EP2316584A1 - Electrochemical anti-fouling system for structures wetted by sea water - Google Patents
Electrochemical anti-fouling system for structures wetted by sea water Download PDFInfo
- Publication number
- EP2316584A1 EP2316584A1 EP10075718A EP10075718A EP2316584A1 EP 2316584 A1 EP2316584 A1 EP 2316584A1 EP 10075718 A EP10075718 A EP 10075718A EP 10075718 A EP10075718 A EP 10075718A EP 2316584 A1 EP2316584 A1 EP 2316584A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode
- grid structure
- grid
- structure electrode
- seawater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B17/00—Methods preventing fouling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B59/00—Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
- B63B59/04—Preventing hull fouling
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F13/00—Inhibiting corrosion of metals by anodic or cathodic protection
- C23F13/02—Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
- C23F13/06—Constructional parts, or assemblies of cathodic-protection apparatus
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B17/00—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
- E02B17/0017—Means for protecting offshore constructions
Definitions
- the invention relates to an electrochemical antifouling system for controlling the attachment of fouling organisms to seawater-wetted structures with a DC circuit for generating electrolysis in seawater with a lattice structure electrode, at least one spaced apart, opposite-polarity counter electrode and an adjustable DC power source.
- fouling or “biofouling” (biological growth and growth) refers to the undesirable attachment of solids (marine organisms: bacteria, algae, clams, barnacles, etc.) at rigid interfaces.
- Anti-fouling measures are used to prevent fouling of buildings that are surrounded by marine or saline waters or liquid saline media ("seawater”) or at least temporarily or permanently wetted.
- Offshore structures are usually constructed of steel or concrete, and are usually affected by fouling, especially in the tidal area. As a result, the surface for attacking the wave energy is increased, the surface of such structures permanently hidden and, if necessary. Attacked or corroded and locally increases the biological mass through the growth itself. Inspection work is made more difficult.
- anti-fouling measures serve the protection of wooden parts in the water, such.
- Wooden components can be colonized by different organisms, which can lead to a complete coverage and thus to a restriction of the function of the components.
- fouling can thus destroy the surface of a building by adhering or seated organisms, so that more and more anti-fouling measures are taken.
- electrochemical antifouling systems have also been developed, the major advantage of which is the non-toxicity.
- Electrochemical antifouling systems are based on electrolysis in seawater. Under DC flow between anode and cathode arise dissociation products (cathode H + , anode OH - ), which lead to a local increase in the pH values at the interface between the electrode and seawater (cathode basic, anode acidic).
- cathode H + dissociation products
- anode OH - dissociation products
- cathode basic, anode acidic cathode basic, anode acidic
- the channel wall To the To protect channel wall by anodic protection against fouling, the channel wall must be electrically conductive. The supply of the current into the network, especially in the metal foil in the core of the wires, via the electrically conductive channel wall. Removal of the network from the water inlet duct is only possible by manual dismantling, which requires deployment of on-site personnel.
- the TASK for the present invention is seen in the further development of the antifouling system of the generic type so that the structure of the grid electrode is as simple as possible and undergoes no corrosion in normal operation. It should not be a mandatory requirement of an electrically conductive surface of the structure to be protected, nevertheless, a particularly effective fouling protection is to be achieved. Furthermore, a degradation of the lattice electrode without the use of local personnel should be possible.
- the solution according to the invention for this task can be found in the main claim, advantageous developments of the invention are shown in the subclaims and explained in more detail below in connection with the invention.
- the lattice structural electrode is dimensionally stable formed from a single metal component and thus extremely simple, robust and inexpensive in their construction.
- the grid structure electrode is self-supporting and remains in the selected form. It is arranged in such a distance region in front of the surface of the structure to be protected, that the surface is in the area of influence of a caused by the electrolysis pH increase of seawater. Anodic protection of the surface of the structure is not required.
- the counter electrode is made of a corrosion resistant material.
- the grid structure electrode is electrically insulated from the surface of the structure. This ensures that the current flows only through the grid structure electrode and not through the surface of the structure.
- the structure may be formed on its surface both electrically conductive and electrically non-conductive.
- a device for alternative switching of the grid structure electrode is provided by these measures in the antifouling system according to the invention, which makes the handling of the system particularly versatile and simple.
- two different modes of use for the antifouling system according to the invention can be set with this switching device.
- a permanent operating mode with a circuit of the grid structure electrode can be selected as the cathode.
- the cathode circuit By the cathode circuit, the grid electrode is protected from decomposition by electrolysis and thus from corrosion. There are no signs of wear, installation costs are only once.
- the pH value has a far-reaching influence and thus also protects the surface of the structure lying behind the grid structure electrode from colonization. Fouling organisms are prevented from colonization.
- the application of direct current induces an electrolytic process, as a result of which the pH at the metal-water interface is greatly increased.
- the barrier thus constructed can not or only with difficulty penetrate organisms and their larvae when using adapted lattice structures. In this example is a Use of narrow mesh sizes with eg 0.4 cm to prefer, since this increases the pH increase per area even more.
- brucite Mohs hardness 2 to 2.5
- a high current density in a range of 30 A / m 2 with respect to the effective surface area of the lattice electrode and higher is set.
- a side effect here is the partly strong development and release of hydrogen, which occurs at high current densities due to the reduction of the cations at the lattice structure.
- This hydrogen evolution also has a positive effect on antifouling due to the incompatibility with organisms to be settled in the immediate vicinity.
- the second mode of use in the invention is a temporary disassembly mode with a circuit of the grid electrode as the anode.
- the grating structure electrode becomes the anode and thereby undergoes degradation during electrolysis.
- the construction of a single metal component of the lattice structure complete degradation is possible quickly and easily.
- the grating structure electrode can be completely removed without requiring on-site personnel. This is a big advantage, especially for arrangements in inaccessible offshore areas.
- Removal may be, for example, in the case of - at least partially complete destruction, eg by destruction or excessive occupation of growth organisms of the lattice structural electrode - or at a distance of the building itself, be required. Then the grid electrode can be easily dissolved by reversing polarity and then - if the structure remains - be replaced by a new one. Possibly. existing electrical insulation of the grid structure electrode relative to the structure, such as insulators, remain on the building and can then be used again. If the metal component contains iron, no negative effects can be expected during the degradation or dissolution of the lattice structure (of any size), since iron is limited as an essential plant nutrient in the marine environment. A toxic load during degradation is avoided at all times. The amount of iron release can be controlled by the current density and the resulting surface potential of the connected as an anode grid electrode and thus dosed at any time.
- the grid structure electrode is electrically isolated from the surface of the structure to be protected.
- this can be realized by the fact that already the surface of the structure is electrically non-conductive.
- These may be, for example, wooden structures - eg wooden harbor pillars - or concrete - eg foundation pillars of wind turbines.
- an electrically conductive surface of the structure for example shut-off devices-insulators, for example made of plastic or ceramic, or an insulating mat, for example of plastic or mineral fiber, can be advantageously provided for the electrical insulation of the grid structure electrode with respect to an electrically conductive surface of the structure.
- the grid electrode may preferably be placed directly on the surface of the structure.
- the grid structure electrode in the invention is formed in a simple form of a single metal component.
- this can be a simple uninsulated steel or wire mesh, in particular even simple wire mesh can be used from a thin uninsulated steel wire.
- the counter electrode may be formed as a rod electrode and arranged in the seawater at a distance from the cathode.
- the counterelectrode can also be formed as a grid electrode. Likewise, it may be formed as a flat band electrode, which extends in front of the flat grid structure electrode.
- the counter electrode is advantageously formed rigid and remains in a curved shape.
- a particular advantage of the antifouling system according to the invention is its subsequent mounting on existing structures. Known systems generally do not have this advantage.
- a modular extension of the antifouling system according to the invention by connecting a plurality of grid structure electrodes and counter electrodes is also advantageously possible. This can be advantageous in the case of alteration or expansion of the structure to be protected or in the case of an initially only partial covering of the structure with the antifouling system. In principle, it is very advantageous for mountability if the lattice structure electrode and / or the counterelectrode are bendable. Due to the dimensional stability of the lattice structure electrode, this remains in any position, so it can be arranged self-supporting.
- the grid electrode can also be optimally adapted to the shape of the structure to be protected. Even critical areas can be covered with the grid structure electrode. The same applies to the counter electrode, if this is also formed bendable. The bending is reversible, so that changes in shape during operation or even multiple applications - if no degradation of the grid electrode is provided by polarity reversal - are possible. Furthermore, especially when using simple wire mesh for the design of the grid electrode, its dimensional stability is not very pronounced. Then it may be advantageous if the grid structure electrode made of steel or Wireframe has a static folding. According to the nature of a lightweight construction, this measure achieves a substantial increase in the rigidity and thus the mechanical stability.
- the primary conductive grid electrode can be kept very thin and thus the entry of foreign material in the surrounding environment very low.
- the dimensionally stable, but bendable grid structure electrode can be adapted to curved surfaces of the structure to be protected.
- the counter electrode advantageously, a cylindrical configuration of the grid structure electrode and / or an annular formation of the counter electrode may be provided, wherein the counter electrode is arranged concentrically to the grid structure electrode.
- both electrodes can advantageously be adapted to the round shape of a foundation pillar of a wind power plant.
- a concentric arrangement of grid structure electrode and counter electrode is possible: the grid structure electrode is placed around the foundation pillar, the counter electrode is then attached as a flat band ring with a slightly larger diameter over it.
- a plurality of counterelectrodes may be provided at a corresponding distance from one another above the height of the foundation pier.
- a photovoltaic-powered DC power source can be used in the invention.
- the arrangement of photovoltaic elements in the overwater area of the wind turbine is easily possible. Often there are already such systems for powering other units.
- a power supply from another regenerative source for example via the transformer of Wind generator, easily possible and leads to the delivery of the controllable required direct current.
- the components to be used in the anti-fouling system according to the invention are relatively inexpensive compared with the other antifouling solutions and represent with the low power consumption (low-voltage current) is a relatively inexpensive alternative.
- the antifouling system according to the invention is virtually wear-free, it does not have to be renewed regularly, as is the case with known antifouling paints. If necessary, the anti-fouling system can be easily removed on site with no staff costs.
- the temporary repair mode partial damage to the grid structure electrode, which occurs, for example, as a result of the action of force or else by dismantling the grid electrode as the anode, can be repaired.
- the repair is carried out by deliberate addition of aragonite, which is electrically non-conductive and thus increases the electrical resistance in the circuit. Such a repair is therefore to be regarded as a temporary measure that protects the anti-fouling system from major damage until the arrival of maintenance personnel.
- the aragonite can be easily removed by switching on the second mode for a short time.
- a current flow through the grid electrode is required so that only incipient damage can be repaired. Such damage can be detected for example by simple current measurements in the circuit.
- An increasing operating current is an indication of an increasing resistance and thus of incipient damage.
- the grid structure electrode is switched as a cathode with such a setting of the DC power source that due to the generated current density at the grid electrode, an accretion of hard aragonite (Mohs hardness 3.5 ... 4.5) occurs. Mechanical weak points are thus temporarily stabilized by the addition of hard lime.
- the increased resistance by the non-conductive lime is compensated by dissolution of the aragonite in the second mode of use after the actual repair.
- the FIGURE 1 is a view showing the electrochemical antifouling system 01 according to the invention for the control of fouling organisms of adhering to a seewasserbenetzten Structure 02. These are in the selected embodiment to a foundation pillar 03, for example, a wind turbine, which is placed offshore in seawater 04 .
- the antifouling system 01 has a grid structure electrode 05 and two counterelectrodes 06 and an adjustable DC source 07 in a DC circuit 23.
- the grid structure electrode 05 is dimensionally stable and constructed of a single metal component. There are no material combinations, for example, from individual wires, conductive foil cores, electrically insulating fillers and electrically conductive sheaths used.
- the grid structure electrode 05 consists of a simple uninsulated steel or wire mesh 08 made of a ferrous steel wire.
- the counter electrodes 06 are made of a corrosion-resistant material, for example of titanium or a titanium alloy.
- the grid structure electrode 05 is bendable and adapted in the embodiment shown, the shape of the structure to be protected 02 .
- the grating structure electrode 05 encloses the foundation pillar 03 (diameter, for example, in a range of 1.5 m) from the waterline 09 downwards, for example over a height in a range of 3 m. This area is partially ventilated by the wave motion and therefore is particularly subject to fouling.
- the counterelectrodes 06 are likewise adapted to the shape of the foundation pillar 03 and designed as ring-shaped flat-band electrodes 10 concentrically enclosing the foundation pillar 03 .
- the counter electrode 06 may for example consist of a titanium-containing material and thus be corrosion resistant to the electrolysis. Further construction details of the antifouling system 01 according to the invention are the FIGURE 2 refer to.
- FIGURE 1 Furthermore, a device 11 for alternative switching of the antifouling system 01 is shown in different modes of use.
- This device 11 is connected to the power source 07 and changes their current or polarity.
- the arrangement of the device 11 is shown only schematically. It can also be located further above on the structure 02 . Operation can be telemetric from far away via a transmitter.
- the current source 07 can be fed, for example, from a photovoltaic module using regenerative solar energy on the structure 02 .
- the grating structure electrode 05 is connected as the cathode (-) and the counter electrodes 06 as the anode ( + ).
- a high current J (unit mark A) is set so that a strong increase in the pH value occurs in the vicinity of the grid electrode 05 connected as cathode (-), which exceeds the pH tolerance limit of potential fouling organisms, so that they are repelled become.
- the current density J with respect to the surface of the grid electrode 05 connected as cathode (-) is selected to be so high that soft, shear-able brucite precipitates at the grid structure electrode 05 on which the organisms can not attach or slide together (parameter values) exemplary in the FIGURE 1 shown). In operation mode, therefore, a particularly effective double fouling protection is achieved.
- the grid electrode 05 is connected as the anode ( + ) and the counter electrodes 06 as the cathode (-).
- the current source 07 is reversed, the current flow reverses.
- decomposition oxidation takes place at the grid structure electrode 05 connected as anode ( + ).
- the single metal component constituting the grid pattern electrode 05 is completely dissolved, so that the grid pattern electrode 05 is completely removed.
- Their disassembly is thus possible without staff on site.
- the speed of decomposition depends on the chosen magnitude of the current J and increases with it. With higher current J , in turn, a higher pH is achieved, which leads to a fouling protection, but which is no longer of importance in the disassembly of the lattice electrode 05 .
- This mode can only be selected temporarily.
- the above-described operations take place in the disassembly mode.
- a decomposition of the counterelectrodes 06 does not take place due to the choice of material in any mode, so that the counterelectrodes 06 remain on the structure 02 after the disassembly of the structure electrode 05 . But as they usually do not have a large extent, their whereabouts is not disturbing. In the case of mounting a new grid electrode 05 , the counter electrodes 06 can be easily used again, so that their retention is even advantageous. The same applies to remaining insulation elements for the grid electrode 05
- Damage to the grating structure electrode 05 which has not led to an interruption of the circuit, can be compensated constructively in this mode.
- Advantage here is a temporary stabilization of the grid electrode 05 until the arrival of maintenance personnel who the Then repair damage, for example with replacement grille.
- the strength of the current J or the current density j is reduced so far in the repair mode III until hard aragonite precipitates and stabilizes again at the grid electrode 05 connected as the cathode (-).
- the pH drops, so that no more effective fouling protection is guaranteed. Therefore, this mode is only temporary to choose and is used to repair the cathode (-) connected grid electrode 05 without staff on site. Subsequently, by temporarily driving the use mode II deposited aragonite can be removed again.
- the FIGURE 2 shows the antifouling system 01 in cross section through the structure 02 , the foundation pier 03 , in detail.
- the grating structure electrode 05 is arranged in such a distance region 12 in front of the surface 13 of the foundation pillar 03 , that the surface 13 is in the area of influence 14 caused by the electrolysis pH increase of the seawater 04 , so due to the strong pH increase under electrolysis, attachment of fouling organisms with a lower pH tolerance is prevented.
- the grid structure electrode 05 has an electrical insulation 24 with respect to the surface 13 of the foundation pier 03 .
- the foundation pier 03 consists of an electrically conductive material, so that the grid structure electrode 05 is arranged on insulators 15 (compare section A in FIG FIGURE 2 ).
- the insulators 15 can also be an insulating mat 16 (see section B in FIGURE 2 ) are used, to which the grid electrode 05 is placed directly.
- the grid structure electrode 05 can be placed directly on the surface 13 of the structure 02 (see section C in FIG FIGURE 2 ).
- the distance range 12 then approaches zero, so that the pH increase in the area of influence 14 in any case covers the surface 13 of the foundation pillar 03 and protects it from fouling.
- the counter electrodes 06 are ring-shaped and with a field-building Distance 17 to the grid electrode 05 arranged on further insulators 18 .
- FIG. 3 shows the arrangement of the antifouling system 01 according to the invention in a particularly exposed fouling area 19 on a plurality of buttresses 20 and buttresses 21, for example, a drilling platform.
- the modular structure of the antifouling system 01 with a plurality of grid structure electrodes 05 and counter electrodes 06 and their adaptation to the respective shape of the pillars 20 and buttresses 21st
- a direct connection 22 of two grid structure electrodes 05 is shown.
- a single arrangement is shown. All electrodes shown can be integrated in a common circuit or supplied in separate circuits.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Catching Or Destruction (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Prevention Of Electric Corrosion (AREA)
- Farming Of Fish And Shellfish (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein elektrochemisches Antifoulingsystem zur Bekämpfung des Anheftens von Foulingorganismen an seewasserbenetzten Bauwerken mit einem Gleichstromkreis zur Erzeugung von Elektrolyse im Seewasser mit einer Gitterstrukturelektrode, zumindest einer dazu beabstandeten, gegenpolig geschalteten Gegenelektrode und einer einstellbaren Gleichstromquelle.The invention relates to an electrochemical antifouling system for controlling the attachment of fouling organisms to seawater-wetted structures with a DC circuit for generating electrolysis in seawater with a lattice structure electrode, at least one spaced apart, opposite-polarity counter electrode and an adjustable DC power source.
Allgemein bezeichnet der Begriff "Fouling" oder "Biofouling" (biologischer Be-und Aufwuchs) die unerwünschte Anlagerung von Feststoffen (marine Organismen: Bakterien, Algen, Muscheln, Seepocken etc.) an starren Grenzflächen. Antifoulingmaßnahmen dienen der Vermeidung von Fouling an Bauwerken, die von marinen oder salzhaltigen Wässern oder flüssigen salzhaltigen Medien ("Seewasser") umgeben oder zumindest zeitweise oder dauerhaft benetzt sind. Offshore- Bauwerke werden in der Regel aus Stahl oder Beton gebaut und meist flächendeckend, besonders im Gezeitenbereich, von Fouling befallen. Dadurch wird die Angriffsfläche für die Wellenenergie vergrößert, die Oberfläche solcher Bauwerke dauerhaft verdeckt und ggfs. angegriffen oder korrodiert und lokal die biologische Masse durch den Aufwuchs selbst erhöht. Inspektionsarbeiten werden erschwert. Außerdem kann der herabfallende Aufwuchs besonders in strömungsberuhigten Seegebieten zu einer Sauerstoffzehrung am Meeresboden führen und hat einen negativen Einfluss auf marine Tiergemeinschaften. Weiterhin dienen Antifoulingmaßnahmen dem Schutz hölzerner Teile im Wasser, wie z. B. Hafenpfeilern in Yachthäfen, vor anheftenden und bohrenden Organismen. Hölzerne Bauteile können von verschiedenen Organismen besiedelt werden, die zu einer vollständigen Überdeckung und somit zu einer Einschränkung der Funktion der Bauteile führen können. Grundsätzlich kann Fouling somit durch anhaftende oder aufsitzende Organismen die Oberfläche eines Bauwerks zerstören, sodass verstärkt Maßnahmen der Foulingbekämpfung - Antifouling - ergriffen werden. Neben mechanischen Reinigungsmaßnahmen und speziellen Antifoulinganstrichen oder -beschichtungen wurden auch elektrochemische Antifoulingsysteme entwickelt, deren bedeutender Vorteil die Untoxizität ist.Generally, the term "fouling" or "biofouling" (biological growth and growth) refers to the undesirable attachment of solids (marine organisms: bacteria, algae, clams, barnacles, etc.) at rigid interfaces. Anti-fouling measures are used to prevent fouling of buildings that are surrounded by marine or saline waters or liquid saline media ("seawater") or at least temporarily or permanently wetted. Offshore structures are usually constructed of steel or concrete, and are usually affected by fouling, especially in the tidal area. As a result, the surface for attacking the wave energy is increased, the surface of such structures permanently hidden and, if necessary. Attacked or corroded and locally increases the biological mass through the growth itself. Inspection work is made more difficult. In addition, falling down vegetation can lead to oxygen depletion at the bottom of the sea, especially in calming sea areas, and has a negative impact on marine animal communities. Furthermore, anti-fouling measures serve the protection of wooden parts in the water, such. As port pillars in marinas, before attaching and drilling organisms. Wooden components can be colonized by different organisms, which can lead to a complete coverage and thus to a restriction of the function of the components. In principle, fouling can thus destroy the surface of a building by adhering or seated organisms, so that more and more anti-fouling measures are taken. In addition to mechanical cleaning and special antifouling paints or coatings, electrochemical antifouling systems have also been developed, the major advantage of which is the non-toxicity.
Elektrochemische Antifoulingsysteme basieren auf der Elektrolyse in Seewasser. Unter Gleichstromfluss zwischen Anode und Kathode entstehen Dissoziationsprodukte (Kathode H+, Anode OH-), die zu einer lokalen Anhebung der pH-Werte an der Grenzfläche zwischen Elektrode und Seewasser führen (Kathode basisch, Anode sauer). In der
Aus der
Aus der
Als weitere Folge der Elektrolyse in Seewasser schlagen sich an der Kathode auch Mineralien nieder (Mineralakkretion). Dies wird umfassend in der
Aufbauend auf der Biorock-Technologie ist es aus den EAT-Berichten (2001 NOMATEC Project,
Weiterhin ist aus der
Der nächstliegende Stand der Technik, von dem die vorliegende Erfindung ausgeht, wird in der
Die AUFGABE für die vorliegende Erfindung ist darin zu sehen, das Antifoulingsystem der gattungsgemäßen Art so weiterzubilden, dass der Aufbau der Gitterstrukturelektrode möglichst einfach ist und im normalen Betrieb keine Korrosion erfährt. Es soll kein zwingendes Erfordernis einer elektrisch leitfähigen Oberfläche des zu schützenden Bauwerks bestehen, trotzdem soll ein besonders effektiver Foulingschutz erreicht werden. Weiterhin soll ein Abbau der Gitterstrukturelektrode ohne einen Einsatz von Personal vor Ort möglich sein. Die erfindungsgemäße LÖSUNG für diese Aufgabe ist dem Hauptanspruch zu entnehmen, vorteilhafte Weiterbildungen der Erfindung werden in den Unteransprüchen aufgezeigt und im Folgenden im Zusammenhang mit der Erfindung näher erläutert.The TASK for the present invention is seen in the further development of the antifouling system of the generic type so that the structure of the grid electrode is as simple as possible and undergoes no corrosion in normal operation. It should not be a mandatory requirement of an electrically conductive surface of the structure to be protected, nevertheless, a particularly effective fouling protection is to be achieved. Furthermore, a degradation of the lattice electrode without the use of local personnel should be possible. The solution according to the invention for this task can be found in the main claim, advantageous developments of the invention are shown in the subclaims and explained in more detail below in connection with the invention.
Bei dem erfindungsgemäßen Antifoulingsystem ist die Gitterstrukturelektrode formstabil aus einer einzelnen Metallkomponente ausgebildet und damit äußerst einfach, robust und preiswert in ihrem Aufbau. Die Gitterstrukturelektrode ist selbsttragend und verharrt in der gewählten Form. Sie ist in einem solchen Abstandsbereich vor der Oberfläche des zu schützenden Bauwerks angeordnet, dass die Oberfläche im Einflussgebiet einer durch die Elektrolyse hervorgerufenen pH-Wert-Erhöhung des Seewassers liegt. Ein anodischer Schutz der Oberfläche des Bauwerks ist nicht erforderlich. Die Gegenelektrode besteht aus einem korrosionsbeständigen Material. Weiterhin ist die Gitterstrukturelektrode elektrisch gegenüber der Oberfläche des Bauwerks isoliert. Somit ist gewährleistet, dass der Strom nur durch die Gitterstrukturelektrode und nicht durch die Oberfläche des Bauwerks fließt. Somit kann das Bauwerk auf seiner Oberfläche sowohl elektrisch leitend als auch elektrisch nichtleitend ausgebildet sein.In the antifouling system according to the invention, the lattice structural electrode is dimensionally stable formed from a single metal component and thus extremely simple, robust and inexpensive in their construction. The grid structure electrode is self-supporting and remains in the selected form. It is arranged in such a distance region in front of the surface of the structure to be protected, that the surface is in the area of influence of a caused by the electrolysis pH increase of seawater. Anodic protection of the surface of the structure is not required. The counter electrode is made of a corrosion resistant material. Furthermore, the grid structure electrode is electrically insulated from the surface of the structure. This ensures that the current flows only through the grid structure electrode and not through the surface of the structure. Thus, the structure may be formed on its surface both electrically conductive and electrically non-conductive.
Weiterhin ist durch diese Maßnahmen bei dem erfindungsgemäßen Antifoulingsystem eine Vorrichtung zur alternativen Schaltung der Gitterstrukturelektrode vorgesehen, die die Handhabung des Systems besonders vielseitig und einfach gestaltet. Mit dieser Schaltvorrichtung können prinzipiell zwei unterschiedliche Gebrauchsmodi für das erfindungsgemäße Antifoulingsystem eingestellt werden. Zum einen kann ein dauerhafter Betriebsmodus mit einer Schaltung der Gitterstrukturelektrode als Kathode gewählt werden. Durch die Kathodenschaltung ist die Gitterstrukturelektrode vor Zersetzung durch Elektrolyse und damit vor Korrosion geschützt. Es treten keine Verschleißerscheinungen auf, Montagekosten fallen nur einmal an. Dabei wird eine solche Einstellung der Gleichstromquelle gewählt, dass aufgrund der erzeugten Stromdichte an der Gitterstrukturelektrode eine Akkretion von weichem Brucit und ein pH-Wert oberhalb der pH-Wert-Toleranzgrenze von zu bekämpfenden Foulingorganismen im Seewasser auftreten. In dieser Betriebsstellung wird also ein doppelter Antifoulingschutz erreicht. Zum einen durch die Erzielung eines hohen pH-Werts im Seewasser, der oberhalb der Toleranzgrenze der abzuwehrenden Foulingorganismen liegt. Hier sind z. B. die Entenmuscheln (Pollicipes pollicipes) als Hartsubstratbesiedler zu nennen, die bei einem pH-Wert von etwa 8,9 sich selten oder nicht mehr an Oberflächen ansiedeln. Als Feldgröße hat der pH-Wert einen weit reichenden Einfluss und schützt somit auch die hinter der Gitterstrukturelektrode liegende Oberfläche des Bauwerks vor Besiedelung. Foulingorganismen werden von der Besiedelung abgehalten. Die Beaufschlagung mit Gleichstrom induziert einen elektrolytischen Prozess, in dessen Folge sich der pH-Wert an der Metall-Wassergrenzschicht stark erhöht. Die so aufgebaute Barriere können Organismen und deren Larven bei der Verwendung von angepassten Gitterstrukturen nicht oder nur schwer durchdringen. In diesem Beispiel ist eine Verwendung von engen Maschenweiten mit z.B. 0,4 cm zu präferieren, da sich hierdurch die pH-Wert - Erhöhung pro Fläche noch verstärkt.Furthermore, a device for alternative switching of the grid structure electrode is provided by these measures in the antifouling system according to the invention, which makes the handling of the system particularly versatile and simple. In principle, two different modes of use for the antifouling system according to the invention can be set with this switching device. On the one hand, a permanent operating mode with a circuit of the grid structure electrode can be selected as the cathode. By the cathode circuit, the grid electrode is protected from decomposition by electrolysis and thus from corrosion. There are no signs of wear, installation costs are only once. In this case, such an adjustment of the DC power source is selected that due to the current density generated at the grid electrode, an accretion of soft brucite and a pH above the pH tolerance limit of fouling organisms to be controlled in the seawater occur. In this operating position so a double antifouling protection is achieved. On the one hand by achieving a high pH in the seawater, which is above the tolerance limit of the fouling organisms to be defended. Here are z. As the pollard mussels (Pollicipes pollicipes) as Hartsubstratbesiedler to call that at a pH of about 8.9 rarely or no longer settle on surfaces. As a field size, the pH value has a far-reaching influence and thus also protects the surface of the structure lying behind the grid structure electrode from colonization. Fouling organisms are prevented from colonization. The application of direct current induces an electrolytic process, as a result of which the pH at the metal-water interface is greatly increased. The barrier thus constructed can not or only with difficulty penetrate organisms and their larvae when using adapted lattice structures. In this example is a Use of narrow mesh sizes with eg 0.4 cm to prefer, since this increases the pH increase per area even more.
Zum anderen bildet sich auf der Gitterstrukturelektrode mit örtlich begrenztem Einfluss ein weicher Belag aus Brucit. Brucit weist eine perfekte Spaltbarkeit in einer Richtung auf und ist somit leicht abscherbar. Foulingorganismen, deren pH-Wert-Toleranz außergewöhnlich hoch ist oder die sich in Ausnahmefällen an eine konstante pH-Wert-Erhöhung gewöhnen können, werden somit kurz nach der Besiedlung der Gitterstrukturelektrode zusammen mit dem weichen Brucit durch die Seewasserbewegung einfach abgewaschen. Ab einem pH-Wert von 9,7 wird bei Elektrolyse Brucit (Mohshärte 2 bis 2,5) abgeschieden. Insbesondere zur Erzeugung von hohen pH-Werten und von Brucit ist eine hohe Stromdichte in einem Bereich von 30 A/m2 bezogen auf die effektive Oberfläche der Gitterstrukturelektrode und höher einzustellen. Als Nebeneffekt ist hier noch die teils starke Entwicklung und Freisetzung von Wasserstoff zu nennen, der bei hohen Stromdichten durch die Reduktion der Kationen an der Gitterstruktur entsteht. Diese Wasserstoffentwicklung wirkt sich aufgrund der Unverträglichkeit mit anzusiedelnden Organismen im näheren Umfeld ebenfalls positiv für das Antifouling aus.On the other hand forms on the lattice electrode with localized influence a soft coating of brucite. Brucite has a perfect cleavage in one direction and is thus easily sheared off. Fouling organisms whose pH tolerance is exceptionally high or which can get used in exceptional cases to a constant increase in pH, are thus washed off shortly after the colonization of the lattice electrode together with the soft brucite by the seawater movement. At a pH of 9.7, brucite (Mohs hardness 2 to 2.5) is deposited on electrolysis. In particular, for producing high pH and brucite, a high current density in a range of 30 A / m 2 with respect to the effective surface area of the lattice electrode and higher is set. A side effect here is the partly strong development and release of hydrogen, which occurs at high current densities due to the reduction of the cations at the lattice structure. This hydrogen evolution also has a positive effect on antifouling due to the incompatibility with organisms to be settled in the immediate vicinity.
Der zweite Gebrauchsmodus bei der Erfindung ist ein temporärer Demontagemodus mit einer Schaltung der Gitterstrukturelektrode als Anode. Durch eine einfache Umpolung der Stromquelle wird die Gitterstrukturelektrode zur Anode und unterliegt dadurch während der Elektrolyse dem Abbau. Durch den Aufbau aus einer einzelnen Metallkomponente der Gitterstruktur ist ein vollständiger Abbau schnell und problemlos möglich. Somit kann die Gitterstrukturelektrode durch einfaches Umpolen der Gleichstromquelle vollständig entfernt werden, ohne dass Personal vor Ort erforderlich wäre. Insbesondere bei Anordnungen in unzugänglichen Offshore-Gebieten bedeutet dies einen großen Vorteil. Eine Entfernung kann beispielsweise bei einer - zumindest teilweise vollständige Zerstörung, z.B. durch Zerstörung oder übermäßigen Besetzung von Aufwuchsorganismen der Gitterstrukturelektrode - oder bei einer Entfernung des Bauwerks selbst, erforderlich werden. Dann kann die Gitterstrukturelektrode durch Umpolung einfach aufgelöst und anschließend - bei einem Verbleib des Bauwerks - durch eine neue ersetzt werden. Ggfs. vorhandene elektrische Isolationen der Gitterstrukturelektrode gegenüber dem Bauwerk, beispielsweise Isolatoren, verbleiben am Bauwerk und können dann erneut genutzt werden. Ist die Metallkomponente eisenhaltig, können beim Abbau bzw. bei der Auflösung der Gitterstruktur (jeglicher Größe) keine negativen Auswirkungen erwartet werden, da Eisen als essenzieller Pflanzennährstoff im marinen Milieu limitiert ist. Eine toxische Belastung beim Abbau ist zu jedem Zeitpunkt vermieden. Die Menge der Eisenfreisetzung kann durch die Stromdichte und das hierdurch induzierte Oberflächenpotenzial der als Anode geschalteten Gitterstrukturelektrode gesteuert und damit jederzeit dosiert werden.The second mode of use in the invention is a temporary disassembly mode with a circuit of the grid electrode as the anode. By simply reversing the polarity of the current source, the grating structure electrode becomes the anode and thereby undergoes degradation during electrolysis. By the construction of a single metal component of the lattice structure complete degradation is possible quickly and easily. Thus, by simply reversing the DC power source, the grating structure electrode can be completely removed without requiring on-site personnel. This is a big advantage, especially for arrangements in inaccessible offshore areas. Removal may be, for example, in the case of - at least partially complete destruction, eg by destruction or excessive occupation of growth organisms of the lattice structural electrode - or at a distance of the building itself, be required. Then the grid electrode can be easily dissolved by reversing polarity and then - if the structure remains - be replaced by a new one. Possibly. existing electrical insulation of the grid structure electrode relative to the structure, such as insulators, remain on the building and can then be used again. If the metal component contains iron, no negative effects can be expected during the degradation or dissolution of the lattice structure (of any size), since iron is limited as an essential plant nutrient in the marine environment. A toxic load during degradation is avoided at all times. The amount of iron release can be controlled by the current density and the resulting surface potential of the connected as an anode grid electrode and thus dosed at any time.
Bei dem Antifoulingsystem nach der Erfindung ist die Gitterstrukturelektrode elektrisch isoliert gegenüber der Oberfläche des zu schützenden Bauwerks. Dies kann einerseits dadurch realisiert sein, dass bereits die Oberfläche des Bauwerks elektrisch nichtleitend ausgebildet ist. Hierbei kann es sich beispielsweise um Bauwerke aus Holz - z.B. hölzerne Hafenpfeiler - oder aus Beton - z.B. Gründungspfeiler von Windkrafträdern - handeln. Bei einer elektrisch leitenden Oberfläche des Bauwerks - z.B. Absperranlagen - können vorteilhaft Isolatoren, beispielsweise aus Kunststoff oder Keramik, oder eine Isoliermatte, beispielsweise aus Kunststoff oder Mineralfaser, zur elektrischen Isolation der Gitterstrukturelektrode gegenüber einer elektrischen leitenden Oberfläche des Bauwerks vorgesehen sein. Im Falle einer nicht leitenden Oberfläche, beispielsweise bei Bauwerken aus Beton oder Holz, kann die Gitterstrukturelektrode bevorzugt auch direkt auf die Oberfläche des Bauwerks aufgelegt werden. Somit wird nicht das gesamte Bauwerk mit seiner elektrisch leitenden Oberfläche bestromt, sondern nur die vorgelagerte Gitterstrukturelektrode, was sich positiv durch einen geringen Stromverbrauch (Niedervoltstrom) auswirkt. Die Gitterstrukturelektrode bei der Erfindung ist in einfacher Form aus einer einzelnen Metallkomponente ausgebildet. Vorteilhaft kann es sich dabei um ein einfaches unisoliertes Stahl- oder Drahtgitter handeln, insbesondere kann sogar einfacher Maschendraht aus einem dünnen unisolierten Stahldraht verwendet werden. Die Gegenelektrode kann als Stabelektrode ausgebildet und im Seewasser in einiger Entfernung zur Kathode angeordnet sein. Vorteilhaft kann auch die Gegenelektrode als Gitterelektrode ausgebildet sein. Ebenso kann sie als Flachbandelektrode ausgebildet sein, die vor der flächigen Gitterstrukturelektrode verläuft. Auch die Gegenelektrode ist vorteilhaft biegesteif ausgebildet und verbleibt in einer gebogenen Form.In the antifouling system of the invention, the grid structure electrode is electrically isolated from the surface of the structure to be protected. On the one hand, this can be realized by the fact that already the surface of the structure is electrically non-conductive. These may be, for example, wooden structures - eg wooden harbor pillars - or concrete - eg foundation pillars of wind turbines. In the case of an electrically conductive surface of the structure-for example shut-off devices-insulators, for example made of plastic or ceramic, or an insulating mat, for example of plastic or mineral fiber, can be advantageously provided for the electrical insulation of the grid structure electrode with respect to an electrically conductive surface of the structure. In the case of a non-conductive surface, for example in buildings made of concrete or wood, the grid electrode may preferably be placed directly on the surface of the structure. Thus, not the entire structure is energized with its electrically conductive surface, but only the upstream lattice electrode, which positively by a low power consumption (low voltage) affects. The grid structure electrode in the invention is formed in a simple form of a single metal component. Advantageously, this can be a simple uninsulated steel or wire mesh, in particular even simple wire mesh can be used from a thin uninsulated steel wire. The counter electrode may be formed as a rod electrode and arranged in the seawater at a distance from the cathode. Advantageously, the counterelectrode can also be formed as a grid electrode. Likewise, it may be formed as a flat band electrode, which extends in front of the flat grid structure electrode. Also, the counter electrode is advantageously formed rigid and remains in a curved shape.
Ein besonderer Vorteil des Antifoulingsystems nach der Erfindung ist seine nachträgliche Montierbarkeit an bestehenden Bauwerken. Bekannte Systeme weisen diesen Vorteil in der Regel nicht auf. Auch eine modulartige Erweiterung des Antifoulingsystems nach der Erfindung durch Verbindung mehrerer Gitterstrukturelektroden und Gegenelektroden ist vorteilhaft ebenfalls möglich. Dies kann bei Veränderung oder Erweiterung des zu schützenden Bauwerks oder bei einer zunächst nur teilweisen Bedeckung des Bauwerks mit dem Antifoulingsystem von Vorteil sein. Dabei ist es grundsätzlich für die Montierbarkeit sehr vorteilhaft, wenn die Gitterstrukturelektrode und/oder die Gegenelektrode biegbar ausgebildet sind. Aufgrund der Formstabilität der Gitterstrukturelektrode verbleibt diese in jeder Position, kann also selbsttragend angeordnet werden. Durch die Biegbarkeit kann die Gitterelektrode darüber hinaus optimal an die Form des zu schützenden Bauwerks angepasst werden. Auch kritische Stellen können so mit der Gitterstrukturelektrode bedeckt werden. Gleiches gilt für die Gegenelektrode, wenn diese ebenfalls biegbar ausgebildet ist. Dabei ist die Biegung reversibel, sodass Formveränderungen im Betrieb oder auch Mehrfachanwendungen - wenn kein Abbau der Gitterelektrode durch Umpolung vorgesehen ist - möglich sind. Weiterhin ist insbesondere bei der Verwendung von einfachem Maschendraht zur Ausgestaltung der Gitterelektrode deren Formstabilität nicht sehr stark ausgeprägt. Dann kann es vorteilhaft sein, wenn die Gitterstrukturelektrode aus Stahl- oder Drahtgitter eine statische Fältelung aufweist. Nach der Art einer Leichtbaukonstruktion wird durch diese Maßnahme eine wesentliche Erhöhung der Steifigkeit und damit der mechanischen Stabilität erreicht. Dadurch kann die primäre leitende Gitterstrukturelektrode sehr dünn und somit der Eintrag von Fremdmaterial in das umgebene Milieu sehr gering gehalten werden. Weiterhin kann die formstabile, aber biegbare Gitterstrukturelektrode an gekrümmte Oberflächen des zu schützenden Bauwerks angepasst werden. Eine Anpassung von biegbarem, aber formstabilen Maschendraht an gebogene Formen, z.B. ein Wellenbrecher, ist problemlos möglich. Gleiches gilt für die Gegenelektrode. Weiterhin können vorteilhaft eine zylinderförmige Ausbildung der Gitterstrukturelektrode und/oder eine ringförmige Ausbildung der Gegenelektrode vorgesehen sein, wobei die Gegenelektrode konzentrisch zur Gitterstrukturelektrode angeordnet ist. Damit können beide Elektroden beispielsweise vorteilhaft an die runde Form eines Gründungspfeilers einer Windkraftanlage angepasst werden. Möglich ist dabei eine konzentrische Anordnung von Gitterstrukturelektrode und Gegenelektrode: die Gitterstrukturelektrode wird um den Gründungspfeiler herumgelegt, die Gegenelektrode wird dann als Flachbandring mit einem etwas größeren Durchmesser darüber befestigt. Bei einem tief im Wasser stehenden Gründungspfeiler können dabei mehrere Gegenelektroden in einem entsprechenden Abstand zueinander über der Höhe des Gründungspfeilers vorgesehen sein.A particular advantage of the antifouling system according to the invention is its subsequent mounting on existing structures. Known systems generally do not have this advantage. A modular extension of the antifouling system according to the invention by connecting a plurality of grid structure electrodes and counter electrodes is also advantageously possible. This can be advantageous in the case of alteration or expansion of the structure to be protected or in the case of an initially only partial covering of the structure with the antifouling system. In principle, it is very advantageous for mountability if the lattice structure electrode and / or the counterelectrode are bendable. Due to the dimensional stability of the lattice structure electrode, this remains in any position, so it can be arranged self-supporting. Due to the flexibility, the grid electrode can also be optimally adapted to the shape of the structure to be protected. Even critical areas can be covered with the grid structure electrode. The same applies to the counter electrode, if this is also formed bendable. The bending is reversible, so that changes in shape during operation or even multiple applications - if no degradation of the grid electrode is provided by polarity reversal - are possible. Furthermore, especially when using simple wire mesh for the design of the grid electrode, its dimensional stability is not very pronounced. Then it may be advantageous if the grid structure electrode made of steel or Wireframe has a static folding. According to the nature of a lightweight construction, this measure achieves a substantial increase in the rigidity and thus the mechanical stability. As a result, the primary conductive grid electrode can be kept very thin and thus the entry of foreign material in the surrounding environment very low. Furthermore, the dimensionally stable, but bendable grid structure electrode can be adapted to curved surfaces of the structure to be protected. An adaptation of bendable, but dimensionally stable wire mesh to curved shapes, such as a breakwater, is easily possible. The same applies to the counter electrode. Furthermore, advantageously, a cylindrical configuration of the grid structure electrode and / or an annular formation of the counter electrode may be provided, wherein the counter electrode is arranged concentrically to the grid structure electrode. Thus, for example, both electrodes can advantageously be adapted to the round shape of a foundation pillar of a wind power plant. A concentric arrangement of grid structure electrode and counter electrode is possible: the grid structure electrode is placed around the foundation pillar, the counter electrode is then attached as a flat band ring with a slightly larger diameter over it. In the case of a foundation pier standing deep in the water, a plurality of counterelectrodes may be provided at a corresponding distance from one another above the height of the foundation pier.
Insbesondere bei einer Anordnung des Antifoulingsystems nach der Erfindung an einem Gründungspfeiler einer Windkraftanlage in einem unzugänglichen Offshore-Gebiet ist eine autarke Stromversorgung der Elektroden von besonderem Vorteil. Vorteilhaft kann bei der Erfindung daher eine photovoltaisch gespeiste Gleichstromquelle verwendet werden. Die Anordnung von Photovoltaikelementen im Überwasserbereich der Windkraftanlage ist problemlos möglich. Oft befinden sich bereits dort derartige Anlagen zur Stromversorgung anderer Aggregate. Ebenso ist aber auch eine Stromversorgung aus einer anderen regenerativen Quelle, beispielsweise über den Transformator des Windgenerators, problemlos möglich und führt zur Lieferung des regelbaren erforderlichen Gleichstroms.In particular, in an arrangement of the antifouling system according to the invention on a foundation pillar of a wind turbine in an inaccessible offshore area is a self-sufficient power supply of the electrodes of particular advantage. Advantageously, therefore, a photovoltaic-powered DC power source can be used in the invention. The arrangement of photovoltaic elements in the overwater area of the wind turbine is easily possible. Often there are already such systems for powering other units. Likewise, however, is also a power supply from another regenerative source, for example via the transformer of Wind generator, easily possible and leads to the delivery of the controllable required direct current.
Die zu verwendenden Bauteile bei dem Antifoulingsystem nach der Erfindung sind im Vergleich der anderen Antifouling-Lösungen relativ preiswert und stellen mit dem geringen Stromverbrauch (Niedervoltstrom) eine relativ kostengünstige Alternative dar. Es werden keine Chemikalien oder andere schädliche Stoffe, insbesondere Toxine, eingesetzt. Das Antifoulingsystem nach der Erfindung ist nahezu verschleißfrei, es muss nicht - wie es bei bekannten Antifoulinganstrichen der Fall ist - regelmäßig erneuert werden. Bei Bedarf kann das Antifoulingsystem ohne Personalaufwand vor Ort einfach entfernt werden.The components to be used in the anti-fouling system according to the invention are relatively inexpensive compared with the other antifouling solutions and represent with the low power consumption (low-voltage current) is a relatively inexpensive alternative. There are no chemicals or other harmful substances, especially toxins used. The antifouling system according to the invention is virtually wear-free, it does not have to be renewed regularly, as is the case with known antifouling paints. If necessary, the anti-fouling system can be easily removed on site with no staff costs.
Mechanische Schäden können einfach repariert werden. Eine lokale Ausbesserung von beispielsweise Kurzschlüssen ist durch Wartungspersonal ohne weiteres durchführbar. Bei herkömmlichen Antifoulinganstrichen auf einer Isolationsschicht auf einem metallischen Schiffsrumpf sind solche Beschädigungen nur durch eine vollständige Erneuerung des Anstrichs heilbar. Optional können in einem dritten Modus, dem temporären Reparaturmodus, teilweise Beschädigungen der Gitterstrukturelektrode, die beispielsweise durch Krafteinwirkung oder auch durch Abbau der Gitterstrukturelektrode als Anode auftreten, repariert werden. Die Reparatur erfolgt durch bewusste Anlagerung von Aragonit, das jedoch elektrisch nichtleitend ist und damit den elektrischen Widerstand im Stromkreis erhöht. Eine derartige Ausbesserung ist also als temporäre Maßnahme anzusehen, die das Antifoulingsystem vor größeren Beschädigungen bis zum Eintreffen von Wartungspersonal schützt. Nach der Ausbesserung kann das Aragonit durch kurzfristige Einschaltung des zweiten Modus dann wieder einfach entfernt werden. Zur temporärem Stabilisierung durch Aragonit ist noch ein Stromfluss durch die Gitterstrukturelektrode erforderlich, sodass nur beginnende Beschädigungen repariert werden können. Derartige Beschädigungen können beispielsweise durch einfache Strommessungen im Stromkreis detektiert werden. Ein ansteigender Betriebsstrom ist ein Anzeichen für einen größer werdenden Widerstand und damit für eine beginnende Beschädigung. Im Reparaturmodus wird die Gitterstrukturelektrode als Kathode mit einer solchen Einstellung der Gleichstromquelle geschaltet, dass aufgrund der erzeugten Stromdichte an der Gitterstrukturelektrode eine Akkretion von hartem Aragonit (Mohshärte 3,5...4,5) auftritt. Mechanische Schwachstellen werden somit durch die Anlagerung von hartem Kalk temporär wieder stabilisiert. Der erhöhte Widerstand durch den nichtleitenden Kalk wird durch Auflösung des Aragonits im zweiten Gebrauchsmodus nach der eigentlichen Reparatur wieder kompensiert.Mechanical damage can be easily repaired. A local repair of, for example, short circuits is easily carried out by maintenance personnel. In conventional antifouling paints on an insulating layer on a metallic ship's hull such damage can only be cured by a complete renewal of the paint. Optionally, in a third mode, the temporary repair mode, partial damage to the grid structure electrode, which occurs, for example, as a result of the action of force or else by dismantling the grid electrode as the anode, can be repaired. The repair is carried out by deliberate addition of aragonite, which is electrically non-conductive and thus increases the electrical resistance in the circuit. Such a repair is therefore to be regarded as a temporary measure that protects the anti-fouling system from major damage until the arrival of maintenance personnel. After the repair, the aragonite can be easily removed by switching on the second mode for a short time. For temporary stabilization by aragonite still a current flow through the grid electrode is required so that only incipient damage can be repaired. Such damage can be detected for example by simple current measurements in the circuit. An increasing operating current is an indication of an increasing resistance and thus of incipient damage. In the repair mode, the grid structure electrode is switched as a cathode with such a setting of the DC power source that due to the generated current density at the grid electrode, an accretion of hard aragonite (Mohs hardness 3.5 ... 4.5) occurs. Mechanical weak points are thus temporarily stabilized by the addition of hard lime. The increased resistance by the non-conductive lime is compensated by dissolution of the aragonite in the second mode of use after the actual repair.
Schließlich ist noch anzumerken, dass die Wirkung des hier beschriebenen Antifoulingsystems nach der Erfindung örtlich stark begrenzt ist und daher keine Gefahr für angrenzende eventuell empfindliche Materialien, wie z. B. an Booten in Hafengebiete, oder für Menschen, die sich im Wasser aufhalten, bedeutet. Toxische Komponenten sind zudem bei der Erfindung vollständig vermieden. Weitere Details zu dem Antifoulingsystem nach der Erfindung sind dem nachfolgenden speziellen Beschreibungsteil zu entnehmen.Finally, it should be noted that the effect of the antifouling system according to the invention described here according to the invention is very limited locally and therefore no risk for adjacent possibly sensitive materials such. B. on boats in port areas, or for people who are in the water means. Toxic components are also completely avoided in the invention. Further details of the antifouling system according to the invention can be found in the following specific description.
Ausbildungsformen des elektrochemischen Antifoulingsystems nach der Erfindung werden nachfolgend anhand der schematischen Figuren zum weiteren Verständnis der Erfindung näher erläutert. Dabei zeigt:
- FIGUR 1
- eine Ansicht auf das elektrochemische Antifoulingsystem bei einer Anordnung an einem Gründungspfeiler,
- FIGUR 2
- einen Querschnitt durch die Anordnung gemäß
Figur 1 und - FIGUR 3
- eine Ansicht auf einen Modulaufbau des elektrochemischen Antifoulingsystems an mehreren Pfeilern.
- FIGURE 1
- a view of the electrochemical anti-fouling system in an arrangement on a foundation pier,
- FIGURE 2
- a cross section through the arrangement according to
FIG. 1 and - FIG. 3
- a view of a modular structure of the electrochemical anti-fouling system at several pillars.
Die
Die Gitterstrukturelektrode 05 ist biegbar und im gezeigten Ausführungsbeispiel der Form des zu schützenden Bauwerks 02 angepasst. Die Gitterstrukturelektrode 05 umschließt den Gründungspfeiler 03 (Durchmesser beispielsweise in einem Bereich von 1,5 m) ab der Wasserlinie 09 abwärts, beispielsweise über eine Höhe in einem Bereich von 3 m. Dieser Bereich ist durch die Wellenbewegung teilweise auch belüftet und unterliegt daher besonders dem Fouling. Die Gegenelektroden 06 sind ebenfalls der Form des Gründungspfeilers 03 angepasst und als den Gründungspfeiler 03 konzentrisch umschließende, ringförmige Flachbandelektroden 10 ausgebildet. Die Gegenelektrode 06 kann beispielsweise aus einem titanhaltigen Material bestehen und damit korrosionsbeständig gegenüber der Elektrolyse sein. Weitere Konstruktionsdetails des Antifoulingsystems 01 nach der Erfindung sind der
In der
Folgende Gebrauchsmodi können bei dem Antifoulingsystem 01 nach der Erfindung gewählt und durch die Einstellung des Stroms erreicht werden:The following modes of use can be selected in the
In diesem Modus ist die Gitterstrukturelektrode 05 als Kathode (-) und die Gegenelektroden 06 als Anode (+) geschaltet. Es wird ein so hoher Strom J (Einheitszeichen A) eingestellt, dass sich im Umfeld der als Kathode (-) geschalteten Gitterstrukturelektrode 05 eine starke pH-Wert-Erhöhung ergibt, die die pH-Wert-Toleranzgrenze von potenziellen Foulingorganismen überschreitet, sodass diese abgewehrt werden. Weiterhin ist die Stromdichte J bezogen auf die Oberfläche der als Kathode (-) geschalteten Gitterstrukturelektrode 05 so hoch gewählt, dass weiches, abscherfähiges Brucit an der Gitterstrukturelektrode 05 ausfällt, auf dem die Organismen sich nicht anheften können bzw. zusammen mit diesem abgleiten (Parameterwerte sind beispielhaft in der
In diesem Modus ist die Gitterstrukturelektrode 05 als Anode (+) und die Gegenelektroden 06 als Kathode (-) geschaltet. Die Stromquelle 07 wird umgepolt, der Stromfluss kehrt sich um. In diesem Modus findet eine zersetzende Oxidation an der als Anode (+) geschalteten Gitterstrukturelektrode 05 statt. Dabei wird die einzelne Metallkomponente, aus der die Gitterstrukturelektrode 05 besteht, völlig aufgelöst, sodass die Gitterstrukturelektrode 05 völlig entfernt wird. Deren Demontage ist somit ohne Personaleinsatz vor Ort möglich. Die Schnelligkeit der Zersetzung ist abhängig von der gewählten Stärke des Stroms J und steigt mit dieser an. Mit höherem Strom J wird wiederum ein höherer pH-Wert erreicht, der zwar zu einem Foulingschutz führt, der aber bei der Demontage der Gitterstrukturelektrode 05 nicht mehr von Bedeutung ist. Auch dieser Modus kann nur temporär gewählt werden.In this mode, the
An den Gegenelektroden 06 finden im Demontagemodus die oben beschriebenen Vorgänge statt. Eine Zersetzung der Gegenelektroden 06 findet aufgrund der Materialwahl in keinem Modus statt, sodass die Gegenelektroden 06 nach der Demontage der Strukturelektrode 05 am Bauwerk 02 verbleiben. Da sie aber in der Regel keine große Ausdehnung aufweisen, ist ihr Verbleib nicht störend. Im Fall der Montage einer neuen Gitterstrukturelektrode 05 können die Gegenelektroden 06 problemlos wieder verwendet werden, sodass ihr Verbleiben sogar von Vorteil ist. Gleiches gilt für verbleibende Isolationselemente für die Gitterstrukturelektrode 05 At the
Optional kann bei dem Antifoulingsystem 01 nach der Erfindung noch ein weiterer Gebrauchsmodus vorgesehen sein:Optionally, in the
In diesem Modus können Beschädigungen der Gitterstrukturelektrode 05, die aber nicht zu einer Unterbrechung des Stromkreises geführt haben, konstruktiv ausgeglichen werden. Vorteil ist hierbei eine zeitweise Stabilisierung der Gitterstrukturelektrode 05 bis zum Eintreffen von Wartungspersonal, die die Beschädigung dann beispielsweise durch Ersatzgitter beheben. Die Stärke des Stroms J bzw. die Stromdichte j wird im Reparaturmodus III so weit reduziert, bis hartes Aragonit an der weiterhin als Kathode (-) geschalteten Gitterstrukturelektrode 05 ausfällt und diese wieder stabilisiert. Der pH-Wert sinkt dabei, sodass kein effektiver Foulingschutz mehr gewährleistet ist. Dieser Modus ist daher nur temporär zu wählen und dient der Reparatur der als Kathode (-) geschalteten Gitterstrukturelektrode 05 ohne Personaleinsatz vor Ort. Anschließend kann durch temporäres Fahren des Gebrauchsmodus II abgelagertes Aragonit wieder entfernt werden.Damage to the
Die
Die
Abschließend sind beispielhafte Werte für die einzustellende Stromdichte bei dem Antifoulingsystem ach der Erfindung angegeben, die jedoch keinen beschränkenden Charakter haben.
(abhängig von den verwendeten Gitterstärken)
Bemerkung: bei diesen Stromdichten erfolgt eine Brucitabscheidung. Eine reine pH-Wert-Erhöhung erfolgt bereits bei Stromdichten in einem Bereich von 22 bis 28 A/m2.
(depending on the grid strengths used)
Note: at these current densities brucite deposition occurs. A pure pH increase takes place already at current densities in a range of 22 to 28 A / m 2 .
- 0101
- elektrochemisches Antifoulingsystemelectrochemical antifouling system
- 0202
- seewasserbenetztes Bauwerkseawater wet structure
- 0303
- Gründungspfeilerfoundation piers
- 0404
- Seewasserseawater
- 0505
- GitterstrukturelektrodeLattice structure electrode
- 0606
- Gegenelektrodecounter electrode
- 0707
- einstellbare Gleichstromquelleadjustable DC source
- 0808
- unisolierter Maschendrahtuninsulated wire mesh
- 0909
- Wasserliniewaterline
- 1010
- Ringelektrodering electrode
- 1111
- Vorrichtung zur alternativen Schaltung von 01Apparatus for alternative switching of 01
- 1212
- Abstandsbereich zwischen 05 - 13Distance range between 05 - 13
- 1313
- Oberfläche von 02, 03Surface of 02, 03
- 1414
- Einflussgebiet Elektrolyse mit pH-Wert-ErhöhungArea of influence Electrolysis with pH increase
- 1515
- Isolatorinsulator
- 1616
- IsoliermatteIsoliermatte
- 1717
- Abstand zwischen 06 - 05Distance between 06 - 05
- 1818
- weiterer Isolatoranother insulator
- 1919
- FoulingbereichFoulingbereich
- 2020
- Stützpfeilerbuttress
- 2121
- Strebepfeilerbuttress
- 2222
- Verbindung von 05 - 05Connection from 05 - 05
- 2323
- GleichstromkreisDC circuit
- 2424
- elektrische IsolationElectric Isolation
- 2525
- elektrisch isolierende Oberflächeelectrically insulating surface
Claims (10)
GEKENNZEICHNET DURCH
MARKED BY
GEKENNZEICHNET DURCH
Isolatoren (15) oder eine Isoliermatte (16) zur elektrischen Isolation (23) der Gitterstrukturelektrode (05) gegenüber einer elektrischen leitenden Oberfläche (13) des Bauwerks (02).Electrochemical antifouling system according to claim 1,
MARKED BY
Insulators (15) or an insulating mat (16) for electrical insulation (23) of the grid structure electrode (05) against an electrically conductive surface (13) of the structure (02).
GEKENNZEICHNET DURCH
eine Ausbildung der Gitterstrukturelektrode (05) aus einem unisoliertem Stahl-oder Drahtgitter (08) als Metallkomponente und/oder der Gegenelektrode (06) als Gitter- oder Flachbandelektrode (10).Electrochemical antifouling system according to claim 1,
MARKED BY
an embodiment of the grid structure electrode (05) made of an uninsulated steel or wire grid (08) as a metal component and / or the counter electrode (06) as a grid or ribbon electrode (10).
GEKENNZEICHNET DURCH
eine biegbare Ausbildung von Gitterstrukturelektrode (05) und/oder Gegenelektrode (06).Electrochemical antifouling system according to claim 1,
MARKED BY
a bendable design of grid structure electrode (05) and / or counter electrode (06).
GEKENNZEICHNET DURCH
eine Fältelung zumindest der Gitterstrukturelektrode (05) aus unisoliertem Stahl- oder Drahtgitter (08).Electrochemical antifouling system according to claim 4,
MARKED BY
a pleating of at least the grid structure electrode (05) made of uninsulated steel or wire mesh (08).
GEKENNZEICHNET DURCH
eine Formanpassung der Gitterstrukturelektrode (05) und/oder der Gegenelektrode (05) an gekrümmte Oberflächen (13) des zu schützenden Bauwerks (02, 03).An electrochemical antifouling system according to claim 3 or 4
MARKED BY
a shape adaptation of the grid structure electrode (05) and / or the counter electrode (05) to curved surfaces (13) of the structure to be protected (02, 03).
GEKENNZEICHNET DURCH
eine zylinderförmige Ausbildung der Gitterstrukturelektrode (05) und/oder eine ringförmige Ausbildung der Gegenelektrode (06), wobei die Gegenelektrode (06) konzentrisch zur Gitterstrukturelektrode (05) angeordnet ist.Electrochemical antifouling system according to Claim 6,
MARKED BY
a cylindrical formation of the grid structure electrode (05) and / or an annular formation of the counter electrode (06), wherein the counter electrode (06) is arranged concentrically to the grid structure electrode (05).
GEKENNZEICHNET DURCH
eine modulartige Erweiterbarkeit durch Verbindung (22) mehrerer Gitterstrukturelektroden (05) und Gegenelektroden (06).Electrochemical antifouling system according to claim 1,
MARKED BY
a module-like expandability by connection (22) of a plurality of grid structure electrodes (05) and counter electrodes (06).
GEKENNZEICHNET DURCH
eine photovoltaisch oder anderweitig regenerativ gespeiste Gleichstromquelle (07).Electrochemical antifouling system according to claim 1,
MARKED BY
a photovoltaic or otherwise regenerative DC source (07).
GEKENNZEICHNET DURCH
MARKED BY
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009051768A DE102009051768B4 (en) | 2009-10-30 | 2009-10-30 | Electrochemical antifouling system for seawater wetted structures |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2316584A1 true EP2316584A1 (en) | 2011-05-04 |
EP2316584B1 EP2316584B1 (en) | 2013-03-27 |
Family
ID=43466682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10075718A Not-in-force EP2316584B1 (en) | 2009-10-30 | 2010-10-24 | Electrochemical anti-fouling system for structures wetted by sea water |
Country Status (3)
Country | Link |
---|---|
US (1) | US8361285B2 (en) |
EP (1) | EP2316584B1 (en) |
DE (1) | DE102009051768B4 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014053107A1 (en) * | 2012-10-05 | 2014-04-10 | Kme Germany Gmbh & Co. Kg | Landing stage for a boat |
CN114774947A (en) * | 2022-05-05 | 2022-07-22 | 青岛双瑞海洋环境工程股份有限公司 | Electrolytic antifouling device for ocean steel structure |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2317123A1 (en) * | 2009-10-28 | 2011-05-04 | BARD Holding GmbH | Anode holder for cathodic anti-corrosion devices of foundation posts of off-shore wind energy devices, foundation post of an off-shore wind energy device and connection structure between same, cathodic anti-corrosion device of foundation posts of off-shore wind energy devices and off-shore wind energy device |
US9650211B1 (en) | 2011-01-31 | 2017-05-16 | Span Tech Llc | Conveyor with enhanced cleaning capability |
CA2763877A1 (en) | 2012-01-11 | 2013-07-11 | Douglas Goei | A tire assembly and a method of building a support structure in a marine environment using used tires |
CN103623688B (en) * | 2013-11-26 | 2016-04-13 | 华南理工大学 | A kind of seawater and biological method flue gas desulfurization denitrification integrated device |
JP5931111B2 (en) * | 2014-03-31 | 2016-06-08 | ミネベア株式会社 | Detection device |
RU2596514C2 (en) * | 2014-08-05 | 2016-09-10 | Александр Алексеевич Буслаев | Method of cathode protection of impeller with blades of turbine of hydraulic unit from corrosion and cavitation destruction |
DE102015218512A1 (en) | 2015-09-25 | 2017-03-30 | Mtu Friedrichshafen Gmbh | Heat exchanger device for an internal combustion engine, internal combustion engine with such a heat exchanger device, and marine vehicle with an internal combustion engine and / or a heat exchanger device |
US20230068072A1 (en) * | 2017-07-24 | 2023-03-02 | Richard S. Trela | Negative Pressure Aeration And Organic Growth Suppression System |
WO2020102864A1 (en) | 2018-11-22 | 2020-05-28 | Kessel Roberto | Method for restricting bio-fouling in marine environments |
US20220400656A1 (en) * | 2021-06-22 | 2022-12-22 | John Ferguson | Coral Reef Float |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4440611A (en) | 1981-12-09 | 1984-04-03 | The Texas A & M University System | Cathodic electrochemical process for preventing or retarding microbial and calcareous fouling |
EP0468739A1 (en) * | 1990-07-23 | 1992-01-29 | Daiki Engineering Co., Ltd. | Antifouling method and antifouling apparatus |
EP0550766A1 (en) * | 1991-07-24 | 1993-07-14 | Nakagawa Corrosion Protecting Co., Ltd. | Method and device for preventing adhesion of aquatic organisms |
DE4109197C2 (en) | 1991-03-18 | 1995-02-09 | Stefan Dr Rer Nat Sandrock | Process for the prevention of growth on submerged surfaces by sporadic, controlled changes in their physical properties |
DE4109198C2 (en) | 1991-03-18 | 1995-06-01 | Stefan Dr Rer Nat Sandrock | Process for influencing the pH value on surfaces of solids in liquid media |
JPH07268252A (en) | 1994-03-31 | 1995-10-17 | Mitsubishi Heavy Ind Ltd | Network structure to be immersed in sea water |
US5543034A (en) | 1995-01-19 | 1996-08-06 | Hilbertz; Wolf H. | Method of enhancing the growth of aquatic organisms, and structures created thereby |
US5633460A (en) * | 1994-07-14 | 1997-05-27 | Nec Corporation | Ocean environment monitoring system and method for controlling the same |
DE69802979T2 (en) | 1997-03-07 | 2002-06-27 | Livbag S.N.C., Vert Le Petit | Trained electro-pyrotechnic lighter around a printed circuit board |
JP2004270164A (en) | 2003-03-05 | 2004-09-30 | Mitsubishi Heavy Ind Ltd | Installation method of electrode panel in cathode antifouling system and cathode antifouling system of electrode panel in cathode antifouling system |
JP2004278161A (en) | 2003-03-17 | 2004-10-07 | Mitsubishi Heavy Ind Ltd | Cathode antifouling system |
EP1570010B1 (en) | 2002-08-20 | 2007-05-02 | Bioplan GmbH Institut für angewandte Biologie und Landschaftsplanung | Coating of surfaces entering into contact with a liquid in order to prevent biological vegetation |
DE102004039593B4 (en) | 2004-08-13 | 2007-07-12 | Hilbertz, Wolf H. | Process and apparatus for the extraction of magnesium hydroxide from salt solutions, in particular seawater, concentrated seawater or sols |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3520790A (en) * | 1966-08-02 | 1970-07-14 | Nippon Kokan Kk | Device for preventing marine creatures from sticking |
FI103190B1 (en) * | 1994-11-01 | 1999-05-14 | Savcor Marine Oy | Procedure for preventing the growth of organisms on structural surfaces in liquid embeds |
JP2007268252A (en) | 2006-03-07 | 2007-10-18 | Univ Of Ryukyus | Sterilizer and sterilization method with the same |
-
2009
- 2009-10-30 DE DE102009051768A patent/DE102009051768B4/en not_active Expired - Fee Related
-
2010
- 2010-10-24 EP EP10075718A patent/EP2316584B1/en not_active Not-in-force
- 2010-10-27 US US12/913,388 patent/US8361285B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4440611A (en) | 1981-12-09 | 1984-04-03 | The Texas A & M University System | Cathodic electrochemical process for preventing or retarding microbial and calcareous fouling |
EP0468739A1 (en) * | 1990-07-23 | 1992-01-29 | Daiki Engineering Co., Ltd. | Antifouling method and antifouling apparatus |
DE4109197C2 (en) | 1991-03-18 | 1995-02-09 | Stefan Dr Rer Nat Sandrock | Process for the prevention of growth on submerged surfaces by sporadic, controlled changes in their physical properties |
DE4109198C2 (en) | 1991-03-18 | 1995-06-01 | Stefan Dr Rer Nat Sandrock | Process for influencing the pH value on surfaces of solids in liquid media |
EP0550766A1 (en) * | 1991-07-24 | 1993-07-14 | Nakagawa Corrosion Protecting Co., Ltd. | Method and device for preventing adhesion of aquatic organisms |
JPH07268252A (en) | 1994-03-31 | 1995-10-17 | Mitsubishi Heavy Ind Ltd | Network structure to be immersed in sea water |
US5633460A (en) * | 1994-07-14 | 1997-05-27 | Nec Corporation | Ocean environment monitoring system and method for controlling the same |
US5543034A (en) | 1995-01-19 | 1996-08-06 | Hilbertz; Wolf H. | Method of enhancing the growth of aquatic organisms, and structures created thereby |
DE69802979T2 (en) | 1997-03-07 | 2002-06-27 | Livbag S.N.C., Vert Le Petit | Trained electro-pyrotechnic lighter around a printed circuit board |
EP1570010B1 (en) | 2002-08-20 | 2007-05-02 | Bioplan GmbH Institut für angewandte Biologie und Landschaftsplanung | Coating of surfaces entering into contact with a liquid in order to prevent biological vegetation |
JP2004270164A (en) | 2003-03-05 | 2004-09-30 | Mitsubishi Heavy Ind Ltd | Installation method of electrode panel in cathode antifouling system and cathode antifouling system of electrode panel in cathode antifouling system |
JP2004278161A (en) | 2003-03-17 | 2004-10-07 | Mitsubishi Heavy Ind Ltd | Cathode antifouling system |
DE102004039593B4 (en) | 2004-08-13 | 2007-07-12 | Hilbertz, Wolf H. | Process and apparatus for the extraction of magnesium hydroxide from salt solutions, in particular seawater, concentrated seawater or sols |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014053107A1 (en) * | 2012-10-05 | 2014-04-10 | Kme Germany Gmbh & Co. Kg | Landing stage for a boat |
US9434457B2 (en) | 2012-10-05 | 2016-09-06 | Kme Germany Gmbh & Co. Kg | Boat launch |
CN114774947A (en) * | 2022-05-05 | 2022-07-22 | 青岛双瑞海洋环境工程股份有限公司 | Electrolytic antifouling device for ocean steel structure |
CN114774947B (en) * | 2022-05-05 | 2023-05-26 | 青岛双瑞海洋环境工程股份有限公司 | Electrolytic antifouling device for ocean steel structure |
Also Published As
Publication number | Publication date |
---|---|
US20110100804A1 (en) | 2011-05-05 |
EP2316584B1 (en) | 2013-03-27 |
DE102009051768B4 (en) | 2013-12-12 |
US8361285B2 (en) | 2013-01-29 |
DE102009051768A1 (en) | 2011-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2316584B1 (en) | Electrochemical anti-fouling system for structures wetted by sea water | |
DE2900505A1 (en) | SUBMERSIBLE OR SEMI-SUBMERSIBLE OBJECT, AND METHOD FOR COATING A SUBMERSIBLE OR SEMI-SUBMERSIBLE OBJECT | |
DE69108630T2 (en) | Anti-fouling process and device. | |
DE19704692A1 (en) | Purification of lake and marsh | |
EP2386691A1 (en) | Method and device for scour protection on offshore structures | |
DE19727330A1 (en) | Offshore wind power plant | |
EP3693261B1 (en) | Offshore solar array and a method of constructing the same | |
EP2003332A1 (en) | Water power plant | |
WO2008122377A1 (en) | Method for transporting sediments in dammed bodies of water | |
DE2606297A1 (en) | PROCEDURE FOR BUILDING A FACTORY PLANT ON LAND | |
DE19852956C1 (en) | Device for treating water against limescale | |
DD259641A5 (en) | ANODIC PROTECTIVE COATING FOR STEELWORKED CONCRETE STRUCTURES | |
DE102008024989A1 (en) | Method and apparatus for the neutralization and buffering of acid and acidification protection water, comprises incorporating alkaline substances and substances e.g. chalk products, over a movable pipe distribution system | |
DE2261744A1 (en) | METHOD OF ELECTROLYTIC TREATMENT OF WASTE WATER | |
DE2617538A1 (en) | SEA WATER INTAKE FITTING | |
DE408799C (en) | Device to protect iron filter tubes covered with copper braid against electrolytic destruction and incrustation | |
DE4109197A1 (en) | Process to inhibit growth of organisms on submerged surfaces - comprises coating surfaces with film contg. free ionic gps. and applying potential to cause extreme pH values in water by surface | |
DE2617539A1 (en) | SEA WATER INTAKE FITTING | |
DE2503670A1 (en) | PROCESS FOR ACCELERATING OR STOPPING AND REVERSING THE NATURAL MOVEMENT OF LIQUIDS IN SOLIDS WITH A POROESE AND / OR SEMIPERMEABLE STRUCTURE AND ELECTRODES FOR CARRYING OUT THE PROCESS | |
DE2419191A1 (en) | Stagnant water oxygen enrichment - by planar electrodes suspended from float and connected to power supply | |
DE102016102881A1 (en) | Method for cleaning cooling towers and / or trickle packages in cooling towers of coverings | |
DE102006028082A1 (en) | Soil e.g. grown or poured soil, buffering method, involves allowing charge suspension to take place in relevant soil area selectively in distance of specific meters from support, transport and dosing unit | |
DE102004039593A1 (en) | Process and apparatus for electrolytic extraction of magnesium hydroxide from seawater, brines or concentrated solutions uses a two-zone cell at high pH with membrane separation | |
DE102010005395A1 (en) | Power station for power production from water waves, has floating chamber that moves along guidance by water waves and propels generator | |
DE20005298U1 (en) | Sewage treatment plant and device usable therein for moving a liquid surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
17P | Request for examination filed |
Effective date: 20110916 |
|
17Q | First examination report despatched |
Effective date: 20111114 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: STIFTUNG ALFRED-WEGENER-INSTITUT FUER POLAR- UND M |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B08B 17/00 20060101AFI20121102BHEP Ipc: E02B 17/00 20060101ALI20121102BHEP Ipc: C23F 13/06 20060101ALI20121102BHEP Ipc: B63B 59/04 20060101ALI20121102BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 603033 Country of ref document: AT Kind code of ref document: T Effective date: 20130415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010002685 Country of ref document: DE Effective date: 20130523 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: BIOPLAN GMBH INSTITUT FUER ANGEWANDTE BIOLOGIE UND Effective date: 20130507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130627 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130627 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502010002685 Country of ref document: DE Effective date: 20130507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130628 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130708 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130729 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130727 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20130819 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502010002685 Country of ref document: DE Owner name: ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FUER, DE Free format text: FORMER OWNER: STIFTUNG ALFRED-WEGENER-INSTITUT FUER POLAR- UND MEERESFORSCHUNG, 27570 BREMERHAVEN, DE Effective date: 20140103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
BERE | Be: lapsed |
Owner name: STIFTUNG ALFRED-WEGENER-INSTITUT FUR POLAR- UND M Effective date: 20131031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PLBG | Opposition deemed not to have been filed |
Free format text: ORIGINAL CODE: 0009274 |
|
26D | Opposition deemed not to have been filed |
Opponent name: BIOPLAN GMBH INSTITUT FUER ANGEWANDTE BIOLOGIE UND Effective date: 20140516 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131024 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130627 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: ALFRED-WEGENER-INSTITUT, HELMHOLTZ-ZENTRUM FUE, DE Effective date: 20151119 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: HC Owner name: ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FUER PO Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: STIFTUNG ALFRED-WEGENER-INSTITUT FUER POLAR- UND MEERESFORSCHUNG Effective date: 20150908 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 603033 Country of ref document: AT Kind code of ref document: T Effective date: 20151024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151024 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20170828 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170825 Year of fee payment: 8 Ref country code: FR Payment date: 20170823 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170828 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502010002685 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20181101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181101 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181024 |