EP2309947A1 - Method for the production of oxide dental ceramics - Google Patents

Method for the production of oxide dental ceramics

Info

Publication number
EP2309947A1
EP2309947A1 EP09777509A EP09777509A EP2309947A1 EP 2309947 A1 EP2309947 A1 EP 2309947A1 EP 09777509 A EP09777509 A EP 09777509A EP 09777509 A EP09777509 A EP 09777509A EP 2309947 A1 EP2309947 A1 EP 2309947A1
Authority
EP
European Patent Office
Prior art keywords
oxide
dimensional shape
negative mold
feedstock
female mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09777509A
Other languages
German (de)
French (fr)
Inventor
Jürgen HAUSSELT
Regina Knitter
Hans-Joachim Ritzhaupt-Kleissl
Werner Bauer
Joachim R. Binder
Nadja Schlechtriemen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP2309947A1 publication Critical patent/EP2309947A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0004Computer-assisted sizing or machining of dental prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/081Making teeth by casting or moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • C04B2235/9638Tolerance; Dimensional accuracy
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture

Definitions

  • the invention relates to a process for the production of oxide ceramic dentures.
  • the present invention is in the field of manufacturing of ceramic dental prostheses from oxide ceramics such as alumina or zirconium dioxide.
  • oxide ceramics such as alumina or zirconium dioxide.
  • This Mate ⁇ altex distinguishes itself from other ke ⁇ ramischen or glass-ceramic materials with high strength and good chemical stability.
  • a disadvantage of the oxide ceramics is their production via a powder technology molding process and subsequent sintering, which has a shrinkage up to the dense ceramics of up to 50 vol.% Result. Only since the establishment of CAD / CAM technologies is it possible to produce dental prostheses from materials of this class in practice by means of a mathematical correction of the dimensions of the desired shape. An overview of the practical use of CAD / CAM systems can be found in the article Fabric for Machine Helpers, dental dialogue, p. 52, 2005.
  • the mold to be produced is milled from an oxide ceramic blank.
  • the erosion used here inevitably leads to a loss of material which, depending on the material composition and size of the denture, can amount to up to 90% by volume. This material is lost because it can not be worked up yet.
  • Electrophoretic deposition has hitherto been carried out predominantly for the production of inflation ceramics.
  • metallic powders are deposited and subsequently oxidized by means of EPD to compensate for the sintering fuming, in which case a subsequent glass infiltration is required to close the resulting pores.
  • DE 10 2004 018 136 B3 and also in DE 102 32 135 Al expanding stump materials are used for the production of densely sintered oxide ceramics in order to compensate for the occurring sintering fuming.
  • the EPD due to the process, only uniform layers can be produced; However, no complex geometry, as it represents a dental prosthesis, produce, ie it is always a second-consuming manual reworking required.
  • a method is to be provided which enables the production of oxidic dental ceramics without material loss or with only a very slight material loss.
  • this method should offer the possibility of producing complex geometries and very fine crown margins.
  • the present invention achieves the stated object by a process chain which comprises low-pressure injection molding, hot-casting or centrifugal molding as an essential process step.
  • a process chain which comprises low-pressure injection molding, hot-casting or centrifugal molding as an essential process step.
  • the three-dimensional shape or its negative mold must be made correspondingly larger.
  • the desired shape of the dental ceramic is present as numerical data, for which all methods known from dentistry or dental technology can be used.
  • a erfmdungsgelautes method accordingly comprises the following process steps a) to e).
  • oxidic dental ceramics are understood in relation to the present invention both dentures and dental fillings.
  • step a) numerical data of the three-dimensional shape of the desired oxidic dental ceramic, which are usually present as CAD data, form the starting point for the present production method.
  • the CAD data can be obtained here by means of an impression reduction with subsequent modeling or from an intraoral data acquisition. Subsequently, according to the expected later sintering, the dimensions of the three-dimensional shape are numerically enlarged and are then usually available as CAD data.
  • a master model of the enlarged three-dimensional shape from method step a) is first produced, which preferably consists of plastic, wax or a metal.
  • generative methods such as 3D printmg or ablation methods such as CAD / CAM are used for this purpose.
  • a negative mold is now produced from the original model.
  • this shape is designed such that it consists of two, three, four or more parts.
  • the negative mold itself is preferably made of a plastic or silicone.
  • a so-called feedstock which contains an oxide-ceramic powder, wax and / or paraffin and optionally further additives is introduced into the negative mold produced according to process step c), which consists of two, three, four or more parts .
  • the introduction is preferably carried out by low-pressure injection molding at a pressure of 0.01 to 10 MPa, preferably from 0.1 to 2 MPa, and at a temperature of 60 0 C to 150 0 C, preferably from 70 0 C to 120 0 C, especially preferably from 80 0 C to 100 0 C.
  • non-pressure casting, hot casting, or Zentnfugalabformung is suitable as a method.
  • step e) the molding is removed from the negative mold and thermally, chemically and / or supercritically debinded and the debinded molding then sintered to a dense oxide dental ceramic.
  • Very fine crown margins and complex geometries can be produced with this method.
  • a direct coloring of dental ceramic in dental ground clays is possible by suitable additives in the feedstock.
  • This master model was instigated with wax wires (diameter 0.5 - 5 mm) in a special holder to later feed the mass into an evacuated cavity and thus a complete fulfillment of the same.
  • the incised model was filled with an addition-curing silicone in such a way that finally a two-part negative form was created.
  • the multi-part nature of the silicone mold facilitated the final formability of the molds.
  • the SiIikon negative mold was preheated after curing and cleaning to a molding temperature of 100 ° C in a specially manufactured multipart and lockable metal capsule. The linear thermal expansion of the silicone was taken into account in the production of the silicone negative mold in such a way that the silicone negative mold was embedded in the metal capsule without stress and deformation at the corresponding molding temperature.
  • a melt-containing thermoplastic binder mixture contained a mixture of two paraffins in a ratio of 20% by weight to 70% by weight; the 100% by weight supplemental portion formed a dispersing aid.
  • the rheological behavior of the hot casting composition was characterized by a rheometer using a plate-plate-25 measurement setup.
  • the gap width between the two plates was 0.5 mm; it was controlled shear stress at a regulated peltier temperature of 90 0 C to 3000 Pa measured.
  • the produced hot casting compound had a dynamic viscosity of 6.95 Pas at a shear rate of 100 s -1 .
  • the mass was filled into the supply container of an injection facility and kept at a processing temperature of 100 0 C.
  • the required injection pressure was applied to the injection system by means of a hand lever press.
  • Formulation was carried out under vacuum at an injection pressure of 0.49 MPa for 30 seconds and a holding pressure of 0.59 MPa for a further 30 seconds.
  • the specimen thus prepared was removed from the mold after cooling, thermally debinded at a temperature up to 400 0 C and at 1650 0 C over 3 Sintered for hours. After sintering, the specimen was in
  • Table 1 Average values of the measured dimensions in length and width and resulting linear shrinkage between the prototype and the sintered component of alumina:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the preparation of the silicone negative mold was carried out as in Example 1 except that the final preheating temperature of the silicone mold 70 0 C was used instead of 100 ° C.
  • 49.4% by volume of a Yttrium partially stabilized zirconium oxide (3 mol% yttrium oxide) were incorporated into a melt-flowable thermoplastic binder mixture.
  • the binder mixture contained at least 90% by weight of paraffin; the 100% by weight supplemental portion formed a dispersing aid.
  • the rheological behavior of the molding composition was characterized in the same manner as in Example 1.
  • the produced hot casting compound had a dynamic viscosity of 13.9 Pa * s at a shear rate of 100 s -1 .
  • the specimen thus prepared was removed from the mold after cooling, thermally debinded at a temperature up to 400 0 C and sintered at 1450 0 C for 1 hour. After sintering, the specimen was measured in length and width as in Example 1. The measured values obtained were each averaged and the linear shrinkage between prototype and sintered part was calculated. The measured values determined in this way are listed in Table 2.
  • Table 2 Average values of the measured dimensions m Long and wide and resulting linear shrinkage between the prototype and the sintered component made of partially stabilized zirconium oxide:

Abstract

The invention relates to a method for producing oxide dental ceramics, comprising the following steps: a) numeric data of the three-dimensional shape of an oxide dental ceramic article that is to be produced is provided, and the dimensions of the three-dimensional shape are numerically enlarged according to the expected subsequent shrinkage due to sintering; b) a master form of the enlarged three-dimensional shape is produced by means of a generative or abrasive process; c) a female mold is produced by copying the master form, said female mold being designed in such a way as to be made up of at least two parts; d) a feedstock containing an oxide-ceramic powder is introduced into the female mold at a temperature ranging from 60°C to 150°C; e) a cooled molded article is removed from the female mold and is debound, and the debound molded article is finally sintered to obtain a compact oxide dental ceramic article. In said method, no or very little material is wasted. Said method allows very fine edges of crowns and complex geometries to be created. The dental ceramic article can be directly colored in basic tooth colors by adding suitable substances to the feedstock. The number of required apparatuses can be kept low especially when using low-pressure injection molding processes.

Description

Verfahren zur Herstellung von oxidischer ZahnkeramikProcess for the production of oxidic dental ceramics
Die Erfindung betrifft ein Verfahren zur Herstellung von oxidkeramischem Zahnersatz.The invention relates to a process for the production of oxide ceramic dentures.
Die vorliegende Erfindung liegt auf dem Gebiet der Fertigung von keramischem Zahnersatz aus Oxidkeramiken wie Aluminiumoxid oder Zirko- niumdioxid. Diese Mateπalklasse zeichnet sich gegenüber anderen ke¬ ramischen oder glaskeramischen Materialien durch hohe Festigkeit und gute chemische Stabilität aus.The present invention is in the field of manufacturing of ceramic dental prostheses from oxide ceramics such as alumina or zirconium dioxide. This Mateπalklasse distinguishes itself from other ke ¬ ramischen or glass-ceramic materials with high strength and good chemical stability.
Nachteilig an den Oxidkeramiken ist ihre Herstellung über ein pulvertechnologischen Formgebungsverfahren und eine anschließende Sinterung, die eine Schwindung bis zur dichten Keramik von bis zu 50 Vol.% zur Folge hat. Erst seit der Etablierung von CAD/ CAM-Technologien ist durch eine rechnerische Korrektur der Dimensionen der gewünschten Form die Herstellung von Zahnersatz aus Materialien dieser Klasse in der Praxis überhaupt möglich. Ein Überblick über den praktischen Einsatz von CAD/ CAM-Systemen gibt der Artikel Stoff für maschinelle Helferlem, dental dialogue, S. 52, 2005.A disadvantage of the oxide ceramics is their production via a powder technology molding process and subsequent sintering, which has a shrinkage up to the dense ceramics of up to 50 vol.% Result. Only since the establishment of CAD / CAM technologies is it possible to produce dental prostheses from materials of this class in practice by means of a mathematical correction of the dimensions of the desired shape. An overview of the practical use of CAD / CAM systems can be found in the article Fabric for Machine Helpers, dental dialogue, p. 52, 2005.
Allerdings treten beim Einsatz dieses Verfahrens in der Praxis die folgenden Probleme auf:However, in practice, the following problems arise when using this method:
Bei diesem Verfahren wird die herzustellende Form aus einem Rohling aus Oxidkeramik gefräst. Die hierbei eingesetzte Abtragung fuhrt zwangsläufig zu einem Materialverlust, der je nach Materi- alzusammensetzung und Große des Zahnersatzes bis zu 90 Vol.% betragen kann. Dieses Material ist verloren, da es bisher nicht aufgearbeitet werden kann.In this process, the mold to be produced is milled from an oxide ceramic blank. The erosion used here inevitably leads to a loss of material which, depending on the material composition and size of the denture, can amount to up to 90% by volume. This material is lost because it can not be worked up yet.
Bei der Bearbeitung des angesinterten Rohlings, die als Weißbearbeitung bezeichnet wird, kommt es insbesondere bei dünnen Kronen- randern zu Ausbrüchen an der Form. Das gesamte Herstellungsverfahren ist apparativ aufwandig. Daher gibt es verschiedene Bestrebungen, neue Verfahren zu entwickeln bzw. Verfahren, die in anderen Bereichen bereits etabliert sind, wie das aus der DE 197 03 177 Al oder aus W. Bauer und V. Piotter, Keramische Zeitschrift 56, 2004, 292-297 bekannte Pulverspritzgießen oder die aus der DE 103 37 688 B3 oder H. von Both, M. Dauscher und J. Haußelt, Keramische Zeitschrift 56, 2004, 298-303 bekannte elektro- phoretische Abscheidung, an die Gegebenheiten der Dentaltechnik anzupassen, so dass diese sich im Vergleich zu der CAD/CAM-Technologie durch einen geringeren apparativen Aufwand und einen niedrigeren Materialverlust auszeichnen und daher insbesondere kostengünstiger sind. Dabei bleibt jedoch stets das Problem des Sinterschwunds bestehen, das bisher auf unterschiedliche Weise gelost wird.During machining of the sintered blank, which is referred to as white machining, breakouts of the mold occur, especially in the case of thin crown margins. The entire production process is expensive in terms of apparatus. Therefore, there are various efforts to develop new methods or methods that are already established in other areas, such as those from DE 197 03 177 Al or from W. Bauer and V. Piotter, Ceramic Journal 56, 2004, 292-297 known powder injection molding or from DE 103 37 688 B3 or H. von Both, M. Dauscher and J. Haußelt, Ceramic Journal 56, 2004, 298-303 known electrophoretic deposition to adapt to the conditions of dental technology, so that these Compared to the CAD / CAM technology characterized by a lower equipment cost and a lower material loss and therefore are particularly cost-effective. However, there always remains the problem of sintering shrinkage, which has so far been solved in different ways.
Wie aus der EP 1 324 962 Bl bekannt, besitzt der Einsatz von schwin- dungsfreien Keramiken als thermoplastische Massen den Vorteil, dass hierfür keine Expansion erforderlich ist. Nachteilig hieran sind jedoch die geringeren Festigkeiten derartiger Keramiken sowie die Tatsache, dass es sich hierbei um mehrphasige, opake Werkstoffe handelt. Zudem fuhren die erforderlichen Oxidationsreaktionen bei größeren Arbeiten beim Reaktionssintern zu längeren Prozesszeiten .As known from EP 1 324 962 B1, the use of vibration-free ceramics as thermoplastic compositions has the advantage that no expansion is required for this purpose. Disadvantages of this, however, are the lower strengths of such ceramics and the fact that these are multiphase, opaque materials. In addition, the required oxidation reactions lead to longer process times for larger reactions in reaction sintering.
Die elektrophoretische Abscheidung (engl, electrophoretic deposition, EPD) wurde bisher überwiegend zur Herstellung von Inflltrationskera- miken durchgeführt. In DE 100 499 74 Al werden zur Kompensation der Sinterschwmdung mittels EPD metallische Pulver abgeschieden und anschließend oxidiert, wobei auch hier eine nachtragliche Glasinflltra- tion zum Schließen der entstanden Poren notwendig ist. In DE 10 2004 018 136 B3 sowie m DE 102 32 135 Al werden für die Herstellung von dicht gesinterten Oxidkeramiken expandierende Stumpfmateπalien verwendet, um die auftretende Sinterschwmdung zu kompensieren. Grundsatzlich lassen sich mit der EPD verfahrensbedingt lediglich gleichmäßige Schichten erzeugen; jedoch lassen sich keine komplexe Geometrie, wie sie ein Zahnersatz darstellt, herstellen, d.h. es ist immer eine zweitaufwandige manuelle Nacharbeit erforderlich. Beim Heißgießverfahren werden zur Schwindungskompensation, wie aus der EP 1 346 702 Al bekannt, ebenfalls expandierende Modelle eingesetzt. Für die Expansion ist jedoch ein zeitaufwandiges Formgebungsverfahren mit einem anschließenden thermischen Prozess erforderlich. Zudem sind die expandierten Modelle (so genannte Kappchen) porös und bereiten daher Schwierigkeiten bei ihrer Handhabung.Electrophoretic deposition (EPD) has hitherto been carried out predominantly for the production of inflation ceramics. In DE 100 499 74 A1, metallic powders are deposited and subsequently oxidized by means of EPD to compensate for the sintering fuming, in which case a subsequent glass infiltration is required to close the resulting pores. In DE 10 2004 018 136 B3 and also in DE 102 32 135 Al, expanding stump materials are used for the production of densely sintered oxide ceramics in order to compensate for the occurring sintering fuming. In principle, with the EPD, due to the process, only uniform layers can be produced; However, no complex geometry, as it represents a dental prosthesis, produce, ie it is always a second-consuming manual reworking required. In Heißgießverfahren for shrinkage compensation, as known from EP 1 346 702 Al, also expanding models are used. For the expansion, however, a time-consuming molding process with a subsequent thermal process is required. In addition, the expanded models (so-called Kappchen) are porous and therefore pose difficulties in their handling.
Ausgehend hiervon ist es die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung von oxidischer Zahnkeramik vorzuschlagen, das die genannten Nachteile und Einschränkungen nicht aufweist.Proceeding from this, it is the object of the present invention to propose a method for the production of oxide dental ceramic, which does not have the disadvantages and limitations mentioned.
Insbesondere soll ein Verfahren bereitgestellt werden, das die Herstellung von oxidischer Zahnkeramik ohne Materialverlust oder mit nur sehr geringem Mateπalverlust ermöglicht. Dieses Verfahren soll darüber hinaus die Möglichkeit bieten, komplexe Geometrien und sehr feine Kronenrander herzustellen.In particular, a method is to be provided which enables the production of oxidic dental ceramics without material loss or with only a very slight material loss. In addition, this method should offer the possibility of producing complex geometries and very fine crown margins.
Diese Aufgabe wird durch die Schritte des Anspruchs 1 gelost. Die Un- teranspruche beschreiben vorteilhafte Ausgestaltungen der Erfindung.This object is achieved by the steps of claim 1. The claims describe advantageous embodiments of the invention.
Die vorliegende Erfindung lost die genannte Aufgabe durch eine Verfahrenskette, die Niederdruckspritzgießen, Heißgießen oder Zen- trifugalabformung als wesentlichen Verfahrensschritt umfasst. Um die bei der Sinterung auftretende Sinterschwindung zu kompensieren, muss die dreidimensionalen Form oder ihre Negativform entsprechend großer hergestellt werden. Hierzu ist es erforderlich, dass die gewünschte Form der Zahnkeramik als numerische Daten vorliegt, wofür sich alle aus der Zahnmedizin oder der Dentaltechnik bekannten Verfahren einsetzen lassen.The present invention achieves the stated object by a process chain which comprises low-pressure injection molding, hot-casting or centrifugal molding as an essential process step. In order to compensate for the sintering shrinkage occurring during sintering, the three-dimensional shape or its negative mold must be made correspondingly larger. For this purpose, it is necessary that the desired shape of the dental ceramic is present as numerical data, for which all methods known from dentistry or dental technology can be used.
Ein erfmdungsgemaßes Verfahren umfasst demnach die folgenden Verfahrensschritte a) bis e) . Unter oxidischer Zahnkeramik werden in Bezug auf die vorliegende Erfindung sowohl Zahnersatz als auch Zahnfüllungen verstanden. - A - Gemaß Schritt a) bilden numerische Daten der dreidimensionalen Form der gewünschten oxidischen Zahnkeramik, die üblicherweise als CAD- Daten vorliegen, den Ausgangspunkt für das vorliegende Herstellungsverfahren. Die CAD-Daten können hierbei mittels einer Abdruckabnahme mit anschließender Modellierung oder aus einer intraoralen Datenerfassung gewonnen werden. Anschließend werden entsprechend der erwarteten spateren Sinterschwmdung die Dimensionen der dreidimensionalen Form numerisch vergrößert und liegen danach üblicherweise als CAD- Daten vor.A erfmdungsgemaßes method accordingly comprises the following process steps a) to e). Under oxidic dental ceramics are understood in relation to the present invention both dentures and dental fillings. According to step a), numerical data of the three-dimensional shape of the desired oxidic dental ceramic, which are usually present as CAD data, form the starting point for the present production method. The CAD data can be obtained here by means of an impression reduction with subsequent modeling or from an intraoral data acquisition. Subsequently, according to the expected later sintering, the dimensions of the three-dimensional shape are numerically enlarged and are then usually available as CAD data.
Anschließend wird gemäß Schritt b) zunächst ein Urmodell der vergrößerten dreidimensionalen Form aus Verfahrensschritt a) hergestellt wird, die vorzugsweise aus Kunststoff, Wachs oder einem Metall besteht. Hierfür werden insbesondere generative Verfahren wie 3D- Printmg oder abtragende Verfahren wie CAD/ CAM eingesetzt.Subsequently, according to step b), a master model of the enlarged three-dimensional shape from method step a) is first produced, which preferably consists of plastic, wax or a metal. In particular, generative methods such as 3D printmg or ablation methods such as CAD / CAM are used for this purpose.
Im sich hierzu anschließenden Schritt c) wird nunmehr eine Negativform aus dem Urmodell hergestellt. Hierbei ist entscheidend, dass diese Form derart ausgestaltet ist, dass sie aus zwei, drei, vier oder mehr Teilen besteht. Die Negativform selbst besteht vorzugsweise aus einem Kunststoff oder aus Silikon.In the subsequent step c), a negative mold is now produced from the original model. Here it is crucial that this shape is designed such that it consists of two, three, four or more parts. The negative mold itself is preferably made of a plastic or silicone.
Anschließend wird gemäß Schritt d) ein so genannter Feedstock, der ein oxidkeramisches Pulver, Wachs und/oder Paraffin und ggf. weitere Zusätze enthalt, in die gemäß Verfahrensschritt c) hergestellte Negativform, die aus zwei, drei, vier oder mehr Teilen besteht, eingebracht. Das Einbringen erfolgt bevorzugt mittels Niederdruckspritzgießen bei einem Druck von 0,01 bis 10 MPa, vorzugsweise von 0,1 bis 2 MPa, und bei einer Temperatur von 60 0C bis 150 0C, bevorzugt von 70 0C bis 120 0C, besonders bevorzugt von 80 0C bis 100 0C. Alternativ ist auch druckloses Gießen, Heißgießen, oder Zentnfugalabformung als Verfahren geeignet.Subsequently, according to step d), a so-called feedstock which contains an oxide-ceramic powder, wax and / or paraffin and optionally further additives is introduced into the negative mold produced according to process step c), which consists of two, three, four or more parts , The introduction is preferably carried out by low-pressure injection molding at a pressure of 0.01 to 10 MPa, preferably from 0.1 to 2 MPa, and at a temperature of 60 0 C to 150 0 C, preferably from 70 0 C to 120 0 C, especially preferably from 80 0 C to 100 0 C. Alternatively, non-pressure casting, hot casting, or Zentnfugalabformung is suitable as a method.
Schließlich wird gemäß Schritt e) der Formling aus der Negativform entfernt und thermisch, chemisch und/oder überkritisch entbindert und der entbinderte Formling dann zu einer dichten oxidischen Zahnkeramik gesintert .Finally, according to step e), the molding is removed from the negative mold and thermally, chemically and / or supercritically debinded and the debinded molding then sintered to a dense oxide dental ceramic.
Das erfindungsgemaße Verfahren weist insbesondere die im Folgenden erwähnten Vorteile auf:The inventive method has in particular the following advantages:
Bei der Verarbeitung der Keramiken entsteht kein oder nur ein sehr geringer Materialverlust .When processing the ceramics, no or only a very small loss of material is produced.
Mit diesem Verfahren lassen sich sehr feine Kronenrander und komplexe Geometrien herstellen.Very fine crown margins and complex geometries can be produced with this method.
Eine direkte Einfarbung der Zahnkeramik in dentale Grundtone ist durch geeignete Zusätze im Feedstock möglich.A direct coloring of dental ceramic in dental ground clays is possible by suitable additives in the feedstock.
Insbesondere bei Einsatz des Niederdruckspritz- oder Heißgießens entsteht nur ein geringer apparativer Aufwand.In particular, when using the low pressure injection or hot casting only a small amount of equipment is required.
Die Erfindung wird im Folgenden anhand von Ausfuhrungsbeispielen naher erläutert.The invention will be explained in more detail below with reference to exemplary embodiments.
Zur Bestimmung der Formtreue und der Sinterschwindung wurde für die beiden Ausfuhrungsbeispiele ein vereinfachtes, geometrisch vermessbares Modell einer Seitenzahnvollkrone als Urform gewählt.For the determination of the form fidelity and the sintering shrinkage, a simplified geometrically measurable model of a posterior full crown was chosen as the archetype for the two exemplary embodiments.
Ausführungsbeispiel 1Embodiment 1
Mit den Maßangaben des Urmodells wurde ein CAD-File erzeugt und auf dieser Datenbasis in einer 5-Achs-Frasmaschme aus einem Kunststoffrohling ein überdimensioniertes Urmodell gefräst. Hierbei wurden das notwendige Abkuhlschwindmaß (Abformtemperatur-Raumtemperatur) und das Sinterschwindmaß der Al2θ3-haltigen Heißgießmasse von insgesamt 13,7 % von vorn herein berücksichtigt, was einer linearen Vergrößerung von 15,9 % entspricht.With the dimensions of the original model, a CAD file was generated and milled on this database in a 5-axis Frasmaschme from a plastic blank an oversized original model. Here, the necessary Abkühlschwindmaß (molding temperature-room temperature) and the Sinterschwindmaß of Al 2 θ 3 -containing Heißgießmasse total of 13.7% were considered from the outset, which corresponds to a linear magnification of 15.9%.
Dieses Urmodell wurde mit Hilfe von Wachsdrahten (Durchmesser 0,5 - 5 mm) in einer speziellen Halterung angestiftet, um spater den Zulauf der Masse in einen evakuierten Hohlraum und somit eine komplette Be- fullung desselben zu gewahrleisten. Das angestiftete Modell wurde mit einem additionsvernetzenden Silikon derart ausgegossen, dass schließlich eine zweiteilige Negativ-Form entstand. Die Mehrteiligkeit der Silikonform erleichterte die Endformbarkeit der Formlmge. Die SiIi- kon-Negativform wurde nach erfolgter Aushärtung und Reinigung auf eine Abformtemperatur von 100 °C in einer eigens dafür gefertigten mehrteiligen und verschließbaren Metallkapsel vorgewärmt. Die lineare Warmdehnung des Silikons wurde bei der Herstellung der Silikon- Negativform derart berücksichtigt, dass die Silikon-Negativform span- nungs- und deformationsfrei in der Metallkapsel bei der entsprechenden Abformtemperatur eingebettet war.This master model was instigated with wax wires (diameter 0.5 - 5 mm) in a special holder to later feed the mass into an evacuated cavity and thus a complete fulfillment of the same. The incised model was filled with an addition-curing silicone in such a way that finally a two-part negative form was created. The multi-part nature of the silicone mold facilitated the final formability of the molds. The SiIikon negative mold was preheated after curing and cleaning to a molding temperature of 100 ° C in a specially manufactured multipart and lockable metal capsule. The linear thermal expansion of the silicone was taken into account in the production of the silicone negative mold in such a way that the silicone negative mold was embedded in the metal capsule without stress and deformation at the corresponding molding temperature.
In einem evakuierbaren Dissolver wurden 65,0 Vol.% Aluminium- oxidpulver m 35,0 VoI .% einer schmelzflussigen thermoplastische Bm- demittelmischung eingearbeitet. Die Bindemittelmischung enthielt eine Mischung aus zwei Paraffinen im Verhältnis 20 Gew.% zu 70 Gew.%; der zu 100 Gew.% ergänzende Anteil bildete ein Dispergierhilfsmittel .In an evacuable dissolver, 65.0% by volume of aluminum oxide powder in 35.0% by volume of a melt-containing thermoplastic binder mixture were incorporated. The binder mixture contained a mixture of two paraffins in a ratio of 20% by weight to 70% by weight; the 100% by weight supplemental portion formed a dispersing aid.
Das rheologische Verhalten der Heißgießmasse wurde mittels eines Rhe- ometers unter Einsatz eines Platte-Platte-25-Messaufbaus charakterisiert. Die Spaltweite zwischen den beiden Platten betrug 0,5 mm; es wurde bei einer peltiergeregelten Temperatur von 900C schubspannungs- geregelt bis 3000 Pa gemessen. Die hergestellte Heißgießmasse wies eine dynamische Viskosität von 6,95 Pa- s bei einer Scherrate von 100 s"1 auf.The rheological behavior of the hot casting composition was characterized by a rheometer using a plate-plate-25 measurement setup. The gap width between the two plates was 0.5 mm; it was controlled shear stress at a regulated peltier temperature of 90 0 C to 3000 Pa measured. The produced hot casting compound had a dynamic viscosity of 6.95 Pas at a shear rate of 100 s -1 .
Für den Formgebungsprozess wurde die Masse in den Vorratsbehalter einer Injektionsanlage gefüllt und bei einer Verarbeitungstemperatur von 100 0C belassen. Der erforderliche Injektionsdruck wurde mittels einer Handhebelpresse auf die Injektionsanlage gegeben. Die Formful- lung erfolgte unter Vakuum bei einem Injektionsdruck von 0,49 MPa für 30 s und einem Nachdruck von 0,59 MPa für weitere 30 s.For the forming process, the mass was filled into the supply container of an injection facility and kept at a processing temperature of 100 0 C. The required injection pressure was applied to the injection system by means of a hand lever press. Formulation was carried out under vacuum at an injection pressure of 0.49 MPa for 30 seconds and a holding pressure of 0.59 MPa for a further 30 seconds.
Der so hergestellte Probekorper wurde nach dem Erkalten entformt, bei einer Temperatur bis 4000C thermisch entbindert und bei 16500C über 3 Stunden gesintert. Nach erfolgter Sinterung wurde der Probekörper inThe specimen thus prepared was removed from the mold after cooling, thermally debinded at a temperature up to 400 0 C and at 1650 0 C over 3 Sintered for hours. After sintering, the specimen was in
Länge und Breite jeweils flächig an 5 Positionen vermessen. Die erhaltenen Messwerte wurden jeweils gemittelt und die lineare Schwindung zwischen Urform und Sinterteil berechnet. Die auf diese Weise ermittelten Messwerte sind in Tabelle 1 aufgeführt.Measure the length and width in each case at 5 positions. The measured values obtained were each averaged and the linear shrinkage between prototype and sintered part was calculated. The measured values determined in this way are listed in Table 1.
Tabelle 1: Mittelwerte der gemessenen Dimensionen in Länge und Breite und daraus resultierende lineare Schwindung zwischen der Urform und dem gesintertem Bauteil aus Aluminiumoxid:Table 1: Average values of the measured dimensions in length and width and resulting linear shrinkage between the prototype and the sintered component of alumina:
Tabelle 1Table 1
Dimension Abmaße der Urform Abmaße des gesinterLineare Längen- (Mittelwert ) ten Bauteils (Mitteländerung wert)Dimension dimensions of the original form dimensions of the sintered linear (mean value) component (mean value change)
Länge 13 , 901 mm 11,997 mm -13,70 %Length 13, 901 mm 11,997 mm -13.70%
Breite 11 , 588 mm 9, 986 mm -13,82 %Width 11, 588 mm 9, 986 mm -13.82%
Gemäß Tabelle 1 betrugen die beobachteten Längenänderungen -13,70 % bzw. -13,82 %. Damit ist die Sinterschwindung von der Urform zur Replikation in Bezug auf Länge und Breite isotrop. Die angestrebten Endmaße der gesinterten keramischen Krone wurden erreicht.According to Table 1, the observed changes in length were -13.70% and -13.82%, respectively. Thus, the sintering shrinkage from the prototype to the replication is isotropic in terms of length and width. The intended final dimensions of the sintered ceramic crown were achieved.
Ausführungsbeispiel 2 :Embodiment 2:
Mit den Maßangaben des Urmodells wurde ein CAD-File erzeugt und auf dieser Datenbasis in einer 5-Achs-Fräsmaschine aus einem Kunststoffrohling ein überdimensioniertes Urmodell gefräst. Hierbei wurden das notwendige Abkühlschwindmaß (Abformtemperatur-Raumtemperatur) und das Sinterschwindmaß der Zrθ2~haltigen Heißgießmasse von insgesamt 21,0 % von vorn herein berücksichtigt, was einer linearen Vergrößerung von 26,6 % entspricht.With the dimensions of the original model, a CAD file was generated and milled on this database in a 5-axis milling machine from a plastic blank, an oversized original model. Here, the necessary Abkühlschwindmaß (molding temperature-room temperature) and the Sinterschwindmaß the Zrθ2 ~ containing Heißgießmasse of a total of 21.0% were taken into account from the outset, which corresponds to a linear magnification of 26.6%.
Die Herstellung der Silikon-Negativform erfolgte wie in Ausführungsbeispiel 1, jedoch betrug die abschließende Vorwärmtemperatur der Silikonform 700C anstelle von 100 °C. In einem evakuierbaren Dissolver wurden 49,4 Vol.% eines Yttπum- teilstabilisierten Zirkonoxides (3 Mol.% Yttriumoxid) in eine schmelzflussige thermoplastische Bindemittelmischung eingearbeitet. Die Bindemittelmischung enthielt mindestens 90 Gew.% Paraffin; der zu 100 Gew.% ergänzende Anteil bildete ein Dispergierhilfsmittel .The preparation of the silicone negative mold was carried out as in Example 1 except that the final preheating temperature of the silicone mold 70 0 C was used instead of 100 ° C. In an evacuable dissolver, 49.4% by volume of a Yttrium partially stabilized zirconium oxide (3 mol% yttrium oxide) were incorporated into a melt-flowable thermoplastic binder mixture. The binder mixture contained at least 90% by weight of paraffin; the 100% by weight supplemental portion formed a dispersing aid.
Das rheologische Verhalten der Formmasse wurde auf die gleiche Weise wie in Ausfuhrungsbeispiel 1 charakterisiert. Die hergestellte Heiß- gießmasse wies eine dynamische Viskosität von 13,9 Pa *s bei einer Scherrate von 100 s 1 auf.The rheological behavior of the molding composition was characterized in the same manner as in Example 1. The produced hot casting compound had a dynamic viscosity of 13.9 Pa * s at a shear rate of 100 s -1 .
Der Formgebungsprozess erfolgte wie in Ausfuhrungsbeispiel 1.The molding process was carried out as in Example 1.
Der so hergestellte Probekorper wurde nach dem Erkalten entformt, bei einer Temperatur bis 4000C thermisch entbindert und bei 14500C über 1 Stunde gesintert. Nach erfolgter Sinterung wurde der Probekorper in Lange und Breite wie in Ausfuhrungsbeispiel 1 vermessen. Die erhaltenen Messwerte wurden jeweils gemittelt und die lineare Schwindung zwischen Urform und Sinterteil berechnet. Die auf diese Weise ermittelten Messwerte sind in Tabelle 2 aufgeführt.The specimen thus prepared was removed from the mold after cooling, thermally debinded at a temperature up to 400 0 C and sintered at 1450 0 C for 1 hour. After sintering, the specimen was measured in length and width as in Example 1. The measured values obtained were each averaged and the linear shrinkage between prototype and sintered part was calculated. The measured values determined in this way are listed in Table 2.
Tabelle 2: Mittelwerte der gemessenen Dimensionen m Lange und Breite und daraus resultierende lineare Schwindung zwischen der Urform und dem gesintertem Bauteil aus teilstabilisiertem Zirkonoxid:Table 2: Average values of the measured dimensions m Long and wide and resulting linear shrinkage between the prototype and the sintered component made of partially stabilized zirconium oxide:
Gemäß Tabelle 2 betrugen die beobachteten Langenanderungen -20,96 % bzw. - 20.98 %. Damit ist die Sinterschwindung von der Urform zur Replikation in Bezug auf Länge und Breite isotrop. Die angestrebtenAccording to Table 2, the observed long-term changes were -20.96% and -20.98%, respectively. Thus, the sintering shrinkage from the original form to Replication in terms of length and width isotropic. The desired
Endmaße der gesinterten keramischen Krone wurden erreicht. Final dimensions of the sintered ceramic crown were achieved.

Claims

PatentanSprüche cLAIMS
1. Verfahren zur Herstellung von oxidischer Zahnkeramik, mit den Schritten a) Bereitstellen von numerischen Daten der dreidimensionalen Form einer herzustellenden oxidischen Zahnkeramik und numerische Vergrößerung der Dimensionen der dreidimensionalen Form entsprechend der zu erwartenden späteren Sinterschwindung, b) Herstellen eines Urmodells der vergrößerten dreidimensionalen Form mittels einem generativen oder abtragenden Verfahren, c) Herstellen einer Negativform durch Kopieren des Urmodells, wobei die Negativform derart ausgestaltet ist, dass sie aus mindestens zwei Teilen besteht, d) Einbringen eines Feedstocks, der ein oxidkeramisches Pulver enthält, in die Negativform bei einer Temperatur von 60 0C bis 150 0C, e) Entformen eines erkalteten Formlings aus der Negativform, Entbindern und abschließendes Sintern des entbinderten Formlings zu einer dichten oxidischen Zahnkeramik.1. A method for the production of oxide dental ceramic, comprising the steps of a) providing numerical data of the three-dimensional shape of an oxidic dental ceramic and numerically increasing the dimensions of the three-dimensional shape according to the expected subsequent sintering shrinkage, b) producing a master model of the enlarged three-dimensional shape means c) producing a negative mold by copying the master model, wherein the negative mold is designed such that it consists of at least two parts, d) introducing a feedstock containing an oxide ceramic powder into the negative mold at a temperature of 60 0 C to 150 0 C, e) deblocking a cooled molding from the female mold, and debinding final sintering the debindered molding to form a dense oxide ceramic tooth.
2. Verfahren nach Anspruch 1, wobei das Einbringen des Feedstocks gemäß Verfahrensschritt d) in die Negativform mittels Niederdruckspritzgießen bei einem Druck von 0,01 bis 10 MPa erfolgt.2. The method of claim 1, wherein the introduction of the feedstock according to process step d) into the negative mold by means of low-pressure injection molding at a pressure of 0.01 to 10 MPa.
3. Verfahren nach Anspruch 1 oder 2, wobei das Einbringen des Feedstocks in die Negativform gemäß Verfahrensschritt d) bei einem Druck von 0,1 bis 2 MPa und bei einer Temperatur von 70 0C bis 120 0C erfolgt.3. The method of claim 1 or 2, wherein the introduction of the feedstock into the negative mold according to process step d) at a pressure of 0.1 to 2 MPa and at a temperature of 70 0 C to 120 0 C.
4. Verfahren nach Anspruch 3, wobei das Einbringen des Feedstocks in die Negativform gemäß Verfahrensschritt d) bei einer Temperatur von 80 0C bis 100 0C erfolgt. 4. The method of claim 3, wherein the introduction of the feedstock into the negative mold according to process step d) at a temperature of 80 0 C to 100 0 C.
5. Verfahren nach Anspruch 1, wobei das Einbringen des Feedstocks gemäß Verfahrensschritt d) in die Negativform mittels Heißgießen oder Zentrifugalabformung erfolgt.5. The method according to claim 1, wherein the introduction of the feedstock according to process step d) takes place in the negative mold by means of hot casting or Zentrifugalabformung.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei die Entbinde- rung des Formlings gemäß Verfahrensschritt e) thermisch, chemisch oder überkritisch erfolgt. 6. The method according to any one of claims 1 to 5, wherein the debindering of the molding according to process step e) takes place thermally, chemically or supercritically.
EP09777509A 2008-08-06 2009-07-29 Method for the production of oxide dental ceramics Withdrawn EP2309947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008036661A DE102008036661A1 (en) 2008-08-06 2008-08-06 Process for the production of oxidic dental ceramics
PCT/EP2009/005481 WO2010015350A1 (en) 2008-08-06 2009-07-29 Method for the production of oxide dental ceramics

Publications (1)

Publication Number Publication Date
EP2309947A1 true EP2309947A1 (en) 2011-04-20

Family

ID=41130134

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09777509A Withdrawn EP2309947A1 (en) 2008-08-06 2009-07-29 Method for the production of oxide dental ceramics

Country Status (3)

Country Link
EP (1) EP2309947A1 (en)
DE (1) DE102008036661A1 (en)
WO (1) WO2010015350A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010064142B4 (en) * 2010-12-23 2019-06-13 BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG Investment material for use in a method of manufacturing a dental restoration by CAD-Cast method
FR3072894B1 (en) * 2017-10-27 2021-04-02 Inst Mines Telecom PROCESS FOR CHECKING THE DIMENSIONS OF A SINTERABLE PART DURING ITS SINTERING

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1543797A1 (en) * 2003-12-17 2005-06-22 DeguDent GmbH Method for the fabrication of a dental-ceramic structure

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19703177C2 (en) 1997-01-29 2003-01-30 Fraunhofer Ges Forschung Process for the production of ceramic or powder metallurgical components
US20050023710A1 (en) * 1998-07-10 2005-02-03 Dmitri Brodkin Solid free-form fabrication methods for the production of dental restorations
EP1124500A1 (en) * 1999-09-02 2001-08-22 JENERIC/PENTRON Incorporated Method for manufacturing dental restorations
DE50010420D1 (en) * 1999-12-07 2005-06-30 Inocermic Ges Fuer Innovative METHOD FOR PRODUCING CERAMIC DENTAL PRESERVATION
DE10044605A1 (en) 2000-09-08 2002-04-04 Karlsruhe Forschzent Molding composition, its use and method for producing an oxide-ceramic sintered body
DE10049974A1 (en) 2000-10-06 2002-04-11 Wieland Edelmetalle Production of ceramic dental articles with reduced shrinkage is effected using a ceramic mixture containing metal powder, with oxidation of the metal during sintering to compensate for shrinkage
EP1346702A1 (en) 2002-03-21 2003-09-24 Metalor Technologies SA Method of making a ceramic dental restoration
DE10232135A1 (en) 2002-07-12 2004-01-22 Wieland Dental + Technik Gmbh & Co. Kg Model material for dental technology purposes as well as its manufacture and use
DE10337688B3 (en) 2003-08-16 2005-03-17 Forschungszentrum Karlsruhe Gmbh Process for the preparation of ceramic structures and ceramic structures produced by this process
DE102004018136B3 (en) 2004-04-08 2005-09-22 C. Hafner Gmbh + Co. Dental modelling material, comprises a reactively expanding component comprising zirconium dioxide and zirconium disilicide and a binder component comprising glass powder
US7762814B2 (en) * 2004-09-14 2010-07-27 Oratio B.V. Method of manufacturing and installing a ceramic dental implant with an aesthetic implant abutment
DE102005055526A1 (en) * 2005-11-22 2007-06-06 BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG Method and system for producing a dental prosthesis
DE102006061143A1 (en) * 2006-12-22 2008-07-24 Aepsilon Rechteverwaltungs Gmbh Method, computer-readable medium and computer relating to the manufacture of dental prostheses

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1543797A1 (en) * 2003-12-17 2005-06-22 DeguDent GmbH Method for the fabrication of a dental-ceramic structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010015350A1 *

Also Published As

Publication number Publication date
WO2010015350A1 (en) 2010-02-11
DE102008036661A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
EP2450003B1 (en) Method for manufacturing a blank and pre-sintered blank
EP1021997B1 (en) Method of manufacture of dental prostheses and auxiliary elements
EP1087720B1 (en) Method for producing ceramic medical, dental medical, technical dental and technical parts
EP0817597B1 (en) Process for manufacturing prosthetic dental reconstructions
EP2024300B1 (en) Method for producing a ceramic
DE102005045698B4 (en) Shaped body of a dental alloy for the production of dental parts
EP2529694A1 (en) Method for generative production of ceramic forms by means of 3D jet printing
WO2002076325A1 (en) Expanding dental model material
WO2017182173A1 (en) Method for producing a dental restoration
EP4010299A1 (en) Method of manufacturing a zirconium dioxide green body with color and translucency gradients
DE10342231B4 (en) Blank for the production of a tooth replacement part and method for producing the same
DE19930564A1 (en) Ceramic molding, especially medical or dental prosthesis or implant, is produced by machining pressed green ceramic body to desired inner and-or outer contour prior to sintering
EP1601304A1 (en) Method for producing a metallic dental implant and a blank for carrying out said method
WO2010015350A1 (en) Method for the production of oxide dental ceramics
DE19703175C2 (en) Process for the production of ceramic or powder metallurgical components with a helical outer contour
EP3772498A1 (en) Method for producing a zirconium dioxide blank with colour and translucence gradient
EP3772497A1 (en) Zirconia blank with colour and translucent gradient
DE4002815A1 (en) Fired precision mould for high temp. shaping operations - contg. spinel-forming oxide(s) for mould vol. expansion
EP3977959A1 (en) Method for production of a dental mould
DE102016109449A1 (en) Ceramic semi-finished product for the production of dental prostheses and method for the production of dental prostheses by means of a ceramic semifinished product
EP3128946B1 (en) Method for the production of a molded blank from metal powder
EP0703773A1 (en) Composite ceramic moulding
WO2019053253A1 (en) Method for producing a molded product by sintering

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHLECHTRIEMEN, NADJA

Inventor name: BINDER, JOACHIM, R.

Inventor name: BAUER, WERNER

Inventor name: RITZHAUPT-KLEISSL, HANS-JOACHIM

Inventor name: KNITTER, REGINA

Inventor name: HAUSSELT, JUERGEN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121217

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130430