid supply channel, each into at least one secondary supply channel substantially in the plane of the dispensing channel and laterally thereof which in turn merges into an inlet channel located above or below the discharge channel, which opens into the discharge channel from at least one inlet opening from above or below, with the characteristic that the at least one inlet channel has a cross-sectional shape which changes in its longitudinal direction and / or the at least one inlet opening tion has a changing in the transverse direction of the output channel opening width.
Aufgrund dieser sich in seiner Längsrichtung ändernden Querschnittsform des Ein- lasskanals und/oder sich ändernden Breite der Einlassöffnung(en) in Querrichtung des Ausgabekanals können an unterschiedlichen Stellen des Einlasskanals variierende Fluidmengen von diesem in den Ausgabekanal eingeleitet werden. Es werden in Abhängigkeit von der Form lokal veränderliche Druckverhältnisse geschaffen und somit die Durchflussrate und folglich die Menge an Fluid über die Breite des Ausga- bekanals festgelegt. So kann beispielsweise die aufgrund des Druckunterschieds zwischen den beiden Enden des Einlasskanals bzw. der Einlassöffnung(en) ungleiche Menge an in den Ausgabekanal zugeführtem Fluid ausgeglichen werden, indem der Einlasskanal sich zum weiter entfernten Ende hin verbreiternd ausgeführt wird, so dass eine größere Grenzfläche zwischen Einlass- und Ausgabekanal für den Fluidübertritt zur Verfügung steht. Dadurch kann eine über die Breite des Ausgabekanals einheitlich dicke Fluidschicht in diesen eingeleitet werden. Je nach Anwendung der Vorrichtung in Leitungssystemen können an unterschiedlichen Stellen der Breite des Ausgabekanals aber auch gezielt kleinere oder größere Fluidmengen, z.B. ein Fluidgradient, in diesen eingeleitet werden, was nicht nur zu Mischzwecken, son- dem beispielsweise auch für chemische Reaktionen in diesem Kanal von Nutzen sein kann.Due to this cross-sectional shape of the inlet channel, which changes in its longitudinal direction, and / or the width of the inlet opening (s) in the transverse direction of the outlet channel, varying amounts of fluid can be introduced from it into the outlet channel at different points in the inlet channel. Depending on the shape, locally variable pressure conditions are created, and thus the flow rate and consequently the amount of fluid over the width of the discharge channel are established. For example, the unequal amount of fluid delivered into the dispensing channel due to the pressure difference between the two ends of the inlet channel (s) may be compensated for by widening the inlet channel to the farther end so that there is a larger interface between Inlet and outlet channel for fluid transfer is available. As a result, a uniformly thick fluid layer over the width of the discharge channel can be introduced into the latter. Depending on the application of the device in piping systems, smaller or larger amounts of fluid, e.g. a fluid gradient can be introduced into it, which can be useful not only for mixing purposes, but also, for example, for chemical reactions in this channel.
Was die obigen Bezeichnungen "oben" und "unten" sowie "oberhalb" bzw. "unterhalb der Ebene des Ausgabekanals" anbelangt, so sei festgestellt, dass diese aufgrund der - selbst nach Inbetriebnahme der Mikrofluidikvorrichtung - variablen räumlichen Lage des Ausgabekanals austauschbar sind und vor allem zur näheren Erläuterung der in den beiliegenden Zeichnungen dargestellten Ausführungsformen dienen.As for the above designations "up" and "down" and "above" and "below the level of the output channel", it should be noted that these are interchangeable and present due to the variable spatial location of the output channel, even after the microfluidic device has been powered up all for a more detailed explanation of the embodiments shown in the accompanying drawings.
Das oder die Fluid(s) ist/sind nicht speziell eingeschränkt. Es kann sich dabei um be- liebige fließfähige Materialien bzw. Gemische davon handeln. Vorzugsweise wird die Erfindung im Zusammenhang mit Flüssigkeiten oder Flüssigkeit/Gas-Gemischen eingesetzt, da hier die Vorteile der Erfindung besonders gut zur Geltung kommen. Gemäß vorliegender Erfindung können für jeden Einlasskanal eine oder mehrere Einlassöffnungen in den Ausgabekanal vorgesehen sein. In ersterem Fall kann die einzige Einlassöffnung von den Oberkanten des nach oben zum Ausgabekanal hin zur Gänze offenen Einlasskanals gebildet werden und somit die gesamte Grenzflä- che zwischen Einlasskanal und Ausgabekanal einnehmen. Dies vereinfacht die Fertigung solcher Mikrofluidikvorrichtungen, wie dies später noch näher beschrieben wird. Die Formen der Einlasskanäle und der jeweiligen Einlassöffnungen können in allen Ausführungsformen der Erfindung dieselbe sein oder sich voneinander unterscheiden, was eine gezielte Einstellung der über die Breite des Ausgabekanals in diesen eintretenden Menge an Fluid an jeder Stelle ermöglicht. Beispielsweise kann sich der Einlasskanal im Bereich der Einmündung, beispielsweise keilförmig, verjüngen oder aber verbreitern, während die Einlassöffnung z.B. regelmäßige Rechteckform aufweist. Alternativ oder ergänzend dazu können auch mehrere, beispielsweise schlitz- oder kreisförmige oder auch ovale, Öffnungen pro Einklasskanal (der mitunter einen sich ändernden Querschnitt aufweist) vorgesehen sein, etc.The fluid (s) is / are not specifically limited. These may be any flowable materials or mixtures thereof. Preferably, the invention is used in connection with liquids or liquid / gas mixtures, since the advantages of the invention are particularly effective here. According to the present invention, one or more inlet openings may be provided in the discharge channel for each inlet channel. In the former case, the single inlet opening can be formed from the upper edges of the inlet channel, which is completely open towards the outlet channel, and thus occupies the entire interface between the inlet channel and the outlet channel. This simplifies the manufacture of such microfluidic devices, as will be described later. The shapes of the inlet channels and the respective inlet openings may be the same or different from each other in all embodiments of the invention, which enables a targeted adjustment of the amount of fluid entering the zone across the width of the outlet channel. For example, the inlet channel in the region of the junction, for example, wedge-shaped, taper or widen, while the inlet opening, for example, has a regular rectangular shape. As an alternative or in addition to this, a plurality of openings, for example slot-shaped or circular or even oval, can be provided per single-channel (which sometimes has a changing cross-section), etc.
Die Art und Weise, wie sich die Querschnittsform des zumindest einen Einlasskanals bzw. die Form der zumindest einen Einlassöffnung ändert, ist nicht speziell eingeschränkt und kann an die jeweiligen Anwendungen der Vorrichtung angepasst wer- den. Vorzugsweise ändert sich die Querschnittsform linear, da so der Druckverlust über die Länge des Kanals gut ausgeglichen werden kann und eine gleichmäßige Verteilung der Fluids oder Fluidgemische in Querrichtung des Ausgabekanals gewährleistet ist. Das daraus resultierende Fluidströmungsverhalten kann mittels Computerprogrammen gut simuliert und optimiert werden. Da der Druckabfall in den Ka- nälen exponentiell erfolgt, wäre aus rein physikalischen Erwägungen eine entsprechende exponentielle Querschnittsänderung eine möglicherweise noch bessere Lösung dieses Problems. Derartige Verläufe sind in der Praxis - zumindest bei den derzeitigen Fertigungstechniken -jedoch nur unter deutlich höherem Aufwand realisierbar und daher zurzeit nicht bevorzugt. Bei den zu erwartenden Fortschritten der Fertigungsverfahren in den kommenden Jahren können derartige Querschnittsformen jedoch möglicherweise schon bald mit vertretbarem Aufwand herstellbar sein. Vorzugsweise nimmt die Breite des zumindest einen Einlasskanals in Querrichtung des Ausgabekanals zu, d.h. am Ende steht eine größere Fläche für den Fluidüber- gang vom jeweiligen Einlass- in den Ausgabekanal zur Verfügung, um so den Druckabfall auszugleichen. Die Breite des Einlasskanals kann dabei sowohl an dessen Ober- und Unterkante als auch nur an einer davon zunehmen. Das heißt, dass der Einlasskanal nicht notwendigerweise auf die Ebene des Ausgabekanals normal stehende Seitenwände aufzuweisen braucht, wie dies später noch näher ausgeführt wird. Auch eine veränderliche Tiefe der Kanäle beeinflusst die Einspeisung in den Ausgabekanal, wobei jedoch eine Vertiefung der Einlasskanäle zu deren Ende hin aufgrund der größeren Querschnittsfläche tendenziell eher eine Verstärkung desThe manner in which the cross-sectional shape of the at least one inlet channel or the shape of the at least one inlet opening changes is not particularly limited and can be adapted to the respective applications of the device. Preferably, the cross-sectional shape changes linearly, so that the pressure loss over the length of the channel can be well balanced and a uniform distribution of the fluids or fluid mixtures in the transverse direction of the discharge channel is ensured. The resulting fluid flow behavior can be well simulated and optimized by means of computer programs. Because the pressure drop in the channels is exponential, for purely physical considerations, a corresponding exponential change in cross-section would be a potentially even better solution to this problem. Such courses are in practice - at least in the current production techniques - but only at significantly higher cost feasible and therefore currently not preferred. However, with the expected progress of manufacturing processes in the coming years, such cross-sectional shapes may soon be producible with reasonable effort. Preferably, the width of the at least one inlet channel increases in the transverse direction of the dispensing channel, ie at the end there is a larger area available for the fluid transition from the respective inlet channel to the dispensing channel so as to compensate for the pressure drop. The width of the inlet channel can increase both at its upper and lower edges and at only one of them. That is, the inlet duct does not necessarily have to have side walls normal to the plane of the discharge duct, as will be explained later. Also, a variable depth of the channels affects the feed into the dispensing channel, however, a depression of the inlet channels towards the end thereof tends to be an enhancement of the latter due to the larger cross-sectional area
Druckabfalls bewirkt, während mittels abnehmender Tiefe (und damit einhergehender geringerer Querschnittsfläche) erneut der Druckabfall ausgeglichen werden kann.Pressure drop causes, while by decreasing depth (and thus associated smaller cross-sectional area) again the pressure drop can be compensated.
Durch die Form und Beschaffenheit des Querschnitts der Kanäle, beispielsweise in runder oder eckiger Form, mit rauer oder glatter Oberfläche, durch die Länge derDue to the shape and nature of the cross section of the channels, for example in a round or angular shape, with a rough or smooth surface, by the length of
Kanäle sowie durch die Formgebung der Kanäle - z.B. unter Ausformung von runden oder eckigen Abzweigungen - kann die Fließgeschwindigkeit des Fluids zu den Einlassöffnungen bestimmt werden. Diese Mittel können erfindungsgemäß sowohl anstelle von als auch in Kombination mit anderen beispielsweise mechanischen Steuer- mittein, wie z.B. Mikropumpen, -ventilen etc., eingesetzt werden.Channels as well as the shape of the channels - e.g. forming round or square branches - the flow rate of the fluid to the inlet ports can be determined. According to the invention, these agents can be used both instead of and in combination with other, for example, mechanical control agents, e.g. Micropumps, valves, etc. are used.
In weiteren bevorzugten Ausführungsformen der Erfindung sind alle Einlassöffnungen an derselben Seite des Ausgabekanals, d.h. ober- oder unterhalb desselben, angeordnet, wie dies auch in den später näher besprochenen Fig. 3 und 5 schematisch dargestellt ist, wo alle Einlasskanäle von unterhalb des Ausgabekanals in diesen einmündend gezeigt sind. Diese Anordnung ist bei der Fertigung von Mikrofluidikvorrich- tungen einfacher herstellbar.In other preferred embodiments of the invention, all inlet ports are on the same side of the dispensing channel, i. above or below the same, arranged, as shown schematically in the later discussed in more detail Fig. 3 and 5, where all inlet channels are shown from below the discharge channel in this merging. This arrangement is easier to produce in the manufacture of microfluidic devices.
In bevorzugten Ausführungsformen gehen die Hauptzufuhrkanäle in jeweils mehrere Nebenzufuhr- und zugehörige Einlasskanäle über, und ebenso bevorzugt sind auch mehrere Hauptzufuhrkanäle vorgesehen. Diese umfassen vorzugsweise einen oder mehrere erste Hauptzufuhrkänale zur Einleitung eines ersten Fluids und einen oder mehrere zweite Hauptzufuhrkanäle zur Einleitung eines zweiten Fluids. Dies ermöglicht, mehrere Schichten von Fluids, auch jeweils mehrere Schichten mehrerer Fluids, übereinander in den Ausgabekanal einzuleiten, was die Durchmischung zweier oder mehrerer Fluids verbessert und beschleunigt, da mehr als eine Grenzfläche zwi- sehen den Fluids für die Diffusion zur Verfügung steht.In preferred embodiments, the main supply channels merge into a plurality of sub-supply and associated intake ports, and also preferably, a plurality of main supply ports are provided. These preferably comprise one or more first main feed channels for introducing a first fluid and one or more a plurality of second main supply channels for introducing a second fluid. This makes it possible to introduce several layers of fluids, also in each case several layers of several fluids, one above the other into the output channel, which improves and accelerates the mixing of two or more fluids, since more than one interface between the fluids for diffusion is available.
Wiederum speziell an die Fertigungsbedingungen von Mikrofluidikanwendungen an- gepasst, führen die Nebenzufuhr- und zugehörigen Einlasskanäle für mehrere Fluids vorzugsweise von gegenüberliegenden Seiten zum Ausgabekanal hin, da aufgrund der schwer nutzbaren dritten Dimension eine Überlagerung der Kanäle in Mikroflui- dikvorrichtungen kaum möglich ist. Zur Einleitung mehrerer Schichten mehrerer Fluids führen vorzugsweise mehrere erste Nebenzufuhr- und Einlasskanäle und mehrere zweite Nebenzufuhr- und Einlasskanäle von gegenüberliegenden Seiten "kammförmig" (wie später näher erläutert wird) ineinander greifend zum Ausgabe- kanal hin bzw. münden in diesen ein.Again, especially adapted to the manufacturing conditions of microfluidic applications, the sub-feed and associated multi-fluid inlet channels preferably lead from opposite sides to the dispensing channel because, due to the difficult-to-use third dimension, superposition of the channels in microfluidic devices is hardly possible. For introducing a plurality of layers of a plurality of fluids, preferably a plurality of first secondary supply and inlet channels and a plurality of second secondary supply and inlet channels "comb-shaped" from opposite sides (as will be explained in more detail below) interlock with the dispensing channel or open into it.
Die erfindungsgemäße Vorrichtung ermöglicht auch das Zusammenführen von nicht mischbaren Flüssigkeiten, so dass ein gelöster Stoff aus einer Phase in die nicht mischbare andere Phase diffundieren kann. In diesem Anwendungsfall dient die Vor- richtung nicht als Mischer, sondern als Mikroextraktor.The device according to the invention also makes it possible to combine immiscible liquids, so that a solute can diffuse from one phase into the immiscible other phase. In this application, the device does not serve as a mixer but as a micro-extractor.
Durch die erfindungsgemäße Vorrichtung ist eine gut kontrollierbare Vermischung durch Diffusion zweier oder mehrerer Schichten von mischbaren Fluids möglich. Dadurch wird ein reproduzierbares Zeitverhalten der Diffusionsvermischung erreicht, dessen Verhalten von den Eigenschaften der verwendeten Fluide (unter anderem dem Diffusionskoeffizienten), der Fließrate und der Schichtdicken abhängig ist. Auf diese Weise wird im Vergleich zum Stand der Technik eine höhere Mischqualität erreicht.By the device according to the invention a well controllable mixing by diffusion of two or more layers of miscible fluids is possible. This achieves a reproducible diffusion mixing time behavior whose behavior depends on the properties of the fluids used (inter alia the diffusion coefficient), the flow rate and the layer thicknesses. In this way, a higher mixing quality is achieved compared to the prior art.
In einem zweiten Aspekt betrifft die Erfindung daher die Verwendung einer eben beschriebenen Vorrichtung zum Abgeben von mehreren Fluids, die vorzugsweise in Form von Schichten abgegeben werden. Die Schichten können die gleiche oder un- terschiedliche Schichtdicken aufweisen, da dies über den Querschnitt der Einlasskanäle und/oder der Einlassöffnungen bestimmbar ist. Vorzugsweise werden die Fluids während der Abgabe aufgrund von Diffusion an den Grenzflächen zwischen den Schichten zumindest teilweise durchmischt.In a second aspect, therefore, the invention relates to the use of a just described device for dispensing a plurality of fluids, which are preferably dispensed in the form of layers. The layers can be the same or have different layer thicknesses, since this can be determined over the cross section of the inlet channels and / or the inlet openings. Preferably, the fluids are at least partially mixed during delivery due to diffusion at the interfaces between the layers.
KURZBESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS
Die vorliegende Erfindung wird nun anhand der beiliegenden Zeichnungen näher beschrieben, die Folgendes zeigen:The present invention will now be further described with reference to the accompanying drawings, in which:
Fig. 1 ist eine schematische Darstellung eines eingangs beschriebenen Mikro- mischers nach dem Stand der Technik.1 is a schematic representation of a micromixer according to the prior art described above.
Fig. 2 ist eine schematische Darstellung einer Ausführungsform der erfindungsgemä- ßen Vorrichtung zur Einleitung eines Fluids über einen sich in zwei Nebenzufuhr- und Einlasskanäle verzweigenden Hauptzufuhrkanal in einen Ausgabekanal.FIG. 2 is a schematic representation of an embodiment of the device according to the invention for introducing a fluid into a dispensing channel via a main feed channel branching into two secondary feed and inlet channels.
Fig. 3 ist eine Längsschnittansicht der Ausführungsform aus Fig. 2 entlang der Linie A-A.Fig. 3 is a longitudinal sectional view of the embodiment of Fig. 2 along the line A-A.
Fig. 4 ist eine Querschnittansicht dreier möglicher Ausführungsformen der Vorrichtung aus Fig. 2 entlang der Linie B-B.FIG. 4 is a cross-sectional view of three possible embodiments of the apparatus of FIG. 2 taken along line B-B. FIG.
Fig. 5 ist eine schematische Darstellung einer Ausführung der erfindungsgemäßen Vorrichtung zur Einleitung zweier Fluids über "kammförmig" ineinander greifende Einlasskanäle in einen Ausgabekanal.Fig. 5 is a schematic representation of an embodiment of the device according to the invention for introducing two fluids via "comb-shaped" intermeshing inlet channels in an output channel.
Fig. 6 ist eine Querschnittsansicht der Ausführungsform aus Fig. 5.FIG. 6 is a cross-sectional view of the embodiment of FIG. 5. FIG.
Fig. 7 ist eine schematische Detailansicht verschiedener Ausführungsformen eines Einlasskanals mit sich änderndem Querschnitt. Fig. 8 ist eine schematische Detailansicht verschiedener Ausführungsformen von Einlassöffnungen in den Einlasskanälen.FIG. 7 is a schematic detail view of various embodiments of an intake passage having a varying cross section. FIG. FIG. 8 is a schematic detail view of various embodiments of intake ports in the intake ports. FIG.
Fig. 9 ist eine Längsschnittansicht alternativer Ausführungsformen der Vorrichtung aus Fig. 2 entlang der Linie A-A.Fig. 9 is a longitudinal sectional view of alternative embodiments of the apparatus of Fig. 2 taken along line A-A.
BESCHREIBUNG VON AUSFÜHRUNGSFORMEN DER ERFINDUNGDESCRIPTION OF EMBODIMENTS OF THE INVENTION
Fig. 1 zeigt wie erwähnt eine bekannte Ausführungsform einer Mikrofluidikvorrichtung nach dem Stand der Technik. Bei dieser Vorrichtung führen drei voneinander getrennte Zufuhrkanäle 2, 2', 2" für Flüssigkeiten hintereinander in einen, hier waagrecht verlaufend dargestellten Mischkanal 5. In der zugehörigen, eingangs zitierten Publikation wird ein Strom einer flüssigen Probe zwischen jeweils einem Pufferstrom in den Kanal geleitet, um diese darin zu vermischen. Die Einspeisung der drei Ströme erfolgt von derselben Seite des Mischkanals 5 - in Fig. 1 , inFig. 1 shows, as mentioned, a known embodiment of a microfluidic device according to the prior art. In this apparatus, three separate feed channels 2, 2 ', 2 "for liquids in a row in a, here horizontally extending mixing channel 5. In the accompanying, cited publication, a stream of a liquid sample is passed between each buffer stream in the channel, In order to mix these in. The feeding of the three streams takes place from the same side of the mixing channel 5 - in Fig. 1, in
Strömungsrichtung des Fluids im Mischkanal 5 gesehen: von links - über getrennte Zufuhrkanäle 2, 21, 2", die aufgrund der Unmöglichkeit, einander überschneidende Leitungen vorzusehen, jeweils getrennt gespeist werden müssen. Eine solche Bauweise ist bei der Herstellung von Mikrofluidikvorrichtungen üblich und gleichzeitig unabdingbar, da hier die Kanäle und andere Bauteile üblicherweise in einen Träger geätzt, gebrannt, geschmolzen bzw. geschnitten werden. Aufgrund dieser Herstellungsweise werden die Fluidleitungen derartiger Mikrofluidikvorrichtungen gemeinhin als Kanäle bezeichnet, obwohl sie durch das Aufsetzen einer Deckplatte nach Abschluss der Ätz- bzw. Schneidevorgänge geschlossenen Leitungen darstellen - im Unterschied zum Begriff des "Kanals", wie er in anderen Bereichen der Technik, z.B. in der Bautechnik verwendet wird.Flow direction of the fluid seen in the mixing channel 5: from the left - on separate supply channels 2, 2 1 , 2 ", which must be fed separately due to the impossibility to provide intersecting lines, each such construction is common and simultaneous in the production of microfluidic devices Because of this method of manufacture, the fluid conduits of such microfluidic devices are commonly referred to as conduits, although they are formed by placing a cover plate upon completion of the etch and / or die. In contrast to the term "channel", as used in other fields of technology, for example in construction technology.
Das Gebiet der Mikrofluidik ist zwar in Literatur unterschiedlich definiert, für die Zwecke der vorliegenden Erfindung sind darunter Vorrichtungen mit solchen Dimensio- nen zu verstehen, dass die Querschnittsfläche der Kanäle in der Größenordnung von Quadratmillimetern oder darunter liegt. Eines der durch die Erfindung gelösten Probleme solcher und ähnlicher Vorrichtungen besteht darin, dass die an den beiden Enden des jeweiligen Einlasskanals in den Mischkanal eintretende Menge an Fluid aufgrund des Druckabfalls von einem Ende zum anderen unterschiedlich ist.Although the field of microfluidics is defined differently in the literature, for the purposes of the present invention, devices are to be understood as having dimensions such that the cross-sectional area of the channels is on the order of a square millimeter or less. One of the problems of such and similar devices solved by the invention is that the amount of fluid entering the mixing channel at both ends of the respective inlet channel is different due to the pressure drop from one end to the other.
In Fig. 2 wird eine einfache Ausführungsform einer erfindungsgemäßen Mikrofluidik- vorrichtung gezeigt, die hauptsächlich zur Illustration des Prinzips der Erfindung dient. In der Praxis könnte eine solche Vorrichtung nicht als Mikromischer, sondern beispielsweise als Verbindungsstück zwischen zwei in unterschiedliche Raumrichtun- gen verlaufende (Mikro-) Leitungen oder als einfacher Kanal zur Fluid- (vor allem Flüssigkeits-) Abgabe, z.B. in Tintenstrahldruckern, dienen.FIG. 2 shows a simple embodiment of a microfluidic device according to the invention, which serves mainly to illustrate the principle of the invention. In practice, such a device could not be used as a micromixer but, for example, as a connector between two (micro) lines extending in different spatial directions or as a single channel for fluid (especially liquid) delivery, e.g. in inkjet printers, serve.
Jedenfalls kann in der in Fig. 2 dargestellten Vorrichtung ein Fluids in einen Ausgabekanal 5 geleitet werden, wie dies durch die Pfeile angedeutet ist. Das Fluid wird über einen Hauptzufuhrkanal 1 , der sich in zwei Nebenzufuhrkanäle 2, 2' verzweigt, die ihrerseits in zwei Einlasskanäle 3, 3' übergehen zum Ausgabekanal 5 und durch - in den Figuren durchwegs punktiert dargestellte - Einlassöffnungen 4, 4' in diesen eingeleitet.In any case, in the device shown in Fig. 2, a fluid can be passed into an output channel 5, as indicated by the arrows. The fluid is via a main supply channel 1, which branches into two secondary supply channels 2, 2 ', which in turn pass into two inlet channels 3, 3' to the output channel 5 and through - in the figures consistently dotted - inlet openings 4, 4 'introduced into this ,
Die Querschnitte sowohl der Einlasskanäle 3, 31 als auch der Einlassöffnungen 4, 41 erweitern sich im Mündungsbereich linear, wodurch zwar der Druckverlust in Längsrichtung der Einlasskanäle zunimmt, dafür aber ein zunehmend größerer Querschnitt für den Fluidübergang in den Ausgabekanal 5 zur Verfügung steht, wodurch dieser Druckverlust - in Abhängigkeit vom Winkel der Erweiterung - ausgeglichen werden kann.The cross sections of both the inlet channels 3, 3 1 and the inlet openings 4, 4 1 extend linearly in the mouth region, whereby although the pressure loss increases in the longitudinal direction of the inlet channels, but for an increasingly larger cross-section for the fluid transition into the output channel 5 is available, whereby this pressure loss - depending on the angle of the extension - can be compensated.
Somit ermöglicht es die vorliegende Erfindung, die bei längsgestreckten Leitungseinmündungen auftretenden Druckverluste und die damit in Verbindung stehenden unterschiedlichen abgegebenen Fluidmengen auszugleichen, wobei die Querschnitts- formen der Einlasskanäle bzw. Einlassöffnungen exakt an die jeweiligen Gegebenheiten anpassbar sind. Wesentlich sind neben der Querschnittsform der Kanäle in deren Längsrichtung auch jene in Querrichtung, wo z.B. runde, ovale oder polygonale Querschnitte zum Einsatz kommen können, so dass nicht notwendigerweise parallele senkechte Seitenwände der Kanäle vorliegen müssen. Dies beeinflusst ebenfalls die Druckverhältnisse in den jeweiligen Abschnitten der Kanäle. Zwei beispielhafte Ausführungsformen von Einlasskanälen mit nichtparallelen Seitenwänden sind in Fig. 9 dargestellt und werden später noch näher beschrieben. Allerdings können auch die Haupt- und Neben- zufuhrkanäle derartige nichtparallele Wände aufweisen.Thus, the present invention makes it possible to compensate for the pressure losses occurring in the case of elongated line junctions and the different quantities of fluid delivered in connection therewith, wherein the cross-sectional shapes of the inlet channels or inlet openings can be adapted precisely to the respective conditions. In addition to the cross-sectional shape of the channels in the longitudinal direction, those in the transverse direction, where, for example, round, oval or polygonal cross-sections can be used, are essential, so that not necessarily parallel vertical side walls of the channels must be present. This also affects the pressure ratios in the respective sections of the channels. Two exemplary embodiments of inlet channels with non-parallel sidewalls are shown in FIG. 9 and will be described in more detail later. However, the main and secondary supply channels can also have such non-parallel walls.
Gemäß vorliegender Erfindung können sich der Querschnitt des jeweiligen Einlasskanals, jener der zugehörigen Einlassöffnung(en) oder auch beide ändern. In allen Figuren ist beispielhaft eine "keilförmige", d.h. lineare Änderung der Querschnitte dargestellt, deren Verlauf zudem bei Einlasskanal und -Öffnung derselbe ist, wie durch die Parallelität der Linien angedeutet wird. In der Praxis können jedoch beliebi- ge Kombinationen unterschiedlichster Querschnittsformen eingesetzt werden, solange dadurch das Strömungsverhalten des oder der Fluids in der erfindungsgemäßen Vorrichtung in vorteilhafter weise beeinflusst wird. Außer linearen Änderungen sind auch beliebige sonstige Formen, mit Krümmungen, Wellen, Ecken, Kanten, Verzahnungen und dergleichen, möglich, die allesamt im Schutzumfang der vorliegenden Erfindung liegen sollen.According to the present invention, the cross-section of the respective inlet channel, that of the associated inlet opening (s) or even both may change. In all figures, by way of example, a "wedge-shaped", i. linear variation of the cross sections are shown, whose course is also the same at the inlet channel and opening, as indicated by the parallelism of the lines. In practice, however, arbitrary combinations of different cross-sectional shapes can be used as long as the flow behavior of the fluid or fluids in the device according to the invention is thereby advantageously influenced. In addition to linear changes, any other shapes, with curves, waves, corners, edges, teeth and the like, are possible, all of which are intended to be within the scope of the present invention.
Wie bereits erwähnt existiert in der Praxis von Mikrofluidikvorrichtungen häufig gar keine explizite "Einlassöffnung" in den Kanal 5. Vielmehr sind die Einlasskanäle im Mündungsbereich einfach zum Kanal 5 hin offen, so dass gewissermaßen eine einzi- ge, die gesamte Oberseite des Kanals 3 im Mündungsbereich einnehmende Öffnung 4 vorliegt.As already mentioned, in the practice of microfluidic devices, there is often no explicit "inlet opening" into the channel 5. Rather, the inlet channels in the mouth region are simply open towards the channel 5, so to speak a single, the entire upper side of the channel 3 in the mouth region engaging opening 4 is present.
Durch geeignete Bauweise, speziell bei etwas größeren Dimensionen nahe dem limeterbereich, können jedoch durchaus auch mehrere Einlassöffnungen pro Einlass- kanal vorgesehen sein, die wiederum beliebige Formen aufweisen können. So ist beispielsweise eine Abfolge von schlitz- oder kreisförmigen Öffnungen - in Längs- und/oder Querrichtung - denk- und machbar, durch die das im Einlasskanal zuge- führte Fluid an mehreren, diskreten Stellen in den Ausgabekanal eintritt.By suitable construction, especially with somewhat larger dimensions near the limeter area, however, several inlet openings can also be provided per inlet channel, which in turn can have any desired shapes. For example, a sequence of slit or circular openings-in the longitudinal and / or transverse direction-is thinkable and feasible, through which the openings in the inlet channel are admitted. led fluid enters the dispense channel at multiple, discrete locations.
Möglich ist auch eine Kombination aus einem Einlasskanal mit sich linear, z.B. keilförmig oder konisch, oder auch gekrümmt verjüngenden Querschnitt und einer in Längsrichtung des Einlasskanals verlaufenden, schlitzförmigen Einlassöffnung mit regelmäßig rechteckigem Querschnitt. Durch den sich verjüngenden Querschnitt des Kanals wird dann der Druckabfall zum entfernteren Ende der Öffnung hin ausgeglichen, so dass wiederum gleiche Mengen an Fluid an beiden Enden der Öffnung in den Ausgabekanal eintreten können.Also possible is a combination of an inlet channel with linear, e.g. wedge-shaped or conical, or curved tapered cross-section and extending in the longitudinal direction of the inlet channel, slot-shaped inlet opening with a regular rectangular cross-section. The tapering cross-section of the channel then equalizes the pressure drop toward the farther end of the opening so that in turn equal amounts of fluid can enter the discharge channel at both ends of the opening.
Zusätzlich zur sich ändernden Querschnittsform im Mündungsbereich kann sich auch der Querschnitt des Zufuhr- oder Einlasskanals vor der Einmündung ändern, um Druckunterschiede in den Zuleitungen zu beeinflussen. Dies kann in bekannter Weise, d.h. wie in der eingangs erwähnten EP 118.767 B1 , durch sich verjüngende Aus- gestaltung der Kanäle 1 und/oder 2 bzw. 2' zum Ausgabekanal 5 hin erfolgen. Dadurch kann sichergestellt werden, dass bei einem sich in mehrere Nebenzufuhr- und entsprechende Einlasskanäle verzweigenden Hauptzufuhrkanal dieselbe Fluidmenge an allen Einlasskanälen abgegeben wird, was gleiche Schichtdicken des Fluids im Ausgabekanal bewirkt. Andererseits können auch gezielt unterschiedliche Mengen abgegeben und so unterschiedliche Schichtdicken von mehreren Schichten desselben Fluids erzeugt werden, wenn dies für die jeweilige Anwendung vorteilhaft ist. Wie stark der Druckabfall innerhalb der Zufuhr- oder Einlasskanäle ist, hängt freilich von deren Länge und damit auch vom Abstand der Einmündungen der Einlasskanäle in den Ausgabekanal ab. Die Querschnittsänderungen sind im jeweiligen Einzelfall ent- sprechend anzupassen.In addition to the changing cross-sectional shape in the mouth region, the cross-section of the inlet or inlet channel upstream of the junction can also change in order to influence pressure differences in the supply lines. This can be done in known manner, i. As in the above-mentioned EP 118.767 B1, by tapering design of the channels 1 and / or 2 or 2 'to the output channel 5 through out. In this way, it can be ensured that the same amount of fluid is delivered to all inlet channels in the case of a main feed channel branching into a plurality of secondary feed and corresponding inlet channels, which results in equal layer thicknesses of the fluid in the output channel. On the other hand, it is also possible to selectively deliver different amounts and thus to produce different layer thicknesses of several layers of the same fluid, if this is advantageous for the respective application. How strong the pressure drop within the supply or inlet channels is, of course, depends on their length and thus also on the distance of the junctions of the inlet channels in the output channel. The cross-sectional changes must be adjusted accordingly in each individual case.
Fig. 3 zeigt eine schematische Längsschnittansicht der Ausführungsform aus Fig. 2 entlang der Linie A-A, aus der hervorgeht, dass beide Einlasskanäle 3 und 3' von derselben Seite, nämlich von unten, in den Auslasskanal 5 einmünden. Dies kommt der Fertigungstechnik von Mikrofluidikvorrichtungen entgegen. Zudem sind die Seitenwände der Einlasskanäle 3 und 3' parallel ausgebildet. Alternativen dazu werden späterim Zusammenhang mit Fig. 9 beschrieben. Fig. 4 zeigt schematisch drei mögliche Querschnittansichten der Ausführungsform aus Fig. 2 entlang der Linie B-B. Es ist zu erkennen, dass der Querschnitt des Einlasskanals 31 nicht nur - wie in Fig. 2 dargestellt - in der Ebene des Ausgabekanals 5 zunehmen kann, so dass sich dieser in Strömungsrichtung des Fluids verbreitert, sondern auch senkrecht dazu zu- oder abnehmen kann. In Fig. 4a vertieft sich der Einlasskanal 3' über die Breite des Ausgabekanals 5, und in Fig. 4b verringert sich seine Tiefe. Letzterer Fall bewirkt eine Erhöhung des Drucks zum Ende des Einlasskanals 3' hin, wodurch der Druckabfall in Längsrichtung des Einlasskanals 3' ausge- glichen werden kann - oder sogar gezielt eine in dieser Richtung zunehmend größere Menge an Fluid in den Ausgabekanal 5 eingeleitet werden kann. Bei einer Vertiefung des Einlasskanals, wie in Fig. 4a gezeigt, wird hingegen der Druckabfall durch die Vergrößerung des Kanalquerschnitts verstärkt, so dass am Ende des Einlasskanals 3' gezielt geringere Fluidmengen in den Ausgabekanal 5 eingeleitet werden können. Fig. 4c zeigt eine Ausführungsform mit gleich bleibender Tiefe des Einlasskanals 3', was aufgrund der einfacheren Fertigung eine gegenwärtig bevorzugte Ausführungsform darstellt.Fig. 3 shows a schematic longitudinal sectional view of the embodiment of Fig. 2 along the line AA, from which it appears that both inlet channels 3 and 3 'from the same side, namely from below, open into the outlet channel 5. This is contrary to the manufacturing technology of microfluidic devices. In addition, the side walls of the inlet channels 3 and 3 'are formed in parallel. Alternatives will be described later in connection with FIG. Fig. 4 shows schematically three possible cross-sectional views of the embodiment of Fig. 2 along the line BB. It can be seen that the cross-section of the inlet channel 3 1 can not only - as shown in FIG. 2 - increase in the plane of the discharge channel 5, so that it widened in the flow direction of the fluid, but can also increase or decrease perpendicular thereto , In Fig. 4a, the inlet channel 3 'deepens over the width of the output channel 5, and in Fig. 4b decreases its depth. The latter case causes an increase in the pressure towards the end of the inlet channel 3 ', whereby the pressure drop in the longitudinal direction of the inlet channel 3' can be compensated - or even an increasingly larger amount of fluid can be introduced into the outlet channel 5 in a targeted manner. On the other hand, in the case of a depression of the inlet channel, as shown in FIG. 4 a, the pressure drop is increased by the enlargement of the channel cross section, so that specifically smaller amounts of fluid can be introduced into the outlet channel 5 at the end of the inlet channel 3 '. Fig. 4c shows an embodiment with a constant depth of the inlet channel 3 ', which represents a presently preferred embodiment due to the ease of manufacture.
Fig. 5 zeigt eine Ausführungsform der erfindungsgemäßen Vorrichtung, bei der zwei Fluids von gegenüberliegenden Seiten des Ausgabekanals 5 zu diesem zugeleitet werden. Ein erstes Fluid wird analog zur Ausführungsform aus Fig. 2 über einen Hauptzufuhrkanal 1 , der sich in zwei Nebenzufuhrkanäle 2 und 21 und in der Folge in zwei Einlasskanäle 3 und 31 verzweigt, eingeleitet; ein zweites Fluid über die analogen Bauteile 10, 20/20' und 30/30'. Die sich im Mündungsbereich ändernden Quer- schnittsformen können erneut beliebig kombiniert werden. Der Übersicht halber sind wiederum keilförmige Querschnitte eingezeichnet. Aus Gründen der Platzersparnis bei der Fertigung derartiger Mikrofluidikvorrichtungen würden in der Praxis die keilförmigen Erweiterungen der Einlasskanal-Paare 3/30 und 3730' zueinander weisend ausgeführt werden, d.h. die Kanäle 30 und 30' in der Zeichnung würden sich nicht nach rechts oben, sondern nach links oben erweitern. Weiters ist zu erkennen, dass in dieser Ausführungsform keine expliziten Einlassöffnungen vorgesehen sind, da die Einlasskanäle 3/3' und 30/30' nach oben zum Ausgabekanal 5 hin offen sind, so dass jeweils die gesamte, von den Oberkanten der Einlasskanäle gebildete Grenzfläche mit dem Ausgabekanal 5 die jeweilige Einlass- Öffnung darstellt.Fig. 5 shows an embodiment of the device according to the invention, in which two fluids are supplied from opposite sides of the discharge channel 5 to this. A first fluid is analogous to the embodiment of Figure 2 via a main supply channel 1, which branches into two secondary supply channels 2 and 2 1 and in the sequence in two inlet channels 3 and 3 1 , introduced. a second fluid via the analog components 10, 20/20 'and 30/30'. The cross-sectional shapes that change in the mouth region can be combined again as desired. For clarity, wedge-shaped cross sections are again shown. For reasons of space savings in the manufacture of such microfluidic devices would in practice be the wedge-shaped extensions of the inlet channel pairs 3/30 and 3730 'facing each other running, ie the channels 30 and 30' in the drawing would not right above, but after expand on the top left. Furthermore, it will be appreciated that in this embodiment, no explicit inlet openings are provided, since the inlet channels 3/3 'and 30/30' are open towards the top of the dispensing channel 5, so that in each case the entire, formed by the upper edges of the inlet channels with the output channel 5 represents the respective inlet opening.
Die insgesamt vier Nebenzufuhrkanäle 2, 2', 20, 20' mit ihren Einlasskanälen 3, 3\ 30', 30 greifen hier "kammförmig" ineinander, womit gemeint ist, dass sie abwechselnd von entgegengesetzten Seiten in den Ausgabekanal 5 einmünden. Auf diese Weise werden abwechselnd je zwei Schichten der beiden Fluids in den Ausgabekanal eingeleitet, wodurch insgesamt drei Grenzflächen für die Diffusion zwischen den beiden Fluids zur Verfügung stehen. Bei einer noch höheren Anzahl an Verzweigungen kann dieser Effekt noch weiter verstärkt werden. Dies beschleunigt einen Stoffaustausch zwischen den Fluids erheblich, so dass derartige Vorrichtungen ausge- zeichnete Mikromischer oder - bei nicht mischbaren Flüssigkeiten - Mikroextraktoren darstellen.The total of four secondary supply channels 2, 2 ', 20, 20' with their inlet channels 3, 3 \ 30 ', 30 engage here "comb-shaped" with each other, which means that they open alternately from opposite sides in the output channel 5. In this way, two layers of the two fluids are alternately introduced into the output channel, whereby a total of three interfaces for the diffusion between the two fluids are available. With an even higher number of branches, this effect can be further enhanced. This significantly speeds up mass transfer between the fluids, such that such devices are excellent micromixers or, in the case of immiscible liquids, micro-extractors.
Eine Anwendungsmöglichkeit ist etwa die Herstellung von Mikro-Fluidgemischen mit einer hohen Mischqualität. Für die Entwicklung von neuen Medikamenten erlangt das optischen Erfassen von chemischen Eigenschaften und Reaktionen immer größer werdende Bedeutung. Um zufrieden stellende Ergebnisse zu erhalten, ist das rasche und qualitativ hochwertige Vermischen von Fluids hier besonders wichtig.One application is about the production of micro-fluid mixtures with a high mixing quality. For the development of new drugs, the optical detection of chemical properties and reactions is becoming increasingly important. To obtain satisfactory results, the rapid and high quality mixing of fluids is particularly important here.
Zur Herstellung von solchen Fluidmischungen ist es sinnvoll, mehr als zwei Schich- ten von Fluids einzusetzen, um auch die Diffusionswege zu minimieren. Gleichzeitig müssen etwaige, in einer anderen als in Strömungsrichtung auftretende Strömungen über den Querschnitt des Ausgabekanals möglichst homogen verteilt sein.For the preparation of such fluid mixtures, it makes sense to use more than two layers of fluids in order to minimize the diffusion paths. At the same time, any flows occurring in a direction other than in the direction of flow must be distributed as homogeneously as possible over the cross section of the discharge channel.
Um dies zu erreichen, wird für viele - insbesondere wässrige - Fluids ein Profil der erfindungsgemäßen Vorrichtung mit einem Aspektverhältnis von 1 :10 für die Einlasskanäle und/oder die Einlassöffnung verwendet. Unter einem Aspektverhältnis (Breitendifferenz : Länge) von 1 :10 wird hierbei eine Aufweitung des (z.B. keilförmigen) Kanals von beispielsweise 10,0 μm am Anfang des Einlasskanals auf 20,0 μm an dessen Ende über eine Länge des Einlasskanals von 100,0 μm verstanden. Dadurch wird ein gut reproduzierbares Zeitverhalten der Vermischung durch Diffusion zweier oder mehrerer Fluids erreicht, wobei die Qualität der Vermischung auch vom Misch- verhalten (Diffusionskoeffizienten) der Fluids und den Strömungsgeschwindigkeiten maßgeblich beeinflusst wird.In order to achieve this, a profile of the device according to the invention with an aspect ratio of 1:10 for the inlet channels and / or the inlet opening is used for many-in particular aqueous-fluids. With an aspect ratio (width difference: length) of 1:10, an expansion of the (eg wedge-shaped) Channel of, for example, 10.0 microns at the beginning of the inlet channel to 20.0 microns at its end over a length of the inlet channel of 100.0 microns understood. As a result, a readily reproducible time behavior of the mixing is achieved by diffusion of two or more fluids, the quality of the mixing also being decisively influenced by the mixing behavior (diffusion coefficients) of the fluids and the flow velocities.
Die in Fig. 5 gezeigte Ausführungsform behebt demnach wie auch die zuvor besprochene Ausführungsform der Fig. 2 bis 4 das Problem der Druckunterschiede im Ein- mündungsbereich in den Auslasskanal. Gleichzeitig ist aber auch die Zufuhr zweier unterschiedlicher Fluids von gegenüberliegenden Seiten eine neue und vorteilhafte Lösung für das Problem der Leitungsführung bei Mikrofluidikvorrichtungen. Aufgrund der schwer nutzbaren dritten Dimension sind einander überschneidende Leitungen nämlich kaum zu fertigen, so dass für das abwechselnde Zuführen mehrerer Ströme desselben Fluids mehrere Zufuhrkanäle - und nicht bloß Einlasskanäle - erforderlich waren, wie dies im Zusammenhang mit Fig. 1 erläutert wurde.Accordingly, the embodiment shown in FIG. 5, like the previously discussed embodiment of FIGS. 2 to 4, eliminates the problem of pressure differences in the inlet region into the outlet channel. At the same time, however, the supply of two different fluids from opposite sides is a new and advantageous solution to the problem of routing in microfluidic devices. Because of the difficult-to-use third dimension, intersecting lines are virtually impossible to manufacture, so that several supply channels - and not merely inlet channels - were required for alternately supplying a plurality of streams of the same fluid, as explained in connection with FIG.
Fig. 6 zeigt eine Längsschnittansicht der Ausführungsform aus Fig. 5 entlang der Linie A-A aus Fig. 5. Aus dieser geht hervor, dass alle Einlasskanäle 3, 3", 30 und 30' von derselben Seite - wiederum von unten - in den Auslasskanal 5 einmünden. Dies kommt erneut der Fertigungstechnik von Mikrofluidikvorrichtungen entgegen, wo die Kanäle in einen bestehenden Träger geätzt, geschnitten etc. werden. Da die Linie A-A in Fig. 5 nicht bei halber Breite des Ausgabekanals 5 verläuft, ist die Dicke der Einlasskanal-Paare 3/3' und 30/30' aufgrund des unterschiedlichen Grades der Ver- breiterung an dieser Stelle ebenfalls unterschiedlich. Erneut brauchen die Wände der Einlasskanäle nicht unbedingt senkrecht sein, d.h. normal auf die Ebene des Ausgabekanals stehen, wie dies in Fig. 6 dargestellt ist. Indem die Einlasskanäle nach unten hin breiter oder schmäler werden, kann ebenfalls die aus dem jeweiligen Einlasskanal in den Ausgabekanal übertretende Fluidmenge und damit die Schichtdicke des Fluids an dieser Stelle des Ausgabekanals gesteuert werden. Auch eine solche Querschnittsänderung der Einlasskanäle liegt im Schutzumfang der vorliegenden Erfindung. Fig. 7 zeigt beispielhaft schematisch verschiedene Ausführungsformen der Quer- schnittsänderungen der Einlasskanäle in der Ebene des Ausgabekanals. Wie gut zu erkennen ist, sind sowohl sich über die Breite des Ausgabekanals 5 verbreiternde als auch verengende Formen sowie beliebige Kombinationen davon, so auch Kombina- tionen aus einer geraden und einer schrägen oder gekrümmten Längswand des Einlasskanals 3, möglich. Bevorzugt sind sich verbreiternde Formen, um die aufgrund des Druckabfalls über die Länge des Einlasskanals 3 geringere Fluidmenge, die an seinem Ende in den Ausgabekanal 5 übertritt, auszugleichen. Solche und ähnliche, aber auch beliebige andere Querschnittsänderungen sind auch für die Tiefe der Ein- lasskanäle möglich, wie dies zuvor bereits ausgeführt wurde. Das heißt, dass auch die Tiefe eines Einlasskanals nicht unbedingt linear zu- oder abzunehmen braucht, um für optimale, gewünschte Strömungsbedingungen für das oder die Fluids in der erfindungsgemäßen Vorrichtung zu sorgen.FIG. 6 shows a longitudinal sectional view of the embodiment from FIG. 5 along the line AA from FIG. 5. From this it can be seen that all the inlet channels 3, 3 ", 30 and 30 'enter the outlet channel 5 from the same side, again from below This again counteracts the fabrication technique of microfluidic devices where the channels are etched into an existing substrate, cut, etc. Since the line AA in Fig. 5 does not extend at half the width of the output channel 5, the thickness of the inlet channel pairs is 3 Again, the walls of the inlet ducts need not necessarily be perpendicular, ie normal to the plane of the discharge duct, as shown in FIG By the inlet channels becoming wider or narrower towards the bottom, the quantity of fluid passing from the respective inlet channel into the outlet channel and thus the layer thickness can likewise be increased the fluid can be controlled at this point of the output channel. Such a change in cross section of the inlet channels is also within the scope of the present invention. 7 shows by way of example schematically different embodiments of the cross-sectional changes of the inlet channels in the plane of the discharge channel. As can be clearly seen, widening and narrowing shapes across the width of the dispensing channel 5 as well as any combinations thereof, including combinations of a straight and an oblique or curved longitudinal wall of the inlet channel 3, are possible. Widening shapes are preferred in order to compensate for the smaller amount of fluid due to the pressure drop over the length of the inlet channel 3, which at its end passes into the discharge channel 5. Such and similar, but also any other cross-sectional changes are also possible for the depth of the inlet channels, as already explained above. This means that even the depth of an inlet channel need not necessarily increase or decrease linearly in order to ensure optimum, desired flow conditions for the fluid (s) in the device according to the invention.
Fig. 8 zeigt verschiedene Ausführungsformen der Formen der Einlassöffnungen, wobei der Übersicht wegen die Einlasskanäle ohne sich ändernden Querschnitt eingezeichnet sind. Tatsächlich sind jedoch auch beliebige Kombinationen der in den Fig. 7 und 8 gezeigten Ausführungsformen sowie beliebige andere Ausführungsformen möglich, da die Erfindung keineswegs auf die hierin gezeigten oder besproche- nen Ausführungsformen beschränkt ist.Fig. 8 shows various embodiments of the shapes of the inlet openings, wherein the sake of clarity, the inlet channels are plotted without changing cross-section. In fact, however, any combination of the embodiments shown in FIGS. 7 and 8 and any other embodiments are possible since the invention is by no means limited to the embodiments shown or discussed herein.
Fig. 9 zeigt, wie bereits erwähnt, alternative Ausführungsformen der Einlasskanäle 3 und 3' aus Fig. 3 mit nichtparallelen Seitenwänden, die ebenfalls mit beliebigen der zuvor beschriebenen Kanalquerschnittsänderungen und Öffnungsformverläufen kom- binierbar sind. Kanal 3 ist hier exemplarisch mit ovalem Querschnitt, d.h. mit ausgebuchteten Seitenwänden, dargestellt; Kanal 3' hingegen mit einem sich nach unten hin verjüngenden Querschnitt. Wie ebenfalls bereits erwähnt wurde, können auch zusätzliche Maßnahmen an den Kanalseitenwänden getroffen werden, wie z.B. Nuten, Rillen, Rauungen, Wellungen und dergleichen, um das Strömungsverhalten der Fluids in den Kanälen zu beeinflussen und zu optimieren.As already mentioned, FIG. 9 shows alternative embodiments of the inlet channels 3 and 3 'from FIG. 3 with non-parallel side walls, which can also be combined with any of the previously described channel cross-section changes and aperture shapes. Channel 3 is here exemplarily with oval cross-section, i. with bulged side walls, represented; Channel 3 ', however, with a downwardly tapered cross-section. As already mentioned, additional measures may also be taken on the channel sidewalls, such as e.g. Grooves, grooves, grooves, corrugations and the like in order to influence and optimize the flow behavior of the fluids in the channels.
Zusammenfassend sei festgestellt, dass die vorliegende Erfindung eine wertvolle Er- Weiterung des Standes der Technik auf dem Gebiet der Mikrofiuidik darstellt, da sie bestehende Probleme auf verhältnismäßig einfache Weise durch Bereitstellung von Vorrichtungen löst, die kostengünstig und mithilfe bekannter Verfahren herstellbar sind. An der gewerblichen Anwendbarkeit der Erfindung besteht demnach kein Zwei- fei. In summary, it should be noted that the present invention is a valuable resource. Advances in the state of the art in the field of microfluidics, since it solves existing problems in a relatively simple manner by providing devices that are inexpensive and can be produced by known methods. Accordingly, there is no doubt about the industrial applicability of the invention.

Claims

PATENTANSPRÜCHE
1. Mikrofluidikvorrichtung zur Abgabe eines Fluids oder Fiuidgemischs, umfassend einen Ausgabekanal (5), zumindest einen Fluid-Hauptzufuhrkanal (1 , 10), der jeweils in zumindest einen im Wesentlichen in der Ebene des Ausgabekanals (5) liegenden und seitlich zu diesem hinführenden Nebenzufuhrkanal (2, 2', 20, 20') übergeht, der seinerseits in einen ober- oder unterhalb des Ausgabekanals (5) liegenden Einlasskanal (3, 3', 30, 30') übergeht, der über zumindest eine Einlassöffnung (4, 4\ 40, 40') von oben oder unten in den Ausgabekanal (5) mündet, dadurch gekennzeichnet, dass der zumindest eine Einlasskanal (3, 3\ 30, 30') eine sich in seiner Längsrichtung verändernde Querschnittsform aufweist und/oder die zumindest eine Einlassöffnung (4, 4', 40, 40') eine sich in Querrichtung des Ausgabekanals (5) ändernde Öffnungsweite aufweist.A microfluidic device for dispensing a fluid or fluid mixture, comprising an output channel (5), at least one main fluid supply channel (1, 10), each in at least one substantially in the plane of the output channel (5) lying and laterally leading to this side supply channel (2, 2 ', 20, 20'), which in turn merges into an inlet channel (3, 3 ', 30, 30') lying above or below the dispensing channel (5), which via at least one inlet opening (4, 4 \ 40, 40 ') opens from above or below into the dispensing channel (5), characterized in that the at least one inlet channel (3, 3 \ 30, 30') has a cross-sectional shape which changes in its longitudinal direction and / or the at least one Inlet opening (4, 4 ', 40, 40') has a transverse width of the discharge channel (5) changing opening width.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass pro Einlasskanal (3, 3\ 30, 30') eine Einlassöffnung (4, 4', 40, 40') vorgesehen ist.2. Apparatus according to claim 1, characterized in that per inlet channel (3, 3 \ 30, 30 ') an inlet opening (4, 4', 40, 40 ') is provided.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Einlassöffnung (4, 4', 40, 40') von den Oberkanten des nach oben zum Ausgabekanal (5) hin zur Gänze offenen Einlasskanals (3, 3\ 30, 30') gebildet wird.3. A device according to claim 2, characterized in that the inlet opening (4, 4 ', 40, 40') of the upper edges of the up to the output channel (5) towards fully open inlet channel (3, 3 \ 30, 30 ') is formed.
4. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass pro Einlasskanal (3, 3", 30, 30') mehrere Einlassöffnungen (4, 4', 40, 40') vorgesehen sind.4. Apparatus according to claim 1, characterized in that per inlet channel (3, 3 ", 30, 30 ') a plurality of inlet openings (4, 4', 40, 40 ') are provided.
5. Vorrichtung nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die Breite des zumindest einen Einlasskanals (3, 3', 30, 30') zunimmt.5. Apparatus according to claim 1 to 4, characterized in that the width of the at least one inlet channel (3, 3 ', 30, 30') increases.
6. Vorrichtung nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass die Tiefe des zumindest einen Einlasskanals (3, 3', 30, 30') zunimmt.6. Apparatus according to claim 1 to 5, characterized in that the depth of the at least one inlet channel (3, 3 ', 30, 30') increases.
7. Vorrichtung nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass alle Einlassöffnungen (4, 4', 40, 40') an derselben Seite, d.h. ober- oder unterhalb, des Ausgabekanals (5) angeordnet sind.7. Apparatus according to claim 1 to 6, characterized in that all the inlet openings (4, 4 ', 40, 40') on the same side, ie above or below, the Output channels (5) are arranged.
8. Vorrichtung nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass der zumindest eine Hauptzufuhrkanal (1, 10) über mehrere Nebenzufuhrkanäle (2, 2', 20, 20') in mehrere Einlasskanäle (3, 3', 30, 30') übergeht.8. Apparatus according to claim 1 to 7, characterized in that the at least one main supply channel (1, 10) via a plurality of secondary supply channels (2, 2 ', 20, 20') into a plurality of inlet channels (3, 3 ', 30, 30') passes.
9. Vorrichtung nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass mehrere Hauptzufuhrkanäle (1 , 10) vorgesehen sind, die zumindest einen ersten Hauptzufuhrkanal (1) zur Einleitung eines ersten Fluids und zumindest einen zweiten Hauptzu- fuhrkanal (10) zur Einleitung eines zweiten Fluids umfassen.9. Apparatus according to claim 1 to 8, characterized in that a plurality of main supply channels (1, 10) are provided, the at least one first main supply channel (1) for introducing a first fluid and at least a second Hauptzu- supply channel (10) for introducing a second Include fluids.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der zumindest eine erste Hauptzufuhrkanal (1) über zumindest einen ersten Nebenzufuhrkanal (2, 2') in zumindest einen ersten Einlasskanal (3, 3') übergeht und der zumindest zweite Hauptzufuhrkanal (10) über zumindest einen ersten Nebenzufuhrkanal (20, 20') in zumindest einen zweiten Einlasskanal (30, 30') übergeht, wobei die ersten und zweiten Nebenzufuhrkanäle von gegenüberliegenden Seiten zum Ausgabekanal (5) hin führen.10. The device according to claim 9, characterized in that the at least one first main supply channel (1) via at least a first secondary supply channel (2, 2 ') in at least a first inlet channel (3, 3') merges and the at least second main supply channel (10). via at least a first secondary supply channel (20, 20 ') merges into at least one second inlet channel (30, 30'), wherein the first and second secondary supply channels lead from opposite sides to the outlet channel (5).
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass mehrere erste Nebenzufuhrkanäle (2, 2") und Einlasskanäle (3, 3") und mehrere zweite Nebenzufuhrkanäle (20, 20') und Einlasskanäle (30, 30') vorgesehen sind, die von gegenüberliegenden Seiten kammförmig ineinander greifend zum Ausgabekanal (5) führen bzw. in diesen einmünden. 11. The device according to claim 10, characterized in that a plurality of first secondary supply channels (2, 2 ") and inlet channels (3, 3") and a plurality of second secondary supply channels (20, 20 ') and inlet channels (30, 30') are provided, the from opposite sides comb-like interlocking to the output channel (5) lead or open into this.
EP09775618A 2008-08-28 2009-08-27 Microfluid device Not-in-force EP2321538B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0133508A AT507226B1 (en) 2008-08-28 2008-08-28 MICRO FLUID DEVICE
PCT/AT2009/000336 WO2010022428A1 (en) 2008-08-28 2009-08-27 Microfluid device

Publications (2)

Publication Number Publication Date
EP2321538A1 true EP2321538A1 (en) 2011-05-18
EP2321538B1 EP2321538B1 (en) 2012-12-19

Family

ID=41404223

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09775618A Not-in-force EP2321538B1 (en) 2008-08-28 2009-08-27 Microfluid device

Country Status (4)

Country Link
US (1) US20110194995A1 (en)
EP (1) EP2321538B1 (en)
AT (1) AT507226B1 (en)
WO (1) WO2010022428A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6395539B2 (en) * 2014-09-24 2018-09-26 キヤノン株式会社 Method for manufacturing substrate for liquid discharge head and method for processing silicon substrate
CN106076135B (en) 2016-08-01 2019-04-16 江苏揽山环境科技股份有限公司 Micro bubble generation device
US11185830B2 (en) 2017-09-06 2021-11-30 Waters Technologies Corporation Fluid mixer
WO2021030245A1 (en) * 2019-08-12 2021-02-18 Waters Technologies Corporation Mixer for chromatography system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890093B2 (en) * 2000-08-07 2005-05-10 Nanostream, Inc. Multi-stream microfludic mixers
US7470408B2 (en) * 2003-12-18 2008-12-30 Velocys In situ mixing in microchannels
US8524173B2 (en) * 2006-09-01 2013-09-03 Tosoh Corporation Microchannel structure and fine-particle production method using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010022428A1 *

Also Published As

Publication number Publication date
WO2010022428A1 (en) 2010-03-04
US20110194995A1 (en) 2011-08-11
AT507226A1 (en) 2010-03-15
EP2321538B1 (en) 2012-12-19
AT507226B1 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
DE19604289C2 (en) Micromixer
EP2851118B1 (en) Device for mixing and for heat exchange and method for its production
EP0758917B1 (en) Static micromixer
DE10296876B4 (en) Micro-mixer
EP1866066B1 (en) Mixer system, reactor and reactor system
EP1674152B1 (en) Static micromixer
WO2000078438A1 (en) Static micromixer
EP1441131A1 (en) Microfluidic switch to temporarily stop a flow of liquid
DE3114195C2 (en) Mixing device
EP2548634A1 (en) Mixing element for static mixer
EP3331683A1 (en) Casting device for applying a foaming reaction mixture
EP2321538B1 (en) Microfluid device
EP2284315B1 (en) Curtain application device
EP2090353B1 (en) Reaction mixing system for mixing and chemical reaction of at least two fluids
WO2011003412A2 (en) Longitudinal mixing device, in particular for high performance liquid chromatography
WO2011138162A1 (en) Mixing process and mixing arrangement
EP2335817A2 (en) Static mixer
DE10250406B4 (en) Reaction device and mixing system
DE19536858C2 (en) Method and device for transporting a fluid through a channel
DE10322922A1 (en) Static mixer, for mixing at least two components with paste consistency, e.g. in plastics injection molding, has successive mixing elements within pipe, with deflectors to move material to center with low flow resistance
DE102013213467A1 (en) Static mixing device for flowable media
DE102012104053B3 (en) emulsifying
DE10159985A1 (en) microemulsifying
WO2004091760A1 (en) Static mixer
DE10117863A1 (en) Device for flow-field flow fractionation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111207

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 589577

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009005747

Country of ref document: DE

Effective date: 20130214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130330

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130319

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121219

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130419

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130319

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

26N No opposition filed

Effective date: 20130920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009005747

Country of ref document: DE

Effective date: 20130920

BERE Be: lapsed

Owner name: TECHNISCHE UNIVERSITAT WIEN

Effective date: 20130831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130827

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

REG Reference to a national code

Ref country code: DE

Ref document number: 502009005747

Ref legal event code: R082

Country of ref document: DE

Representative=s name: PATENTANWAELTE LIPPERT, STACHOW & PARTNER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090827

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130827

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 589577

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140827

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150923

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009005747

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009005747

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301