EP2310633A1 - Verminderung der thermischen belastung eines aussengehäuses für eine strömungsmaschine - Google Patents

Verminderung der thermischen belastung eines aussengehäuses für eine strömungsmaschine

Info

Publication number
EP2310633A1
EP2310633A1 EP09806401A EP09806401A EP2310633A1 EP 2310633 A1 EP2310633 A1 EP 2310633A1 EP 09806401 A EP09806401 A EP 09806401A EP 09806401 A EP09806401 A EP 09806401A EP 2310633 A1 EP2310633 A1 EP 2310633A1
Authority
EP
European Patent Office
Prior art keywords
inner housing
steam
turbomachine according
medium
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09806401A
Other languages
English (en)
French (fr)
Other versions
EP2310633B1 (de
Inventor
Rudolf PÖTTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP09806401A priority Critical patent/EP2310633B1/de
Publication of EP2310633A1 publication Critical patent/EP2310633A1/de
Application granted granted Critical
Publication of EP2310633B1 publication Critical patent/EP2310633B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam

Definitions

  • the invention relates to a turbomachine comprising a rotor formed in a flow direction and rotatable about a rotation axis, an inner housing and an outer housing, wherein the inner housing is arranged around the rotor, wherein the outer housing is arranged around the inner housing, wherein the rotor has a medium-pressure thrust balance piston comprising a arranged around the medium-pressure thrust balance piston shell surface, wherein a pre-chamber between the inner housing and the medium-pressure thrust balance piston is formed, wherein a first steam line is formed for supplying steam into the pre-chamber in the inner housing.
  • Turbomachines are subjected to live steam of high temperature and high pressure and convert the thermal energy of the live steam into mechanical rotational energy.
  • the rotational energy is converted into electrical energy via a generator which is arranged to transmit torque to the turbomachine.
  • the steam flowing into the steam turbine fresh steam usually has a higher temperature than the steam, which exits the steam turbine again.
  • a steam turbine essentially comprises a rotor, an inner housing and optionally an outer housing.
  • the thermal loads of these components are different by the decrease of the temperature of the steam along a flow direction. For example, in high-pressure turbine sections in the inflow region, high-temperature properties are required for the materials
  • thrust balancing pistons are provided, which oppose the pressure caused by the pressure difference across the blading thrust a counter force to maintain the capacity of the thrust bearing.
  • an antechamber is formed between the thrust balance piston and the inner housing, which is acted upon by steam, whereby a force acts on the thrust balance piston and thus on the entire rotor.
  • the steam in this chamber usually has a high temperature and a high pressure.
  • the rotatable rotor is sealed by seals against the inner housing. Despite good seals escapes nevertheless located in the antechamber part of the steam on the seal in a space between the inner housing and
  • Outer housing In general, located in the space between the inner housing and the outer casing of the exhaust steam, which has a lower temperature and a lower pressure compared to the live steam. Due to the comparatively hot vapor flowing out between the thrust balance piston and the inner housing, the outer housing is thermally stressed at this point. Therefore, a higher quality material is selected as the material for the outer casing.
  • the invention begins, whose task is to provide a low-cost steam turbine.
  • a turbomachine comprising a rotor formed in a flow direction and rotatable about a rotation axis, an inner casing and an outer casing, wherein the inner casing is disposed about the rotor, wherein the outer housing is disposed about the inner housing, the rotor having a medium-pressure thrust balance piston comprising a arranged around the medium-pressure thrust balance piston shell surface, wherein a pre-chamber between the inner housing and the medium-pressure thrust balance piston is formed, wherein a first Steam line for supplying steam is formed in the antechamber in the inner housing, wherein in the inner housing an annular chamber is arranged, which is fluidically connected to a Abdampfraum, wherein the annular chamber is arranged opposite the lateral surface.
  • the steam flowing into the gap between the medium-pressure thrust balance piston and the inner housing need not be supplied via an external line, but can be provided by the steam turbine itself, by passing a portion of the exhaust steam to the Abdampfraum after flowing through the live steam through the turbine blading , Most of the exhaust steam is passed as a cold reheater steam to the reheater and heated to a higher temperature.
  • the inner housing has a separation projection which, viewed in the flow direction, is arranged downstream of the medium-pressure thrust balance piston.
  • the prechamber For a force to act on the medium pressure thrust balance piston, it is necessary for the steam to be in a closed space, here the prechamber.
  • the built in this pre-chamber pressure acts directly on the medium-pressure thrust balance piston.
  • the first steam line can be fluidly connected to a HZÜ steam line.
  • a HZÜ steam line is a hot Intermediate superheater steam line understood.
  • the effluent from a high-pressure turbine section steam is passed as a cold reheater steam to a reheater and heated there to a higher temperature and fed as a hot reheater steam of a medium-pressure turbine section again.
  • a hot reheater steam By using the hot reheater steam, a vapor of suitable pressure is available.
  • the first steam line is connected to a space in front of a medium-pressure blading.
  • the steam in this room has a suitable pressure.
  • a first bore in the inner housing is provided, which fluidly connects the Abdampfraum with the annular chamber.
  • a second bore in the inner housing is provided, which connects the first bore with the annular chamber.
  • the first bore is formed substantially parallel to the axis of rotation and the second bore substantially perpendicular to the axis of rotation.
  • 1 shows a part of a steam turbine according to the prior art
  • 2 shows a part of a steam turbine designed according to the invention.
  • FIG. 1 shows a part of a steam turbine according to the prior art.
  • the steam turbine comprises a rotor 2 rotatably mounted about a rotation axis 1.
  • An inner housing 3 is arranged around the rotor 2.
  • an outer housing 4 is arranged.
  • the rotor In a compensating piston area 5, the rotor has a medium-pressure thrust balance piston 6.
  • This medium-pressure thrust balance piston 6 has a larger radius than the rotor 2 located outside the compensating piston area 5.
  • the medium-pressure thrust balance piston 6 has a lateral surface 7 located on the surface.
  • a gap 8 is formed between the lateral surface 7 and the inner housing 3, a gap 8 is formed.
  • a fresh steam flowing into the steam turbine flows in a flow direction 9 through a turbine blading region, not shown, comprising guide vanes and rotor blades.
  • the steam relaxes and cools down on the way in the flow direction 9 and a part of the exhaust steam is guided in an evaporation chamber 11.
  • a hot reheater steam is passed into an antechamber 10. This hot reheater steam exerts a pressure in the pre-chamber 10 on the medium-pressure thrust balance piston 6, which causes a force in the opposite direction to the flow direction.
  • a portion of the located in the prechamber 10 hot reheater steam flows into the gap 8 and flows on the inner casing 3, whereby a thermal load is reached at this point.
  • a seal 14 in particular a labyrinth seal, is arranged. It could also be arranged brush seals.
  • the inner housing 3 has a separation projection 15.
  • the separation projection 15 is also opposite to seals 16 the rotor 2 sealed.
  • the seals 16 may be designed, for example, as labyrinth seals or as brush seals.
  • the part of the steam turbine shown in Figure 2 shows an inventive arrangement.
  • the essential difference between the embodiment according to FIG. 2 and the embodiment according to FIG. 1 is that an annular chamber 17 is provided in the inner housing 3, which is fluidically connected to the exhaust-steam space 11. These are in the
  • Inner housing 3 a first bore 18 and a second bore 19 is provided.
  • the first bore 18 is formed substantially parallel to the rotation axis 1 and the second bore 19 substantially perpendicular to the rotation axis 1.
  • the steam located in the Abdampf syndromem 11 is now passed over the first bore 18 and the second bore 19 to the annular chamber 17.
  • a first part 20 of this steam flows in the direction of the outer housing 4 and a second part 21 of the steam flows in the direction of the prechamber 10.
  • the steam flowing out of the prechamber 10 in a third direction 22 is stopped, as it were, and thus is no longer able to with the temperature of the hot reheat to the outer housing 4 to flow.
  • the annular chamber 17 is in this case arranged opposite the lateral surface 7. Furthermore, a plug 23 is provided which seals the first bore 18. The annular chamber 17 is hereby rotated in the inner housing 3. As a result of the arrangement according to the invention shown in FIG. 2, the hot steam contained in the first steam line 12 becomes hot
  • Reheater steam which has a lower pressure than the cold reheater steam, blocked by the outer housing 4.
  • the recess 25 located in the rotor 2 is referred to as a small intermediate floor.
  • the seal 16 is well sealed in the small intermediate bottom 24, for example with an abrasive layer or with a brush seal.
  • the first bore 18 and the second bore 19 are to be set, that there is no collision with the first steam line 12.
  • the exhaust temperature of the exhaust steam increases, but remains significantly lower than the temperature of the steam in the first steam line 12, which is referred to as a hot reheater temperature.
  • the pressure in front of and behind the medium-pressure thrust balance piston 6 is almost the same for this operating condition. Because of the axial arrangement of the annular chamber 17, the exhaust steam flows mainly into the pre-chamber 10.
  • the outer housing 4 is similarly loaded as the outer housing according to FIG.
  • the ring chamber 17 therefore prevents the temperature of the hot reheater steam in the first steam line 12 from influencing the outer casing material. As a result, a cheaper steam turbine can be produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Sealing Devices (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Description

Beschreibung
Verminderung der thermischen Belastung eines Außengehäuses für eine Strömungsmaschine
Die Erfindung betrifft eine Strömungsmaschine umfassend einen in einer Strömungsrichtung entlang ausgebildeten und um eine Rotationsachse rotierbaren Rotor, ein Innengehäuse und ein Außengehäuse, wobei das Innengehäuse um den Rotor angeordnet ist, wobei das Außengehäuse um das Innengehäuse angeordnet ist, wobei der Rotor einen Mitteldruck-Schubausgleichskolben, umfassend eine um den Mitteldruck-Schubausgleichskolben angeordnete Mantelfläche aufweist, wobei eine Vorkammer zwischen dem Innengehäuse und dem Mitteldruck- Schubausgleichskolben ausgebildet ist, wobei eine erste Dampfleitung zum Zuführen von Dampf in die Vorkammer im Innengehäuse ausgebildet ist.
Eine Dampfturbine als Ausführungsbeispiel einer
Strömungsmaschinen wird mit Frischdampf hoher Temperatur und hohem Druck beaufschlagt und wandeln die thermische Energie des Frischdampfes in mechanische Rotationsenergie um. Die Rotationsenergie wird über einen an der Strömungsmaschine drehmomentübertragend angeordneten Generator in elektrische Energie umgewandelt. Der in die Dampfturbine einströmende Frischdampf weist in der Regel eine höhere Temperatur auf als der Dampf, der aus der Dampfturbine wieder austritt. Eine Dampfturbine umfasst im Wesentlichen einen Rotor, ein Innengehäuse und gegebenenfalls ein Außengehäuse. Die thermischen Belastungen dieser Bauteile sind durch die Abnahme der Temperatur des Dampfes entlang einer Strömungsrichtung unterschiedlich. So werden beispielsweise in Hochdruck-Teilturbinen im Einströmbereich hochwarmfeste Eigenschaften für die Materialien gefordert, wobei in
Strömungsrichtung gesehen im hinteren Teil der Hochdruck- Teilturbine mehr kaltzähe Eigenschaften der Materialien gefordert werden. Bei einflutigen Dampfturbinen sind in der Regel Schubausgleichskolben vorgesehen, die den durch die Druckdifferenz über die Beschaufelung verursachten Schub eine Gegenkraft entgegensetzen, um die Kapazität des Axiallagers einzuhalten. Dazu wird eine Vorkammer zwischen dem Schubausgleichskolben und dem Innengehäuse ausgebildet, die mit Dampf beaufschlagt wird, wodurch eine Kraft auf den Schubausgleichskolben wirkt und somit auf den gesamten Rotor. Der in dieser Kammer befindliche Dampf weist in der Regel eine hohe Temperatur und einen hohen Druck auf. Der drehbar ausgeführte Rotor wird über Dichtungen gegenüber dem Innengehäuse abgedichtet. Trotz guter Dichtungen entweicht dennoch ein in der Vorkammer befindlicher Teil des Dampfes über die Dichtung in einen Raum zwischen Innengehäuse und
Außengehäuse. In der Regel befindet sich in dem Raum zwischen dem Innengehäuse und dem Außengehäuse der Abdampf, der eine niedrigere Temperatur und einen niedrigeren Druck gegenüber dem Frischdampf aufweist. Durch den zwischen dem Schubausgleichskolben und dem Innengehäuse ausströmenden vergleichsweise heißen Dampf wird das Außengehäuse an dieser Stelle thermisch belastet. Daher wird als Material für das Außengehäuse ein höherwertiger Werkstoff gewählt.
Allerdings führt die Auswahl des höherwertigen Werkstoffs zu einer kostenintensiven Ausgestaltung der gesamten Dampfturbine. Wünschenswert wäre es, wenn in den Raum zwischen dem Außengehäuse und dem Innengehäuse die thermische Belastung durch den zwischen dem Schubausgleichskolben und dem Innengehäuse strömenden Dampf, verringert ist.
An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, eine kostengünstige Dampfturbine bereitzustellen.
Gelöst wird diese Aufgabe durch eine Strömungsmaschine umfassend einen in einer Strömungsrichtung entlang ausgebildeten und um eine Rotationsachse rotierbaren Rotor, ein Innengehäuse und ein Außengehäuse, wobei das Innengehäuse um den Rotor angeordnet ist, wobei das Außengehäuse um das Innengehäuse angeordnet ist, wobei der Rotor einen Mitteldruck-Schubausgleichskolben umfassend eine um den Mitteldruck-Schubausgleichskolben angeordnete Mantelfläche aufweist, wobei eine Vorkammer zwischen dem Innengehäuse und dem Mitteldruck-Schubausgleichskolben ausgebildet ist, wobei eine erste Dampfleitung zum Zuführen von Dampf in die Vorkammer im Innengehäuse ausgebildet ist, wobei im Innengehäuse eine Ringkammer angeordnet ist, die strömungstechnisch mit einem Abdampfraum verbunden ist, wobei die Ringkammer gegenüber der Mantelfläche angeordnet ist.
Mit der Erfindung wird somit vorgeschlagen, in den Spalt zwischen der Mantelfläche des Mitteldruck- Schubausgleichskolbens und dem Innengehäuse einen Dampf zuzuführen, der eine niedrigere Temperatur als der Dampf in der Vorkammer aufweist. Der in diesen Spalt strömende Dampf strömt zum einen in Richtung des Außengehäuses und zum anderen in Richtung der Vorkammer. Der Teil des Dampfes, der in Richtung der Vorkammer strömt, strömt dem aus der
Vorkammer ausströmenden Dampf entgegen. Der in der Vorkammer befindliche Dampf wird dazu verwendet, um eine Kraft auf den Schubausgleichskolben zu bewirken. Dieser vergleichsweise heiße Dampf wird nun daran gehindert, in den Spalt zwischen den Mitteldruck-Schubausgleichskolben und dem Innengehäuse in Richtung dem Außengehäuse zu strömen, da über die Ringkammer der Dampf zugeführt wird, der in die entgegengesetzte Strömungsrichtung strömt. Dieser vergleichsweise kühlere Dampf strömt zum Teil in Richtung des Außengehäuses und belastet das Außengehäuse im Vergleich zu dem in der Vorkammer befindlichen Dampf thermisch geringer. Das Außengehäuse kann somit an dieser Stelle mit einem Werkstoff gefertigt werden, der für die niedrigere Temperatur angepasst ist. Somit entfällt an dieser Stelle die Forderung, einen höherwertigen Werkstoff für das Außengehäuse zu wählen, der für die Temperaturen des Dampfes in der Vorkammer geeignet wäre. Somit kann diese Dampfturbine kostengünstiger hergestellt werden. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben. In einer vorteilhaften Weiterbildung ist zwischen dem Innengehäuse und dem Rotor eine in der Strömungsmaschine ausgebildete Innenbeschaufelung angeordnet, wobei in
Strömungsrichtung gesehen nach der Turbinenbeschaufelung ein Beschaufelungs-Abdampfräum ausgebildet ist, der strömungstechnisch mit dem Abdampfräum verbunden ist.
Somit ist eine vergleichsweise einfache Möglichkeit angegeben, einen geeigneten Dampf für den Abdampfraum bereitzustellen. Der in den Spalt zwischen dem Mitteldruck- Schubausgleichskolben und dem Innengehäuse strömende Dampf muss daher nicht über eine externe Leitung zugeführt werden, sondern kann von der Dampfturbine selbst bereitgestellt werden, indem nach Durchströmen des Frischdampfes durch die Turbinenbeschaufelung ein Teil des Abdampfes zu dem Abdampfraum geführt wird. Der größte Teil des Abdampfes wird als kalter Zwischenüberhitzerdampf zum Zwischenüberhitzer geführt und auf eine höhere Temperatur erwärmt.
In einer vorteilhaften Weiterbildung weist das Innengehäuse einen Trennvorsprung auf, der in Strömungsrichtung gesehen nach dem Mitteldruck-Schubausgleichskolben angeordnet ist.
Damit eine Kraft auf den Mitteldruck-Schubausgleichskolben wirken kann, ist es erforderlich, dass sich der Dampf in einem geschlossenen Raum, hier die Vorkammer, befindet. Der in dieser Vorkammer aufgebaute Druck wirkt direkt auf den Mitteldruck-Schubausgleichskolben. Erfindungsgemäß wird vorgeschlagen, diese Vorkammer mittels eines Trennvorsprungs am Innengehäuse auszubilden. Dadurch ist eine kostengünstige Möglichkeit angeboten, einen geeigneten Druck auf den Mitteldruck-Schubausgleichskolben zu bewirken.
In einer weiteren vorteilhaften Weiterbildung ist die erste Dampfleitung mit einer HZÜ-Dampfleitung strömungstechnisch verbindbar. Unter einer HZÜ-Dampfleitung wird eine heiße Zwischenüberhitzer-Dampfleitung verstanden. Der aus einer Hochdruck-Teilturbine ausströmende Dampf wird als kalter Zwischenüberhitzerdampf zu einem Zwischenüberhitzer geleitet und dort auf eine höhere Temperatur erhitzt und als heißer Zwischenüberhitzerdampf einer Mitteldruck-Teilturbine wieder zugeführt. Durch die Verwendung des heißen Zwischenüberhitzerdampfes steht ein Dampf mit einem geeigneten Druck zur Verfügung.
In einer weiteren vorteilhaften Weiterbildung ist die erste Dampfleitung mit einem Raum vor einer Mitteldruck- Beschaufelung verbunden. Der in diesem Raum befindliche Dampf weist einen geeigneten Druck auf.
In einer weiteren vorteilhaften Weiterbildung ist eine erste Bohrung im Innengehäuse vorgesehen, die den Abdampfraum mit der Ringkammer strömungstechnisch verbindet.
Vorteilhafterweise ist eine zweite Bohrung im Innengehäuse vorgesehen, die die erste Bohrung mit der Ringkammer verbindet .
In einer weiteren vorteilhaften Weiterbildung ist die erste Bohrung im Wesentlichen parallel zur Rotationsachse und die zweite Bohrung im Wesentlichen senkrecht zur Rotationsachse ausgebildet. Dadurch ist herstellungsbedingt eine einfache Möglichkeit angeboten, den im Abdampfraum befindlichen Dampf zur Ringkammer zu führen. Parallel und senkrecht zur Rotationsachse ausgeführte Bohrungen sind vergleichsweise leicht und schnell herstellbar.
Die Erfindung wird anhand von Ausführungsbeispielen in den Figuren näher dargestellt.
Es zeigen:
FIG 1 einen Teil einer Dampfturbine gemäß dem Stand der Technik; FIG 2 einen Teil einer erfindungsgemäß ausgeführten Dampfturbine .
Die Figur 1 zeigt einen Teil einer Dampfturbine gemäß dem Stand der Technik. Die Dampfturbine umfasst einen um eine Rotationsachse 1 drehbar gelagerten Rotor 2. Um den Rotor 2 ist ein Innengehäuse 3 angeordnet. Um das Innengehäuse 3 ist ein Außengehäuse 4 angeordnet. In einem Ausgleichskolbenbereich 5 weist der Rotor einen Mitteldruck- Schubausgleichskolben 6 auf. Dieser Mitteldruck- Schubausgleichskolben 6 weist einen größeren Radius auf als der außerhalb des Ausgleichskolbenbereichs 5 befindliche Rotor 2 auf. Der Mitteldruck-Schubausgleichskolben 6 weist eine an der Oberfläche befindliche Mantelfläche 7 auf.
Zwischen der Mantelfläche 7 und dem Innengehäuse 3 ist ein Spalt 8 ausgebildet. Ein in die Dampfturbine strömender Frischdampf strömt in einer Strömungsrichtung 9 durch einen nicht näher dargestellten Turbinenbeschaufelungs-Bereich umfassend Leit- und Laufschaufeln . Der Dampf entspannt und kühlt sich auf dem Weg in der Strömungsrichtung 9 ab und ein Teil des Abdampfes wird in einem Abdampfräum 11 geführt. Über eine im Innengehäuse 3 befindliche erste Dampfleitung 12 wird ein heißer Zwischenüberhitzerdampf in eine Vorkammer 10 geführt. Dieser heiße Zwischenüberhitzerdampf übt in der Vorkammer 10 einen Druck auf den Mitteldruck- Schubausgleichskolben 6 aus, der dazu führt, dass eine Kraft in entgegengesetzter Richtung zur Strömungsrichtung erfolgt. Allerdings strömt ein Teil des in der Vorkammer 10 befindlichen heißen Zwischenüberhitzerdampfes in den Spalt 8 und strömt auf das Innengehäuse 3, wodurch eine thermische Belastung an dieser Stelle erreicht wird. Zwischen der Mantelfläche 7 und dem Innengehäuse 3 ist eine Dichtung 14, insbesondere eine Labyrinthdichtung, angeordnet. Es könnten ebenso Bürstendichtungen angeordnet sein.
Das Innengehäuse 3 weist einen Trennvorsprung 15 auf. Der Trennvorsprung 15 wird ebenfalls über Dichtungen 16 gegenüber dem Rotor 2 abgedichtet. Die Dichtungen 16 können beispielsweise als Labyrinthdichtungen oder als Bürstendichtungen ausgeführt sein.
Der in Figur 2 dargestellte Teil der Dampfturbine zeigt eine erfindungsgemäße Anordnung. Der wesentliche Unterschied zwischen der Ausführung gemäß Figur 2 gegenüber der Ausführung gemäß Figur 1 besteht darin, dass eine Ringkammer 17 im Innengehäuse 3 vorgesehen ist, das mit dem Abdampfraum 11 strömungstechnisch verbunden ist. Dazu sind im
Innengehäuse 3 eine erste Bohrung 18 und eine zweite Bohrung 19 vorgesehen. Die erste Bohrung 18 ist hierbei im Wesentlichen parallel zur Rotationsachse 1 und die zweite Bohrung 19 im Wesentlichen senkrecht zur Rotationsachse 1 ausgebildet. Der im Abdampfräum 11 befindliche Dampf wird nun über die erste Bohrung 18 und über die zweite Bohrung 19 zur Ringkammer 17 geführt. Ein erster Teil 20 dieses Dampfes strömt in Richtung des Außengehäuses 4 und ein zweiter Teil 21 des Dampfes strömt in Richtung der Vorkammer 10. Dadurch wird der aus der Vorkammer 10 in einer dritten Richtung 22 strömende Dampf sozusagen aufgehalten und hat dadurch nicht mehr die Möglichkeit, mit der Temperatur von der heißen Zwischenüberhitzung zum Außengehäuse 4 zu strömen.
Die Ringkammer 17 ist hierbei gegenüber der Mantelfläche 7 angeordnet. Des Weiteren ist ein Stopfen 23 vorgesehen, der die erste Bohrung 18 abdichtet. Die Ringkammer 17 wird hierbei in das Innengehäuse 3 gedreht. Durch die gemäß Figur 2 dargestellte erfindungsgemäße Anordnung wird der in der ersten Dampfleitung 12 befindliche heiße
Zwischenüberhitzerdampf, der einen niedrigeren Druck hat als der kalte Zwischenüberhitzerdampf, vom Außengehäuse 4 gesperrt. Die im Rotor 2 befindliche Ausnehmung 25 wird als kleiner Zwischenboden bezeichnet. Um das verlässliche Starten der Dampfturbine zu gewährleisten, wird die Dichtung 16 im kleinen Zwischenboden 24 beispielsweise mit einer abrasiven Schicht oder mit einer Bürstendichtung gut abgedichtet. Die erste Bohrung 18 und die zweite Bohrung 19 sind so zu setzen, dass es keine Kollision mit der ersten Dampfleitung 12 gibt. In einem Leerlauf steigt die Abdampftemperatur des Abdampfes an, bleibt aber deutlich niedriger als die Temperatur des Dampfes in der ersten Dampfleitung 12, die als heiße Zwischenüberhitzer-Temperatur bezeichnet wird. Der Druck vor und hinter dem Mitteldruck-Schubausgleichskolben 6 ist für diesen Betriebszustand nahezu gleich. Wegen der axialen Anordnung der Ringkammer 17 strömt der Abdampf hauptsächlich in die Vorkammer 10. Für diesen Betriebszustand wird das Außengehäuse 4 ähnlich belastet wie das Außengehäuse gemäß Figur 1.
Durch die Ringkammer 17 wird daher verhindert, dass die Temperatur des in der ersten Dampfleitung 12 befindlichen heißen Zwischenüberhitzerdampfes das Außengehäuse-Material beeinflusst. Dadurch kann eine kostengünstigere Dampfturbine hergestellt werden.

Claims

Patentansprüche
1. Strömungsmaschine, umfassend einen in einer Strömungsrichtung (9) entlang ausgebildeten und um eine Rotationsachse (1) rotierbaren Rotor (2), ein Innengehäuse (3) und ein Außengehäuse (4), wobei das Innengehäuse (3) um den Rotor (2) angeordnet ist, wobei das Außengehäuse (4) um das Innengehäuse (3) angeordnet ist, wobei der Rotor (2) einen Mitteldruck-Schubausgleichskolben (6), umfassend eine um den Mitteldruck- Schubausgleichskolben (6) angeordnete Mantelfläche (7) aufweist, wobei eine Vorkammer (10) zwischen dem Innengehäuse (3) und dem Mitteldruck-Schubausgleichskolben (6) ausgebildet ist, wobei eine erste Dampfleitung (12) zum Zuführen von Dampf in die Vorkammer (10) im Innengehäuse (3) ausgebildet ist, gekennzeichnet durch eine im Innengehäuse (3) angeordnete Ringkammer (17), die strömungstechnisch mit einem Abdampfraum (11) verbunden ist, wobei die Ringkammer (17) gegenüber der Mantelfläche (7) angeordnet ist.
2. Strömungsmaschine nach Anspruch 1, mit einer zwischen dem Innengehäuse (3) und dem Rotor (2) angeordneten und in der Strömungsrichtung ausgebildeten Turbinenbeschaufelung, wobei in Strömungsrichtung (9) gesehen nach der
Turbinenbeschaufelung ein Beschaufelungs-Abdampfräum ausgebildet ist, der strömungstechnisch mit dem Abdampfraum (11) verbunden ist.
3. Strömungsmaschine nach Anspruch 1 oder 2, wobei das Innengehäuse (3) einen Trennvorsprung (15) aufweist, der in Strömungsrichtung (9) gesehen nach dem Mitteldruck-Schubausgleichskolben (6) angeordnet ist.
4. Strömungsmaschine nach Anspruch 3, wobei zwischen dem Trennvorsprung (15) und dem Mitteldruck- Schubausgleichskolben (6) die Vorkammer (10) angeordnet ist .
5. Strömungsmaschine nach einem der vorhergehenden Ansprüche, wobei die erste Dampfleitung (12) mit einer heißen Zwischenüberhitzer-Dampfleitung strömungstechnisch verbindbar ist.
6. Strömungsmaschine nach einem der vorhergehenden
Ansprüche, wobei die erste Dampfleitung (12) mit dem Raum vor einer Mitteldruck-Beschaufelung strömungstechnisch verbindbar ist .
7. Strömungsmaschine nach einem der vorhergehenden
Ansprüche, wobei eine erste Bohrung (18) im Innengehäuse (3) vorgesehen ist, die den Abdampfraum (11) mit der Ringkammer
(17) strömungstechnisch verbindet.
8. Strömungsmaschine nach Anspruch 7, wobei eine zweite Bohrung (19) im Innengehäuse (3) vorgesehen ist, die die erste Bohrung (18) mit der
Ringkammer (17) verbindet.
9. Strömungsmaschine nach Anspruch 8, wobei die erste Bohrung (18) im Wesentlichen parallel zur Rotationsachse (1) und die zweite Bohrung (19) im Wesentlichen senkrecht zur Rotationsachse (1) ausgebildet ist .
10. Strömungsmaschine nach einem der Ansprüche 7 bis 9, wobei die erste Bohrung (18) einen Stopfen (23) zum strömungstechnischen Abschließen der ersten Bohrung (18) aufweist.
11. Strömungsmaschine nach einem der vorhergehenden Ansprüche, wobei zwischen dem Innengehäuse (3) und dem Mitteldruck- Schubausgleichskolben (6) eine Labyrinth-Dichtung angeordnet ist.
12. Strömungsmaschine nach einem der vorhergehenden Ansprüche, wobei zwischen dem Trennvorsprung (15) und dem Rotor (2) eine Dichtung (16) angeordnet ist.
13. Strömungsmaschine nach Anspruch 12, wobei die Dichtung (16) als eine Labyrinth-Dichtung ausgebildet ist.
14. Strömungsmaschine nach Anspruch 12, wobei die Dichtung (16) als eine Bürstendichtung ausgebildet ist.
EP09806401A 2008-08-14 2009-06-25 Verminderung der thermischen belastung eines aussengehäuses für eine strömungsmaschine Not-in-force EP2310633B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09806401A EP2310633B1 (de) 2008-08-14 2009-06-25 Verminderung der thermischen belastung eines aussengehäuses für eine strömungsmaschine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08014549A EP2154332A1 (de) 2008-08-14 2008-08-14 Verminderung der thermischen Belastung eines Aussengehäuses für eine Strömungsmaschine
PCT/EP2009/057942 WO2010018021A1 (de) 2008-08-14 2009-06-25 Verminderung der thermischen belastung eines aussengehäuses für eine strömungsmaschine
EP09806401A EP2310633B1 (de) 2008-08-14 2009-06-25 Verminderung der thermischen belastung eines aussengehäuses für eine strömungsmaschine

Publications (2)

Publication Number Publication Date
EP2310633A1 true EP2310633A1 (de) 2011-04-20
EP2310633B1 EP2310633B1 (de) 2011-12-28

Family

ID=40639730

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08014549A Withdrawn EP2154332A1 (de) 2008-08-14 2008-08-14 Verminderung der thermischen Belastung eines Aussengehäuses für eine Strömungsmaschine
EP09806401A Not-in-force EP2310633B1 (de) 2008-08-14 2009-06-25 Verminderung der thermischen belastung eines aussengehäuses für eine strömungsmaschine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08014549A Withdrawn EP2154332A1 (de) 2008-08-14 2008-08-14 Verminderung der thermischen Belastung eines Aussengehäuses für eine Strömungsmaschine

Country Status (5)

Country Link
EP (2) EP2154332A1 (de)
JP (1) JP5221760B2 (de)
CN (1) CN102132008B (de)
AT (1) ATE539233T1 (de)
WO (1) WO2010018021A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2431570A1 (de) * 2010-09-16 2012-03-21 Siemens Aktiengesellschaft Dampfturbine mit einem Schubausgleichskolben und Nassdampfabsperrung
JP5917324B2 (ja) * 2012-07-20 2016-05-11 株式会社東芝 タービンおよびタービン運転方法
EP2840229A1 (de) * 2013-08-23 2015-02-25 Siemens Aktiengesellschaft Strömungsführung innerhalb einer Dampfturbinendichtung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3424138A1 (de) * 1984-06-30 1986-01-09 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Luftspeichergasturbine
CH669241A5 (de) * 1985-11-27 1989-02-28 Sulzer Ag Axialschub-ausgleichsvorrichtung fuer fluessigkeitspumpe.
DE4313455A1 (de) * 1993-04-24 1994-10-27 Klein Schanzlin & Becker Ag Radialer Spalt, beispielsweise einer Strömungsmaschine
US6036433A (en) * 1998-06-29 2000-03-14 General Electric Co. Method of balancing thrust loads in steam turbines
DE50009046D1 (de) * 1999-08-27 2005-01-27 Siemens Ag Turbine sowie verfahren zur abführung von leckfluid
DE19951570A1 (de) * 1999-10-27 2001-05-03 Abb Patent Gmbh Einrichtung zur Kompensierung des Axialschubs bei Turbomaschinen
EP1624155A1 (de) * 2004-08-02 2006-02-08 Siemens Aktiengesellschaft Dampfturbine und Verfahren zum Betrieb einer Dampfturbine
EP1806476A1 (de) * 2006-01-05 2007-07-11 Siemens Aktiengesellschaft Turbine für ein thermisches Kraftwerk

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010018021A1 *

Also Published As

Publication number Publication date
CN102132008A (zh) 2011-07-20
EP2154332A1 (de) 2010-02-17
EP2310633B1 (de) 2011-12-28
WO2010018021A1 (de) 2010-02-18
JP5221760B2 (ja) 2013-06-26
JP2011530670A (ja) 2011-12-22
CN102132008B (zh) 2014-02-19
ATE539233T1 (de) 2012-01-15

Similar Documents

Publication Publication Date Title
EP1774140B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
EP2729686A1 (de) Kühlung für eine strömungsmaschine
EP2596213B1 (de) Dampfturbine mit einer internen kühlung
CH702000A2 (de) Wirbelkammern zur Spaltströmungssteuerung.
EP3307988A1 (de) Rotorkühlung für eine dampfturbine
EP2310633B1 (de) Verminderung der thermischen belastung eines aussengehäuses für eine strömungsmaschine
EP2718545B1 (de) Dampfturbine umfassend einen schubausgleichskolben
WO2001016467A1 (de) Turbine sowie verfahren zur abführung von leckfluid
EP2997236B1 (de) Dampfturbine
CH708987A2 (de) Dampfturbine und Verfahren zur Montage derselben.
EP1731715A1 (de) Übergangsbereich zwischen einer Brennkammer und einer Turbineneinheit
EP2511485A1 (de) Strömungsmaschine, Dampfturbinenanlage und Verfahren zum Wärmen einer Dampfturbinenwelle
DE112019001682T5 (de) Dampfturbinenanlage und Kombikraftwerk
EP2601382A1 (de) Sperrschaltung bei dampfturbinen zur nassdampfabsperrung
EP2598724B1 (de) Dampfturbine sowie verfahren zum kühlen einer solchen
EP3183426B1 (de) Kontrollierte kühlung von turbinenwellen
EP3109407A1 (de) Statorvorrichtung für eine strömungsmaschine mit einer gehäuseeinrichtung und mehreren leitschaufeln
EP3445948B1 (de) Dampfturbine
EP1598537B1 (de) Dampfturbinen-Körper, Verfahren zum Kühlen einer Dampfturbine sowie Verwendung
WO2009019151A1 (de) Dampfzuführung für eine dampfturbine
EP2840229A1 (de) Strömungsführung innerhalb einer Dampfturbinendichtung
EP2236761A1 (de) Leitschaufelträger
EP2031190A1 (de) Dampfturbine mit geregelter Kühlmittelzuführung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

DAX Request for extension of the european patent (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 539233

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009002340

Country of ref document: DE

Effective date: 20120308

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120329

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120630

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121001

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20120630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009002340

Country of ref document: DE

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120408

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120625

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090625

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 539233

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140625

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160610

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160615

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160819

Year of fee payment: 8

Ref country code: CH

Payment date: 20160902

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009002340

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170625

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170625

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630